Multivalent harmonic uniformly convex functions

R. M. EL-Ashwah¹, M. K. Aouf² and F. M. Abdulkarem¹*

¹Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
²Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

Received 10 March, 2014; Accepted 13 October, 2014

In this paper, several properties of the multivalent harmonic uniformly convex classes \(HK_m^{\alpha}\) and \(HK_m^{1-\alpha}\) were investigated. Coefficient bounds, distortion theorem, extreme points, convolution condition, convex combinations and integral operator for these classes were obtained.

Key words: Harmonic, multivalent functions, convex, convolution.

INTRODUCTION

A continuous complex valued function \(f = u + iv\) which is defined in a simply connected complex domain \(D\) is said to be harmonic in \(D\) if both \(u\) and \(v\) are real harmonic in \(D\). In any simply connected domain we can write:

\[
f(z) = h(z) + g(z),
\]

where \(h\) and \(g\) are analytic in \(D\). We call \(h\) the analytic part and \(g\) the co-analytic part of \(f\). A necessary and sufficient condition for \(f\) to be locally univalent and sense-preserving in \(D\) is that \(|h'(z)| > |g'(z)|\) in \(D\) (Clunie and Sheil-Small, 1984).

Denote by \(S_H^k\), the class of functions \(f\) of the form (2) that are harmonic univalent and sense preserving in \(D\) is that \(|h(z)| > |g(z)|\) in \(D\) (Clunie and Sheil-Small, 1984).

For \(f = h + g \in S_H^k\), we may express:

\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k + \sum_{k=1}^{\infty} b_k z^k, |b_k| < 1.
\]

where the analytic functions \(h\) and \(g\) are of the form:

\[
h(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad g(z) = \sum_{k=1}^{\infty} b_k z^k, |b_k| < 1.
\]

Clunie and Sheil-Small (1984) investigated the class \(S_H^k\) as well as its geometric subclasses and some coefficient bounds for functions in \(S_H^k\) were obtained. Since then, various subclasses of \(S_H^k\) were investigated by several authors (Al-Shaqsi and Darus, 2008; Chandrashekar et al., 2009; Jahangiri, 1999; Murugusundaramoorthy, 2003; Murugusundaramoorthy et al., 2009; Rosy et al., 2001).

Recently, Kanas and Srivastava (2000) studied the class \(S_H^k\) -uniformly convex analytic functions. For \(m \geq 1\) and \(0 \leq \alpha < 1\), we let

*Corresponding author. E-mail: fammar76@gmail.com

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

2000 Mathematics Subject Classification: 30C45.
\(H(m) \) denote the class of multivalent harmonic functions \(f(z) = h(z) + g(z) \), where

\[
h(z) = z^m + \sum_{k=m+1}^{\infty} a_k z^k, \quad g(z) = \sum_{k=0}^{m} b_k z^k, \quad |b_m| < 1.
\]

(4)

We consider the class \(K_{\mu}(m, \alpha) \) of functions of the form (1) where \(h \) and \(g \) are given by Equation (4) satisfying the inequality

\[
\text{Re}\left\{ \frac{z^2 h''(z) + z h'(z) + z^2 g''(z) + z g'(z)}{zh'(z) - zg(z)} - m \right\} + m\alpha, \quad (5)
\]

where \(m \geq 1 \) and \(0 \leq \alpha < 1 \).

Using the fact that \(\text{Re}(w) > |w - m| + m\alpha \Leftrightarrow \text{Re}[(1 + e^{i\phi})w - me^{i\phi}] \geq m\alpha \), it follows from the condition (5) that \(f \) is in the class \(K_{\mu}(m, \alpha) \) if and only if

\[
\text{Re}\left\{ m + (1 + e^{i\phi}) \left(\frac{z^2 h''(z) + z h'(z) + z^2 g''(z) + z g'(z)}{zh'(z) - zg(z)} - m \right) \right\} \geq m\alpha, \quad (6)
\]

where \(m \geq 1 \) and \(0 \leq \alpha < 1 \).

