ABOUT IJMMS

The International Journal of Medicine and Medical Sciences is published monthly (one volume per year) by Academic Journals.

The International Journal of Medicine and Medical Sciences (IJMMS) provides rapid publication (monthly) of articles in all areas of Medicine and Medical Sciences such as:

Clinical Medicine: Internal Medicine, Surgery, Clinical Cancer Research, Clinical Pharmacology, Dermatology, Gynaecology, Paediatrics, Neurology, Psychiatry, Otorhinolaryngology, Ophthalmology, Dentistry, Tropical Medicine, Biomedical Engineering, Clinical Cardiovascular Research, Clinical Endocrinology, Clinical Pathophysiology, Clinical Immunology and Immunopathology, Clinical Nutritional Research, Geriatrics and Sport Medicine

Basic Medical Sciences: Biochemistry, Molecular Biology, Cellular Biology, Cytology, Genetics, Embryology, Developmental Biology, Radiobiology, Experimental Microbiology, Biophysics, Structural Research, Neurophysiology and Brain Research, Cardiovascular Research, Endocrinology, Physiology, Medical Microbiology

Experimental Medicine: Experimental Cancer Research, Pathophysiology, Immunology, Immunopathology, Nutritional Research, Vitaminology and Ethiology

Preventive Medicine: Congenital Disorders, Mental Disorders, Psychosomatic Diseases, Addictive Diseases, Accidents, Cancer, Cardiovascular Diseases, Metabolic Disorders, Infectious Diseases, Diseases of Bones and Joints, Oral Preventive Medicine, Respiratory Diseases, Methods of Epidemiology and Other Preventive Medicine

Social Medicine: Group Medicine, Social Paediatrics, Medico-Social Problems of the Youth, Medico-Social Problems of the Elderly, Rehabilitation, Human Ecology, Environmental Toxicology, Dietetics, Occupational Medicine, Pharmacology, Ergonomy, Health Education, Public Health and Health Services and Medical Statistics

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published approximately one month after acceptance. All articles published in IJMMS are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: ijmms@acadjournals.org. A manuscript number will be mailed to the corresponding author.

The International Journal of Medicine and Medical Sciences will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Dr. J. Ibekwe
Acting Editor-in-chief,
International Journal of Medicine and Medical Sciences
Academic Journals
E-mail: ijmms.journals@gmail.com
http://www.academicjournals.org/ijmms

Nargis Albert Labib
Editor, Medicine and Surgery
Training Consultant for CDC
Surveillance Unit
Ministry of Health, Cairo,
Egypt

Anil Aggrawal
Editor, Forensic Medicine
Department of Forensic Medicine,
Maulana Azad Medical College,
New Delhi-110002,
India

Afrozul Haq
Editor, Laboratory Medicine
Department of Laboratory Medicine
Sheikh Khalifa Medical City
P.O. Box S1900, ABU DHABI
United Arab Emirates

Basavaraj K. Nanjwade
Editor, Pharmaceutics
Department of Pharmaceutics
KLE University
Belgaum –590010, India.

Chang-Gu Hyun
Editor, Pharmaceutics
Research Institute (IBRI) & JeJu Hi-Tech Industry
Development Institute (HIDI),
Korea

Osmond Ifeanyi Onyeka
Editor, Alternative Medicine
IUCM/Global Foundation for Integrative Medicine,
U.S.A.

Vahideh Moin-Vaziri
Editor, Parasitology
Department of Parasitology and Mycology,
School of Medicine, Shahid Beheshti
University of Medical Sciences and health services,
Tehran, Iran

Donovan Anthony McGrowder
Editor, Chemical Pathology
University Hospital of The West Indies,
Kingston,
Jamaica

Panagiotis Christopoulos
Editor, Obstetrics and Gynaecology
1 Hariton Street,
Kifissia 14564, Athens,
Greece

Shuiyuan Xiao
Editor, Psychiatry
Professor of social medicine and psychiatry
29 mailbox Xiangya Medical School
110 Xiangya Road,
Changsha, Hunan 410078,
China

Ajai Kumar Srivasta
Editor, Basic Medical Sciences
D.D.U. Gorakhpur University,
India

Tonukari N. J.
Editor, Basic Medical Sciences
Department of Biochemistry
Delta State University, Abraka,
Delta State,
Nigeria

Oluwafemi O. Oguntibeju
Editor, Basic Medical Sciences
Department of Biomedical Sciences,
Faculty of Health & Wellness Sciences,
Cape Peninsula University of Technology,
Belliwile 7535,
South Africa

