ABOUT JMLD

The Journal of Medical Laboratory and Diagnosis (JMLD) is published monthly (one volume per year) by Academic Journals.

The Journal of Medical Laboratory and Diagnosis (JMLD) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as anatomic pathology, clinical microbiology, hematology, urinalysis etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMLD are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jmld@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Medical Laboratory and Diagnosis (JMLD) will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Yu Liu, MD
Department of Clinical and Laboratory Medicine
The Fourth Affiliated Hospital,
Harbin Medical University
Yiyuan Road, 37#
Nangang District, Harbin, 150001
Heilongjiang Province
PR. China.

Dr. Sunil Trivedi
U. N. Mehta Institute of Cardiology and Research Centre
Civil Hospital, Asarwa, Ahmedabad 380 016
India

Dr. Mohamed Farouk Elshal
Biochemistry Department
Faculty of Science
King Abdulaziz University
Jeddah - KSA

Dr. Frank A. Chervenak
Department of Obstetrics and Gynecology
New York Weill Cornell Medical Center
USA

Dr. Ancha Baranova
School of Systems Biology,
David King Hall, MSN 3E1
George Mason University
USA

Dr. Vesna Mandusic
The Vinca institute for Nuclear Sciences
Laboratory for Radiobiology and Molecular Genetics
Belgrade,
Serbia

Dr. Julhash Uddin Kazi
Experimental Clinical Chemistry
Department of Laboratory Medicine
Lund University
Sweden
Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JPP to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The **Discussion** should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The **Acknowledgments** of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ’et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b;Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Medical Laboratory and Diagnosis (JMLD) is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JMLD, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Articles

Aberration of French Public Health Authorities policies for the cost-assessment of microbiological diagnosis in ophthalmology
Pablo Goldschmidt, Lilia Merabet, Florence Daban, Laurence Batellier, Edgard Benveniste and Christine Chaumeil

Risk analysis and management of non-conformities of the pre-analytical phase in a university testing laboratory of bacteriology
Youssef El Hani, Hafsa Lamrani Alaoui, Najat Mahassini, Leila Radi, Mimoun Zouhdi and Abdelkarim Filali-Maltoufe
Short Communication

Aberration of French Public Health Authorities policies for the cost-assessment of microbiological diagnosis in ophthalmology

Pablo Goldschmidt*, Lilia Merabet, Florence Daban, Laurence Batellier, Edgard Benveniste and Christine Chaumeil

Laboratoire du Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, 28 rue de Charenton, 75012 Paris-France.

Accepted 12 December, 2013

Sensitive and specific laboratory tests adapted to ophthalmologic micro specimens are necessary for the clinical management of corneal ulcers (CU). The goal of this work is to analyze the correlation of diagnosis tests specificities with pricing policies for public laboratories. Human specimen procedures were extracted from the National Eye Center Laboratory registers in Paris, France with reimbursement values (pricing) confronting the National Social Security Services. According to cost of reactants and human resources, the official quotation for public laboratories for urinary tract diagnosis is 19 Euros (signals allowing for ruling-out negatives takes less than 2 min) and less than 27 Euros for a comprehensive laboratory diagnosis of CU, which includes testing for bacteria, fungi and protozoa (Acanthamoeba); antibacterial and antifungal susceptibility testing for positive cultures and adapted DNA extraction procedures for viral and protozoa PCR (>1 hour handling). Pricing calculations produced oversimplified conclusions for CU diagnosis, ignoring pathology differences, diagnosis procedures, risks and sphere of action. Comprehensive revision of cost assessment policies and diagnosis pricing should be implemented for specialized laboratories to maintain the quality of public medical care and avoid interruptions in the transmission of knowledge to younger generations.

Key words: Aberration, cost assessment, laboratory diagnosis, public health, microbiological diagnosis ophthalmology.

INTRODUCTION

As a general rule it is admitted that severe eye-infections without on-time appropriate treatments may lead to visual impairment and blindness through corneal scarring, perforation or endophthalmitis. The visual function of patients presenting corneal ulcers (CU) depends upon prompt and appropriate identification of the causative agent (bacteria, fungi, protozoa, other parasites, viruses, allergens and foreign bodies among others) to administer on-time the appropriate therapeutics. Certain symptoms and signs may be associated with infectious agents (Allan and Dart, 1995). Nevertheless, a wide range of agents produce tissue damage and the lesions do not allow unequivocal recognition of the cause (Srinivasan et al., 1997; Sharma et al., 2002). Therefore, sensitive and specific laboratory tests adapted to each type of specimen are necessary for the clinical management of CU. The goal of this work is to analyze the specificity of the laboratory procedures for the diagnosis of CU on
human samples and its correlation with the pricing policies established for public laboratories.

