Full Length Research Paper

Oral *Ricinus communis* oil exposure at different stages of pregnancy impaired hormonal, lipids profile and histopathology of reproductive organs in Wistar rats

Shakiru Ademola Salami1* and Yinusa Raji2

1Department of Physiology, Lagos State University, College of Medicine, Ikeja, Lagos State, Nigeria.
2Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.

Received 15 September, 2014; Accepted 13 November, 2014

Ricinus communis oil (RCO) has been used and shown to possess laxative, contraceptive, labour inducing, cosmetics and estrogenic capabilities. Despite these, there is paucity of studies on the effects of maternal RCO exposure at different stages of pregnancy. This study investigated effects of RCO exposure on maternal biochemical, hormonal and histopathology of reproductive organs. RCO was prepared by cold extraction using methanol and subjected to physicochemical analysis, gas chromatography (GC) and mass spectrometry (MS). Acute oral toxicity was done by limit test procedure. Twenty five pregnant rats randomly assigned to 5 equal groups were treated with distilled water (control, group 1), RCO (950 mg/kg p.o) during gestation days (GD) 1 to 7, 7 to 14, 14 to 21 and 1 to 21 (groups 2 to 5), respectively. Maternal hormonal, biochemical, and histopathology of reproductive organs were determined. Data were analyzed using Student’s t-test and ANOVA. RCO showed no lethality up to 5000 mg/kg body weight. Serum alanine aminotransferase of GD 7 to 14 and 14 to 21 decreased significantly when compared with control. Aspartate aminotransferase decreased significantly in GD 1 to 7, 7 to 14, and 1 to 21. Total cholesterol, triglyceride and high-density lipoprotein increased while progesterone and estrogen levels decreased significantly in RCO treated groups. There were no lesions in the histology of the ovary of all treated groups; however, GD 1 to 7 and 7 to 14 showed resorption and ballooning of the uterine epithelial tissues, respectively. Exposure to RCO at early gestation periods impacted negatively on reproductive hormones, lipid profiles and histopathology of the uterus.

Key words: *Ricinus communis* oil, estrogenic, gas chromatography, gestation days, lipid profiles, uterine damage.

INTRODUCTION

Castor oil plant is a member of the spurge family of plants (Euphorbiaceae). Greek physicians of the first century AD regarded the oil as suitable only for external application until the 18th century when it was listed in several...
pharmacopoeias as a purgative (Cosmetic Ingredient Review Expert Panel, 2007). According to the International Cosmetic Ingredient Dictionary and Handbook (Gottschalck and McEwen, 2004), *Ricinus communis* (castor) seed oil is defined as the fixed oil obtained from the seeds of *R. communis*. Extracts from plants have been reported to contain a multitude of biologically active compounds (Gustafsson, 2008). Ricinoleic acid accounts for 87 to 90% of the fatty acyl groups in RCO with oleic acid (2 to 7%), linoleic acid (3 to 5%), palmitic acid (1 to 2%), stearic acid (1%), dihydrostearic acid (1%), and trace amounts of other fatty acyl (TNO BIBRA International Ltd. 1999). Other sources reported 2.4% lauric acid (Larsen et al., 2001), 2 to 5% linoleic acid (Maier et al., 1999), and globulin, cholesterol, lipase, vitamin E, and β-sitosterol (Scarpa and Guerci, 1982). Naturally occurring phytosterols have been reported to bear tremendous similarity to synthetic steroids like corticosterone and hydrocorticosterone. National Toxicological Programme, NTP (1992) reported that groups of rats and mice fed diets containing 0.62, 1.25, 2.5, 5.0, and 10% castor oil, respectively, continuously for 13 weeks showed a slight decrease in epididymal weight (6 to 7%). Studies by Raji et al. (2006) reported a significant decrease in weight of reproductive organs, sperm functions, and serum level of testosterone in *R. communis* extract treated male rats in a dose dependent manner. Clinically, the use of *R. communis* oil as a labour inducer has been extensively reported (Davis, 1984; Mitri et al., 1987; Steingrubi et al., 1988; Garry et al., 2000; Boel et al., 2010). The oil was also reported to have abortifacient activity when taken orally by pregnant women (Sani and Sule, 2007). Extracts of the seed have been tested in women and found to produce long-term contraception (Okwuasaba et al., 1991). Okwuasaba et al. (1991) also evaluated anticonceptive and estrogenic effects of a methanol extract of *R. communis* var. minor seeds in rabbits and rats. Increased occurrence of reproductive disorders has continued to raise concerns regarding the impact of endocrine disrupting chemicals (EDC) on reproductive health (Savabieasfahani et al., 2006). EDCs are hormonally active, synthetic, or natural compounds that are present within the environment and food sources at concentrations that can interfere with the normal activity of endocrine systems, most notably the reproductive endocrine axis (IPCS, 2002). Endocrine disrupting chemicals that can interact with estrogen receptors have received considerable attention because they can modulate signaling by native estrogen, a key regulator of several physiologic functions including reproduction. *R. communis* oil has been shown to possess laxative, contraceptive, labour inducing and estrogenic properties. Studies have also linked agents with estrogenic properties to having endocrine disrupting capabilities with likely harmful effect (Bergstrom et al., 1996; Kavlock, 1999; Leonida et al., 2007). There is paucity of studies targeting effects of RCO in females at different gestation periods. This study investigates the effects of RCO exposure at different gestation periods on maternal biochemical, hormonal, and histopathology of reproductive organs.

