ABOUT JDOH

The Journal of Dentistry and Oral Hygiene (JDOH) is published monthly (one volume per year) by Academic Journals.

Journal of Dentistry and Oral Hygiene (JDOH) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as endodontics, prosthodontics, Oral Pathology, dento-maxillofacial Radiology, periodontics etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JDOH are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jdoh@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Dentistry and Oral Hygiene will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Dr. Denise Evans
University of Johannesburg
4 Vlei street, Southcrest Alberton, 1449 Gauteng South Africa.

Prof. Azza A El-Housseiny
Faculty of Dentistry, Alexandria university
1 Shamplion St, Massarita, Alexandria. Egypt.

Dr. Fawad Javed
Karolinska Institutet
Box 4064, SE 14104 Huddinge. Stockholm. Sweden

Dr. Muneer Gohar Babar
International Medical University
No. 126, Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.

Dr. Janine Owens
University of Sheffield, Department of Oral Health and Development
Claremont Crescent, Sheffield S10 2TU United Kingdom

Dr. Satyabodh S.Gutthal
SDM College of Dental Sciences and Hospital
Sattur, Dharwad India.

Prof. E.J. Sauvetre
Université Libre de Bruxelles (Faculty of Medicine)
10 rue bavastro 06300 Nice France.

Dr. Olfat Shaker
Faculty of Medicine Cairo University
Department of Medical Biochemistry, Egypt.

Prof. Ayyaz Ali Khan
Riphah International University
IIDC&H, Off 7th Ave., G-7/4, Islamabad, Pakistan.

Dr. Pei-Yi Chu
Diagnostic and research pathologist,
Department of Surgical Pathology,
Changhua Christian Hospital/
135 Nan-Shiao Street, Changhua 500-06, Taiwan.

Dr. Abeer Gawish
Al-Azhar University Faculty Of Dental Medicine
4 elsheikh Makhlouf Street. Mis Elgedida, Cairo Egypt.

Dr. Murali Srinivasan
Jebel Ali Hospital
PO Box 49207, Dubai, UAE.

Dr. Scardina Giuseppe Alessandro
University of Palermo Department of Oral Sciences “G. Messina”
Via del Vespro, 129 90127 Palermo Italy.

Prof. Hussam M. Abdel-Kader
Faculty of Dental Medicine, AlAzhar University, Cairo,
Egypt Madent Nasr 11884, Cairo, Egypt.

Dr. Mahmoud K. Aliri,
BD-Oms, PhD, FDS RCS (England),
Jordanian Board, DCE (Ireland).
Associate Professor and Consultant
Faculty of Dentistry, The University of Jordan,
P.O. Box 710193, Amman 11171, Jordan.

Dr. Imtiaz Wani
S.M.H.S Hospital
Srinagar, Kashmir, India.
Editorial Board

Dr. Santhosh Kumar
Darshan Dental College and Hospital
Udaipur,
India.

Prof. Sharon Struminger
2350 Broadhollow Road Farmingdale, NY 11735/
Farmingdale State College of State
University of New York
USA.

Dr. Saurab Bither
Christain Dental College
India.

Dr. Ramesh Chowdhary
HKE's S.Nijalingappa Institute of Dental Sciences and Research
Ring Road, Gulbarga-585104,
India.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author's full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the lDOH to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Dentistry and Oral Hygiene is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2013, Academic Journals.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JDOH, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Articles

Gender determination using primary teeth: A polymerase chain reaction (PCR) study
Prashant M. Battepati and M. Shodan 77

Plaque removal efficacy of a novel oral care device: A microbiological assessment
Marisa Roncati and Alessandra Lucchese 83

Table of Content: Volume 5 Number 8 October 2013
Full Length Research Paper

Gender determination using primary teeth: A polymerase chain reaction (PCR) study

Prashant M. Battepati¹ and M. Shodan²*

¹Department of Pedodontics and Preventive Dentistry, SDM College of Dental Sciences and Hospital, Sattur, Dharwad-580009, Karnataka, India.
²Department of Public Health Dentistry, SDM College of Dental Sciences and Hospital, Sattur, Dharwad-580009, Karnataka, India.