METHODS

The procedures performed in 2013 for human specimens received at the laboratory were extracted from the National Eye Center Laboratory registers in Paris, France. The reimbursement values (pricing) for the laboratory diagnosis correspond to the amount stated by the policies of the National Social Security Services as part of the French comprehensive Social Security (SocSec).

The material sent to the laboratory should represent the replication sites of the search agents or their persistent/latent sanctuaries. Hence, laboratory results lack negative predictive-value for specimens with inappropriate (reduced or topographically non relevant) amount of tissues.

Testing biological specimens and environmental samples need meaningful data, for which is required method optimization. Trained staff using high quality staining procedures may detect at least 40% of positive samples by direct microscopic examination if samples are representative from Protozoa replication sites.

Finally, it should be underlined that it is generally impossible to carry out systematic double checking by asking ophthalmologists for additional sampling. Intense scraping of the cornea may trigger inflammatory responses with unpredictable consequences for visual function. As a result, ophthalmologists should be warned to provide exploitable corneal specimens for laboratories performing optimized diagnosis strategies.

RESULTS

CU diagnosis requires materials obtained by scraping the corneal epithelia, the deep infiltrates and their periphery. Specialized laboratories should: a) assess the quality and amount of material to be tested in each specimen; b) validate the pertinence of the tests to be performed according to the clinical picture; c) decide on the appropriateness to perform certain tests according to the products that may be present on the eye surface (fluorescein, anesthetics, residual heparin, antibiotics, biocides, disinfectants and preserved eye-drops) or administered by general route before sampling (most of these agents produce false negative results if introduced into the tubes with the specimens).

The few micrograms that can be sampled should be carefully handled and divided first to smear a minimum of 2 slides, and then for the bacteria and fungi cultures. In addition, DNA from micro aliquots of the corneal scrapings should be extracted for nucleic-acid amplification tests (polymerase chain reaction for diagnosis of viruses and Protozoa infections, especially Acanthamoeba sp.).

Direct microscopic examination (×1000) has limited negative predictive value and further testing should be performed after the first examination of stained slides. Subsequently, the immersion oil has to be eliminated and the fixed specimens must be gently de-stained (preserving cells, microbes and parasites morphology) followed by differential additional staining procedures (differential re-staining improves the visibility agents frequently included in epithelia) (Jurkunas et al., 2009; Sharma et al., 2002; Bharathi, 2006; Vajpayee et al., 1993). In addition, specific micro-sample procedures for germ isolation and antibiotic and antifungal susceptibility testing should be simultaneously carried-out. These procedures require qualified staff and are time consuming (> 1 h).

As shown by large surveys, none of the laboratory techniques can establish by itself CU etiologic diagnosis. In fact, there are samples for which bacterial or fungal images may or may not be found by observation and other tests may produce negative or positive for bacterial growth or no result for fungal growth. Other tests may indicate bacterial, Acanthamoeba, viral or mixed microbial growth, with unpredictable combinations (Srinivasan et al., 1997; Jurkunas et al., 2009; Sharma et al., 2002; Jones, 1981).

On the other hand, urinary tract infections (UTI) are screened using dipsticks for leukocyte esterase (LE) and nitrite. Both signals are interpreted in combination, allowing for ruling-in (both positive) and -out (both negative) urinary tract infections (Whiting et al., 2006). It was shown that dipstick negative for both LE and nitrite of a clean voided urine-bag, or nappy/pad specimen can be used to rule out UTI, excluding these samples from further investigation and establishing in less than 2 min negative conclusions (Wong et al., 2008; Ducharme, 2007).

A dipstick positive for either LE or nitrite provides inconclusive diagnosis and further cultures are required (negativity to the LE or the nitrite assay or both has a specificity of 92.8%). For public laboratories Social Security establishes prices based on cost of reactants, equipment and human resources. Presently, the official quotation imposed for public laboratories (LaRocco, 1995; Brezmes et al. 2002) establishes 19 Euro for UTI diagnosis (negative results assessed in less than 5 min). However, in the absence of specialists’ consensus, the quotation for public laboratories for the comprehensive microbiological diagnosis of CU was fixed at 27 Euro. Here, negativity can be suspected only after a minimum of 1 to 2 h by a proficient staff following laboratory procedures including: a) slide staining, de-staining and re-staining; b) exhaustive smear microscopic examination for characterization of epithelial cells, polynuclear leucocytes, lymphocytes, macrophages and eosinophils; c) search of bacteria, fungi, protozoa and azurophilic cytoplasmic epithelial-cell inclusions; d) bacterial and fungal cultures and sub cultures; e) microbial characterization of the isolates at species level; f) antibiotic and/or antifungal susceptibility testing (Journal Officiel, 2006; 2010). The diversity of parameters to be searched in the material should be highlighted here because the ratio obtained by dividing the number of tests by the mass of specimen obtained from CU is the highest in medical laboratory practice (Bharathi 2006;
DISCUSSION

