ABOUT JMLD

The Journal of Medical Laboratory and Diagnosis (JMLD) is published monthly (one volume per year) by Academic Journals.

The Journal of Medical Laboratory and Diagnosis (JMLD) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as anatomic pathology, clinical microbiology, hematology, urinalysis etc.
The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMLD are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jmld@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Medical Laboratory and Diagnosis (JMLD) will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Dr. Mamatha Ballal
Department of Microbiology
K M C International Centre
Manipal - 576104
India.

Dr. Thazin Han
Department of Biotechnology
Technological University,
Myit-Kyi-Na Myanmar,
India.

Dr. Diriba Muleta
Department of Biology,
Jimma University P.O. Box 378,
Jimma, Ethiopia.

Dr. Zakaria Yehia El-Astal
Khan Younis Hospital,
Al-Baheer Street,
Palestine.

Dr. Mohd. Shahid
Department of Medical Microbiology,
Jawaharlal Nehru Medical College & Hospital
Aligarh Muslim University, Aligarh 202002
India.

Dr. Rashmi Khanna
Rajasthan Dental College & Hospital,
Dept of Periodontics.
India

Dr. M. OBulesu
S/O M.JAGAN MOHAN
D.NO: 14/302,
KAMALA NAGAR
ANANTAPUR -515001
ANDHRA PRADESH.
INDIA.

Yu Liu, MD
Department of Clinical and Laboratory Medicine
The Fourth Affiliated Hospital,
Harbin Medical University
Yiyuan Road, 37#
Nangang District, Harbin, 150001
Heilongjiang Province
PR. China.

Dr. Sunil Trivedi
U. N. Mehta Institute of Cardiology and Research Centre
Civil Hospital, Asarwa, Ahmedabad 380 016
India

Dr. Mohamed Farouk Elshal
Biochemistry Department
Faculty of Science
King Abdulaziz University
Jeddah - KSA

Dr. Frank A. Chervenak
Department of Obstetrics and Gynecology
New York Weill Cornell Medical Center
USA

Dr. Ancha Baranova
School of Systems Biology,
David King Hall, MSN 3E1
George Mason University
USA

Dr. Vesna Mandusic
The Vinca institute for Nuclear Sciences
Laboratory for Radiobiology and Molecular Genetics
Belgrade,
Serbia

Dr. Julhash Uddin Kazi
Experimental Clinical Chemistry
Department of Laboratory Medicine
Lund University
Sweden
Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The **cover letter** should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types

Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process

All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JPP to publish manuscripts within weeks after submission.

Regular articles

All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The **Title** should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard **Abbreviations** should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The **Introduction** should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Cole (2000), Steddy el at. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b; Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Medical Laboratory and Diagnosis (JMLD) is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2013, Academic Journals.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JMLD, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Articles

Acute respiratory distress syndrome secondary to High-altitude pulmonary edema: A diagnostic study
Si Qing Ma, Tian Yi Wu, Qiang Cheng, Pei Li and Hui Ping Bian

Serum levels of glycosaminoglycans (GAGs) and insulin like growth factor-1 (IGF-1) as diagnostic markers for early hepatocellular carcinoma in cirrhotic patients with or without diabetes
Ahmad S. Ibrahim, Hala A. Attia, Ahmad M. Rabea and Amal M. El-Gayar
Acute respiratory distress syndrome secondary to High-altitude pulmonary edema: A diagnostic study

Si Qing Ma¹, Tian Yi Wu²,³*, Qiang Cheng¹, Pei Li¹ and Hui Ping Bian⁴

¹Intensive Care Unit, Qinghai Provincial People's Hospital, Xining, People's Republic of China.
²National Key Laboratory of High Altitude Medicine, Qinghai, People's Republic of China.
³High Altitude Medical Research Center, University of Tibet, Lhasa, People’s Republic of China.
⁴Qinghai Cardiovascular Hospital, Xining, People’s Republic of China.

Accepted 30 May, 2012

High altitude pulmonary edema (HAPE) is the most common of the serious manifestations of altitude sickness, acute respiratory distress syndrome (ARDS) may be secondary to HAPE in some severe cases. The purpose of this study was to evaluate the diagnosis of ARDS at an altitude above 4000 m. Clinical studies were performed in eight patients with ARDS secondary to HAPE at an altitude of 4500m, 10 patients with pure HAPE occurred at the same altitude were as the control group. All patients were male Han sea-level residents; there was no history of cardiopulmonary disease. After an initial emergency treatment on high mountains, both HAPE and the suspected ARDS patients were rapidly descended to Golmud Hospital at an altitude of 2808 m. The major difference between ARDS and the usual clinical course of HAPE was its severity and prolonged nature. Refractory hypoxemia, higher pulmonary artery pressure, and acute respiratory failure occurred are three features which indicated that ARDS has been secondary to HAPE. In summary, our study showed that diagnosis of ARDS at high altitude (above 4000 m) are as follows: 1) Acute onset with 24-48 hr of the predisposing event (HAPE); 2) Chest X-ray shows bilateral infiltrates; 3) No evidence of elevated left atrial pressure, the pulmonary capillary wedge pressure is \(\leq 18 \text{ mmHg} \); (4) \(\text{PaO}_2 < 60 \text{ mmHg} \) with \(\text{PaCO}_2 < 50 \text{ mmHg} \) indicated a hypoxemic respiratory failure; 5) A ratio of arterial oxygen tension to fraction of inspired oxygen (\(\text{PaO}_2/\text{FiO}_2 \)) of 100 to 150 mmHg.

Key words: High-altitude pulmonary edema, acute respiratory distress syndrome, diagnosis, the ratio of \(\text{PaO}_2 \) to the fraction of inspired oxygen (\(\text{PaO}_2/\text{FiO}_2 \)).

INTRODUCTION

High altitude pulmonary edema (HAPE) is a life-threatening non-cardiogenic form of pulmonary edema that affects susceptible persons who are rapidly exposed to altitude above 2500 m (Hackett and Roach, 1990). The acute respiratory distress syndrome (ARDS) is defined by non-cardiogenic pulmonary edema and respiratory failure in the seriously ill patient (Plantadosi and Schwartz, 2004). High altitude hypoxia may be one of the pre-disposing conditions for the ARDS (Biondi et al., 1986; Laycock and Rajah, 2010).

Clinically, patients with HAPE present dyspnea, blood-stained sputum, and patchy pulmonary infiltrates are much like those seen in ARDS (Houston, 1978). However, a patient with severe HAPE could progress to ARDS as previously reported (Zimmerman and Crapo, 1980). The relationship between HAPE and ARDS is an interesting issue, however, to our knowledge which has not yet been done before.

From 2001 to 2006, a new Qinghai-Tibet railroad linking Beijing with Lhasa was built by more than 100,000 workers, of whom 80% traveled from their lowland habitat.
to altitude up to 5000 m to work on the railroad (Wu et al., 2009). The railroad construction provided an opportunity for the investigation and study of acute altitude illness. Reported here are 8 patients with ARDS secondary to HAPE, and how to diagnosis of an ARDS secondary to HAPE in a high altitude field condition was discussed.

MATERIALS AND METHODS

Study sites and subjects

The study was performed in two hospitals located near the Qinghai-Tibet railroad construction sites on mountain Tanggula. One hospital is near the Fenghuoshan (mountain Wind-gap) tunnel at an altitude of 4779 m (PB=417 torr). The second hospital is in the Kekexili area (a sparsely populated zone) at an altitude of 4505 m (PB=440 torr). The meteorological conditions as provided by the Qinghai-Tibet Weather Bureau during the construction of the railroad were as follows: annual average temperature ranged between 1.0 and -7.0°C, average daily sunshine lasted between 7.4 and 8.5 h, relative humidity was between 44 and 58%. From July 1, 2001 to October 31, 2005, a total of 24,703 construction workers worked in the harsh climate, in adverse circumstances and a low-barometric-pressure environment (Wu et al., 2009).