Accepted 6 September, 2013

The aim of this study was to assess the effect of various environmental factors on the preservation of pulp tissue in primary teeth as a source of DNA and its use for sex determination using polymerase chain reaction (PCR). 120 samples were grouped into 4 groups of 30 teeth each. Group I samples were kept immersed in a bucket of drainage water, group II, III and IV samples were buried in sand taken from seashore, burial ground and desert, respectively for a period of 2 months. Pulp tissue was collected from each sample and DNA was isolated. PCR amplification was performed and sex determination was done by detection of X and Y chromosome-specific alphoid centromeric repeat sequences. In group I, 86% of the samples exhibited correct gender interpretation by PCR amplification. In groups II, III, and IV, all the samples showed correct results indicating a significant difference in scores between group I and the remaining three groups. Teeth stored in dry conditions can serve as a better source of DNA as compared to the teeth stored in moist conditions and co-amplification of both X and Y specific sequences by PCR is a fast, specific, sensitive and reliable method providing sex determination.

Key words: DNA, gender, polymerase chain reaction (PCR), forensics

INTRODUCTION

The rights of children and their aspirations are of paramount importance in our demonstration towards an inclusive and equitable society. Investment in the well-being of children is an investment in the future of the country. Eradication of malnutrition and improving general and dental health is receiving topmost priority. At the same time issues relating to child protection are high on every government's agenda.

Child abuse is shrouded in secrecy and there is a conspiracy of silence around the entire subject. Certain kinds of traditional practices that are accepted across many countries, knowingly or unknowingly amount to child abuse. Existing socio-economic conditions also render some children vulnerable and more at risk to abuse, exploitation and neglect. It is time that this is recognized and appropriate remedial measures taken. Lack of empirical evidence and qualitative information on the dimensions of child abuse and neglect makes it difficult to address the issue in a comprehensive manner.

In a study conducted by Ministry of Women and Child Development, Government of India (2007), state-wise break up of overall incidence of physical abuse revealed that in all the 13 states covered under the study, the reported incidence of physical abuse was very high, in fact uniformly above 50%. Annually, large numbers of children go missing and there is little attempt to track them or trace them.

*Corresponding author. E-mail: shodanm@gmail.com. Tel: 09886811031.
The global scenario is also not much different as compared to the Indian situation, according to an overview given by the United Nation Secretary General's Study on violence against children, WHO estimated that almost 53,000 children that died in 2002 were due to child homicide (Ministry of Women and Child Development, Government of India, 2007).

In the past, there were many efforts made by numerous professionals to detect and document various cases of child abuse, but unfortunately most of them focused on the children who are living. But definitely there will be a group of children who could have lost their life due to the same barbaric act which went unnoticed, and these unfortunate children also deserve justice as much as the living children do. Determination of the victim's identity is the first step in any kind of forensic investigation and determination of gender is one of the important dimensions of this process. During the past few decades physical evidence has become increasingly important in criminal investigations. Courts often view eye witness accounts as unreliable and biased. Physical evidence such as DNA, fingerprint and trace evidence may independently and objectively link suspects to a crime, disprove an alibi, or develop important investigative leads. Gender identification can also provide valuable information about past human societies, culture and their life styles.

There are no reliable methods available for sex determination in primary teeth using morphometric analysis (Murakami et al., 2000). With the improvement of technology, increased speed, sensitivity and specificity, DNA analysis has revolutionized the field of forensics and PCR method is one of them. Bones and teeth are the only material available in markedly decayed/skeletonized bodies. The most important variables upon which identification and availability of DNA depend are time after death and type of soil (pH, humidity, temp, bacteria, etc) where in the bodies are buried (Dragan, Unpublished).

If found reliable in tissues exposed to such conditions, PCR method of sex determination can contribute immensely in gender identification in forensic as well as anthropological, archeological and paleontological researches.

The aim of this study was to assess the effect of various environmental factors on the primary teeth in the preservation of pulp tissue as a source of DNA and its use for sex determination using PCR.

