ABOUT SRE

The Scientific Research and Essays (SRE) is published twice monthly (one volume per year) by Academic Journals.

Scientific Research and Essays (SRE) is an open access journal with the objective of publishing quality research articles in science, medicine, agriculture and engineering such as Nanotechnology, Climate Change and Global Warming, Air Pollution Management and Electronics etc. All papers published by SRE are blind peer reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: sre@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Scientific Research and Essays will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Dr. NJ Tonukari
Editor-in-Chief
Scientific Research and Essays
Academic Journals
E-mail: sre.research.journal@gmail.com

Dr. M. Sivakumar Ph.D. (Tech).
Associate Professor
School of Chemical & Environmental Engineering
Faculty of Engineering
University of Nottingham
Jalan Broga, 43500 Semenyih
Selangor Darul Ehsan
Malaysia.

Prof. N. Mohamed El Sawi Mahmoud
Department of Biochemistry, Faculty of science,
King Abdulaziz university,
Saudia Arabia.

Prof. Ali Delice
Science and Mathematics Education Department,
Atatürk Faculty of Education,
Marmara University,
Turkey.

Prof. Mira Grdisa
Rudjer Boskovic Institute, Bijenicka cesta 54,
Croatia.

Prof. Emmanuel Hala Kwon-Ndung
Nasarawa State University Keffi Nigeria
PMB 1022 Keffi,
Nasarawa State.
Nigeria.

Dr. Cyrus Azimi
Department of Genetics, Cancer Research Center,
Cancer Institute, Tehran University of Medical Sciences,
Keshavarz Blvd.,
Tehran, Iran.

Dr. Gomez, Nidia Noemi
National University of San Luis,
Faculty of Chemistry, Biochemistry and Pharmacy,
Laboratory of Molecular Biochemistry Ejercito de los
Andes 950 - 5700 San Luis
Argentina.

Prof. M. Nageeb Rashed
Chemistry Department- Faculty of Science, Aswan
South Valley University,
Egypt.

Dr. John W. Gichuki
Kenya Marine & Fisheries Research Institute,
Kenya.

Dr. Wong Leong Sing
Department of Civil Engineering,
College of Engineering,
Universiti Tenaga Nasional,
Km 7, Jalan Kajang-Puchong,
43009 Kajang, Selangor Darul Ehsan,
Malaysia.

Prof. Xianyi Li
College of Mathematics and Computational Science
Shenzhen University
Guangdong, 518060
P.R. China.

Prof. Mevlut Dogan
Kocatepe University, Science Faculty,
Physics Dept. Afyon/ Turkey.
Turkey .

Prof. Kwai-Lin Thong
Microbiology Division,
Institute of Biological Science,
Faculty of Science,University of Malaya,
50603, Kuala Lumpur,
Malaysia.

Prof. Xiaocong He
Faculty of Mechanical and Electrical Engineering,
Kunming University of Science and Technology,
253 Xue Fu Road, Kunming,
P.R. China.

Prof. Sanjay Misra
Department of Computer Engineering
School of Information and Communication Technology
Federal University of Technology, Minna,
Nigeria.

Prof. Burtram C. Fielding Pr.Sci.Nat.
Department of Medical BioSciences
University of the Western Cape
Private Bag X17
Madderdam Road
Bellville, 7535,
South Africa.

Prof. Naqib Ullah Khan
Department of Plant Breeding and Genetics
NWFP Agricultural University Peshawar 25130,
Pakistan
Editorial Board

Prof. Ahmed M. Soliman
20 Mansour Mohamed St., Apt 51,
Zamalek, Cairo, Egypt.

Prof. Juan José Kasper Zubillaga
Av. Universidad 1953 Ed. 13 depto 304,
México D.F. 04340,
México.

Prof. Chau Kwok-wing
University of Queensland
Instituto Mexicano del Petroleo,
Eje Central Lazaro Cardenas
Mexico D.F.,
Mexico.

Prof. Raj Senani
Netaji Subhas Institute of Technology,
Azad Hind Fauj Marg,
Sector 3,
Dwarka, New Delhi 110075,
India.

Prof. Robin J Law
Cefas Burnham Laboratory,
Remembrance AvenueBurnham on Crouch,
Essex CM0 8HA,
UK.