All the studied patients were male Han sea-level residents. From sea level, they ascended by train over a period of 3 days first to the city of Golmud (2808 m), which is the starting site of the Qinghai-Tibet railroad. They then reached to the construction sites on mountain Tanggula (at a mean altitude of 4525 m) by bus in about 6 h. All patients were first ascent to altitude without previous history of altitude exposure. No patients had a history of cardio-pulmonary disease, and none reported taking acetazolamide or dexamethasone for prevention and treatment of acute altitude illness before and after ascent to altitude. Before ascent, a routine physical examination completed with measurements of blood pressure (BP), electrocardiograms (ECGs), chest X-ray, SaO2 and routine blood tests. The results of physical examination suggested that all the studied subjects were healthy without medical preconditions before ascent.

Acute altitude illnesses were very common in the construction workers; the overall incidence of AMS, HAPE, and HACE in the total workers was approximately 45 to 95, 0.45 and 0.24%, respectively. A total of 112 patients with HAPE were rapidly evacuated through ambulances for about 4 h from mountain Tanggula to the Golmud City Hospital at an altitude of 2808 m. After hospitalization with an effective treatment, most of the patients with HAPE improved gradually, however, eight patients with severe HAPE did not respond to oxygen therapy, and their conditions rapidly worsened even if descent. According to the symptoms, signs, and laboratory studies, we speculated that ARDS secondary to HAPE may have occurred in these patients (Zimmerman and Crapo, 1980). We made a series of studies and rapidly performed effective systemic emergency treatments. Reports on the pulmonary hemo-dynamic data and the laboratory studies of the eight patients with ARDS secondary to HAPE (ARDSS) are presented in this study. The ten pure HAPE patients (PHAPE) as a control group was matched for age, sex and work type with the ARDS group, and the onset of illness was at the same altitudes of the two groups.

Laboratory studies

Routing hematology

For the red blood cell count and total leukocyte and classification, an automatic hematological counter was used (Cell-Dyn 3700, Abbott, Santa Clara, CA).

Arterial blood gas study

Arterial blood samples were determined in heparinized radial arterial blood with the patients breathing room air, for the measurement of arterial PO2 (PaO2), arterial PCO2 (PaCO2) levels, and pH using a blood gas analyzer (Radiometer ABL-30, Denmark). In addition, synchronous determination of femoral arterial blood gases and mixed venous blood gas for estimations of oxygen delivery (DO2), oxygen consumption (VO2) and oxygen uptake (O2 ext). During repeated examination, oxygen inhalation was inter-rupted at least 10 min for collection of samples of arterial blood. All blood samples were analyzed immediately on site after collection. The altitude measurements were done upon symptoms onset; HAPE or ARDS was diagnosed during treatment and again after recovered.

Right cardiac catheterization

A thermodilution Swan-Ganz catheter (AH-050007Fr 110 cm, four cavities, USA) was introduced percutaneously into the pulmonary artery via the right internal jugular vein without premedication. The pulmonary arterial pressures and pulmonary arterial wedge pressure were measured with HP-160A multifunctional monitor to continuous monitoring for 72 h. Cardiac output (CO) and calculated output index (CI) were measured by the thermodilution method. The pulmonary arterial resistance calculated by dividing the cardiac index into the difference between the mean pulmonary arterial and wedge pressures (PAR= (mPAP - mPAW)/ CI. During examination, after breathing room air, all of the studied patients were breathing 100 percentage oxygen (fractional concentration of oxygen in the inspired gas [FiO2] of 1.0) through a nebulizer and a non- re-breathing reservoir mask (WK-Respironics). Cardiac catheterizations were performed within 5 h after the studied patients were hospitalized.

Doppler echocardiography

The pulmonary hemodynamic and mean pulmonary artery pressure (mPAP) was simultaneously obtained by Doppler echocardiography as described before (Wu et al., 2009). In short, with a 3.5-MHz two-dimensional imaging/Doppler transducer (HP-Sonos 1500, Palo-Alto, USA) data were obtained from the parasternal short axis or apical position with the subject lying with a slight left oblique rotation. Recordings were stored on S-VHS videotape for post-hoc analysis by two independent cardiologists experienced in echocardiography. mPAP was estimated using the Kitabatake formula (Kitabatake et al., 1983). A mean PAP ≥25 mmHg was considered to indicate pulmonary hypertension (Wu et al., 2009).

Diagnosis of HAPE

Initially, a field diagnosis of HAPE was assessed with the Lake Louise Acute Mountain Sickness Scoring system (LLSS) which proposed the following diagnostic criteria: In the setting of a recent gain in altitude the presence of the following or at least two of the following symptoms: dyspnea at rest, cough, weakness or decreased exercise performance, chest tightness or congestion; plus at least two of the following signs: rales or wheezing in at least one lung field, central cyanosis, tachypnea and tachycardia (Roach et al., 1993). In the local hospitals on mountain Tanggula and in the Golmud Hospital where chest roentgenograms are available for further diagnosed by Chest X-ray, chest roentgenographic infiltrates
Table 1. Clinical features between patients with pure HAPE and patients with ARDS secondary to HAPE.

<table>
<thead>
<tr>
<th>Symptoms and signs</th>
<th>PHAPE (n = 10)</th>
<th>ARDSS (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>28 ± 4</td>
<td>30 ± 3</td>
</tr>
<tr>
<td>Onset altitude</td>
<td>4500 m</td>
<td>4500 m</td>
</tr>
<tr>
<td>Onset times</td>
<td>48 -96</td>
<td>96 -120</td>
</tr>
<tr>
<td>Cough</td>
<td>dry or productive cough</td>
<td>severe productive cough</td>
</tr>
<tr>
<td>Sputum</td>
<td>frothy white sputum</td>
<td>copious, usually bloody</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>severe dyspnea at rest</td>
<td>serious severe respiratory distress</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>significant</td>
<td>obvious</td>
</tr>
<tr>
<td>Coma</td>
<td>none</td>
<td>2 cases</td>
</tr>
<tr>
<td>Resting HR</td>
<td>102 ± 12.5 beats/min</td>
<td>134 ± 14.0 beats/min**</td>
</tr>
<tr>
<td>Resting RR</td>
<td>23 ± 4.0 breaths/min</td>
<td>42 ± 5.0 breaths/min**</td>
</tr>
<tr>
<td>SBP(mmHg)</td>
<td>136 ± 18</td>
<td>122 ± 12</td>
</tr>
<tr>
<td>DBP(mmHg)</td>
<td>78 ± 12</td>
<td>64±8+</td>
</tr>
<tr>
<td>Rales</td>
<td>moist rales</td>
<td>bubbling rales</td>
</tr>
<tr>
<td>Hemoglobin, (g/dl)</td>
<td>14.5 ± 2.5</td>
<td>13.4 ± 5.2</td>
</tr>
<tr>
<td>Leukocytes (10^3/cu mm)</td>
<td>11.6 ± 2.8</td>
<td>13.6 ± 2.2</td>
</tr>
</tbody>
</table>

PHAPE: Pure high-altitude pulmonary edema; ARDSS: acute respiratory distress syndrome secondary to HAPE; HR: heart rate; RR: respiratory rate; SBP: systolic blood pressure, MBP, diastolic blood pressure. ARDSS compared with PHAPE: ++ p<0.001 + P<0.01. All data were collected at rest, breathing room air and before treatment.

RESULTS

Clinical findings

The main clinical features are summarized in Table 1. As compared with patients with PHAPE, patients with ARDSS presented a progressive and serious severe dyspnea, a more obvious cyanosis and the diffuse fine rales over both lung fields, whereas patients with HAPE presented bubbling rales usually heard on one lung field. Tachycardia and low blood pressure were commonly found in ARDSS. In a patient with HAPE who develop severe respiratory distress and that gets rapidly worsened, ARDS was suspected.