Specialized institutions providing services to people with a broad spectrum of disorders require a direct link with specialized laboratories that are an essential part of an efficient health care system. As people with comorbidity or who have severe forms of disease require greater resources than a less complex population, additional risk adjustment should be set for institutions that do not attract the very “average” patient pathology.

The general demand for the control of health budget in France has led financial experts to fix pricing policies because the resources of the public sector are scarce: the final goal is to lower the costs while maintaining the quality of care (Prajna et al., 2007; LaRocco, 1995; Brezmes et al., 2002).

Laboratories are often among the first sections to be targeted for budget reductions as their costs seem easily discernible. However, it has been demonstrated that dramatic reductions in laboratory testing produces disproportionately small true health cost reductions, and it is by no means certain that simply reducing test pricing will lead to a decrease in the overall health care costs (Journal Officiel, 2006). Moreover, the pricing for delivered laboratory services are not risk adjusted for “high” complexity patients.

It appears that for CU laboratory diagnosis, pricing calculations has produced oversimplified conclusions ignoring pathology differences, diagnosis procedures, risks and sphere of action. The corollary of the myopic approaches may state the entire highly specialized laboratory diagnosis as “financially non-viable” (Journal Officiel, 2006; Stentz et al., 1996; Jandreski, 1996; Das et al., 2010). Therefore reductionist assessments require comprehensive revision and emendation, first, to maintain the quality of public medical care, and second, to avoid interruption of transmission of highly specialized knowledge to younger generations.

REFERENCES

Journal Officiel, France JORF n°0012 du 15 janvier 2010 page 819 text n° 43 Article 69 released on July 21st 2009 for the « réforme de l’hôpital et relative aux patients, à la santé et aux territoires (loi HPST) and ordonnance (n°2010-49) 15 January 2010.

Due to the great deal of attention given to patient’s security, it is necessary to reduce non-conformities in pre-analytical phase, so the laboratories of medical bacteriology that can ensure the quality of examination results can contribute to diagnosis and prescription of treatment and patient safety. It is important that these laboratories collect and exploit statistics of the non-conformities rates which occur during pre-analytical phase in order to implement improvement plans. This study was done in a period of 10 months in a laboratory of bacteriology in a university hospital center. It aims to control the nonconformity rates of the biological samples found, show their nature and causes and to assess their criticality. Results obtained showed that overall rate of non-conformities identified in the year 2012 were 2.5% (310 samples from 12 398). 61% of the recorded errors concerned both the identification of biological samples and patient’s identity. 29% was on conveyance and 10% on the quality and quantity of samples. The setting up of the corrective and preventive actions plan was done by the application of Pareto law. The adoption of the Failure Mode, Effects and Criticality Analysis (FMECA) approach was meant for the risks analysis linked to these dysfunctions at pre-analytic phase. Anomalies of heterogeneity during this pre-analytic phase of the studied laboratory suggest the requirement of more rigorous methodology and exploitation of the projected indicators with suitable technologies to assess non-conformity and to follow quality improvements. Finally, to improve exams quality in laboratories, an organization and a quality action plan are proposed to ensure the management and control of the non-conformities occurring during the pre-analytic phase.

Key words: Non-conformities, pre-analytical phase, medical bacteriology, risks, quality improvement, management.

INTRODUCTION

Guide to the Correct Execution of Biomedical Analysis (GBEA) and ISO15189 standard impose a number of obligations to biologists during the exercise of their profession. From a regulatory point of view, these quality standards require that medical bacteriology laboratories (MBL) implement a policy and a management procedure
to control non-conformities according to their quality management system (GBEA, 1999; ISO 15189, 2003). Nowadays, the importance of the awareness of errors in MBL practices and their potential negative impact on patient outcomes increase as the data analysis are directly involved in the vast majority of diagnosis and medical treatments (Forsman, 1996). GBEA defines these analyses as a set of successive steps, from sampling of the biological sample to delivery of results. The quality of pre-analytical and analytical phases and results validation determine the final quality of the overall result. In medical bacteriology, the general approach of the pre-analytical phase includes several steps, among which the sequence and coordination must be flawless. The choice of samples, methods of collection, conveyance and storage must be of high quality. Otherwise, test result may have no clinical utility (Cheminéel et al., 2000; Rémić, 2010).