MATERIALS AND METHODS

Sample selection

A total of 120 non carious primary canines extracted for serial extraction or various other purposes were used as the study samples. Written informed consent was taken from the parents of the children whose teeth were selected for the study (by the co-investigator). The teeth showing apical resorption beyond apical 1/3 were not included in the study.

Study groups

The selected samples were grouped into 4 groups of 30 teeth each. Coding and decoding was done by a co-investigator. The samples in group I were kept immersed in a bucket of drainage water (collected from the main sewer channel of the town) for 2 months. The teeth samples of group II, III and IV were buried in sand taken from seashore, burial ground and desert, respectively at a depth of 30 cm for a period of 2 months (Figure 1).

Pulp sample collection

After 2 months, teeth were taken out and washed thoroughly using distilled water. The teeth were then sectioned along the long axis, through the pulp chamber using hard tissue microtome and pulp was recovered (Figure 2A and B). The recovered pulp samples were stored and carried in 100% ethanol in labeled Eppendorf tubes for DNA isolation.

Isolation of DNA from dental pulp

DNA was isolated from dental tissue obtained from the teeth by proteinase-k digestion and phenol chloroform extraction methods (Zeljka et al., 2000). Isolated DNA was then diluted with tris-ethylennediaminetetraacetic acid (TE) buffer. The isolated DNA was then utilized for PCR amplification in Amplitaq DNA polymerase buffer for various thermal cycles.

Electrophoresis and sex determination

The PCR products underwent electrophoresis in 1% agarose gel at 200 V for 1 h. Ethedium bromide staining was performed and amplified bands of X and Y sequences were examined under UV radiation (Figure 3). The sex of a subject was considered to be male when both X and Y specific sequences were detected, but female when only the X-specific sequence was detected.

Universal precautions were taken to prevent cross contamination while handling the samples which included personal protective equipments (gloves, mouthmasks, haedcaps) and PCR was done in specifically designed setup in human genetics department. Disposable devices were preferred wherever possible to rule out cross contamination either from operator DNA or amplicons from previous experiments.

Data analysis was done using Chi square test of independence. Statistical significance was set at 5% level of significance (p<0.05). Percentage distribution of positive and negative results was compared among the groups.

RESULTS

In group I (teeth stored in drainage water), 26 out of 30 teeth (86%) showed correct gender interpretation. In groups II, III, IV (teeth buried in sand taken from beach, mud taken from burial ground and sand taken from desert, respectively) all the samples (30 in each group) showed correct results indicating a significant difference in scores between group I and the remaining three groups (p<0.01, 99% significance) (Table 1).

Gender wise distribution showed up in group I out of 26 male samples, correct sex determination was possible in 22 samples (73.3%) and 4 samples gave wrong results.
Table 1. Comparisons between positive and negative results in different test groups.

<table>
<thead>
<tr>
<th>Result</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Count</td>
<td>26</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>116</td>
</tr>
<tr>
<td>Within group (%)</td>
<td>86.7</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>96.7</td>
</tr>
<tr>
<td>Negative Count</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Within group (%)</td>
<td>13.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>Total Count</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>Within group (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Chi-square=12.414, p<0.05.

Table 2. Chi-square tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
<th>df</th>
<th>Asymp. Sig. (2-Sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-square</td>
<td>12414a</td>
<td>3</td>
<td>0.006</td>
</tr>
<tr>
<td>Likelihood ratio</td>
<td>11.514</td>
<td>3</td>
<td>0.009</td>
</tr>
<tr>
<td>Linear-by-linear</td>
<td>7.386</td>
<td>1</td>
<td>0.007</td>
</tr>
<tr>
<td>Association</td>
<td>120</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No. of valid cases</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a4 cells (50.0%) have expected count less than 5. The minimum expected count is 1.00.

(13.3%). Sex was determined correctly in all 4 female samples (Table 2).

In group II, correct sex could be determined in all 23 (76.7%) male and 7 (23.3%) female samples, whereas in group III, positive sex determination was possible in all the 24 (80%) male and 6 (20%) female samples, group IV also showed correct sex determination in all 23 (76.7%) male and 7 (23.3%) female samples.