Prof. V. Sundarapandian
Indian Institute of Information Technology and
Management-Kerala
Park Centre,
Technopark Campus, Kariavattom P.O.,
Thiruvananthapuram-695 581, Kerala, India.

Prof. Tzung-Pei Hong
Department of Electrical Engineering,
and at the Department of Computer Science and
Information Engineering
National University of Kaohsiung.

Prof. Zulfiqar Ahmed
Department of Earth Sciences, box 5070,
Kfupm, dhoaran - 31261,
Saudi Arabia.

Prof. Khalifa Saif Al-Jabri
Department of Civil and Architectural Engineering
College of Engineering,
Sultan Qaboos University
P.O. Box 33, Al-Khod 123, Muscat.

Prof. V. Sundarapandian
Indian Institute of Information Technology & Management -
Kerala
Park Centre,
Technopark, Kariavattom P.O.
Thiruvananthapuram-695 581,
Kerala India.

Prof. Thangavelu Perianan
Department of Mathematics, Aditanar College,
Tiruchendur-628216 India.

Prof. Yan-ze Peng
Department of Mathematics,
Huazhong University of Science and Technology,
Wuhan 430074, P. R. China.

Prof. Konstantinos D. Karamanos
Universite Libre de Bruxelles,
CP 231 Centre of Nonlinear Phenomena
And Complex systems,
CENOLI Boulevard de Triomphe
B-1050,
Brussels, Belgium.

Prof. Xianyi Li
School of Mathematics and Physics,
Nanjua University, Hengyang City,
Hunan Province,
P. R. China.

Dr. K.W. Chau
Hong Kong Polytechnic University
Department of Civil & Structural Engineering,
Hong Kong Polytechnic University, Hunghom,
Kowloon, Hong Kong,
China.

Dr. Amadou Gaye
LPAA-SF / ESP Po Box 5085 Dakar-Fann SENEGAL
University Cheikh Anta Diop Dakar
SENEGAL.

Prof. Masno Ginting
P2F-LIPI, Puspiptek-Serpong,
15310 Indonesian Institute of Sciences,
Banten-Indonesia.

Dr. Ezekiel Olukayode Idowu
Department of Agricultural Economics,
Obafemi Awolowo University,
Ife-Ife,
Nigeria.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the SRE to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:
Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; Chukwura, 1987a,b; Tijani, 1993, 1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Scientific Research and Essays is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2012, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the SRE, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Review

Metamaterials for performance enhancement of patch antennas: A review
Ranjeeta Singh, Nitin Kumar and S. C. Gupta 43

Research Article

Blood glucose level of plasma samples prepared from sodium fluoride and lithium heparin anticoagulants for diabetes mellitus diagnosis
Yuttana Sudjaroen 48
Review

Metamaterials for performance enhancement of patch antennas: A review

Ranjeeta Singh1*, Nitin Kumar2 and S. C. Gupta2

1M-Tech Digital Electronics, DIT Dehradun, India.
2Department of ECE, DIT Dehradun, India.

Received 3 January, 2014; Accepted 24 January, 2014

This review paper focused on the use of metamaterials for the performance enhancement of microstrip patch antennas. In this work, the definition of metamaterials used in literature is first reviewed and then we consider various challenging issues for the microstrip patch antennas. The paper hence concludes some thoughts on the future scope of research in the field of metamaterials, discussing the advantages that metamaterial based technologies offer compared to the conventional patch antennas.

Key words: Metamaterials, microstrip patch antennas (MSA).

INTRODUCTION

The 21st century was the beginning of a new era of materials called metamaterials that had dramatic impact on physics, optics, and engineering communities. Metamaterials also known as left handed materials (LHM) are artificially constructed materials that exhibit negative permittivity and negative permeability in a certain frequency range. In recent years increasing interest has been focused on the use of metamaterials for improving the performance of conventional patch antennas (Engheta and Richard, 2006).