Several classes of non-conformities exist. Their management should be a procedure that describes the rules of registration and treatment (Rogowski and Annaix, 2010). The compliance of biological samples is always the subject of special attention for the professionals of biology. In fact, it determines the reliability of the analytical phase to be followed (Ovaguiamian, 2004). This step is essential for a quality analysis, since non-compliance in the biological sample may affect results (Aston et al., 2003; Plebani and Carraro, 1997; Rousset, 2004). Recent studies show that in 32 to 75% of cases, the causes of errors of results are due to failures in this phase (Bonini et al., 2002; Hawkins, 2012; Plebani, 2010). Many laboratories have obtained very encouraging results following the introduction of a system for managing non-conformities samples under their quality approach (Rousset, 2004; Vachée and Ramon, 2004).

Like other countries and in the field of health, Morocco was involved in a quality approach towards the end of 2006 through a partnership between the Ministry of Health and the World Health Organization (WHO). They aim to mobilize the whole staff in an effort to achieve total quality. This underlines the willingness and the major concern of Ibn Sina University Hospital (CHIS), which started in November, 2007 an ambitious program for the institutionalization of quality management at the establishments under the CHIS in general and the ISO certification 9001v2008 of its biomedical analysis laboratories in particular.

First of all, this certification demands the compliance with regulatory requirements, namely the Moroccan GBEA, a quality referential, the application of which meets the regulatory requirement related to Guide to the Correct Execution of Biomedical Analysis (Order of the ministry of health N° 2598-10 of 27th Ramadan, 7th September, 2010). The program of quality management was proposed to CHIS Medico-Technical Services and Departments of Rabat, on one hand, by an institution circular of the Quality Management Program (Circular No. 34/07) and by a circular requiring managerial compliance to GBEA requirements, on the other hand (Circular CHI, 2007).

The implementation of GBEA requirements facilitates the mastery of most pre, per and post analytical adverse events. GBEA specifies particularly, in Chapter III (2.1 and 2.2) compliance monitoring to be carried out regarding the collection and identification of biological samples before performing the analyses requested. While 9001v2008 ISO standard requires, in Chapter 8.3, the establishment of a procedure to detect, record and process non-conformities.

This study is a normative and regulatory assessment of non-conformities of medical bacteriology laboratory of CHIS. It is based on a systemic approach that would lead to the establishment of a reliable action plan for controlling errors in the pre-analytical phase. To achieve our goal, we have to implement development methods and appropriate deployment such as the identification of non-conformities and analyzing causes successively, assessment (FMECA process), prioritization, drafting and implementation of the Quality improvement plan (PAMQ).

MATERIALS AND METHODS

Presentation of the studied medical bacteriology laboratory of Ibn Sina Hospital

The study targeted a University Laboratory of Microbiology that serves 10 university hospitals under Ibn Sina Hospital of Rabat (CHIS) that joined a quality management program of the Moroccan Ministry of Health. This laboratory receives requests and biological samples from care hospitals and hospitalization institutions such as: Ibn Sina Hospital (ISH), Children’s Hospital of Rabat (HER), Laboratories and Outpatient Clinics (EXT), ERRAZI Hospital (HEY) of Sale, Rabat Hospital of Specialities (HSM), Souissi Maternity Hospital, EL AYACHI Hospital in Sale (HAS), MOULAY Youssef Hospital (HYM) of Rabat, National Institute of Oncology (INO), and National Center for Reproductive Health (NCRP). For the medical staff, it is composed of a manager who is a professor of higher education, four biological physicists, one assistant professor and internal residents. The para-medical staff consists of five engineers, 12 technicians, a head nurse, three versatile nurses and six service agents. The laboratory has two controllers. It provides analytical activities involving: Medical bacteriology, bacterial serology and the control of the hospital and food hygiene.

In 2009, the laboratory was committed to a quality approach that aimed for ISO 9001 certification in short-term and long-term accreditation. In 2011, quality cell service of bacteriology has developed a self-report diagnosis about application of Moroccan GBEA.