We note that:

Further, let \(\overline{K}_{\mu}(m, \alpha) \) be the subclass of \(K_{\mu}(m, \alpha) \) consisting of functions of the form:

\[
f(z) = z^m - \sum_{k=m+1}^{\infty} |a_k| z^k - \sum_{k=m}^{\infty} |b_k| z^k \quad (|b_m| < 1).
\]

(7)

Recent interest in the study of multivalent harmonic functions in the plan prompted the publication of several articles, such as Ahuja and Jahangiri (2001, 2002, 2003), Bshouty et al. (1999), Guney and Ahuja (2006).

In this paper, the coefficient bounds for the classes \(K_{\mu}(m, \alpha) \) and \(\overline{K}_{\mu}(m, \alpha) \) as well as distortion theorem, extreme points, convolution, convex combinations and integral operator for functions in the class \(\overline{K}_{\mu}(m, \alpha) \) were obtained.

COEFFICIENTS BOUNDS AND DISTORTION THEOREM

Unless otherwise mentioned, it was assumed in the course of this study that \(0 \leq \alpha < 1, m \geq 1 \) and \(z \in U \). We began with a sufficient condition for functions in the classes \(K_{\mu}(m, \alpha) \) and \(\overline{K}_{\mu}(m, \alpha) \) and obtained distortion theorem for functions in the class \(\overline{K}_{\mu}(m, \alpha) \).

Theorem 1

Let \(f = h + g \), where \(h \) and \(g \) are given by Equation (4), and satisfy the condition

\[
\sum_{k=m}^{\infty} k \left[2k - m(1 + \alpha) \right] m(1 - \alpha) + 1 - \frac{|b_k|}{1 - \frac{1}{2}} \leq \frac{1}{2} \cdot (8)
\]

Then \(f(z) \in K_{\mu}(m, \alpha) \).

Proof

Assume that Equation (8) holds. It suffices to prove that

\[
\text{Re}\left\{ m + (1 + e^{i\phi}) \left(\frac{z^2 h''(z) + z h'(z) + z^2 g''(z) + z g'(z)}{zh'(z) - zg(z)} - m \right) \right\} \geq m\alpha, \quad (9)
\]

where \(m \geq 1 \) and \(0 \leq \alpha < 1 \).

Using the fact that \(\text{Re}(w) \geq 0 \) if and only if \(|1+w| \geq |1-w| \), it suffices to show that

\[
|A(z) + B(z)| - |A(z) - B(z)| \geq 0, \quad (10)
\]

where

\[
A(z) = [(1 - m)(1 + e^{i\phi}) + m(1 - \alpha)]z h'(z) + (1 + e^{i\phi}) z^2 h^*(z) + (1 + e^{i\phi}) z^2 \overline{g'(z)}
\]

and

\[
B(z) = z h'(z) - z g'(z).
\]

Substituting for \(A(z) \) and \(B(z) \) in the left side of Equation (10) we obtain:

\[
\left| A(z) + B(z) \right| - \left| A(z) - B(z) \right|
\]

\[
= m(1 + m(1 - \alpha))z^m + \sum_{k=m+1}^{\infty} k [k - m \alpha + (k - m)e^{i\phi} + 1] a_k z^k
\]
holds, then \(f(z) \in K_\alpha(m, \alpha) \).

Corollary 2

Let \(f = h + g \), where \(h \) and \(g \) are given by Equation (4). Also, let \(m \geq 1/(1-\alpha) \) and if the condition
\[
\sum_{k=m+1}^{\infty} |k(2k-m(1+\alpha))p_k| \leq 1,
\]
(13)
holds, then \(f(z) \in K_\alpha(m, \alpha) \).

In the following theorem, it is shown that the condition (12) is also necessary for function \(f = h + g \), where \(f \) is of the form (7).

Theorem 2

Let \(f = h + g \), be given by the form (7). Then \(f(z) \in K_\alpha(m, \alpha) \) if and only if the coefficient bound (12) holds.