MATERIALS AND METHODS

Animals

Adult Wistar male (weighing, 180 to 200 g) and female rats (200 to 250 g) obtained from the Central Animal House, Lagos State University, College of Medicine, Ikeja, Nigeria, were used for the experiments. Females were nulliparous and males used for mating were confirmed fertile by the isolated mating technique. Animals were allowed to acclimatize for three weeks to laboratory conditions, housed singly in cages, and fed with rats’ cubes (Ladokun Feeds Limited, Ibadan, Nigeria) and water *ad libitum* for the entire duration of the study. A 12 h dark-light period was maintained throughout the study. Ethical approval on use of animal in this study was certified by the College of Medicine, University of Ibadan Animal House Committee.

Plant

Seeds of *R. communis* plant were collected from Oyo town, Oyo State, South Western Nigeria between July and August, authenticated at the herbarium of the Forestry Research Institute of Nigeria (FRIN), Ibadan and assigned voucher number 106878.

Extraction, physicochemical analysis, gas chromatography and mass spectrometry of *R. communis* seed

Seeds of *R. communis* were air dried to a constant weight. Mortar and pestle were used to crush the beans into a paste in order to release castor fat for extraction. Pulverized seeds (1.5 kg) were extracted with 5 L of methanol by cold extraction. The pulverized seeds were soaked for 72 h after which the mixture was filtered to remove the marc. The mixture separated into 3 layers *RCA*, *RCb* and *RCC*. *RCA* was a golden coloured oily layer (368.9 g), with a yield of 24.6%, *RCb* was a brownish resinous substance (20 g), and yield of 1.3%, while *RCC* was a dusty brown substance (residue, 55 g), and yield of 3.7%. The separated mixtures obtained by filtration were evaporated of the solvent in a rotary evaporator at 37°C and stored at 0°C prior to further analysis (Cosmetic Ingredient Review Expert Panel, 2007). *RCA* was the major component of interest and was thus subjected to further physicochemical analysis.

Physicochemical screening, gas chromatography and mass spectrometry (GCMS) of oily fraction *RCA* of *Ricinus communis* seed oil

Physicochemical analysis on the oil comprising saponification value, acid value, specific gravity and GCMS was as reported by Nkpa et al. (1989) and Ibironke et al. (2004), respectively.