The different steps of the approach

During 2012, in the space of 10 months, we collected information on non-conformities identified and treated samples. The goal was to have a qualitative and quantitative identification of all non-conformities identified by well-defined criteria (Table 1). Indeed, their management was essential for corrective actions to optimize the terms of the pre-analytical phase and thus improve the quality of service provided by the laboratory (McPherson and Dalton, 2011). The methodology adopted in the studied bacteriology laboratory is as follows: when a malfunction is found, a datasheet of non-conformities is completed. An example of a plug of non-
Table 1. Criteria of non-compliant samples.

<table>
<thead>
<tr>
<th>Type of Non-conformities</th>
<th>Criteria for identifying non-conformities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Sample unidentified</td>
</tr>
<tr>
<td></td>
<td>Unconformity Identification sample / plug</td>
</tr>
<tr>
<td></td>
<td>No sample</td>
</tr>
<tr>
<td></td>
<td>Absence of plug</td>
</tr>
<tr>
<td></td>
<td>Unidentified Service</td>
</tr>
<tr>
<td></td>
<td>Volume: insufficient volume</td>
</tr>
<tr>
<td></td>
<td>Container</td>
</tr>
<tr>
<td></td>
<td>Nature of inadequate container (choice of tube)</td>
</tr>
<tr>
<td></td>
<td>Non-compliance with health and safety rules in force</td>
</tr>
<tr>
<td>Quality and quantity of sample</td>
<td>Incorrect conditions of conveyance</td>
</tr>
<tr>
<td></td>
<td>Delay in receiving</td>
</tr>
<tr>
<td></td>
<td>Laboratory error (incorrect destination)</td>
</tr>
<tr>
<td>Routing</td>
<td>Prescribing identification</td>
</tr>
<tr>
<td></td>
<td>Date and time limitation</td>
</tr>
<tr>
<td></td>
<td>Absence of clinical information</td>
</tr>
<tr>
<td>Prescription</td>
<td></td>
</tr>
</tbody>
</table>

Identity of the patient:
Date : time:
Service: prescriber:
sampler:
Nature of sampling: □ Blood □ Urine □ Stools □ Puncture □ Pus □ Others □ specified

Analysis requested:

Container according to the analysis □ Lack of identity □ Absente □ Absence or vacuum tube □ Identity mismatch □ Clinical information □ uneven □ Illegible or multiple identities ou absent □ Non compliance with health and safety rules □ Others (o specify) :

Routing conditions:
- Non-compliance of Carriage Conditions :
□ temperature □ Time out □ Routing error

Actions taken
- Cancellation by the laboratory (clinical service is accused of non-conformity).
□ Sampling [and / or request sheet] returned to the clinic service.
- Review effected subject below:
□ Recherche de compléments d’information effectuée par le personnel du laboratoire. □Search for additional information made by the laboratory staff.
□ Correction delayed by the sampler of a defect or lack of identification.

Visa identity of the speaker:

Figure 1. Example of a plug of non-compliance samples

Conformities nominal by patient is shown in Figure 1. One or several immediate corrective actions are implemented by the person who finds the malfunction. If the laboratory cannot meet the contract with reference to the client, this latter is informed of the proposed adjustments. Every month, a summary of synthetic results of non-conformities are well presented to have the number and nature of
each type of non-conformities relative to the total number of applications. A root cause analysis is then engaged with an assessment of the importance of failure modes and criticality of services to be engaged in the improvement of quality and identification (HAS, 2012).

The determination of the criticality index needs to prioritize non-conformities. It is calculated as the product of the scores assigned to the frequency with the severity and the probability of detection of the anomaly (Métais, 2004; ISO 15189, 2009). Thereafter, preventive actions are proposed for application to prevent the recurrence of certain anomalies. Finally, the head of quality assurance monitors non-conformities and verifies that the corrective and preventive actions are effective in order to close the plug (ANAES, 2000).

The quality tools used

Non-conformities often belong to lack of information, training, non-compliance procedures or a flaw in the organization and operation of the laboratory. To prioritize non-conformities and to identify priorities and relevance of corrective and preventive actions to be undertaken, it proved very useful to use simple tools of analysis and decision support such as Pareto chart (Cattan et al., 2008; Clément, 2006), Ishikawa diagram (Ishikawa and Loftus, 1990; Bertrand, 2001) and A Failure Mode, Effects and Criticality Analysis (FMECA) method (Archier, 2004). This latter, advised by High Health Authority (HAS) especially in the evaluations of professional practices and is a strategic axis of the CHIS and meets our expectations. In this perspective, a laboratory committee named Co-LAB was created for the development and validation of grid, rating scales as well as actual risk analysis. We used Pareto chart to identify potential causes. The Ishikawa diagram has allowed us to analyze the causes and group them as a family. As for the FMECA method, it allowed us to assess the criticality index (CI) of non-conformities according to their frequency, severity and detectability:

\[CI = Frequency (F), Gravity (G), Detectability (D) \]