Chest roentgenographic findings

In patients with ADRSS, chest X-ray showed bilateral diffuse infiltrates consistent with pulmonary edema, patchy or confluent, whereas pure HAPE patients usually manifests as central interstitial edema or the characteristic fluffy as having unilateral or bilateral edema.

Hemodynamic findings

Hemodynamic studies by right heart catheterization (Table 2) demonstrated that the characteristic findings were pulmonary hypertension both in PHAPE and in ADRSS patients. However, the results of this study showed that patients with ARDSS have increased...
Table 2. Pulmonary hemodynamic in patients with pure HAPE and in patients with ARDS secondary to HAPE.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PHAPE (n = 10)</th>
<th>ARDSS (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP (mmHg)</td>
<td>9.46±0.85</td>
<td>13.85±1.15**</td>
</tr>
<tr>
<td>PAP(mmHg) S</td>
<td>46.4±5.6</td>
<td>55.08±6.8*</td>
</tr>
<tr>
<td>D</td>
<td>21.6±3.2</td>
<td>28.12±5.5^+</td>
</tr>
<tr>
<td>M</td>
<td>35.8±3.0</td>
<td>41.63±3.0^+</td>
</tr>
<tr>
<td>PWP (mmHg)</td>
<td>6.28±3.84</td>
<td>14.00±4.21*</td>
</tr>
<tr>
<td>PARI (dyn.s.cm^-5)</td>
<td>396±33.8</td>
<td>496.50±100.22^*</td>
</tr>
<tr>
<td>CI (L min^-1.m^-2)</td>
<td>4.14±0.34</td>
<td>4.20±0.38</td>
</tr>
</tbody>
</table>

PHAPE: Pure high-altitude pulmonary edema; ARDSS: acute respiratory distress syndrome secondary to HAPE; RAP: right pulmonary artery pressure; PAP: pulmonary arterial pressure; S: systolic; D: diastolic; M: mean, PWP: pulmonary artery wedge pressure, PARI: pulmonary artery resistance index, CI: cardiac output index. ARDSS compared with PHAPE: ++p < 0.001 + P < 0.01, *p < 0.02. ARDS before treatment vs. after treatment: ∆∆P < 0.001, ∆P < 0.01. All comparative data between PHAPE and ARDSS were collected at rest, breathing room air, and before treatment.

pulmonary arterial vasoconstriction to hypoxia when compared with patients who suffered PHAPE. Patients with ARDSS were found to have a greater pulmonary artery pressure than patients with PHAPE at the same altitude. In addition, after treated immediately with 100 percent oxygen, mPAP decreased significantly in patients with PHAPE, whereas mPAP responded less to oxygen therapy even if descent in patients with ARDSS.

Doppler echocardiography was performed at high altitude field and simultaneously examined with right heart catheterization in the hospital. This technique is the principle noninvasive diagnostic test, and the correlation with directly measured pulmonary artery pressure during right-heart catheterization is high (R^2=0.90). While monitoring the pulmonary hemodynamic, it was observed that both in patients with ARDSS and in patients with PHAPE, their mPAP decreased gradually after rapid descent and effective treatment.

Laboratory findings

An arterial oxygen tension (PaO$_2$) lower than 60 mmHg with a lower arterial carbon dioxide tension (PaCO$_2$) (<50 mmHg) indicated it is a type 1 - hypoxemic respiratory failure in our studied ADRS patients (Table 3). As compared with patients with PHAPE, the level of oxygen (PaO$_2$) can stay dangerously lower in ARDSS, even if the patient received oxygen inhalation. A-a DO$_2$ was greater in ARDSS, suggesting that pulmonary diffusing capacity decreased significantly. PaO$_2$/FiO$_2$ ratio in patients with ADRSS was significantly lower and less response to oxygen inhalation. A marked decrease in DO$_2$ and VO$_2$ was also found in ADRSS patients. Both PHAPE and ARDSS show leukocytosis, suggesting that there is an inflammation response.

Treatment and outcome

Management centers on supportive care and treating the initial cause of HAPE. All the patients with ARDS were rapid descent and need to be in an intensive care unit (ICU). A hyperbaric chamber is available in Golmud Hospital for treating all patients with ARDS because here is still at an altitude of 2808 m, intubation and mechanical ventilation, and use of positive end expiratory pressure (PEEP) were required because of refractory hypoxemia which did not respond to administration of 100 percent oxygen, medications to treat infections, reduce inflammation using antibiotics and dexamethasone etc. As a result, all patients survived and none died, but their conditions improved gradually and completely recovered for about two to three months after their hospitalization. Furthermore, rehabilitation during recovery needs to focus on such patient.

DISCUSSION

Our pulmonary hemodynamic study confirmed the previous catheterization studies at altitude and indicated that HAPE is a non-cardiogenic form of pulmonary edema associated with high pulmonary artery pressures and normal pulmonary capillary wedge pressures (Hultgren, 1997). Although PWP was not higher than 18 mmHg both in patients with ARDSS and PHAPE, however, the PWP was higher in patients with ARDSS than that in PHAPE. The pulmonary leak index (PLI, 10$^{-3}$ min$^{-1}$) was significantly higher in ARDS than in HAPE (Maggiorini et al., 2001), suggesting that the hypoxic lung injuries are severe in ARDS than that in HAPE. The characteristics of bronchoalveolar lavage fluid (BALF) indicated that both PHAPE and ARDS are a high-protein, high-permeability
Radiography is essential; usually, both techniques will be necessary. In addition, pulmonary function tests, blood tests and ECGs may be of help to identify the cause of ARDS. Right-heart catheterization is sometimes useful for a pathophysiological mechanism study (Zimmerman and Crapo, 1980; Maggiorini et al., 2001), but it is almost impossible to perform at an altitude field. Moreover, using an invasive measurement of catheterization for study on hemodynamic may sometimes have some disadvantages, including increased patients risks and discomfort, thereby limiting its use. From our experience, Doppler echocardiography is the principle noninvasive diagnosis test and the technique is very portable, safer and practical; it is especially useful at a high altitude field and thus deserves recommendation.

ARDS is a syndrome that must meet certain criteria to be diagnosed. An index of PaO2/FIO2 ratio is probably of greater value in the diagnosis and evaluation of severity and determining the effectiveness of therapy of ARDS (Platadosi et al., 2004; Laycock and Rajah, 2010). This study raises the question of using PaO2/FIO2 as an index diagnostic criteria of ARDS at sea level. This diagnostic index is not practicable for an altitude field. Moreover, when evaluating oxygenation indices: the ratio of PaO2/FIO2, the arterial-alveolar oxygen tension gradient of the PaO2/P[O2] and the ratio of (P[A-a]DO) to PaO2. In the present study, we used the PaO2/FIO2 ratio as an index of pulmonary shunt, which is commonly used to diagnosis and to determine the severity of ARDS. At a given shunt, the PaO2/FIO2 ratio is lower at higher altitude due to the inspired oxygen pressure that decreases with increasing altitude (Zhang et al., 2001; Wu, 2001; Perez-Padilla, 2004; Montes et al., 2010). Therefore, when evaluating

Table 3. Blood gas studies in patients with HAPE alone and in patients with ARDS secondary to HAPE.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PHAPE (n = 10) Before treatment</th>
<th>ARDSS (n = 8) After treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO2 (mmHg)</td>
<td>52.6±4.8</td>
<td>49.88±3.45</td>
</tr>
<tr>
<td>PaCO2 (mmHg)</td>
<td>25.4±2.31</td>
<td>24.60±1.05</td>
</tr>
<tr>
<td>pH</td>
<td>7.54±0.022</td>
<td>7.57±0.025*</td>
</tr>
<tr>
<td>A-a DO2 (mmHg)</td>
<td>7.89±4.02</td>
<td>11.52±4.12++</td>
</tr>
<tr>
<td>PaO2/FIO2</td>
<td>134.50±5.24</td>
<td>126.8±6.65++</td>
</tr>
<tr>
<td>DO2 (L min⁻¹ m⁻²)</td>
<td>424±15.20</td>
<td>409.99±13.11*</td>
</tr>
<tr>
<td>VO2 (L min⁻¹ m⁻²)</td>
<td>135.34±11.60</td>
<td>129.87±5.28*</td>
</tr>
<tr>
<td>O2 ext (%)</td>
<td>0.19±0.02</td>
<td>0.18±0.01</td>
</tr>
</tbody>
</table>