Gas chromatography and mass spectrometry on RCO

Gas chromatography and mass spectrometry (GCMS) analysis of the oil was done using an Agilent Technologies 6890GC interfaced to an Agilent 5973N mass selective detector. HP-5MS column with diameter of 30×0.25 mm×1.0 μm was used with helium as carrier.
gas at a flow rate of 22 ml/min. The gas chromatography oven
temperature was initially held at 50°C for 5 mins then increased at
2°C/min to 250°C. The injector temperature was at 250°C with a
split ratio of 1:30 and MS detector at 280°C. Percentage
compositions were then obtained from electronic integration
measurement using flame ionization detector at 280°C. The peak
numbers and relative abundance of the chemical components with
their retention time were then determined. Individual constituents of
the oil were identified on the basis of their retention indices
determined with a reference to a homologous series of n-alkanes
and by comparison of their mass spectral fragmentation patterns
(Ibironke et al., 2004).

Acute oral toxicity experiment on RCO in rats

Sequential limit test of the Organization for Economic Cooperation
and Development (OECD, 2001) protocol was utilized for this study. Male and female rats were tested at both 2000 and 5000 mg/kg.

Experimental protocol

Twenty-five mature nulliparous female albino rats (10 weeks old) with normal estrous cycle were used. Male rats for mating were
certified fertile by isolated mating technique and mating was
confirmed by the presence of a sperm positive vaginal smear
according to Stump et al. (2007). Day after which sperm positive
vaginal smear was found was taken as gestational day 1 (Foster et
al., 2011). Pregnant rats were then randomly assigned to treatment
groups in a manner that provided for comparable body weight
across groups. There were five animals per group and dosage for
all groups was 950 mg/kg, which is the recommended therapeutic
dose in adult humans (Drugstore.com, Inc., 2004) via oral dosing
syringe except group 1 (control) which received distilled water.
Group 1, control animals received distilled water, group 2 were
administered RCO between gestation days (GD) 1 and 7, group 3
were administered RCO between GD 7 and 14, group 4 were
administered RCO between GD 14 and 21 and group 5 were
administered RCO between GD 1 and 21. These treatment
regimens were chosen in order to target all the critical period of
intrauterine life (that is, early, mid, late and entire gestation
periods). The animals were subsequently sacrificed on GD 21.
Blood samples were collected via the orbital sinus for hormonal and
biochemical indices. Weights of the animals were also taken once
every other day; the ovary and uterus were also taken for
histopathological screening.

Collection of serum from pregnant rats

Pregnant rats were bled from the orbital sinus at gestation day 21. Blood (2 ml) was then collected into polyethylene tubes and allowed
to clot at 4°C for 1 h. The blood samples were then centrifuged at
3500 g for 15 min at 4°C. Serum samples were then kept at -10°C
until assayed for biochemical and hormonal parameters. Animals
were subsequently sacrificed via cervical dislocation.

**Determination of serum alanine aminotransferase (ALT) and
aspartate aminotransferase (AST)**

Serum ALT and AST were assayed according to the methods of
Reithman and Frankel (1957).

Determination of lipid and lipoprotein

Total cholesterol, triglyceride, low density lipoprotein cholesterol
and high density lipoprotein cholesterol levels were determined as
described by Rifai et al. (1999).

Organ collection

The animals were sacrificed by cervical dislocation and dissected
(from the abdominal cavity) to collect organ of interest; kidney, liver,
ovary and uterus. The organs were cleared of adherent tissues, fats
and then weighed immediately with an electronic weighing balance,
model DT 300 with a capacity of 0.01 to 300 g.

Histopathology of the ovary and uterus

After weighing the ovary and uterus were fixed in Bouin solution,
embedded in paraffin, sliced thin, stained using hematoxylin and
eosin (HE), and observed under a light microscope. Photomicrographs of the slides were then taken.

Assay of estrogen and progesterone

Serum estrogen and progesterone was measured using the ELISA
Test Kit (Endocrine Technologies, Newark, NJ).

Statistical analysis

Mean values, standard error of mean (Mean ± SEM), test of
significance between two groups and for more than two groups by
the analysis of variance (ANOVA) were all determined using Graph
Pad Prism V 5.01.