Maysaa El Sayed Zaki
Editor, Clinical Pathology
Faculty of Medicine
Department of Clinical Pathology
Mansoura University
Mansoura,
Egypt
Editorial Board

Chandrashekhar T. Sreeramareddy
Department of Community Medicine,
P O Box No 155, Deep Heights
Manipal College of Medical Sciences,
Pokhara,
Nepal

Sisira Hemananda Siribaddana
259, Temple Road, Thalapathpitiya,
Nugegoda, 10250
Sri Lanka

Dr. santi M. Mandal
Internal Medicine
UTMB, Galveston, TX,
USA

Konstantinos Tziomalos
Department of Clinical Biochemistry
(Vascular Prevention Clinic),
Royal Free Hospital Campus,
University College Medical School, University College
London, London,
United Kingdom

Cyril Chukwudi Dim
Department of Obstetrics & Gynaecology
University of Nigeria Teaching Hospital (UNTH)
P M B. 01129, Enugu. 400001,
Nigeria

Mojtaba Salouti
School of Medical and Basic Sciences,
Islamic Azad University- Zanjan,
Iran

Imtiaz Ahmed Wani
Srinagar Kashmir, 190009,
India

Professor Viroj Wiwanitkit
Wiwanitkit House, Bangkhae,
Bangkok
Thailand 10160

Dr. Srinivas Koduru
Dept of Clinical Sciences
Collage of Health Sciences
University of Kentucky
Lexington USA

Weiping Zhang
Department of Oral Biology
Indiana University School of Dentistry
1121 West Michigan Street, DS 271
Indianapolis, IN 46202
USA

Lisheng XU
Ho Sin Hang Engineering Building
Department of Electronic Engineering
The Chinese University of Hong Kong
Shatin, N.T. Hong Kong,
China

Dr. Mustafa Sahin
Department of Endocrinology and Metabolism
Baskent University,
Ankara,
Turkey
Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author's full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers' comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the IJMMS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Nishimura (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 2001), (Chege, 1998; Stein, 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Case Studies

Case Studies include original case reports that will deepen the understanding of general medical knowledge.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml).

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines. The presentation of the case study should include the important information regarding the case. This must include the medical history, demographics, symptoms, tests etc. Kindly note that all information that will lead to the identification of the particular patient(s) must be excluded.

The conclusion should highlight the contribution of the study and its relevance in general medical knowledge.

The Acknowledgments of people, grants, funds, etc. should be brief.

References: Same as in regular articles.

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage. Because IJMMS will be published freely online to attract a wide audience, authors will have free electronic access to the full text (in both HTML and PDF) of the article. Authors can freely download the PDF file from which they can print unlimited copies of their articles.

Copyright: Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the Manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Case Report

Mixed Plasmodium falciparum and Plasmodium vivax infection with acute viral hepatitis in two brothers: A rare occurrence
Neeraj Varyani, Sunny Garg, Kamlakar Tripathi, Lalit Prashant Meena, Uma Shankar Rath, Sourav Mishra and Garima Gupta

Research Articles

Ultrasound image acquisition by a personal computer- Application of artificial neural network
Mitra Ahmad Soltani

A survey of hepatitis B and C virus prevalence in human immunodeficiency virus positive patients in a tertiary health institution in North Eastern Nigeria
Ballah Akawu Denue, Babajide Ajayi, Abubakar Usman Abja, Abubakar Abdullahi Bukar, Cecilia Akawu, Ernest Ekong and Mohammed Bashir Alkali
Case Report

Mixed *Plasmodium falciparum* and *Plasmodium vivax* infection with acute viral hepatitis in two brothers: A rare occurrence

Neeraj Varyani¹*, Sunny Garg¹, Kamlakar Tripathi¹, Lalit Prashant Meena¹, Uma Shankar Rath¹, Sourav Mishra¹ and Garima Gupta²,

¹Department of General Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India.
²Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India.

Accepted 5 January, 2012

Two brothers aged 14 and 17 years presented in our emergency department with complaints of fever and yellowish discoloration of eyes and urine for 6 and 10 days, respectively. They had similar clinical presentation, examination findings, laboratory biochemical derangements and positive results for rapid tests of *Plasmodium falciparum* and *vivax* species along with IgM Enzyme-linked immunosorbent assay (ELISA) test for hepatitis A virus. They also showed similar response to therapy and improved simultaneously within two to three days. This suggests the role of immunogenetics in modifying the natural course of disease. Moreover, triple infection by these hepatotropic pathogens lead to a presentation that is much more severe than that caused by either of them alone. This could only be explained by a synergistic interaction between these pathogens. This case foretells that co-infections with two or more hepatotropic pathogens require immediate attention with an aggressive management and role of immunogenetics along with co-infections in altering the phenotypic expression of a disease.