RESULTS

Identification and measurement of non-conformities studied

The overall rate of non-conformities identified in the year 2012 was 2.5% (310 from 12,398 samples). Since 2009, when the rate of non-conformities was 8%, we observed a significant decrease in 2012. 61% of the recorded errors concerned both the identification of biological samples and patient's identity. 29% was on conveyance and 10% on the quality and quantity of samples (Figure 2). Among the causes of non-conformities relating to identification problems, it should be mainly noted that lack of identification of the sample was 29% and sometimes the discrepancy between the demand form and sample was 14% (Figure 3). Non-conformities due to conveyance errors carries a rate of 26% and a rate of 3% for the period of transport. The laboratory receives 10% of biological samples with a discrepancy or lack of labeling and 10% with abnormal sample container (bad choice or defective tube). By studying the rate of non-compliance of the requirement, we find that it is equal to 1%.

Root cause analysis and prioritization of the studied non-conformities

We conducted research on potential non-conformities according to Pareto law which states that 80% of non-conformities come from 20% of causes. After ranking frequencies of the possible causes of non-conformities that result in decreasing order of importance and computing their percentages and accumulation, we have plotted the Pareto diagram considering types of non-conformities recorded (Figure 4), hospitals (Figure 5) and type of sampling (Figure 6) to quickly view the priorities of action to be taken. The results show that 72 to 86% of cases of errors result from the total absence of identification of biological samples, errors of destination laboratory and identification of discrepancy between the request form and the sample. After application of the same Pareto law on these types of non-conformities, according to their distribution facility, it appears that 80% of these non-conformities identified are related to samples received from the HIS and HER with a respective distribution of 60.84 and 19.09% (Figure 5). Thus, most of the non-conformities found at this institution are due to lack of identification of the sample (58 at the HIS for 89 non-compliant samples) and the discrepancy between the application form and the sample (34 at the HIS for 44 non-compliant samples at 10 hospitals).

In order to guide our actions, we sought to better understand the relationship between the rate of non-conformities and types of sampling (Chan Tche Hiong, 2012) (Figure 6). Results indicate that 74 to 85% of non-conformities are induced by tests of blood type, urine culture (urine cytology examination) and sputum (Figure 6). Meanwhile, monthly meetings of managers and
nurses' staff allowed the initiation of a global reflection and discussion on the identification of causes from Ishikawa diagram (Azzabi, 2010) (Figure 7). A manual and reminder are developed by a working group to guide prescribers and samplers in achieving different bacteriological samples to perform analyses under optimal conditions. These documents will be distributed to guide care services and be made available on the intranet of the CHIS.

FMECA analysis process of non-conformities studied

The analysis of non-conformities recorded and the
evaluation of their criticality was made by adopting the FMECA method as analysis approach of risks related to the pre-analytical phase. Thus, we have established rating scales of frequency, severity and detectability of the reported non-conformities (Tables 1 to 4). Thereafter, a gate of criticality was made to perform a classification of the deficiencies found and define corrective and preventive shares to begin according to criticality index (Table 5). The results highlight three critical failures with the highest criticality index (CI). This is due to the wrong
Figure 7. Diagramme of Ishikawa.

Table 2. Frequency scale score (rating scale for frequency of failure or non-compliance).

<table>
<thead>
<tr>
<th>Frequency of failure</th>
<th>Listing</th>
<th>Probability risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low, exceptional or less than once per year</td>
<td>1</td>
<td>Uncommon or probable</td>
</tr>
<tr>
<td>Low frequency, 1 to 2 times per year</td>
<td>2</td>
<td>Infrequent or probable</td>
</tr>
<tr>
<td>Frequency, 3 to 12 times per year or several times per month</td>
<td>3</td>
<td>Frequent or probable</td>
</tr>
<tr>
<td>High frequency, once or more times per week</td>
<td>4</td>
<td>Very probable or highly probable</td>
</tr>
</tbody>
</table>

Table 3. Severity note scale (note scale for severity of failure or non-conformities).

<table>
<thead>
<tr>
<th>Effect of failure severity</th>
<th>Listing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absence of the effect on the patient</td>
<td>1</td>
</tr>
<tr>
<td>Minimal impact on the result and / or the patient or</td>
<td>2</td>
</tr>
<tr>
<td>Delay rendering of the result or the patient's treatment</td>
<td></td>
</tr>
<tr>
<td>Erroneous result and / or induction of morbidity</td>
<td>3</td>
</tr>
<tr>
<td>Erroneous result and / or cause of death</td>
<td>4</td>
</tr>
</tbody>
</table>
identification of biological samples and the identification of discrepancies between the tube and request form (CI = 48) and errors of destination laboratory (CI = 36).