Proof

Since \(K_\alpha(m, \alpha) \subseteq K_\alpha(m, \alpha) \), we only need to prove this part of the theorem. To this end, for functions \(K_\alpha(m, \alpha) \), it was noticed that the necessary and sufficient condition to be in the class \(K_\alpha(m, \alpha) \) is that:
\[
\left| \frac{1}{z^m} \left(\frac{1}{z} \right) \frac{1}{z^m} \right| \leq |z|^m.
\]
(14)
This is equivalent to
\[
\left| \frac{1}{z^m} \left(\frac{1}{z} \right) \frac{1}{z^m} \right| \geq 0.
\]
(15)
This condition must hold for all values of \(z \in U \) and for real \(\alpha \) so that on taking \(z = r \), the above inequality reduces to:
\[
\frac{1}{z^m} \frac{1}{z^m} \geq 0.
\]
(16)
Letting \(r \to 1 \), we obtain the condition (12). This completes the proof of Theorem 2.
Theorem 3

Let the function $f(z)$ given by Equation (7) be in the class $\mathcal{K}_{\mathcal{H}}(m, \alpha)$, then for $z = r < 1$

$$
|f(z)| \leq \left(1 + \sum_{k=1}^{m} (m+1) - \sum_{k=1}^{m} (m+1) \right) |p_n|^{m+1}, \quad m(1-\alpha) \leq 1
$$

and

$$
|f(z)| \geq \left(1 + \sum_{k=1}^{m} (m+1) - \sum_{k=1}^{m} (m+1) \right) |p_n|^{m+1}, \quad m(1-\alpha) \geq 1,
$$

(16)

where

$$|p_n| \leq \frac{(1-\alpha)}{(3+\alpha)}.$$

Proof

If $m(1-\alpha) \leq 1$, we have,

$$
|f(z)| \leq \left(1 + \sum_{k=1}^{m} (m+1) - \sum_{k=1}^{m} (m+1) \right) |p_n|^{m+1}
$$

and

$$
|f(z)| \geq \left(1 + \sum_{k=1}^{m} (m+1) - \sum_{k=1}^{m} (m+1) \right) |p_n|^{m+1}, \quad m(1-\alpha) \geq 1,
$$

(17)

which proves the assertion (16) of Theorem 3. The proof of the assertion (17) is similar, thus, it was omitted.

Remark 1

Putting $m = 1$ in Theorem 3, we improve the result obtained by Kim et al. (2002) by adding the condition $|p_n| \leq \frac{(1-\alpha)}{(3+\alpha)}$.

The following covering result follows the left hand inequality Theorem 3.

Corollary 3

Let the function $f(z)$ given by (7) be in the class $\mathcal{K}_{\mathcal{H}}(m, \alpha)$, then for $|z| = r < 1$, we have:

$$
|f(z)| \leq \left(2 + \frac{2m(1-\alpha)}{m+1} \right) |p_n|^{m+1}, \quad m(1-\alpha) \leq 1
$$

and

$$
|f(z)| \geq \left(2 + \frac{2m(1-\alpha)}{m+1} \right) |p_n|^{m+1}, \quad m(1-\alpha) \geq 1,
$$

(18)

where

$$|p_n| \leq \frac{1}{2} \left[1 + m(3m(1-\alpha) - \alpha) \right],$$

and

$$|p_n| \leq \frac{1}{2} \left[1 + m(3m(1-\alpha) - \alpha) \right].$$

EXTREME POINTS

Here, the extreme points of the closed convex hull of the class $\mathcal{K}_{\mathcal{H}}(m, \alpha)$ denoted by $\mathcal{K}_{\mathcal{H}}(m, \alpha)$, was determined.