Metamaterials are represented in terms of their medium properties, viz., DNG (Double negative -both ε & μ are negative), DPS (Double positive –both ε & μ are positive), ENG (Epsilon negative) and MNG (μ negative). Metamaterials found applications in various fields including sensor detection, remote aerospace applications, public safety, high frequency battle field communication, improving ultrasonic sensors, solar power management and for high gain antennas (Pendry, 2003; Raj, 2007). Veselago speculates that a material whose permittivity and permeability are simultaneously negative, such material if having any measurable degree of optical transparency, will refract an incident wave on the same side of normal rather than crossing it as shown in Figure 1. If the angle of incidence is still greater than the angle of refraction and assuming that the transmission velocity in the medium is lower than the free space velocity, the object may appear invisible to the observer (Sanderson, 2007). In October 2006, a metamaterial was created by US British team of scientists which rendered an object invisible to microwave radiations (http://www.dukenucknews.duke.edu/2006/10/cloakdemo.html).

VARIOUS ISSUES IN PATCH ANTENNA DESIGNING

The various challenging issues while designing a patch antenna are – reduction in size, directivity improvement, gain enhancement, bandwidth broadening and backlobe or sidelobe suppression. The key questions thus arise are: (a) How one or more of these performances can be enhanced using metamaterials? And (b) what type of metamaterial should be used to meet these requirements?

*Corresponding author. E-mail: singhranjita.1990@gmail.com
Surface wave propagation is a major problem in patch antennas that reduces antenna gain and efficiency, increases cross polarization, limits the bandwidth, increases end fire radiation, limits the applicable frequency range and hinders the miniaturization of patch antenna. Micromachining technology and photonic band gap structures are two solutions to the surface wave problem. However, a quick literature survey shows that DNG Materials can be used for directivity enhancement, radiated power enhancement, antenna performance improvement and bandwidth enhancement.

Directivity enhancement

Veselago first introduced DNG materials and demonstrated that a slab of DNG material would act like a lens and it would, thus focus the energy emanating from an antenna (Smith et al., 2000). Metamaterial has inherent property that controls the direction of electromagnetic radiation, in order to collect the emanating energy in a small angular domain around the normal to the surface (Figure 1) A slab of DNG material would improve the directive properties of an antenna than other diffraction-limited systems, such as a convex lens made with a conventional DPS material (Veselago, 1968; Pendry et al., 1999; Pendry, 2000).

Radiated power enhancement using DNG

With the application of the conventional techniques, such as photonic band gap materials an increased amount of radiated power couples to the space wave (Stefan et al., 2002). Surface wave coupling effects are also absent. The power radiated by a small antenna can be increased, through the application of DNG metamaterial (Stefan et al., 2002). When the small dipole antenna is surrounded by DNG metamaterial, an increase in radiated power by more than an order of magnitude over free space antenna is obtained (Steve, 2006). The decrease in the reactance of dipole antenna corresponds to the increase in the radiated power.

Antenna performance improvement using Split Ring Resonators (SRRs)

It was demonstrated that the monopole-SRR metamaterial antenna operates efficiently at $\lambda/10$ (antenna size) using SRR-wire configuration. Good coupling efficiency and radiation efficiency are thus obtained. The operation of monopole SRR antenna was found to be comparable to the conventional patch antenna at $\lambda/2$ (which is recommended as an antenna size for efficient coupling and radiation for patch antenna), (Ziolkowski and Allison, 2003) thus it can be used wherever patch antennas are used.

Monopole-SRR antenna becomes an acceptable small antenna at the resonance frequency of SRR. When compared to the conventional monopole antenna, when SRR configuration is added, the characteristics such as radiation pattern are changed. SRR structure employed in the antenna can be modified to obtain an antenna size of about $\lambda/40$. Furthermore, by coupling 2, 3, and 4 SRRs a slight shift in the radiation pattern is observed (Mittra, 2007).

Bandwidth enhancement

Metamaterials have been shown to enhance specific parameters of low profile and high profile antennas. Metamaterials can be used as covers to increase the bandwidth of printed patch antennas. An example for broadside radiation is metamaterial based planar leaky wave antenna.

Such an LWA antenna consists of a metamaterial layer with positive or small values of permittivity and permeability placed on the ground plane and is suitable for producing a narrow beam of radiations at broadside. The directivity increases significantly as the permittivity (or permeability) of the layer decreases (Kamil and Ekmel, 2007).