[PIO2] 1.0: PaO2 during the breathing of 100 percent oxygen (the fraction of inspired oxygen). DO2: oxygen delivery. VO2: oxygen consumption. O2 ext: oxygen uptake. ARDSS compared with PHAPE: ++ p < 0.001. +++ p < 0.005, *p < 0.05. ADRS before treatment vs. after treatment: ΔΔ P < 0.001, Δ P < 0.05. All comparative data except PaO2/FIO2 between PHAPE and ARDSS were collected at rest, breathing room air and before treatment.

type of pulmonary edema (Schoene et al., 1986). Although the concentrations and size ranges of the protein in the HAPE fluid are similar to those found in ARDS, the predominance of alveolar macrophages rather than neutrophils in the BALF is strikingly different from the lavage cellular profile in ARDS (Schoene et al., 1986; Sho, 1987). Bronchoalveolar lavage fluid collected through the endotracheal tube for the differential diagnosis between HAPE and ARDS is an important laboratory study. However, it is almost impossible for use in a remote mountainous area.

How to diagnosed ARDS secondary to HAPE in the altitude field? Generally, HAPE is usually described as an altitude illness that rapidly responds to rest, administration of oxygen or descent to lower elevation. Hypoxemia that does not respond to oxygen administration is a common feature of HAPE (Hultgren, 1997). Also, the clinical observation indicated that HAPE resolves rapidly without residual pulmonary dysfunction and allows persons to be active again after recovered. This scenario is distinctly different from the type of pulmonary edema seen in ARDS. Therefore, the diagnosis of ARDS should be suspected when a patient with HAPE do not respond to oxygen therapy even if descent, instead their conditions worsen rapidly. Chest X-ray shows that HAPE usually manifests as central interstitial edema, whereas ARDS represents the most severe form of permeability edema associated with the acute respiratory failure. Confirmation of the diagnosis can often be achieved through the use of either chest X-ray or SaO2/FIO2 ratio. For diagnosis of ARDS at an altitude field, arterial blood gases should be evaluated in all patients, and chest radiography is essential; usually, both techniques will be necessary. In addition, pulmonary function tests, blood tests and ECGs may be of help to identify the cause of ARDS.
for ARDS based on $\text{PaO}_2/\text{FiO}_2$ ratio of <200 mmHg, patients residing at high altitude will have less shunt and, presumably, less severe lung injury than patients at sea level (Perez-Padilla, 2004).

To diagnose ARDS at high altitude, it is not suitable to use $\text{PaO}_2/\text{FiO}_2$ < 200 mmHg as a key diagnostic criteria. This should be taken into consideration when comparing patients from different altitudes. We considered that there are two ways when using $\text{PaO}_2/\text{FiO}_2$ ratio as for a diagnostic index of ARDS at high altitude: one is using an adjusted formula:

$$\text{PaO}_2/\text{FiO}_2 = \text{PaO}_2/\text{FiO} \times (PB/760)$$

Where PB is the barometric pressure of studied site (West and Wagner, 1980). The second way is according to a mathematical model or a regression coefficient to adjust the $\text{PaO}_2/\text{FiO}_2$ ratio at a given altitude. We used the latter of $\text{PaO}_2/\text{FiO}_2$ of 100 to 150 mmHg at an altitude of above 4000 m in the 8 patients (Zhang et al., 2001; Wu, 2001). During an earthquake in Yushu at an altitude of 4000 m, a total of 85 cases of ARDS due to severe injuries were diagnosed using $\text{PaO}_2/\text{FiO}_2$<150 mmHg (Wu et al., 2012), suggesting that it is a easy, accurate and useful marker for diagnosis of ARDS at high altitude. Arterial blood gas test is easily performed even if at a remote mountainous area.

The development of severe, prolonged acute respiratory failure in these eight patients with HAPE suggests that altitude exposure may under some circumstance-contribute to the development of ARDS in some persons (Zimmerman and Crapo, 1980). In fact, ARDS secondary to HAPE is not uncommon; of the 112 patients with HAPE at an altitude above 4500 m, eight severe cases met the clinical criteria for the diagnosis of ARDS. Previously, it was re-reported that there is a rare instance of progression to ARDS in patients with HAPE (Hackett and Roach, 1990), which may be due to most cases of HAPE occurring in remote areas. It is possible that those persons with more severe pulmonary edema do not respond to oxygen therapy or descent, and therefore die rapidly (Zimmerman and Crapo, 1980). Moreover, ARDS as the end stage of HAPE process, can lead to multiple organ failure (Platadosi et al., 2004; Laycock and Rajah, 2010), hence we should be highly suspicious of this condition followed by insistence on immediate descent since, as in these patients medical treatment is so ineffective, with a fatal outcome. Meanwhile, an early diagnosis is a key factor of an early effective treatment.

ACKNOWLEDGEMENTS

This study was supported by the “973” National Key Basic Research and Development Program (No. 2012CB518202) and Project of Qinghai Development of Science and Technology (No. 2011-N-150).

ABBREVIATIONS

AMS, Acute mountain sickness; **HAPE**, high altitude pulmonary edema; **HACE**, high altitude cerebral edema; **ARDS**, acute respiratory distress syndrome; **ALI**, acute lung injury; **BP**, blood pressure; **ECG**, electrocardiography; **SaO$_2$**, arterial oxygen saturation; **PB**, barometric pressure; **PaO$_2$**, partial pressure of oxygen in arterial blood; **PaCO$_2$**, partial pressure of carbon dioxide in arterial blood; **A-a DO$_2$**; the differences between PaO$_2$ and PaO$_2$(PAO$_2$—PaO$_2$); **FiO$_2$**, the fraction of inspired oxygen; **mPAP**, mean pulmonary artery pressure; **PAR**, pulmonary artery resistance; **PEEP**, positive end expiratory pressure.

REFERENCES

Serum levels of glycosaminoglycans (GAGs) and insulin like growth factor-1 (IGF-1) as diagnostic markers for early hepatocellular carcinoma in cirrhotic patients with or without diabetes

Ahmad S. Ibrahim¹, Hala A. Attia¹,²*, Ahmad M. Rabea¹ and Amal M. El-Gayar¹

¹Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
²Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11495, Kingdom of Saudi Arabia.

Accepted 4 February, 2013

The significance of serum levels of glycosaminoglycans (GAGs) and insulin like growth factor-1 (IGF-1) in early screening of hepatocellular carcinoma in cirrhotic patients was evaluated. The effect of diabetes on GAGs and IGF-1 levels was also estimated. Fifty cirrhotic patients with early stage Hepatocellular carcinoma (HCC) (22 were diabetic), thirty control cirrhotic patients without HCC (11 were diabetic) and twenty normal control subjects, were enrolled to the study. Serum α-fetoprotein (AFP), the commonly used marker for HCC, was measured in all HCC patients. Serum GAGs increased significantly, while IGF-1 was reduced in patients with cirrhosis and early stage HCC compared to normal control (P < 0.001). There was a significant reduction in GAGs and IGF-1 levels in control cirrhotic group compared to HCC group (P < 0.05). HCC patients who had normal AFP showed significantly increased GAGs and reduced IGF-1 levels compared to normal control. In comparison with corresponding non-diabetic patients, diabetic patients showed a significant increase in serum GAGs in both cirrhotic control and HCC (P < 0.01), while a significant decrease was observed in serum IGF-1 only in HCC (P < 0.05). Concomitant determination and monitoring of serum GAGs and IGF-1 could be used as a simple, low cost and non-invasive marker for HCC in cirrhotic patients.