DISCUSSION

The overall rate of non-conformities identified during this study proved that prescribers were unfamiliar with laboratory analyses in most of the time and do not apprehend more difficult pre-analytical requirements (Carolyn and Clancy, 2013). Root cause analysis and prioritization of the studied non-conformities, according to Pareto law, showed that in the case of HIS, most of errors cases are due to total absence of identification of biological samples, errors of destination laboratory, and identification of discrepancy between the request form and the sample can be explained by the magnitude of its size and the strong flow of samples sent to its laboratory (> 10,000 annual requirements). While so, when these three cases are dealt with, 72 to 86% of non-conformities will be removed (Figure 4). The geographic distance between HER and the laboratory of analysis influences significantly the type of non-conformities relating to destination errors (28 to 59 non-compliant samples at the HER) (Hinckley, 2003).

In light of the results, it is of paramount importance to reduce anomalies corresponding to the identification of biological samples due to errors destination laboratory and some others due to identifying discrepancies between the request form and sample especially for the blood type analysis, urinalysis and sputum at the less efficient institutions (HIS and HER). On the other hand, these elements highlight, first, caregivers’ awareness of patient’s identification and blood samples, urine and sputum collected in both hospitals cited. The rate of these types of non-conformities, especially their nature, can serve as an indicator and allow the establishment of comparative tables (monthly, yearly) (Open Motion Planning Library (OMPL), 2012).

Results obtained with FMECA method complete those of the Pareto chart. It turns out that these three causes of non-conformities are critical (Larrose and Le Carrer, 2006). Indeed, any critical point must be a corrective or preventive action (Ridoux, 1999). From these results, it can be concluded that it is imperative to consider the major non-conformities recorded related to the identification of biological samples, errors of destination laboratory and identifying discrepancies between the request form and sample, especially for blood type analysis, urinalysis and sputum, as quality indicators to follow. Thereafter, an objective statistical analysis of these indicators reinforces the determination of timely and effective improvement actions. The measurement of these non-conformities induces a good improvement process in the studied laboratory. It motivates actors,

Table 4. Scale score for the detectability (scoring grid for the detectability of defects or non-conformity).

<table>
<thead>
<tr>
<th>Probability of not detecting the failure</th>
<th>Listing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectable by the operator but blocking communication and computing to the laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Hardly detectable by the operator</td>
<td>2</td>
</tr>
<tr>
<td>Undetectable</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 5. Criticality index of non-conformities studied.

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>Causes</th>
<th>Potential effects</th>
<th>F</th>
<th>G</th>
<th>D</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Sample unidentified</td>
<td>Erroneous report</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Mismatch of sample identification / plug</td>
<td>Erroneous report</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>No sample</td>
<td>Not feasible analysis see refusal</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Absence of plug</td>
<td>No results</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Absence or labeling mismatch</td>
<td>Erroneous or refused analysis</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Prescription</td>
<td>Date and time limitation</td>
<td>Long report or delay to support patients</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Routing</td>
<td>Absence of clinical information</td>
<td>Uninterpretable results</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Delay in receiving</td>
<td>Biased results</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Laboratory error (invalid destination)</td>
<td>Erroneous or biased results</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>Sampling Quality and quantity</td>
<td>Container (Insufficient, defective, not-adequate, ...)</td>
<td>Biased results or not feasible</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>24</td>
</tr>
</tbody>
</table>
monitors the effectiveness of actions and measures gains. This will provide a good quality approach, which primarily targets monitoring of these indicators for improvement. The monitoring of these indicators can lead to their removal if these malfunctions are restored. Computers were mostly used in utilizing data already entered (Camara, 2002).