RESULTS

Physicochemical analysis on RCO

The physicochemical analysis of *R. communis* oil gave
an acid value of 0.154 mg KOH/g, saponification value of
139.7, percentage free-fatty acid value of 0.077, density
of 0.95 g/ml at 25°C and a pale yellow viscous liquid.

Gas chromatography and mass spectrometry on RCO

Figures 1A & 1B showed the results of the gas chromatography and mass spectrometry on RCO showed
the results of the gas chromatography and mass spectrometry of fixed oil isolated from the *R. communis*
seed showing the relative abundance of the chemical constituents with retention time. Overall, four major
constituents were identified in the fixed oil; 5.90% of 9, 12
octadecadienic acid at retention time of 15.369 s, 12.99%
of 9,17 octadecadienal at retention time of 15.666 s,
46.68% of 9 octa 12 hydroxydecanoic acid at retention
time of 16.626 s and finally 34.41% of ricinoleic acid at
17.049 s retention time.
Table 1. Acute oral toxicity effect of administering *Ricinus communis* oil at 2000mg/kg body weight and 5000mg/kg body weight.

<table>
<thead>
<tr>
<th>No. of animal (Female)</th>
<th>Survival (%)</th>
<th>Death (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2nd</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3rd</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4th</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5th</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Effects of *Ricinus communis* oil on body weight of pregnant rats at different gestation periods.

<table>
<thead>
<tr>
<th>Group (By gestation days) N= 5</th>
<th>Body weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Week</td>
</tr>
<tr>
<td>Control</td>
<td>204±10.30</td>
</tr>
<tr>
<td>GD 1 to 7</td>
<td>202±11.14</td>
</tr>
<tr>
<td>GD 7 to 14</td>
<td>200±7.07</td>
</tr>
<tr>
<td>GD 14 to 21</td>
<td>202±11.14</td>
</tr>
<tr>
<td>GD 1 to 21</td>
<td>202±13.93</td>
</tr>
</tbody>
</table>

Table 3. Biochemical parameters in pregnant rats treated with RCO at different gestation period.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>GD 1 to 7</th>
<th>GD 7 to 14</th>
<th>GD 14 to 21</th>
<th>GD 1 to 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>16.2±1.16</td>
<td>17.8±1.69</td>
<td>5.8±1.16***</td>
<td>12.0±0.84*</td>
<td>16.0±3.60</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>109.6±2.01</td>
<td>62.2±2.22**</td>
<td>49.2±5.93***</td>
<td>102.0±5.32</td>
<td>91.8±5.62*</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>2.8±0.10</td>
<td>3.9±0.10***</td>
<td>3.4±0.13**</td>
<td>3.9±0.13***</td>
<td>3.8±0.09***</td>
</tr>
<tr>
<td>Triglyceraldehyde (mmol/L)</td>
<td>0.5±0.03</td>
<td>0.9±0.03***</td>
<td>0.8±0.05**</td>
<td>0.9±0.05***</td>
<td>0.7±0.02*</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>0.7±0.13</td>
<td>1.4±0.13**</td>
<td>1.3±0.20*</td>
<td>1.6±0.21**</td>
<td>1.6±0.19**</td>
</tr>
<tr>
<td>LDL(mmol/L)</td>
<td>1.8±0.06</td>
<td>2.2±0.18</td>
<td>1.3±0.4**</td>
<td>2.0±0.16</td>
<td>2.0±0.11</td>
</tr>
</tbody>
</table>

*p< 0.05, **p<0.01 ***p< 0.001; ALT: Alanine amino transferase; AST: Aspartate amino transferase; HDL: High density lipoprotein; LDL: Low density lipoprotein.

Acute oral toxicity study

After more than 14 days observatory period, there was no death or visible physical damage (Table 1). Animals were without any visible and identifiable abnormality or mortality even at 5000 mg/kg body weight. Female rats were used though the experiment was also repeated in male rats. The results obtained for both sexes were the same.