Key words: Hepatocellular carcinoma, liver cirrhosis, alpha fetoprotein, glycosaminoglycans, insulin like growth factor-1.

INTRODUCTION

Hepatocellular carcinoma (HCC) is currently the fifth most common cancer worldwide and is the third leading cause of cancer-related mortality (Thomas et al., 2010). Liver transplantation has been reported as a promising treatment for patients with small tumors, while it lacks effectiveness when patients with HCC become symptomatic (Kakodkar and Soin, 2012; Yuen et al., 2001). Therefore, early diagnosis is a critical point in management of patients with HCC.

Cirrhosis is the most important risk factor in the development of HCC (Fattovich et al., 2004); therefore, it is recommended that patients with cirrhosis undergo surveillance. Current guidelines recommended abdominal ultrasound (US) as the main surveillance test in patients with cirrhosis (Bruix and Sherman, 2005) however, the level of recommendation was low. AFP is the most utilized surveillance biomarker for HCC worldwide.

Recent systematic reviews of the literature show that the quality of evidence supporting the use of AFP as a
diagnostic and screening test for hepatitis C virus (HCV)-related HCC is limited (Colli et al., 2006). Another systematic review indicated that studies evaluating AFP as surveillance test suffered from variable study design, patient characteristics, sample size and verification bias (Gupta et al., 2003). Although, elevated serum AFP value in HCC patients was a common finding; however still, others had low or normal values (Tangkijvanich et al., 2000). In addition, both false positive and false negative results are obtained when AFP is used as a simple serum marker for HCC; therefore, better studies are needed to determine AFP’s performance, particularly in early stages.

GAGs are unbranched heteropolysaccharides which, with the exception of hyaluronic acid, are covalently attached to a core protein, forming what is known 'proteoglycans'. There are at least seven GAGs: hyaluronic acid, chondroitin sulfate, keratan sulfates I and II, heparin, heparan sulfate and dermatan sulfate (Hardingham and Fosang, 1992). GAGs are produced by fibroblasts, and are quickly cleared almost exclusively in the liver by a very efficient and specific receptor mechanism in SEC (Testa et al., 2006; Parés et al., 1996; Nanji et al., 1996). Since GAGs are important component of extracellular cell matrix, therefore SEC dysfunction may result in increased deposition of extracellular matrix, which leads to liver fibrosis and cirrhosis (Parés et al., 1996).

IGF-1 is an active somatomedin that is produced mainly by the liver. It is a basic polypeptide chain with three disulfide bridges and approximately 50% amino acids homology to insulin (Rinderknecht and Humbel, 1976). IGF-1 is the mediator of the anabolic and mitogenic activity of GH and possesses several roles in initiating puberty, cell proliferation and differentiation, and stimulating erythropoiesis (Froesch et al., 1996). Acute effects of IGF-1 are the same as those elicited by insulin (Froesch et al., 1996). Abnormalities in growth factors secretion are possibly involved in the promotion and/or progression of tumor growth. IGF-1 has been shown to be a mitogen for cancer cell lines by acting as an autocrine factor. Deregulation of IGF system has been implicated in the pathogenesis of several malignancies. In many epidemiologic studies, high serum IGF-1 levels have been associated with an elevated risk of prostate carcinoma (Mucci et al., 2010), breast carcinoma (Baglietto et al., 2007) and colorectal carcinoma (Ma et al., 2001). Although experimental studies have demonstrated an important role of IGF-1 in hepatocarcinogenesis, the clinical data regarding IGF-1 in patients with HCC are scarce and controversial.

Diabetes is associated with a 2 to 3-fold increase in the risk of HCC, regardless of the presence of other major HCC risk factors (Davila et al., 2005). Diabetic patients are at risk for HCC, probably as a result of the hepatic injury, fibrosis and eventual cirrhosis resulting from fatty liver disease associated with diabetes (Yu and Yuan, 2004). Moreover, type 2 diabetes is characterized by insulin resistance and compensatory hyperinsulinemia that is associated with an elevated proportion of proinsulin and split products of proinsulin molecules with some homology to IGF-1 (Davies et al., 1993). Insulin or its precursors have been shown to interact with liver cells by IGF receptor I or hybrid receptors to stimulate mitogenesis and carcinogenesis (Kahn and White, 1995).

The objectives of this study were to investigate: (1) whether serum GAGs and IGF-1 measurements are significant diagnostic markers for early stage HCC in cirrhotic patients particularly those with normal AFP levels and (2) whether diabetes affects the levels of these two markers in cirrhotic HCC patients.

MATERIALS AND METHODS

Patients

Fifty newly diagnosed cirrhotic patients with HCC from Oncology Center, Mansoura University, Egypt were enrolled into this study. Among these, 22 patients were diabetic. Since HCC patients in this study were also cirrhotic, a control group of thirty cirrhotic subjects without HCC (11 diabetic and 19 non-diabetics) was selected from the out- and in-patient clinics of the Specialized Internal Medicine Hospital, Mansoura University, Egypt and used to nullify the effect of cirrhosis on GAGs and IGF-1 level. The normal control group comprised twenty apparently healthy subjects. Informed consent was obtained from each patient included in the study. The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a prior approval by the Hospital Ethics Committee.

HCC was defined by histological examination or by the appropriate imaging characteristics as defined by accepted guidelines (Bruix et al., 2001). Staging was determined by the Barcelona Clinic Liver Cancer staging system (Bruix and Sherman, 2005). Early stage HCC was defined by a single lesion between 2 to 5 cm or ≤ 3 lesions each < 3 cm, without portal vein thrombosis or extrahepatic metastasis. Patients who had prior treatment of their tumor or history of other solid tumors were excluded. The presence of cirrhosis was defined histologically or non-histologically by evidence of portal hypertension in the presence of chronic liver disease. Evidence of portal hypertension included: (1) a cirrhotic-appearing liver on ultrasound or computed tomography examinations with splenomegaly and no vascular thrombosis, (2) thrombocytopenia with a platelet count < 120 mm3, and/or (3) presence of esophagogastric varices on endoscopic examination. All investigations necessary for diagnosis were carried out in the Oncology Center and Specialized Internal Medicine Hospital, Mansoura University, Egypt.

Blood sample collection and processing

Blood samples were collected from patients and control subjects and then divided into two portions: One portion was collected into sodium citrate (in a ratio of 0.9 ml of blood to 0.1 ml of 3.8% sodium citrate solution), and used for determination of prothrombin time and
concentration within 3 h. The second portion was allowed to coagulate and centrifuged to obtain sera for immediate determination of routine liver function tests and glucose levels. The rest of serum was divided into aliquots and kept deeply frozen at -20°C for investigations of AFP, GAGs and IGF-1.

Assessment of liver function

Serum levels of ALT, AST, albumin (A), total protein and total bilirubin were estimated using commercially available kits obtained from Randox Company. Serum globulin (G) is the difference between total protein and albumin; consequently A/G ratio is determined. Prothrombin time and subsequent prothrombin concentration were determined on citrated blood using DiaPlastin reagent purchased from DiaMed Company.

Measurement of fasting blood glucose

Fasting blood glucose was estimated according to glucose oxidation method using kits from Randox Company.

Determination of serum AFP

AFP was determined according to the method of Cattini et al. (1993) using DSL-10-8400 ACTIVE AFP ELISA assay kits (an enzymatically amplified "two-step" sandwich-type immunoassay). The assay was performed according to the manufacturers’ instructions.