DISCUSSION

Children are the most vulnerable group in our society. Child fatalities due to maltreatment represent the worst-case scenario in attempts to protect children. Although the untimely deaths of children due to illness and accidents have been closely monitored, the same cannot be said of children who have died as the result of physical assault or mere neglect. Interventional strategies targeted at resolving this problem face complex challenges.

Dental evidences have continued to provoke controversy within the field of forensic dentistry. The differing views surrounding interpretation, methodologies and admissibility are cornerstones of the arguments (McNamee and Sweet, 2003).

Sex identification is the first step in personal identification in forensic medicine. In general, the sex of an unidentified body can be determined based on anatomical characteristics of the external genitalia or whether the gonads are ovaries or testis. However, bones and teeth are the only available material for sex determination in markedly decayed and skeletonized bodies.

Sex differences in dental morphometric values are not distinct except in the permanent canine teeth, and determination of the sex from a random single tooth is extremely difficult. There has been no method to distinguish the sex particularly based on milk teeth (Murakami et al., 2000). Sex determination from pulp material can be done by different methods like fluorescence Y chromosome test, Southern blot test, etc. PCR stands above all mentioned methods since the high rate of sensitivity and specificity have been noted in previous experiments (Kumar and Hegde, 2005).

Teeth are considered as a good source to obtain genetic material. This is true mainly because of their great tissue resistance against external influences. Malaver and Yunis (2003) extracted DNA obtained from dentin and cementum of 20 corpses that had been buried for at least 5 years. Pulp tissue is a loose connective tissue and it degrades easily when compared with other dental tissues. Pfeiffer et al. (1999) studied the influence of the environment on DNA degradation in teeth that were kept underneath the soil. They observed that a tooth with opened pulp exposed to external agents showed a significant degradation. Lessig and Edelmann (1995) showed that pulp can be source of DNA in teeth that had been kept or obtained under different conditions such as teeth that had been extracted when the person was alive.
Table 3. Comparisons of positive and negative results among different sexes in test groups (Chi square test was not performed because of lack of frequency distribution).

<table>
<thead>
<tr>
<th>Group</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>% Total</td>
<td>Count</td>
</tr>
<tr>
<td>Group I</td>
<td>Male</td>
<td>22</td>
<td>73.3</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>4</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26</td>
<td>86.7</td>
</tr>
<tr>
<td>Group II</td>
<td>Male</td>
<td>23</td>
<td>76.7</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>7</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Group III</td>
<td>Male</td>
<td>24</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Group IV</td>
<td>Male</td>
<td>23</td>
<td>76.7</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>7</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 1. Photographs showing study groups (A) group I (Drainage water), (B) group II (seashore sand), (C) burial ground mud, and (D) desert sand.
The bodies were decomposed and fragmented considerably more after death and kept in room temperature for 12 and 6 months, respectively (Da Silva et al., 2007).

In the present study, primary canine teeth were selected as the samples as these teeth are comparatively more protected teeth in the dental arch both from traumatic injuries and dental decay and compared to other primary teeth, initiation of resorption is late in primary canines. The teeth showing resorption beyond apical third were not included in the study.

It appears that the most important variables upon which identification by DNA depends are, the extent of time after death, the type of the soil in which the bodies were buried (temperature, bacterial composition, pH, etc), and the method of DNA extraction (Dragan, Unpublished).

DNA analysis of teeth for sex determination must be able to be carried out in bodies which are markedly decayed or skeletonized bodies that provide no other materials. In such bodies, dental DNA is considered to be considerably more decomposed and fragmented. Therefore, in this study highly sensitive method was followed as adopted by Murakami et al. (2000).

The Y and X chromosome-specific alphoid repeat sequences which were examined in this study were repeated several thousand times per genome, respectively and can be amplified by PCR if part of these copies remains intact (Murakami et al., 2000). Therefore, this method is more advantageous with regard to sensitivity than methods using a single copy base sequence.