Theorem 4

Let $f(z)$ be given by (7), then $f(z) \in \mathcal{K}_{\mathcal{H}}(m, \alpha)$ if and only if

$$
\sum_{k=1}^{m} h_k(z) + \sum_{k=1}^{m} g_k(z),
$$

where

$$
h_k(z) = \begin{cases} z^m - \frac{m(1-\alpha)}{k(2k+m+1)(1-\alpha)} z^k & (k \geq m+1), \quad m(1-\alpha) \leq 1 \\
\end{cases}
$$

and

$$
g_k(z) = \begin{cases} z^m - \frac{1}{k(2k+m+1)(1-\alpha)} z^k & (k \geq m+1), \quad m(1-\alpha) \geq 1 \\
\end{cases}
$$

where

$$\sum_{k=1}^{m} (x_k + y_k) = 1, \quad x_k \geq 0 \quad \text{and} \quad y_k \geq 0.$$
Proof

For a function \(f(z) \) of the form (18), we have:

\[
\sum_{k=-\infty}^{\infty} x_k h(z) + y_k g(z) = \sum_{k=-\infty}^{\infty} x_k \left(z^{-m} - \frac{m^2(1-\alpha)}{k[2k-m(1+\alpha)]} z^k \right) + y_k \left(z^{-m} - \frac{m^2(1-\alpha)}{k[2k+m(1+\alpha)]} z^k \right)
\]

\[
= z^{-m} - \sum_{k=-\infty}^{\infty} \frac{m^2(1-\alpha)}{k[2k-m(1+\alpha)]} x_k z^k - \sum_{k=-\infty}^{\infty} \frac{m^2(1-\alpha)}{k[2k+m(1+\alpha)]} y_k z^k
\]

but,

\[
\sum_{k=-\infty}^{\infty} \frac{k[2k-m(1+\alpha)]}{m^2(1-\alpha)} |a_k| + \sum_{k=-\infty}^{\infty} \frac{k[2k+m(1+\alpha)]}{m^2(1-\alpha)} |b_k|
\]

\[
= \sum_{k=-\infty}^{\infty} x_k + \sum_{k=-\infty}^{\infty} y_k = 1 - x_k \leq 1,
\]

and \(f(z) \in cl\text{co} \overline{K}_H(m, \alpha) \).

Conversely, assume that \(f(z) \in cl\text{co} \overline{K}_H(m, \alpha) \). Then

\[
a_k = \frac{m^2(1-\alpha)}{k[2k-m(1+\alpha)]},
\]

and

\[
b_k = \frac{m^2(1-\alpha)}{k[2k+m(1+\alpha)]}
\]

set

\[
x_k = \frac{k[2k-m(1+\alpha)]}{m^2(1-\alpha)} |a_k|,
\]

and

\[
y_k = \frac{k[2k+m(1+\alpha)]}{m^2(1-\alpha)} |b_k|
\]

Then by using Equation (12), we have

\[
0 \leq x_k \leq 1(k = m+1, m+2, ...) \quad \text{and} \quad 0 \leq y_k \leq 1(k = m+1, ...).
\]

\[
x_m = 1 - \sum_{k=m+1}^{\infty} x_k - \sum_{k=m}^{\infty} y_k,
\]

is defined and the equation:

\[
f(z) = \sum_{k=-\infty}^{\infty} (x_k h(z) + y_k g(z))
\]

is obtained. This completes the proof of Theorem 4.

CONVOLUTION AND CONVEX COMBINATION

In this section, the convolution properties and convex combination were determined.

Let the functions \(f_j(z) \) be defined by:

\[
f_j(z) = z^{-m} - \sum_{k=-\infty}^{\infty} \left[a_{k,j} z^k - \sum_{k=-\infty}^{\infty} b_{k,j} z^k \right] \quad (j = 1, 2),
\]

be in the class \(\overline{K}_H(m, \alpha) \), we denote by \((f_1 \ast f_2)(z) \) the convolution or (Hadamard Product) of the function \(f_1(z) \) and \(f_2(z) \), that is,

\[
(f_1 \ast f_2)(z) = z^{-m} - \sum_{k=-\infty}^{\infty} a_{k,1} a_{k,2} z^k - \sum_{k=-\infty}^{\infty} b_{k,1} b_{k,2} z^k.
\]

while the integral convolution is defined by

\[
(f_1 \ast f_2)(z) = z^{-m} - \sum_{k=-\infty}^{\infty} \frac{k[2k-m(1+\alpha)]}{m^2(1-\alpha)} |a_k| z^k - \sum_{k=-\infty}^{\infty} \frac{k[2k+m(1+\alpha)]}{m^2(1-\alpha)} |b_k| z^k.
\]

We first show that the class \(\overline{K}_H(m, \alpha) \) is closed under convolution.