DEVELOPMENT AND APPLICATIONS

W.E. Kock developed the first metamaterial in the late 1940s. Up to 2002, the metamaterial structures were impractical for microwave applications owning to narrow
John Pendry first postulated that a negative index material would enable a perfect lens because of the property that a wave propagating in LHM exhibits phase advancement instead of phase delay. The superlens is an optical lens which exceeds the diffraction limit but does not rely on negative refraction. The first superlens demonstrated at microwave frequency provided three times better resolution than the diffraction limit as shown in Figure 2. In 2008, two major developments were reported in superlens research and these are:

1. Alternate layers of silver and magnesium fluorides were deposited on the substrate. The nano grids in the layers provided a 3-D structure with a negative refractive index in near infrared region.
2. Metamaterial from silver nano wires deposited in porous aluminium oxide was formed. This provided negative refraction below 660 nm (Kock, 1949).

The perfect reconstruction through a metamaterial is shown in Figure 2a. Figure 2b and c shows that for a LHM the waves are refracted in such a way to produce a focus inside the material and another just outside. It leads to the creation of highly directional antennas.

Metamaterial as cover

The unit cells of metamaterial can be combined into a slab to build up a metamaterial cover. A new patch antenna with a metamaterial cover was proposed in 2005, which resulted in enhanced directivity (Chemical and Engineering News, 2008). According to the results, the directivity of patch antenna with metamaterial cover is significantly improved compared to conventional patch antennas. This was cited in 2007, that using metamaterials, efficient design of directive patch antenna can be produced (Fang et al., 2005).

Other applications

It has been demonstrated at National Institute of Standards and Technology that thin films of metamaterials can reduce the size of the resonating circuits that generates microwaves (Said et al., 2005). Agile antennas have been designed using metamaterials. It has been postulated that because of the subatomic properties of metamaterials, they could be built to bend matter around them. For example a matter cloak could be used to bend a bullet around a person instead of absorbing it. This approach is similar to bullet proof vests (Fang et al., 2005).

ON-GOING PROJECTS

Miniaturized nano- optical devices

An international group Metal Structure for Plasmonics and Nanophotonics aims at developing a new miniaturized nano- optical device based on Plasmonics structures as well as studying the propagation properties of surface plasmons (Pendry et al., 1998).

Metamaterial radome designs

Naval Systems Air Command (Navair) is an international group which is applying the concept of metamaterials to improve the performance of radome antenna designs (Alu and Engheta, 2005).
Antennas with high operational frequency

U.S. Army Research office is working on development of a tunable antenna, capable of operating at high-frequency (30 to 100 GHz) along with GHz Electromagnetic wave Science and Devices for battlefield communications. California and Colorado Universities also collaborated with this project (Smith, 2005).

High gain antenna applications

The National Geospatial-Intelligence Agency is performing an experimental study on coupling a radiating element with a lens so as to obtain a high-gain antenna. The negative index lenses have shown to possess a much lower geometrical aberration profile as compared to the positive index lenses (http://people.ee.duke.edu/~drsmith/collaborators.htm; Air force office of scientific research (AFOSR)).

DISCUSSION

Researchers studied the different parameters of microstrip patch antennas such as gain, directivity and bandwidth and the use of metamaterials to improve these antenna parameters. For the improvement of directive gain unit cells of omega structure are combined to form a slab which is used as a cover over conventional patch antenna. The conventional antenna without cover has maximum directivity of 8.271 dBi while the antenna with cover has directivity of 11.5 dBi (Ahmad et al., 2010).

Merih et al. (2009) proposed a broadband microstrip antenna based on metamaterials. The proposed antenna has a maximum gain of -1 dBi at 2.5 GHz and a 63% bandwidth over the band of 1.3 to 2.5 GHz.

Ziolkowski and Erentok (2006) demonstrated that electrically small antenna system can be formed by combining an infinitesimal electrical dipole with ENG spherical shell. Such systems were made to be resonant with a large enhancement of the radiated power in comparison to the antenna alone in free space.

Erentok and Ziolkowski (2008) proposed metamaterial inspired efficient small antennas. The proposed EZ antennas are shown to be naturally matched to a 50 ohm source without matching network. It is demonstrated that EZ antennas have high radiation efficiencies with good impedance matching.

Farad et al. (2005) proposed a compact and low profile metamaterial ring antenna using two unit cells. The antenna offers a 120 MHz -10 dB bandwidth and an efficiency of more than 50%.

All the researchers here premeditated various methods for the improvement of various antenna parameters. Heading in the direction of their aim they achieved the improvement in various antenna parameters using various methodologies.