Effect of maternal exposure to RCO on gestational weight in pregnant rats

There were no significant differences in the mean weights of pregnant rats (Table 2) treated with RCO at different gestation period when compared with control for the three weeks gestation period.

Effects of maternal exposure to RCO on serum ALT and AST

There was a significant decrease (p<0.05) in serum level of ALT in pregnant rats treated with RCO between gestation days 7 to 14 and 14 to 21 when compared to the control (Table 3). Serum level of ALT increased in pregnant rats treated with RCO between gestation days 1 to 7 and 1 to 21, the increase (Table 3) was however not statistically different when compared with the control. There were statistically significant decreases from control (Table 3) in the serum AST levels of pregnant rats treated with RCO between gestation days 1 to 7, 7 to 14, and 1 to 21(p<0.01). Pregnant rats treated with RCO between gestation days 14 and 21 also showed decrease in serum aspartate aminotransferase. The decrease was however not statistically different from the control.
Table 4. Serum estrogen and progesterone levels in pregnant rats treated with RCO at different gestation periods.

<table>
<thead>
<tr>
<th>Serum level</th>
<th>Control</th>
<th>GD 1 to 7</th>
<th>GD 7 to 14</th>
<th>GD 14 to 21</th>
<th>GD 1 to 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen (ng/ml)</td>
<td>24.5</td>
<td>19.1*</td>
<td>15.7**</td>
<td>15.9**</td>
<td>14.7***</td>
</tr>
<tr>
<td>Progesterone (ng/ml)</td>
<td>52.0</td>
<td>45.0*</td>
<td>11.0***</td>
<td>40.0*</td>
<td>33.0**</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01, ***p<0.001.

Table 5. Organ weight in pregnant rats treated with RCO (950 mg/kg) at different gestation periods (GD= gestation days).

<table>
<thead>
<tr>
<th>Organ weight (g)</th>
<th>Control (N=5)</th>
<th>GD 1 to 7 (N=5)</th>
<th>GD 7 to 14 (N=5)</th>
<th>GD 14 to 21 (N=5)</th>
<th>GD 1 to 21 (N=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovary</td>
<td>0.03±0.00</td>
<td>0.02±0.07</td>
<td>0.03±0.00</td>
<td>0.03±0.01</td>
<td>0.06±0.01</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.09±0.02</td>
<td>0.02±0.07</td>
<td>0.14±0.02</td>
<td>0.07±0.02</td>
<td>0.13±0.03</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.28±0.03</td>
<td>0.26±0.01</td>
<td>0.30±0.01</td>
<td>0.3±0.07</td>
<td>0.22±0.01</td>
</tr>
<tr>
<td>Liver</td>
<td>3.80±0.60</td>
<td>3.10±0.10</td>
<td>3.30±0.20</td>
<td>3.60±0.40</td>
<td>3.00±0.20</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01, ***p<0.001

Table 6. Numbers of life/dead fetuses at sacrifice in pregnant rats treated with RCO at different gestation periods.

<table>
<thead>
<tr>
<th>Group</th>
<th>Life</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>GD 1 to 7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>GD 7 to 14</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>GD 14 to 21</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>GD 1 to 21</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Effects of maternal exposure to RCO on serum progesterone and estrogen level

There were significant decreases (p<0.05) in the progesterone and estrogen levels in all RCO treated groups (Table 4).

Effects of maternal exposure to RCO on absolute mean organ weights of treated pregnant rats

As shown in Table 5, there were no significant changes in the mean organ weight between treated pregnant rats and untreated pregnant control.

Effects of maternal exposure to RCO on histology of the ovary/uterus and life death numbers of fetus at sacrifice in treated rats

There were no lesions in the ovary of female rats from control and RCO treated groups as shown in photomicrographs A to E (Figure 2). However, histology of uterus of female rats from gestation days 7 to 14 showed ballooning of the uterine epithelia cells (Figure 3, plate C) and implantation sites with resorptions for female rats from GD 1 to 7 (plate B) and GD 14 to 21 plate D (Figure 3). Table 6 showed the number of life/dead fetuses. Treated groups with RCO had more dead fetuses with control having none.