Theorem 5

For \(0 \leq \delta \leq \alpha < 1 \), let the functions \(f_1(z) \in \overline{K}_H(m, \alpha) \) and \(f_2(z) \in \overline{K}_H(m, \delta) \).

Then

\[
(f_1 \ast f_2)(z) \in \overline{K}_H(m, \alpha) \subset \overline{K}_H(m, \delta),
\]

and

\[
(f_1 \ast f_2)(z) \in \overline{K}_H(m, \alpha) \subset \overline{K}_H(m, \delta).
\]

Proof

Let \(f_j(z)(j = 1, 2) \) given by Equation (19), where \(f_1(z) \) is in the class \(\overline{K}_H(m, \alpha) \) and \(f_2(z) \) be in the class \(\overline{K}_H(m, \delta) \). It therefore shows that the coefficients of \((f_1 \ast f_2)(z) \) satisfy the required condition given in Equation (12).

For \(f_2(z) \in \overline{K}_H(m, \delta) \), we note that \(|a_{k,j}| < 1 \) and \(|b_{k,j}| < 1 \).

Now for the convolution functions \((f_1 \ast f_2)(z) \), we obtain

\[
\sum_{k=-\infty}^{\infty} \frac{k[2k-m(1+\alpha)]}{m^2(1-\alpha)} |a_{k,1}| + \sum_{k=-\infty}^{\infty} \frac{k[2k+m(1+\alpha)]}{m^2(1-\alpha)} |b_{k,1}|
\]

\[
\leq \sum_{k=-\infty}^{\infty} \frac{k[2k-m(1+\alpha)]}{m^2(1-\alpha)} |a_{k,1}| + \sum_{k=-\infty}^{\infty} \frac{k[2k+m(1+\alpha)]}{m^2(1-\alpha)} |b_{k,1}|
\]

where \(\sum_{k=-\infty}^{\infty} \frac{k[2k-m(1+\alpha)]}{m^2(1-\alpha)} |a_{k,1}| + \sum_{k=-\infty}^{\infty} \frac{k[2k+m(1+\alpha)]}{m^2(1-\alpha)} |b_{k,1}| \leq 1, \)
since \(0 \leq \delta \leq \alpha < 1\) and \(f_1(z) \in \overline{K}_H(m, \alpha)\).

Thus \((f_1 \ast f_2)(z) \in \overline{K}_H(m, \alpha) \subset \overline{K}_H(m, \delta)\). The proof of the assertion (23) is similar, thus, it was omitted. This completes the proof of Theorem 5.

Next we show that \(\overline{K}_H(m, \alpha)\) is closed under convex combinations of its members.

Theorem 6

The class \(\overline{K}_H(m, \alpha)\) is closed under convex combination.

Proof

For \(i = 1, 2, \ldots\), let \(f_i(z) \in \overline{K}_H(m, \alpha)\), where

\[
f_i(z) = z^m - \sum_{k=1}^{\infty} \sum_{j=0}^{k-1} \left| \frac{a_{j,k}}{1 - z^{1-k}} \right| \left(1 + \frac{z^{1-k}}{c_{j,k}} \right), \quad \text{for } z \in U'_{i}, i = 1, 2, \ldots,
\]

(24)

then from (12), for \(\sum_{i=1}^{\infty} t_i = 1\), \(0 \leq t_i < 1\), the convex combination of \(f_i(z)\) may be written as:

\[
\sum_{i=1}^{\infty} t_i f_i(z) = z^m - \sum_{k=1}^{\infty} \left(\sum_{j=0}^{k-1} \left| \frac{a_{j,k}}{1 - z^{1-k}} \right| \right) \left(1 + \frac{z^{1-k}}{c_{j,k}} \right).
\]

(25)