FUTURE CHALLENGES

Several challenges must be surpassed before metamaterials make the transitions from theoretical investigation to practical applications in the high frequency regions (visible, IR, THz).

One of the major limitations of metamaterials is their typically narrow band response. The limited bandwidth of metamaterials limits their application in negative-index in the whole visible spectrum.

Moreover, within the next few decades, metamaterial research at microwave and radio frequencies is expected to improve the antenna designing by reducing the antenna size and better performance for satellite antennas and personal mobile devices (Holloway et al., 2008).

SUMMARY

From this survey, it is clear that metamaterials can be used for improving the performance of conventional patch antennas. In this paper we have taken a brief look at current work and development in the field of metamaterials. We also examined the on-going projects on metamaterial to enhance the performance of antennas. Various future challenges are also considered.

REFERENCES

Air Force Office of Scientific Research (AFOSR).

Blood glucose level of plasma samples prepared from sodium fluoride and lithium heparin anticoagulants for diabetes mellitus diagnosis

Yuttana Sudjaroen

Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand 10300.

Received 16 January, 2014; Accepted 29 January, 2014

The aim of this study was to compare blood glucose levels, which were prepared from NaF and lithium heparin anticoagulants for diabetes mellitus (DM) screening test. DM-check up Clinic at Kutchap Hospital, Udonthani province collected the blood samples and filled sodium fluoride (NaF) and lithium heparin tubes (Greiner Bio-One, Austria) from 300 customers. Then, plasma was separated immediately from each blood sample tube by centrifugation and analyzed for blood glucose level by automatic analyzer, Cobas c111 automated chemistry analyzer (Roche Diagnostics GmbH, Mannhein, Germany). Four groups of samples were divided to the all sample group, normal group, prediabetic group and diabetic group according by American Diabetes Association. The result was presented as blood glucose levels of NaF plasma and lithium heparinized plasma in normal and prediabetic groups, which corresponded significantly \((p < 0.05)\). This may imply that lithium heparin tube can replace NaF tube and not affect DM diagnosis when immediately analyzing blood glucose levels. In addition, lithium heparin tubes can collect blood samples for other biochemical tests. This may reduce turnaround time, cost, and mistakes from sample overload, and also labour spending on laboratory staff.

Key words: Diabetes mellitus, blood glucose, fasting blood sugar, sodium fluoride, lithium heparin.

INTRODUCTION

Clinical biochemical tests have been performed to diagnose, predict, and monitor disease for patients including annual health checkups for normal people. This investigation should provide beneficial data for the doctor to treat a patient. Sodium fluoride (NaF) is anticoagulant, which is added into blood specimens to inhibit the glycolysis of blood cells (Chan et al., 1989; Young and Bermes, 1999), and then the specimen undergoes centrifugation to separate plasma sample for fasting blood sugar (FBS) test. Recently, lithium heparin (LH) is often used for blood collection in clinical chemistry testing because plasma can be immediately separated from blood cells. Several laboratories used lithium heparin plasma for all routine biochemical testing including plasma glucose, especially emergency cases (Smith et al., 1987). Moreover, heparin usage trends to decrease spending in laboratory and medical check-up services in Thailand. Recently, lithium heparinized (LH) plasma samples have been used in urgent cases to simultaneously measure glucose and perform routine biochemical analytes in clinical chemistry testing. Shi and co-workers (2009) found that the rapid separation of a plasma sample from blood cells containing lithium heparin is better than using fluoride alone for blood glucose measurements. However, difference in anticoagulant usage for plasma preparation may affect the accuracy of the glucose measurement and lead to misinterpretation for diabetes mellitus diagnosis. For this
was measured for blood glucose level, using Cobas c111 automated chemistry analyzer (Roche Diagnostics GmbH, Mannheim, Germany) in vitro test kits for the qualitative test of human serum and plasma using two levels of control material. Analyses were used and performed following procedures from the manufacturer. The room temperature ranged from 26 to 28°C under the air condition control at Laboratories of Clinical Pathology Unit, Kutchap Hospital, Udonthani, Thailand. The internal quality control for the automatic analyzer was performed using two levels of control materials purchased from manufacturer to calculate standard deviation (SD) and coefficient variance (%CV) of glucose.