In group I, sex was determined accurately in 26 of 30 teeth (86%). Among the remaining 4 teeth, no amplified band of Y chromosome specific sequence was observed in 3 teeth, although the samples were obtained from males and in 1 male sample, neither X nor Y specific amplification bands appeared. In these teeth therefore, decay due to bacteria was considered to have progressed markedly by infiltration of drainage water in to the pulp cavity and DNA of pulp tissue was considered to have been degraded to such a degree that amplification of the Y chromosome specific sequence by PCR became impossible. In these three samples, the amplified band of the X chromosome specific sequence was detected although that of the Y chromosome specific sequence was not, possibly because the amplified fragment of the X chromosome specific sequence, which is shorter than that of Y chromosome-specific sequence, was less liable to be effected by DNA degradation due to decay and because the number of repetitions of the X chromosome specific sequence in a single genome is several tens of times greater than that of the Y chromosome specific sequence (Murakami et al., 2000). In the remaining one tooth, it was considered that autolysis and DNA fragmentation reached such an extent that even detection of X chromosome specific sequence became impossible. Chances of PCR inhibition by substances in drainage water also was not ruled out.

The findings of our study were in accordance with the findings of Murakami et al. (2000) who mentioned that ‘in wet state, pulp tissue gradually lyses due to autolysis and decay and its sampling becomes difficult’. This can be further accelerated in drainage water which is rich in various types of bacteria and chemical substances making DNA sampling difficult to near impossible.

The results of the present study indicate that sex determination of teeth by means of PCR is considered to be extremely useful for identification of markedly decayed or skeletonized bodies, which has been difficult using the conventional morphological methods contributing in identification of victims of various incidents and disasters including child abuse.

Sex determination is an important step in personal identification in forensic sciences. Surrounding environment has a definite role in preservation of pulp tissue; primary teeth can be regarded as an effective tool in preservation of pulp tissue which can provide DNA for sex determination and other DNA analysis procedures.

REFERENCES

Dragan P (Unpublished). Identification of human remains from mass graves found in Croatia and Bosnia and Herzegovina.

Plaque removal efficacy of a novel oral care device: A microbiological assessment

Marisa Roncati1* and Alessandra Lucchese2

1School for Dental Hygienists, Polytechnic of Marche University, Italy.
2Department of Medical-Surgical Sciences of Communication and Behavior, Dental School, Ferrara University, Italy.

Accepted 1 July, 2013

In adults with inflammatory problems, self-performed mechanical plaque removal is insufficiently effective and should be improved. The aim of this study was to determine the biofilm removal efficacy of a new oral care device, the digital brush (Enacare, Micerium), a disposable gauze product soaked in 0.12\% chlorhexidine. Changes in supragingival microbiota were investigated in 30 Caucasian patients (14 males and 16 females) aged 8 to 90 years. All subjects provided written informed consent. Pre-treatment (pre-T) and post-treatment (post-T) samples of supragingival plaque were taken from the right vestibular and lingual mucosa in 15 subjects and from the buccal aspect of the anterior sextant in 15 subjects using sterile swabs flocked with sterile nylon fibers. The samples were analyzed to determine the presence of Candida albicans, Candida species, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus species, oral streptococci, and Enterobacter species. Groups were compared using Pearson’s chi-squared test. The following bacteria were detected: C. albicans (8 pre-T and 3 post-T), Candida spp. (3 pre-T and 0 post-T), Enterobacter spp. (2 pre-T and 2 post-T), S. aureus (12 pre-T and 4 post-T), S. epidermidis (2 pre-T and 1 post-T), Staphylococcus spp. (29 pre-T and 22 post-T), and Streptococcus viridans (29 pre-T and 22 post-T). Microbiota differed between sampling sites. Within the limits of this preliminary clinical and microbiological evaluation of biofilm reduction in a small sample, the digital brush appears to be an effective plaque removal device. Mechanical cleaning with this tool appears to be more effective on hard surfaces than on mucous membranes.

Key words: Plaque removal, home care, gauze, digital brush, chlorhexidine, bacteria, brush.