Determination of serum total GAGs

Isolation of total GAGs from serum samples

All serum samples were analyzed for GAGs after their precipitation from serum according to Ohkawa et al. (1977). Briefly, 1 ml of each sample was dehydrated by adding 10 ml chilled acetone. The mixture was stirred for 30 min at room temperature and centrifuged at 1,500 rpm for 15 min at 4°C. The dehydrated sample was delipidated by washing twice with 10 ml of ether and the precipitate was air-dried. The defatted dry powder was re-suspended in 1 ml of 0.5 M chilled NaOH and stirred at 4°C overnight. Then, it was neutralised with 1 M HCl to pH 6 to 8, and then an equal volume of 0.5 M chilled NaOH and stirred at 4°C overnight. The precipitate was collected by centrifugation at 4,000 rpm for 30 min at 4°C and then washed twice with 5 ml of 98% ethanol. The final precipitate was dissolved in 1 ml of 0.05 Tris-HCl buffer.

Determination of total GAGs by carbazole assay

The GAGs uronic acid was quantified using the carbazole-borate reagent according to photometric method of Bitter and Muir (1962). Briefly, 0.5 ml of the isolated GAG sample was added to 3 ml of reagent A (25 mM Na₂B₄O₇ in concentrated H₂SO₄) and heated at 100°C for 10 min. After the reaction was cooled in ice, 100 µl of reagent B (carbazole 1.25 g in 1 L 100% ethanol) was added to the reaction which was heated at 100°C for another 15 min. The absorbance was read by spectrometry at 525 nm and compared with that of reference solutions of glucuronic acid. Serum GAGs were expressed as µg uronic acid per ml of serum (Bitter and Muir, 1962). All chemicals were purchased from Sigma-Aldrich (S. Louis, USA).

Determination of serum IGF-1

IGF-1 was determined by DSL-10-2800 ACTIVE Non-Extraction ELISA assay according to the method of Hall and Sara (1983). The DSL-10-2800 ACTIVE Non-Extraction IGF-1 ELISA is an enzymatically amplified "two-step" sandwich-type immunoassay. The procedure was preceded according to the manufacturers’ instructions provided with the kits.

Statistical analysis

Statistical analysis was performed by GraphPad Prism (GraphPad Software San Diego, CA, USA). Data were presented as means ± standard error of mean (SEM) and analyzed with one way Analysis of variance (ANOVA), followed by Bonferroni testing. Correlation coefficient [r] was used to measure the mutual correspondence of two quantitative variables in the same studied group. P < 0.05 was considered statistically significant.

RESULTS

Liver function

Liver function of HCC and cirrhotic groups compared to control subjects are shown in Table 1.

Serum AFP

Serum concentrations of AFP in HCC group and control subjects are shown in Table 2. Serum AFP was not increased in all HCC patients and showed variations among patients. According to the serum concentration of AFP, the patients with HCC in this study were subclassified into three subgroups: (1) HCC patients with a normal concentration of serum AFP (<15 ng/ml), including 22 patients, (2) patients with a questionable positive (below the cut off) levels of serum AFP (15 to 400 ng/ml), including 18 patients and (3) those with serum AFP concentration above the cut off value (> 400 ng/ml), including 10 patients. Patients in the second and third subgroups showed a significant increase in serum concentration of AFP (P < 0.001) compared to the control subjects.

Serum GAGs

Patients in both HCC and cirrhotic groups showed a sig-
Table 1. Liver function in normal control group (n = 20), cirrhotic control (n = 30) and early stage HCC group (n = 50) (mean ± SEM).

<table>
<thead>
<tr>
<th>Liver Function</th>
<th>Normal control</th>
<th>Cirrhotic control</th>
<th>Early stage HCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>16.8±1.9</td>
<td>59.13±6.47</td>
<td>61.73±5.9</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>12.7±1.4</td>
<td>64.03±5.94</td>
<td>81.07±6.26</td>
</tr>
<tr>
<td>Total bilirubin (mg/dl)</td>
<td>0.53±0.04</td>
<td>1.23±0.095</td>
<td>1.74±0.28</td>
</tr>
<tr>
<td>Prothrombin time (s)</td>
<td>12.0±0.21</td>
<td>20.57±1.2</td>
<td>19.96±1.3</td>
</tr>
<tr>
<td>Prothrombin concentration (%)</td>
<td>96.2±7.6</td>
<td>35.21±3.9</td>
<td>37.24±3.2</td>
</tr>
<tr>
<td>Serum albumin (gm/dl)</td>
<td>4.717±0.16</td>
<td>3.05±0.101</td>
<td>2.96±0.071</td>
</tr>
<tr>
<td>Serum total protein (gm/dl)</td>
<td>7.152±0.123</td>
<td>7.27±0.191</td>
<td>7.58±0.179</td>
</tr>
<tr>
<td>Serum globulin (G) (gm/dl)</td>
<td>2.45±0.16</td>
<td>3.91±0.22</td>
<td>4.23±0.201</td>
</tr>
<tr>
<td>A/G ratio</td>
<td>1.93±0.15</td>
<td>0.84±0.042</td>
<td>0.79±0.034</td>
</tr>
</tbody>
</table>

a: significantly different from control, b: significantly different from cirrhotic patients, *P < 0.05; **P < 0.01; ***P < 0.001.

Table 2. Serum levels of α-fetoprotein (AFP) in early stage HCC patients compared to normal control group (mean ± SEM).

<table>
<thead>
<tr>
<th>Group</th>
<th>Serum AFP (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control (n=20)</td>
<td>5.990±0.384</td>
</tr>
<tr>
<td>HCC patients with normal levels of AFP (<15 ng/ml) (n=22)</td>
<td>7.47±1.6</td>
</tr>
<tr>
<td>HCC patients with questionable positive levels of AFP (15-400 ng/ml) (n=18)</td>
<td>125.839±24.46</td>
</tr>
<tr>
<td>HCC patients with serum AFP levels above the cut off value (>400 ng/ml) (n=10)</td>
<td>4547.8±789.6</td>
</tr>
</tbody>
</table>

a: significantly different from control, ***P < 0.001.

Figure 1. Serum glycosaminoglycans (GAGs) concentration in normal control, cirrhotic control and early stage HCC patients (mean ± SEM). a: significantly different from control, ***P < 0.001; b: significantly different from cirrhotic patients, *P < 0.05.

A significant increase (P < 0.001) in serum GAGs concentration as compared to control subjects (19.8 ± 1.05 and 24.6 ± 1.93 µg uronic acid/ml versus 10.06 ± 0.6 µg uronic acid/ml, respectively), with a significant increase (P < 0.05) in cirrhosis group as compared to HCC group (Figure 1). Figure 2 showed serum GAGs in HCC patients with variable levels of AFP. All HCC patients including those who had normal AFP (< 15 ng/ml) showed significantly increased GAGs compared to normal control subjects. To evaluate the effect of diabetes existence on serum levels of GAGs in cirrhosis and early stage HCC, patients were further sub-classified into diabetic and non diabetic patients, and the GAGs levels in diabetic patients were compared to the levels in corresponding non diabetic patients (Figure 3). Diabetic cirrhotic (n = 11) and HCC (n = 22) patients exhibited a significant increase (P < 0.01) in serum GAGs in comparison with corresponding non diabetic patients (36.8 ± 4.07 versus 22.03 ± 2.3 µg uronic acid/ml in cirrhosis and 29.36 ± 2.62 versus 18.2 ± 0.95 µg uronic acid/ml in HCC).

There was a significant positive correlation (r = 0.471, P < 0.001) between serum GAGs and serum glucose levels in HCC patients (Figure 4). Also, there was a significant
Figure 2. Serum glycosaminoglycans (GAGs) level in early stage HCC patients with AFP < 15 ng/ml, those with AFP (15 to 399 ng/ml) and those with AFP > 400 ng/ml (mean ± SEM). a: significantly different from control, ***P < 0.001.

Figure 3. Serum glycosaminoglycans (GAGs) concentration in diabetic and non diabetic patients of cirrhotic control and early stage HCC groups (mean ± SEM). c: significantly different from non diabetic control cirrhotic patients, **P < 0.01; d: significantly different from non diabetic HCC patients, **P < 0.01.

Positive correlation (r = 0.48, P < 0.01) between serum GAGs and serum glucose in cirrhotic patients (Figure 5).