Data analysis

Statistical analysis was performed using the SPSS computer program version 11.0 (SPSS, Chicago, IL). The Kolmogorov-Smirnov test was statistically used for normal distribution test and paired t-test statically tested for difference between the blood glucose level of NaF and lithium heparinized plasma after 8 to 12 h fasting among 4 groups: all sample group, normal group (fasting blood glucose = 70 to 110 mg/dL), prediabetic group or impaired glucose tolerance (fasting blood glucose > 110 mg/dL and < 126 mg/dL) and diabetic group (fasting blood glucose >126 mg/dL) according to the American Diabetes Association diagnostic criteria (American Diabetes Association, 2007). In the case of non normal distribution data, we used non parametric test, Wilcoxon signed rank test. The analysis of differences was judged by using α < 0.05 (two-tailed) as the significant statistic.

RESULTS

The demographic data of healthy volunteers who joined in this study is shown in Table 1. The parameters included age, gender, and clinically diagnosis including diabetes mellitus, hypertension and diabetes mellitus with hypertension. The diagnosis of clinical customers into the normal group (fasting blood glucose = 70 to 110 mg/dL), the prediabetic group or impaired glucose tolerance (fasting blood glucose > 110 mg/dL and < 126 mg/dL) and the diabetic group (fasting blood glucose > 126 mg/dL) was done according to the blood glucose level after 8 to 12 h fasting accorded to American Diabetes Association diagnostic criteria (Table 2). The fasting blood glucose level of NaF and lithium heparinized in the all sample groups and diabetic were not normally distributed, whereas, normal group and prediabetic group was normally distributed after tested by Kolmogorov-Smirnov test (data not shown). Then, we tested statically different between fasting blood glucose level of NaF and lithium heparinized plasma by Wilcoxon signed rank test for the all sample group and diabetic group, and paired t-test for normal group and prediabetic group. Blood glucose levels in NaF and lithium heparinized plasma were statically compared for each group, the all sample groups (NaF1/Haparin1), the normal group (NaF2/Haparin2), the prediabetic group (NaF3/Haparin3) and the diabetic group (NaF4/Haparin4). We found that blood glucose levels in NaF and lithium heparinized plasma from normal group (NaF2/Haparin2) and

MATERIALS AND METHODS

Subjects

DM-check up Clinic, Kutchap Hospital, Udonthani province collected blood samples and filled sodium fluoride (NaF) and lithium heparin tubes (Greiner Bio-One, Austria) from 300 customers. The health data demographic was based on their medical history and a physical examination. All subjects gave written consent, and the study protocol was approved by the Institutional Review Board for Research Ethic of Kutchap hospital, Udonthani, Thailand.

Specimen collection and handling

All samples were obtained from venous blood. For each sample, six milliliters of fasting blood samples was collected and then, divided to three milliliters of blood sample was drawn into NaF and the remaining was drawn into lithium heparinized plasma commercial tubes (Greiner Bio-One, 2002; Young and Bermes, 1994).

Blood glucose analysis

The samples were separated for plasma by centrifugation at 1,542 × g (~3,000 rpm)/5 min (room temperature) and interval time of plasma separation was 2 h for NaF treated tubes and Li heparin treated tubes (Thompat et al., 2011). Each obtained plasma sample

Table 1. Demographic data of customers who joined in this study (N = 300).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>60±11 (16-87)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>- Male</td>
<td>80</td>
</tr>
<tr>
<td>- Female</td>
<td>220</td>
</tr>
<tr>
<td>DM</td>
<td>202</td>
</tr>
<tr>
<td>Hypertension</td>
<td>13</td>
</tr>
<tr>
<td>DM with hypertension</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 2. Numbers of normal, prediabetic and diabetic customers who were screened for DM (N = 300).

<table>
<thead>
<tr>
<th>Sample group</th>
<th>FBG (mg/dL)</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>70-110</td>
<td>48</td>
</tr>
<tr>
<td>Prediabetic</td>
<td>> 110 and < 126</td>
<td>62</td>
</tr>
<tr>
<td>Diabetic</td>
<td>> 126 mg/dL</td>
<td>190</td>
</tr>
</tbody>
</table>
Table 3. The correlation of blood glucose levels in NaF and lithium heparinized plasma from normal group (NaF2/Haparin2) and prediabetic group (NaF3/Haparin3).