INTRODUCTION

Routine toothbrushing is the principal method used by individuals to remove biofilm and control plaque-related diseases, such as periodontitis and caries (Creeth et al., 2009; Lucchese et al., 2012a). However, in some adults, especially those with inflammatory problems, self-performed mechanical plaque removal is insufficiently effective and should be improved (van der Weijden and Hioe, 2005).

To improve dental health care, professional recommendations should always fit patients’ specific needs (Silverman and Wilder, 2006). Given the strong adhesion of biofilms grown from whole saliva (Verkaik et al., 2010), a mechanical plaque removal strategy must be implemented to achieve satisfactory oral health. The introduction of a novel device may improve patients’ compliance (Chongcharoen et al., 2012; Sicilia et al., 2003).

The aim of this study was to determine the biofilm elimination capability of a new oral care device, the digital brush (Enacare, Micerium S.p.A., Genoa, Italy), a disposable gauze product containing 0.12\% chlorhexidine. This device can be used as an alternative to conventional oral hygiene, when performing the latter is difficult or as additional device to improve the quality of self-performed mechanical plaque removal.

The null hypothesis of this study was that the presence
of microbiota (representing the cleansing effect) before and after the use of a medicated gauze product on the mucosa and teeth would not differ.

MATERIALS AND METHODS

A disposable gauze product containing 0.12% chlorhexidine can serve as an alternative device for oral hygiene, even outdoors, or as an additional device for individuals with special care needs, bedridden patients, and caregivers.

Patients

The study group comprised 30 Caucasian patients (14 males and 16 females) with a mean age of 48.3 (range, 8 to 90) years. All patients provided written informed consent.

Sampling

At baseline, pre-treatment (pre-T) supragingival plaque samples were taken from the right vestibular and lingual mucosa in 15 subjects (group 1) and from the buccal aspect of the anterior sextant in 15 subjects (group 2) using sterile swabs.

The subjects were instructed in proper oral hygiene and the use of the digital brush as a cleansing device (Figures 1 and 2), using a rolling motion technique (Figure 3A and B) for ~2 min. Post-treatment (post-T) microbiological sampling was performed immediately after cleaning.

Culture protocol

Saliva samples were collected with flocked swabs (Copan Italia S.p.A., Brescia, Italy) designed for biological sample collection that contained a transport medium specific to aerobic and anaerobic bacteria. Samples subjected to delayed (>24 h after collection) microbiological evaluation were transferred to cryovials and stored at ~80°C to ensure preservation.

Bacterial culture was performed as follows. Using a disposable sterile loop, 10-μl samples were streaked onto the following plates (Vacutest; Kima [ARZERGRANDE, Pd, Italy]): horse blood agar (for non-selective growth of streptococci groups A to C, pneumococci, and staphylococci), azide agar (for selective growth and isolation of streptococci, Enterococcus species, and Enterococcus species, including Enterococcus species, Herellea agar (for selective growth and isolation of Gram-negative bacteria), and CHROMagar Candida (for Candida identification). The plates were incubated at 37°C for 24 h, then examined to distinguish colonies on the basis of morphology, pigmentation, and macroscopic shape. In cases of positive growth, standard identification procedures were applied to selected colonies.

The isolated colonies were identified using the VITEK® automatic system (bioMérieux, Inc, Hazelwood, Mo). For colony counts, samples were serially diluted to 1:10^6. The number of colony-forming units (CFUs)/ml in the original sample was determined by multiplying the number of colonies (30 to 300) per plate by the dilution factor.

Statistical analysis

The presence or absence of microorganisms (including Candida species, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus viridans, Enterobacter species) was determined before and after cleaning with the digital brush. Pearson’s Chi-squared test was used to analyze bacterial concentrations and compare data from groups 1 and 2.

RESULTS

The results of microbiological evaluation are reported in Table 1. The following bacteria were detected: Candida albicans (8 pre-T and 3 post-T), Candida spp. (3 pre-T and 0 post-T), Enterobacter spp. (2 pre-T and 2 post-T), S. aureus (12 pre-T and 4 post-T), S. epidermidis (2 pre-T and 1 post-T), Staphylococcus species (29 pre-T and 22 post-T), and S. viridans (29 pre-T and 22 post-T). Microbiota differed between sampling sites.