DISCUSSION

The route of administration of RCO in this study was in accordance with the route of possible human exposure during pregnancy when used as a laxative or labour...
Figure 1. (a) Fragmentation pattern and structure of ricinoleic acid for RCO from gas chromatography and mass spectrometry, (b) Nomenclature of individual constituents of RCO from gas chromatography and mass spectrometry.
Figure 2. Photomicrographs of the ovary from A, control pregnant rats, no visible lesion, B, exposed between gestation days (GD) 1 to 7, no visible lesion, C, exposed between gestation days (GD) 7 to 14, no visible lesion, D, exposed between gestation days (GD) 14 to 21, no lesions and E, exposed between gestation days (GD) 1 to 21, no visible lesions (magnification X 400).

this route of administration has been extensively delineated and found to be the same in human and rats (Paul and McCay 1942; Watson and Gordon, 1962; Thompson, 1980; Ihara-Watanabe et al., 1999). Dosage used in this study was also according to recommended therapeutic human dose (Drugstore.com, Inc 2004). Data obtained from physicochemical properties, gas chromatography and mass spectrometry were within the range of those reported from previous studies (Kato and Yamaura, 1970; Larsen et al., 2001; National Toxicological Programme, NTP, 2003) except saponification value and percentage of Ricinoleic acid which is quite lower in this study than reported values. This could be due to the fact that geographical distribution and individual soil characteristics have been found to influence percentage availability of individual constituents of plant (Rafieiolhossaini et al., 2008). The seed oil used in this study was from South-West Nigeria with peculiar weather and soil distribution as compared to seed oil from geographical locations of other studies. To the best of our knowledge, this study was the first on the physiochemical and GCMS characteristics of a typical R. communis plant seed from South-Western Nigeria.

For the current study, RCO satisfied the criteria for the use of limit test of the up and down procedure of the Organization for Economic Cooperation and Development (OECD 425, 2001). There was no lethality when animals were treated at limit dose of 2000 and 5000 mg/kg body weight showing a wide safety margin for RCO when ingested orally. Testing at 5000 mg/kg body weight was discouraged except for a strong likelihood that such result would have direct relevance for protecting human/animal health and environment (OECD 425, 2001). Availability of RCO as “over the counter drug” (OTC) and the possibility of abuse propelled the test at 5000 mg/kg body weight in this study. An acute oral LD₅₀ greater than 10 g/kg was reported by Allegri et al. (1981) for hydrogenated castor oil. In other studies involving incorporation of up to 10% RCO in diets (Masri et al., 1962; NTP, 1992; Ihara-Watanabe et al., 1999) and intravenous administration of 0.1 ml/kg body weight of RCO (Lorenz et al., 1982), no gross abnormalities or significant effects were observed on survival of groups of male and female rats. There were no significant differences in the body weight of pregnant rats treated with RCO at different gestation periods when compared with control. Though there was weight gain, it was not statistically different from that of control. This could be attributed to the fact that feeding habits between RCO treated pregnant rats and control were not different throughout the duration of gestation. This corroborates studies of Masri et al. (1962) and NTP (1992), where 10% castor oil fed male and non-pregnant female rats for 5 and 13 weeks, respectively led to no significant differences in food consumption and mean body weights between test and control groups.

Serum ALT and AST decreased significantly (p<0.05) in pregnant rats exposed to RCO at gestation days (7 to 14, 14 to 21) and (1 to 7 and 1 to 21) for ALT and AST, respectively. Elevated ALT and AST levels have been implicated in most liver diseases while AST have been found to be mostly of extra hepatic origin with its level rising
rising in heart disease (Pradumna et al., 2009). The fact that these two enzymes that are markers of hepatocellular injury were not elevated showed that RCO possibly has no hepatocellular toxic effect. Coupled with this was the fact that liver weight of treated and control rats also showed no significant difference (Table 5). Studies (Masri et al., 1962; Lorenz et al., 1982; NTP, 1992) have shown that RCO has no acute intravenous, short term oral or sub chronic oral toxicity.