<table>
<thead>
<tr>
<th>Group</th>
<th>Paired correlation</th>
<th>Correlation</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF2/Haparin2</td>
<td>0.984</td>
<td></td>
<td>0.001*</td>
</tr>
<tr>
<td>NaF3/Haparin3</td>
<td>0.946</td>
<td></td>
<td>0.001*</td>
</tr>
</tbody>
</table>

* = significance at α = 0.05.

The prediabetic group (NaF3/Haparin3) were significantly correlated (Table 3). However, blood glucose levels in NaF and lithium heparinized plasma from all sample group (NaF1/Haparin1) and diabetic group (NaF4/Haparin4) were significantly different (p< 0.0001).

DISCUSSION

Loss of glucose from sample containers is a serious and underappreciated problem. Decreases in glucose concentrations in whole blood ex vivo are due to glycolysis. The rate of glycolysis—reported to average 5 to 7%/h [approximately 0.6 mmol/L (10 mg/dL)] varies with the glucose concentration, temperature, leukocyte count, and other factors. Such decreases in glucose concentration will lead to missed diabetes diagnoses in the large proportion of the population who have glucose concentrations near the cut-points for diagnosis of diabetes.

This study demonstrated that blood glucose levels in NaF and lithium heparinized plasma from normal and prediabetic were corresponded (p < 0.05) when prepared by NaF and lithium-heparin anticoagulants. This implies that lithium heparin tube can replace NaF tube and not affect DM diagnosis when immediately analyzed for blood glucose level. Because the physicians and medical technologists need to “cut-off” or separate normal from abnormal, then correlating blood glucose levels in NaF and lithium heparinized plasma and noting normal group is important. This is also important in prediabetic or impaired glucose tolerant persons to intervene with food consumption and life style. In addition, lithium heparinized plasma can be appropriated for other biological analysts more than NaF plasma, which analyses only blood glucose. Use of lithium heparin tube can save cost, reduce turnaround time (TAT) and decrease mistakes labelling of multiple blood collection tubes. In case of blood glucose levels in NaF and lithium heparinized plasma from the all sample group and diabetic group were significantly different (p < 0.0001). This may have been because the majority of cases had visited to our DM check-up clinic were diabetics. High blood glucose levels in DM prepared from NaF and lithium-heparin can be different by several factors, such as, high blood glucose affect to linearity of test, lipidemic plasma in some DM persons with high blood lipid complication.

A previous study showed that heparin can preserve sugar level and can be used in other biochemical tests (Landt, 2000). Lithium heparin (LH) plasma would be desirable for point of care tests (POCT) biochemical analysis because the specimen can be centrifuged immediately after collection, and without fibrin strand formation for serum preparation. Biochemical tests using heparinized plasma trends to is increasing in many laboratories and mobile public medical services in Thailand.

Factors may affect laboratory results including blood glucose, such as race, age, gender, diet, use of drugs (prescribed, over the counter and herbal remedies), stress, specimen collection (e.g., time of day, tourniquet time, tube type, and anticoagulants), sample handling (e.g., clotting, centrifugation, and storage) and method validation (Horowitz, 2008). Time and temperature condition for plasma preparation and storage will be concern, because lithium heparin is unable to inhibit glycolysis in the same way that NaF can inhibit and as a result blood glucose level will decrease after long time storage at room temperature. This point should be a concern for future study.

CONCLUSION

Blood glucose levels, which were prepared by NaF and lithium heparin anticoagulants were not significantly different within the normal and the prediabetic groups when analyzed by Cobas c111 automated chemistry analyzer. Therefore, the Lithium heparinized tube can replace NaF, if plasma is analyzed immediately, this can save cost, reduce turnaround time (TAT) and decrease mistakes labelling of multiple blood collection tubes.

ACKNOWLEDGEMENTS

We are grateful to Kutchap Hospital, Mungpry, Kutchap, Udonthani, Thailand for clinical specimens and automatic blood analyzer providing. We would like to sincerely thank all staffs of Division of Clinical Pathology and all volunteers who provided clinical specimens in this study. We would also like to thank the Research and Development Institute, Suan Sunandha Rajabhat University for funding.

REFERENCES

Related Journals Published by Academic Journals

- International NGO Journal
- International Journal of Peace and Development Studies