No significant difference in the presence of bacteria was detected between groups 1 and 2. The mean post-T reduction in bacterial concentration was 2.36 log_{10}. Using this cut-off value, data from groups 1 and 2 were compared by Pearson’s chi-squared test. Although more reduction was visible in group 2 samples (from the buccal aspect of the anterior sextant), no significant difference was found.

DISCUSSION

The oral cavity can serve as a reservoir of pathogens that can cause systemic infection. C. albicans was the most prevalent yeast found in the periodontal pockets (76.2%) and oral cavities (63.0%) of patients with periodontal disease (Cuesta et al., 2010).

Many studies have demonstrated the essential etiological role of pathogenic dental biofilm in the development of gingivitis, additionally finding that most people fail to maintain sufficient mechanical plaque control to prevent disease (van der Weijden and Hioe, 2005; Barnett, 2006).

In adults, professional mechanical plaque removal (PMPR) in combination with oral hygiene instruction (OHI) may be more effective than no treatment, but patient compliance in combination with repeated OHI may have an effect similar to that of PMPR (Needleman et al., 2005).

Oral health care professionals generally recommend that individuals brush their teeth for at least 2 min using an appropriate technique; however, adequate interdental cleaning requires 4 min or more (Chongcharoen et al., 2012; Gjermo and Flotra, 1970). Patients’ failure to comply with the correct use of cleaning devices for an adequate period of time can be a problem. The average brushing time in the general population is ~45 to 50 s, only 10% of which is spent cleaning the lingual tooth surfaces (Olaydon, 2008).

Significantly lower dental plaque scores have been recorded immediately after an oral self-care demonstration; a mean of 27.4% plaque removal was observed after the demonstration (Yuen et al., 2009), compared with 40 to 55% plaque removal after 1 min of manual toothbrushing in the general (young and middle-aged) healthy, non-
disabled population, as reported in a meta-analysis (van der Weijden GA, Hioe, 2005). Consistently, no more than 60% of the overall plaque is removed during each episode of cleaning (Claydon, 2008). Less plaque was removed from mandibular teeth and lingual tooth surfaces than on the maxillary teeth and buccal surfaces (Claydon, 2008; Yuen et al., 2009).

A previous dental review (van der Weijden and Hioe, 2005) proved that self-performed mechanical plaque removal is insufficiently effective and should be improved. Treatment procedures should always include customized patient education and OHI. In some instances, such instruction can be used as appropriate to reduce, eliminate, or change the nature of microbial pathogens and to remove bacterial plaque, although only from the supragingival regions.

User skill is a more important factor than the design of the toothbrush for the efficacy of cleaning (Yuen et al., 2009). Thoroughness may be improved by the use of tactile receptors in the fingers to guide a device, such as the digital brush, the novel home care device used in this study. The use of the digital brush with a wiping motion enables an individual to reach frequently neglected dental surfaces.

Studies of the oral microbial environment have demonstrated that oral mucosal tissues act as reservoirs of the bacteria that colonize tooth surfaces (Silverman and Wilder, 2006; Verkaik et al., 2010; Needleman et al., 2005; Gjermo and Flotra, 1970; Claydon, 2008). This finding supports the incorporation of an effective antimicrobial mouth rinse into the daily oral hygiene regimen to complement mechanical plaque control (Silverman and Wilder, 2006; Verkaik et al., 2010; Yuen et al., 2009; West and Moran, 2008; Gunsolley, 2006).

Chlorhexidine remains the gold standard of antiplaque
agents (Silverman and Wilder, 2006). According to one meta-analysis, seven studies have documented the strong antiplaque, anti-gingivitis effects of mouth rinses with 0.12% chlorhexidine (Verkaik et al., 2010). The gingival index has also been used to demonstrate the significant anti-gingivitis effects of these mouth rinses (Raul, 2008). Twice-daily oral care with 0.12% chlorhexidine gluconate may hold promise for the prevention of nosocomial infection (Bopp et al., 2006).