Serum IGF-1

In contrast to GAGs, serum IGF-1 concentration showed a significant decrease (P < 0.001) in patients with cirrhosis and HCC as compared to control group (35.73 ± 5.6 and 21.87 ± 2.78 ng/ml versus 76.39 ± 12.2 ng/ml, respectively), with a significant reduction (P < 0.05) in HCC patients as compared to cirrhotic group (Figure 6). Figure 7 showed serum IGF-1 in HCC patients with variable levels of AFP. All HCC patients including those who had normal AFP (< 15 ng/ml) or below cut off values (15 to 400 ng/ml) showed a significantly decreased IGF-1 as compared to normal control subjects. To estimate the effect of diabetes existence on serum levels of IGF-1 in cirrhosis and early stage HCC, patients were further subclassified into diabetic and non diabetic patients, and the IGF-1 levels in diabetic patients were compared to the levels in corresponding non diabetic patients. Diabetic patients with HCC (n = 22) exhibited a significant decrease in serum concentration of IGF-1 in comparison with non diabetic patients (11.98 ± 4.42 versus 26.05 ± 1.85 ng/ml, P < 0.05), while insignificant difference was observed between diabetic and non diabetic cirrhotic patients (36.56 ± 8.62 versus 35.37 ± 6 ng/ml (Figure 8).
There was a significant negative correlation between serum levels of IGF-1 and GAGs \((r = -0.311, P < 0.05) \) in HCC patients (Figure 9). On the other hand, serum IGF-1 showed a significant positive correlation with serum albumin level in cirrhotic group \((r = 0.49, P < 0.01) \) (Figure 10) and in HCC patients \((r = 0.45, P < 0.001) \) (Figure 11).

DISCUSSION

HCC is one of the most malignant tumors affecting humans, with increasing incidence worldwide (Thomas et al., 2010). The precocious diagnosis is a critical point in management of patients with HCC, since early detection of the cancer increases the chance of treatment (Yuen et al., 2001). In spite of great use of AFP and its importance as a tumor marker for HCC, there are some limitations of its usefulness as being not sensitive as a screening mark in general population (Colli et al., 2006; Tangkijvanich et al., 2000). Elevated serum AFP value in HCC patients was a common finding; however still, others had low or normal values (Tangkijvanich et al., 2000), particularly in early stage. These findings coincide with our results where not all pathologically proven early stage HCC cases in this study have elevated level of AFP. There was a wide variation in their AFP levels, in which 22 (44%) of patients had normal AFP (< 15 ng/ml), 18 (36%) had moderately elevated levels (15 to 400 ng/ml) and only 10 patients (20%) were with markedly elevated AFP.
Figure 6. Serum levels of insulin-like growth factor (IGF-1) in normal control, cirrhotic control and early stage HCC patients (mean ± SEM). a: significantly different from control, ***P < 0.001; b: significantly different from cirrhotic patients, *P < 0.05.

Figure 7. Serum insulin like growth factor-1 (IGF-1) level in early stage HCC patients with AFP < 15 ng/ml, those with AFP (15 to 399 ng/ml) and those with AFP > 400 ng/ml (mean ± SE). a: significantly different from control, ***P < 0.001.
Serum insulin like growth factor-1 (IGF-1) levels in diabetic and non diabetic patients of cirrhotic control and early stage HCC groups (mean ± SEM). d: significantly different from non diabetic HCC patients, *P < 0.05.

Figure 9. Significant negative correlation between serum levels of IGF-1 and GAGs in early stage HCC patients (r = -0.34, P < 0.05).

(> 400 ng/ml). In addition, both false positive and false negative results are obtained when AFP is used as a serum marker for HCC (Giannelli and Antonaci, 2006), so there is a real need for exploration of other marker for early diagnosis of HCC. The present study aimed to estimate whether serum levels of GAGs or IGF-1 could be
helpful as markers for early diagnosis of HCC.

In the current study, serum GAGs level was increased significantly in both cirrhotic control and HCC groups compared to normal control. Serum GAGs levels increase when production is markedly enhanced. This may be due to synovial inflammation, as seen in some rheumatological conditions, or more importantly, when liver function (SEC receptor removal mechanism) is impaired (Parés et al., 1996). The high levels of hyaluronic acid, a glycosaminoglycan of the liver extracellular matrix, which is synthesized and degraded in the liver sinusoidal cells, have been related with a decreased function of the endothelial sinusoidal cells (Testa et al., 2006; Parés et al., 1996). Recently, high production of GAGs in liver disease was documented (Jia et al., 2012; Lv et al., 2007). The finding of Jia et al. (2012) demonstrated elevated GAGs content in HCC tissues compared to that in the normal liver tissues. Such increase was found to be due to increased expression of chondroitin sulfate and dermatan sulfate. A progressive

Figure 10. Significant positive correlation between serum IGF-1 and serum albumin concentrations in control cirrhotic patients ($r = 0.49$, $P < 0.01$).

Figure 11. Significant positive correlation between serum IGF-1 and serum albumin concentrations in early stage HCC patients ($r = 0.45$, $P < 0.001$).
increase in the content of chondroitin sulfate, low molecular size GAGs, and non-sulfated and di-sulfated chondroitin sulfate disaccharide units, together with a gradual decrease in heparan sulfate and significant increase in hyaluronic acid have also been found in human primary hepatic carcinoma (Lv et al., 2007).

The elevation of GAGs level may be due to the stimulation of fibroblast by fibroblast-derived growth factor and vascular endothelial growth factor; both are increased in cirrhotic and HCC patients (Chow et al., 1997; Li et al., 2003). The level of GAGs expression is regulated by a number of cytokines, among those that play significant roles are; TGF beta, TNF alpha and TGF alpha (Gressner et al., 1994). Liver cirrhosis resulted in a significant increase of plasma concentration of TNF alpha and TGF-beta (Flisiak et al., 2000). Fat-storing cells (perisinusoidal lipocytes, Ito cells) are the major connective tissue-producing cell type in liver (Gressner, 1991a). Transformed fat storing cells that is, myofibroblast-like cells are the major source of proteoglycans in injured liver (Gressner, 1991b). In areas of necro-inflammation, the cells proliferate and transform into desmin and smooth muscle alpha-actin-positive myofibroblast-like cells which synthesize a broad spectrum of significant amounts of proteoglycans, collagen and matrix glycoproteins (Gressner, 1991a). It is concluded that modified Ito (fat storing) cells will synthesize proteoglycans and play an important role in the formation of connective tissue fibers in liver fibrosis (Szendike et al., 1992).

The serum level of GAGs estimated in early stage HCC patients was significantly decreased when compared with corresponding values in cirrhotic control group. This finding may result from decreased IGFr-1 level in HCC. IGFr-1 has a sulfation activity (incorporation of sulfate and leucine into glycosaminoglycans) and stimulation of fibroblast multiplication (Corti et al., 1992). Our result proposed that the development of carcinoma in cirrhotic patients may be accompanied by a gradual significant decrease in GAGs levels as compared to before carcinogenesis. We suggest that monitoring GAGs levels in cirrhotic patients may help in predicting development of HCC. Further studies are necessary to determine a cut-off value that is diagnostic for HCC. Serum level of GAGs may increase in other diseases including rheumatoid arthritis (Friman et al., 1977), systemic lupus erythmatosus (Friman et al., 1987), chronic myeloid leukemia (Craig et al., 1988), and chronic lymphocytic leukemia, and in essential thrombocythaemia (Calabró et al., 1998), limiting its specificity to liver diseases. Therefore, the combined measurement of serum level of GAGs and IGFr-1 level may provide a more specific marker for liver diseases.