To enable the laboratory improve its quality management plan, it is recommended that the following priority actions are undertaken:

1. The sampler personnel of HIS and HER should be informed and reminded about the good practices of biological sample (especially blood, urine and sputum) because he is responsible to identify mistaken patient identity.
2. Caregivers should be guided to solve problems related to patients’ identification and sampling or its realization (blood, urine and sputum) before recording; a telephone call center could be set up in the central reception to facilitate communication between the samplers, prescribers and bacteriology laboratory. It can be supplemented by an intranet site on biological tests. These items must be irregular information treated during meetings of COLAB on pre-analytical phase.
3. The installation or label design should be reviewed and identity control of the patient in conjunction with the SIL should be implemented. The presence and consistency of labels with the correct analysis of each patient needs to be verified.
4. To address the non-conformities related to conveyance, container should be transported in a sealed and dry plastic bag, with a separate accompanying document compartment. That is, a means of information sheet to the recipient laboratory, which also mentions every incident that can occur during sampling.
5. Notifying non-conformities reception in the SIL will lead to efficiency and will allow for computer tracking of the event in the patient’s file. Thus, it would be possible not only to link the non-conformities to prescribing service, but also to know the number of samples made by the service to establish the non-conformities percentage by the latter.
6. Computer applications are important because they allow the use of multiple criteria and are refined (monthly frequency of statistical analysis, the nature of non-conformities, care service, patient etc.).

After the implementation of these actions, monitoring their performance will allow to note the quality or the projected improvement. Indeed, it is essential to organize the identitivigilance (System of surveillance and prevention of errors and risks associated with the patients’ identification) as part of the risk management because the quality of the identification of the patient’s biological sample is an issue of safety. An American study, conducted in 2009, proved that mistaken identity (tube and application sheet) is one of the root causes of accidents care, even if it is not specifically identified in the various investigations of medical errors (Perrin and Morin, 2009). Another study, done in five weeks in 2005, has extrapolated 160,000 serious adverse events related to misidentification of a biological sample with an error of 1/18 that had a serious side effect (Michel et al., 2005). Therefore, the Joint Commission for Accreditation of Healthcare Organizations in the United States has made the identity of the patient a first priority (National Patient Safety Goals (NPSG), 2011).

Conclusion

The concept of total quality management encompasses all the steps involved in sample processing, beginning from test ordering to the final interpretation of results by the clinicians to reduce or eliminate the errors that may arise during the various steps. In the literature, we did not find a maximum rate of "non-conformities authorized" and zero error does not exist. In our experience, an improvement was noticeable during three years (2009 to 2012).

This study is concerned with non-conformities recorded in the pre-analytical phase. To ensure accountability and accuracy of results in our laboratory, the errors of pre-analytical phase should be reduced through rigorous patients’ identification and effective sample transport for more important improvement. So, the promotion of ideal practices for sample identification and sample transport procedures is a pre-requisite for the efficacy of laboratory functioning (especially blood, urine and sputum samples).

Indeed, we carried out regular in-house training sessions for our technicians to familiarize them with the standard protocols for these specific sample processing. For this purpose, standard operating procedure for the different steps involved in the pre-analytical was developed. As often, information campaigns have a moderate range. So, they must be renewed and what is now left is to trigger actions that target training on specific needs of the laboratory. Such trainings have facilitated in the adoption of ideal practices by our laboratory personnel. The samples are thereby transported to our laboratory from the collection center by our staff following the basic precautions that must be adhered from sampling to transportation. A practice of keeping a record of the detected errors at all stages of the pre-analytical phase and then devising corrective strategies for their prevention can gradually free our laboratory from all such errors.

Our study has also established an effective communication between laboratory staff and those of service providers. However, this approach requires an investment of time to complete the survey (compilation of more than 140 sheets of abnormal sample per month). It also requires the involvement of all staff in the laboratory
to be exhaustive in the sampling anomalies noted. Once this work is well-organized, it would be interesting to develop it, taking into account other criteria such as the absence of identification of the sampler, of the prescriber on the request sheet. Our aim is to improve caregivers' practice during the identification of patient's biological sample and to achieve a rate below 0.3% for non-conformities. At long-term, the ultimate goal of this approach is to obtain zero anomaly of the patient’s identity (tube and sheet request). We insist on the fact that the attendance of the laboratory is essential in the monitoring of non-conformities and to trigger actions. It is essential to empower all health actors (care services, laboratories). Only an awareness of the importance of non-conformities will permit the implementation of an effective prevention and the development of practical solutions to minimize errors. Although it seems unrealistic to achieve this, it is the laboratory responsibility to do everything possible to strictly stop errors at this level.

REFERENCES

UPCOMING CONFERENCES

58th Annual Conference of the Canadian Society of Clinical Chemists, Charlottetown, Canada
08 Jun 14.

Diagnostic Error in Medicine 7th International Conference, Atlanta, USA
13 Sep 14
February 2014
Clinical Laboratory Educators' Conference (CLEC), San Jose, USA
20 Feb 14.

April 2014
10th Annual Biomarkers & Diagnostics World Congress, Philadelphia, USA
30 Apr 14