The persistence of staining on natural dentition after the use of chlorhexidine gluconate mouth rinse is a well-known side effect of this antimicrobial agent that counter indicates long-term use (Bagis et al., 2011). This staining effect should be expected to be most pronounced in the first few days of use. Other reported side effects of chlorhexidine use include pain, burning sensation, pruritus, xerostomia, taste disturbance, mucosal irritation, and discoloration of tooth and tongue surfaces (Gürgan et al., 2006).

In the present study, a greater reduction in microbial concentration occurred in group 2 (samples taken from the buccal aspect of the anterior sextant) than in group 1.

Figure 3. The digital brush is wrapped around the index finger and utilized with a sweeping motion in an apico-oclusal direction from the oral mucosa to the tooth surfaces, similar to the roll brushing technique. Finger tactile receptors can guide cleaning movements to better reach frequently neglected dental surfaces in the posterior lingual/palatal areas. This device may improve the thoroughness and efficiency of cleaning.
Table 1. Microbiological data.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Age</th>
<th>M/F</th>
<th>Candida albicans</th>
<th>Staphylococcus aureus</th>
<th>Staphylococcus epidermidis</th>
<th>Streptococcus viridans</th>
<th>Streptococcus enterobacter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>F</td>
<td>150×10^8</td>
<td>150×10^8</td>
<td>150×10^8</td>
<td>150×10^8</td>
<td>150×10^8</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>M</td>
<td>150×10^8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>M</td>
<td>>50×10^8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>F</td>
<td>>50×10^6</td>
<td>>50×10^6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>100×10^6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>F</td>
<td><50×10^6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>55</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>44</td>
<td>F</td>
<td>>50×10^6</td>
<td>>50×10^6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>55</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>150×10^8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>>150×10^8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>43</td>
<td>M</td>
<td>-</td>
<td>-</td>
<td>>150×10^8</td>
<td>0</td>
<td>>150×10^8</td>
</tr>
<tr>
<td>17</td>
<td>72</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>150×10^8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>90</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>64</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>18×10^8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>47</td>
<td>M</td>
<td>>150×10^8</td>
<td>0</td>
<td>0</td>
<td>>150×10^8</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>58</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>4×10^8</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>20</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>F</td>
<td>>150×10^8</td>
<td>0</td>
<td>0</td>
<td>>150×10^8</td>
<td><50×10^6</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>>50×10^6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>68</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>33</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>37×10^8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>54</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>150×10^8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>59</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>55</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Roncati and Lucchese 87
(samples taken from the right vestibular and lingual mucosa), although this difference was not significant. Mechanical cleansing with the digital brush tended to be more effective on hard surfaces than on the mucous membranes.

The lack of significant findings may be due to the small sample size. Further research may support our findings by detecting significant differences.

Conclusions

Within the limits of this clinical and microbiological evaluation of a small sample, the digital brush seems to be an effective plaque removal device. Its use as an alternative tool when conventional oral hygiene is difficult to implement or as a supplementary device to improve the quality of self-performed mechanical plaque removal can be recommended (Lucchese et al., 2012b). Further studies with larger samples are necessary to more fully evaluate the cleansing effectiveness of this novel device.

REFERENCES

UPCOMING CONFERENCES

5th International Conference on Food Engineering and Biotechnology, Penang, Malaysia, 12 Mar 2014

17th International Conference on Biopesticides: Current Status and Future Prospects, Alexandria, Egypt, 1 Apr 2014
Conferences and Advert

December 2013
IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shanghai, China, 18 Dec 2013

February 2014
5th International Conference on Legal Medicine, Medical Negligence and Litigation in Medical Practice & 5th International Conference on Current Trends in Forensic Sciences, Forensic Medicine & Toxicology (IAMLE 2014), Goa, India, 25 Feb 2014
Journal of Dentistry and Oral Hygiene

Related Journals Published by Academic Journals

- Journal of Medicinal Plant Research
- Journal of Parasitology and Vector Biology
- Clinical Reviews and Opinions
- Journal of AIDS and HIV Research
- Journal of Cell Biology and Genetics
- Medical Practice and Reviews