Then by using Equation (12), we have

\[
\sum_{k=1}^{m} \frac{k [2k - m(1+\alpha)]}{m^2(1-\alpha)} \left(\sum_{j=0}^{k-1} \left| \frac{a_{j,k}}{1 - z^{1-k}} \right| \right) \left(1 + \frac{z^{1-k}}{c_{j,k}} \right) \\
= \sum_{k=1}^{m} \frac{k [2k - m(1+\alpha)]}{m^2(1-\alpha)} \left(\sum_{j=0}^{k-1} \left| \frac{a_{j,k}}{1 - z^{1-k}} \right| \right)
\]

\[
\leq \sum_{k=1}^{m} \frac{k [2k - m(1+\alpha)]}{m^2(1-\alpha)} \left(\sum_{j=0}^{k-1} \left| \frac{a_{j,k}}{1 - z^{1-k}} \right| \right) \leq 1.
\]

This completes the proof of Theorem 6.

Integral operator

Here, a closure property of the class \(\overline{K}_H(m, \alpha)\) was examined under the generalized Bernardi-Libera-Livingston integral operator (Saitoh et al., 1992), \(L_{c,m}(f(z))\), which is defined by:

\[
L_{c,m}(f(z)) = \left(\frac{c + m}{z^{-c}} \right) \int_{0}^{\infty} h(t) \, dt; \quad c > -m.
\]

(26)

Theorem 7

Let \(\overline{K}_H(m, \alpha)\).

Then

\[
L_{c,m}(f(z)) \in \overline{K}_H(m, \alpha).
\]

Proof

From Equation (26), it follows that

\[
L_{c,m}(f(z)) = \left(\frac{c + m}{z^{-c}} \right) \int_{0}^{\infty} h(t) \, dt \\
= \left(\frac{c + m}{z^{-c}} \right) \int_{0}^{\infty} \left[f(t) - \sum_{k=m+1}^{\infty} a_k t^k \right] \, dt
\]

\[
= \left(\frac{c + m}{z^{-c}} \right) \int_{0}^{\infty} \left[\sum_{k=m}^{\infty} a_k t^k \right] \, dt
\]

\[
= \left(\frac{c + m}{z^{-c}} \right) \int_{0}^{\infty} \left(\sum_{k=m}^{\infty} \left(\sum_{i=1}^{k} t_i a_i \right) t^k \right) \, dt
\]

where

\[
A_k = \sum_{i=1}^{k} a_i, \quad B_k = \left(\frac{c + m}{c + k} \right) B_k.
\]

Therefore,

\[
\sum_{k=m}^{\infty} \frac{k [2k - m(1+\alpha)]}{m^2(1-\alpha)} \left(\sum_{i=1}^{k} a_i \right) \int_{0}^{\infty} \left(\sum_{i=1}^{k} t_i a_i \right) t^k \, dt
\]

\[
\leq \sum_{k=m}^{\infty} \frac{k [2k - m(1+\alpha)]}{m^2(1-\alpha)} \left(\sum_{i=1}^{k} a_i \right) \int_{0}^{\infty} \left(\sum_{i=1}^{k} t_i a_i \right) t^k \, dt
\]

\[
\leq \sum_{k=m}^{\infty} \frac{k [2k - m(1+\alpha)]}{m^2(1-\alpha)} \left(\sum_{i=1}^{k} a_i \right) \int_{0}^{\infty} \left(\sum_{i=1}^{k} t_i a_i \right) t^k \, dt \leq 1.
\]

Thus

\[
\sum_{k=m}^{\infty} \frac{k [2k - m(1+\alpha)]}{m^2(1-\alpha)} \left(\sum_{i=1}^{k} a_i \right) \int_{0}^{\infty} \left(\sum_{i=1}^{k} t_i a_i \right) t^k \, dt
\]

\[
L_{c,m}(f(z)) \in \overline{K}_H(m, \alpha).
\]

This completes the proof of Theorem 7.

Remark 2

Putting \(m = 1\) in the above results, the corresponding results by Kim et al. (2002), with \(k = 1\) is obtained.

Conflict of Interest

The authors have not declared any conflict of interest.

REFERENCES