Diabetic patients with either cirrhosis or HCC in this study exhibited a significant increase in serum GAGs level when compared to the corresponding non diabetic patients. Significant positive correlations were found between serum GAGs concentration and glucose level in both cirrhotic and HCC groups (Figures 4 and 5), respectively indicating that the elevated levels of serum GAGs in diabetic patients are induced by hyperglycemia. In agreement with our results, the percentage of total GAGs in high glucose-treated medium was significantly increased compared to glucose-free medium (Han et al., 2009). One explanation of increased GAGs is presented by Takeda et al. (2001) who reported that, high glucose stimulates GAGs production through activation of protein kinase C and TGF-beta cascade. Hyperglycemia may also lead to the release of GAGs from cell proteoglycan core proteins because cultured endothelial cells treated with high glucose showed a reduction in total GAGs, while medium GAGs was increased (Han et al., 2009). We can conclude that alteration of GAGs synthesized by cells is an important pathological mechanism, which can be correlated with cell injury by hyperglycemia.

IGFr-1 levels reduced significantly in both control cirrhotic and early stage HCC groups compared to normal control (Figure 6). The result concerning HCC was opposite to those in other malignancies as prostate carcinoma (Mucci et al., 2010), breast carcinoma (Baglietto et al., 2007) and colorectal carcinoma (Ma et al., 2001), reflecting the possible specificity of IGFr-1 for HCC. Our results are in agreement with other reports demonstrating low IGFr-1 levels in patients with cirrhosis (Conchillo et al., 2005; Donaghy et al., 2002; Guo et al., 2001; Wu et al., 2004) and HCC (Mazziotti et al., 2002; Ranke et al., 2003; Stuver et al., 2000). An important finding of the current study is that HCC patients who had normal AFP (< 15 ng/ml) showed a significantly decreased IGFr-1, as compared to normal control subjects (17.4 versus 76.3 ng/ml) (Figure 7). This study suggests that the measurement of serum IGFr-1 may be an important early marker for the diagnosis of early stage HCC, particularly in patients with low level of serum AFP. Reduced IGFr-1 in cirrhosis and HCC could be explained by increased oxidative damage in cirrhosis and HCC, leading to increased damage of parenchymal liver cell and decrease in IGFr-1 synthesis (Cantürk et al., 2003; García-Fernández et al., 2005). Mattera et al. (2003) proposed that IGFr-1 was low in HCC patients because of reduced ability of GH to stimulate IGFr-1 synthesis due to either a reduction of GH receptors number in the diseased liver or a post receptor defect (Donaghy et al., 2002). Low circulating IGFr-1 levels in HCC may be derived also from an inhibitory effect by some tumor cytokines, like TGF beta and platelet-derived growth factor (Clemmons, 2001). Indeed, these cytokines are over-expressed in patients with HCC in relation to the degree of fibrogenic activity (Pinzani et al., 1996; Song et al., 2002).
The fibrogenic activity was observed in this study by measuring serum level of GAGs, which are the major component of extracellular matrix and was found to be increased significantly when compared to normal control subjects. In this view, the modifications of serum IGF-1 level may reflect indirectly the progression of liver fibrosis in relation to the development of HCC (Mazziotti et al., 2002). This explanation is supported by the significant negative correlation observed in our study between IGF-1 and GAGs levels in HCC patients (Figure 9). In addition, patients with cirrhosis are characterized by a variety of metabolic disturbances, including nutritional and metabolic complications such as insulin resistance, malnutrition, osteopenia and hypogonadism, all related to IGF-I deficiency (Bonefeld and Møller, 2011). It is most likely that malnutrition contributes to the reduced IGF-1 in liver disease.

IGF-1 level decreased significantly in early stage HCC group when compared to control cirrhotic group. This observation agreed with Mazziotti et al. (2002), suggesting that IGF-1 levels in these patients decreased independently from cirrhosis, and indicating the involvement of physiopathological mechanisms in addition to the parenchymal damage. This result is due to increased parenchymal damage in HCC or inhibitory effects of tumor-induced cytokines (Mazziotti et al., 2002). In addition, patients with HCC have elevated plasma nitric oxide levels compared with patients with cirrhosis, which leads to more oxidative damage for liver parenchymal cells in HCC group and further decrease in IGF-1 level (Moussa et al., 2000). Our results suggest that periodic measurement of serum IGF-1 level using Enzyme-linked immunosorbent assay (ELISA) method may be useful for HCC screening and predicting the development of HCC in patients with cirrhosis. A significant positive correlation was found between levels of IGF-1 and albumin in both cirrhosis and HCC groups (Figures 10 and 11). This finding may indicate that the decrease in IGF-1 level in cirrhotic and HCC patients may play a role in the reduction of albumin synthesis in these groups. The finding that IGF-1 replacement therapy increases albumin concentration in liver cirrhosis could confirm our suggestion (Conchillo et al., 2005). As IGF-1 is an anabolic hormone synthesized in the liver and its level decreased sharply in liver cirrhosis and HCC, the synthetic capacity of liver can be monitored by following IGF-1 level.

Our data demonstrated that diabetic HCC patients showed a significantly decreased level in serum IGF-1 level when compared to non diabetic HCC subgroup, while no significant difference was detected in diabetic cirrhotic patients as compared to non diabetic ones. This indicates that diabetes may be an important factor that decreases IGF-1 level in HCC. Liver tissue IGF-1 gene expression is greatly affected in diabetes, contributing to reduction of serum IGF-1 level (Li et al., 2004). In addition, diabetic HCC patients have more insulin resistance and hyperinsulinemia. Insulin is known to be an important hepatotrophic factor that stimulates the proliferation of hepatoma cells (Sasaki et al., 1993). Increased insulin level stimulates the propagation of tumor through IGF-1 receptors via phosphorylation of insulin receptor substrate 1 and activation of mitogen activated protein kinases (Rose et al., 1994). So, hyperinsulinemia is associated with accelerated HCC growth and gives further destruction of liver cells and further reduction in IGF-1 level. Therefore, diabetic HCC patients are at high risk of propagation of tumor than non-diabetic ones.

Conclusion

GAGs and IGF-1 serum levels are disturbed in liver cirrhosis and represent a good marker of hepatic function. The development of HCC is accompanied by a significant increase in GAGs together with a significant reduction in serum IGF-1 level. Therefore, concomitant determination and monitoring of serum GAGs and IGF-1 could be used as a simple, low cost and non-invasive marker for development of HCC in cirrhotic patients, especially in patients with normal level of AFP. Hyperglycemia in diabetic cirrhotic and HCC patients is associated with higher levels of serum GAGs compared to non diabetic patients. Such alteration in GAGs could be a pathological mechanism of liver injury. Diabetic HCC, but not cirrhotic patients had further reduction of serum IGF-1 levels as compared to non diabetics, and such reduction may be associated with HCC growth in diabetes.

ABBREVIATIONS

A/G, Albumin/globulin; AFP, alpha fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GAGs, glycosaminoglycans; GH, growth hormone; HCC, hepatocellular carcinoma; IGF-1, insulin like growth factor-1; SEC, sinusoidal endothelial cells; TGF-beta, transforming growth factor beta; TNF alpha, tumor necrosis factor alpha.

REFERENCES

America Association for Clinical Chemistry (AACC) Annual Meeting and Clinical Laboratory Expo, Houston, USA, 28 Jul 2013

13th Congress of the Asia-Pacific Federation for Clinical Biochemistry and Laboratory Medicine (APCCB 2013), Bali, Indonesia, 27 Oct 2013
Conferences and Advert

July 2013

18th International Conference on Prenatal Diagnosis and Therapy in Brisbane, Australia, 20 - 23 July 2014

October 2013
10th International Congress on Coronary Heart Disease, Florence, Italy, 13-16 Oct 2013
Related Journals Published by Academic Journals

- Journal of Oral Medicine and Diagnosis
- Journal of Clinical Medicine and Research
- Journal of Cancer Research and Experimental Oncology
- Journal of Radiography and Imaging
- Journal of Respiratory Medicine and Research
- Journal of Pharmacognosy and Phytotherapy
- Clinical Reviews and Opinions