In this study, serum cholesterol levels were significantly elevated (p<0.05) in pregnant rats treated with RCO when compared with control (Table 3). Hypercholesterolaemia observed in this study could partly account for the decreased estrogen and progesterone in this study. Hypercholesterolaemia has been implicated as a possible factor for hormonal imbalance as reported by Kenji and Nikolaos (1998) in their study where cholesterol enriched diet causing hypercholesterolaemia was found to impair peripheral Leydig cell testosterone responses to testicular stimulation with human chorionic gonadotropin. Similarly, elevated levels of total lipids observed in this study corroborated the study of Kenji and Nikolaos (1998) where hypercholesterolaemia was also associated with elevated level of total lipids. Pregnant rats exposed to RCO in this study also showed significantly reduced serum levels of progesterone and estrogens when compared with control. Major hormones produced by the feto-placental unit are progesterone, estradiol, estriol, human chorionic gonadotrophin and human placental lactogen (Lording and De Kretser, 1972). The major estrogen produced during human pregnancy is estriol and elevated estriol levels indicate fetal wellbeing. Progesterone and estrogen have numerous beneficial functions in ensuring the survival of the developing fetus throughout gestation period. Estrogen enhances fetal organ development, stimulates maternal hepatic protein production, increase mass of breast and adipose tissue and also increase the size of the uterus and uterine blood flow which are critical in the timing of implantation of the embryo (Rodney and Bell, 2009). Progesterone is essential for maintaining the uterus and early embryo, inhibits myometrial contraction and suppresses maternal immunological responses to fetal antigens (Rodney and Bell, 2009). The significantly reduced serum levels of estrogen and progesterone of treated pregnant rats in this study with the attendant compromise of their normal functions might be responsible for the impaired maternal histology of the uterus, fetal resorptions and deaths in RCO treated rats. The reduced estrogen and progesterone could however be as a result of RCO induced damage to the uterine wall (as shown in Figure 3) with a subsequent impairment in the normal secretory functions of the uterus that in conjunction with the foetus form the feto-placental unit.

Histology of the uterus in pregnant rats exposed to RCO at gestation days 1 to 7 and 7 to 14 showed ballooning of the uterus, uterine tissues disruption, and resorption with implantation sites indicating possible compromise of the uterine support for the developing embryo. These findings could be responsible for reduced litter size and weight experienced in litters from this group.

Figure 3. Photomicrographs of the uterus from A, control pregnant rat, no visible lesion, B, rat exposed between gestation days (GD) 1 to 7, with implantation sites present but no lesions, C, rats exposed between gestation days (GD) 7 to 14, with ballooning of some of the epithelial cells, D, rats exposed between gestation days (GD) 14 to 21 with no lesions, fewer implantation sites with foci, and E, rats exposed between gestation days (GD) 1 to 21 with no visible lesion (magnification × 400).
in the follow-up study. Fowden et al. (2006) posited that changes that could impair intrauterine availability of nutrients, oxygen and hormones usually program tissue development leading to abnormalities later at adulthood. The timing, duration, severity and type of insult during development have also been found to be contributing factor to the type of physiological outcome.

In conclusion, pregnant rats exposed orally to RCO in this study particularly during early gestation periods showed impaired lipid profiles, hormonal balance and uterine histology. These may be due to ricinoleic acid and sterols which from gas chromatography and mass spectrometry analysis in this study constitute greater percentage of the fixed oil of R. communis seed. Thompson (1980) has delineated the pathway of enzymatic degradation of RCO by reporting that pancreatic lipase plays a role. More so some steroids have been found to be convertible into animal steroids hormone in the presence of relevant enzymes in-vivo (Green et al., 1995). Hence, the effects of RCO observed in this study are probably due to sterols and ricinoleic acid as identified in the gas chromatography and mass spectrometry analysis of the oil.

Conflict of Interest

Authors have not declared any conflict of interest.

REFERENCES