Key words: *Plasmodium falciparum, Plasmodium vivax, hepatitis A, co-infection, immunogenetics.*

INTRODUCTION

Acute viral hepatitis due to hepatitis A and malaria are very common diseases in the developing world. Many factors alter the outcome in co-infection with *Plasmodium falciparum* and *Plasmodium vivax* when concomitant viral hepatitis is also associated. Among the less studied factors are co-infections (agent factors) and immunogenetics (host factors) and their role in modifying the natural history of the disease. Our case sheds some light in this direction and may also provide stimuli for further large prospective studies so that such life threatening illness could be effectively managed. As in this case, triple infection with hepatitis A, *P. falciparum* and *P. vivax*, also presenting simultaneously among brothers, is yet to be reported to the best of our knowledge.

CASE PRESENTATION

On September 14th, 2011, two brothers, aged 17 and 14 years, resident of Rohtas district of Bihar, presented simultaneously in the emergency department of Sir Sunderlal Hospital, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India, with fever and yellowish discoloration of eyes and urine. Fever had a similar pattern in the siblings and was continuous, associated with chills and rigors and relieved incompletely with antipyretics. The elder brother had these complaints for 6 days. On examination, he had
hypotension (blood pressure 80/50 mmHg), pallor, and icterus (Figures 1 and 3). Fundus examination revealed no abnormality. Systemic examination revealed hepatosplenomegaly. The other general and systemic examination was unremarkable. Haematological profile revealed anemia (haemoglobin 85 g/L), thrombocytopenia (platelet count 18×10⁹/L), raised total and direct bilirubin (263.5 and 137.7 μmol/L respectively) and total leukocyte count being normal (4.5×10⁹/L). Serum aminotransferases (alanine aminotransferase and aspartate aminotransferase were 0.6 and 0.7 μkat/L respectively) were within normal range and alkaline phosphatise (336 U/L) was mildly raised. Renal function tests were normal. Plasmodium lactate dehydrogenase (LDH) card test (SD Bio Standard Diagnostics Pvt. Ltd.) revealed concomitant *P. falciparum* and *P. vivax* infection.
which was confirmed on microscopic evidence of malarial trophozoites. IgM ELISA for leptospirosis was negative. Viral marker studies revealed high titres of IgM against hepatitis A on enzyme immunoassay (DSI srl, Italy).

The younger sibling presented with similar complaints for the past 10 days. On examination, he had pallor and icterus with stable vital signs (Figures 2 and 3). Further examination findings were exactly similar to the elder brother. Haematological investigations depicted anemia (haemoglobin 69 g/L), thrombocytopenia (platelet count 23×10^9/L) and raised total and direct bilirubin (489.6 and 226.1 µmol/L respectively). Serum aminotransferases (alanine aminotransferase and aspartate aminotransferase were 0.62 and 1 µkat/L respectively) were in range and alkaline phosphatase (423 U/L) was mildly raised. Renal function tests were normal. All other specific investigations, including plasmodium LDH card test, and viral marker studies were also exactly similar to those of his elder brother.

Following treatment with injectable artemesinin-based combination therapy (ACT) and initial fluid resuscitation, there was a dramatic improvement in their clinical and haematological parameters. Within two to three days of starting the therapy, the brothers became afebrile and the platelet count rose rapidly and bilirubin levels dropped close to normal levels, with improvement in anemia.

DISCUSSION

Malaria is a vector borne disease transmitted by females of the anopheline mosquito. Similarly, hepatitis A is water
borne viral disease. In India, total malaria cases reported in 2010 were 1.49 million, of which 52% were attributed to *P. falciparum* infection and a total of 767 deaths were reported (Internet, 2011). Incidence of hepatitis A virus in India is not exactly known with numerous reports of sporadic and epidemic occurrence in various cities (Indian Council of Medical Research, 1980). The concomitant infection of the two disease (in fact three different players, *P. vivax*, *P. falciparum* and Hep A virus) in two members of a family indicate that the area is highly endemic to both vector and water borne diseases. Aggressive vector control and effective hygiene practices are required to limit the epidemic of the disease. Until now, many studies done in the past has shown an association between viral diseases like hepatitis B and *P. falciparum* co-infection (Thursz et al., 1995; Barcus et al., 2002). Natural course of *P. falciparum* has also been shown to be modified by Epstein Barr Virus (EBV) co-infection (Chene et al., 2007; Moormann et al., 2005). Also, the progression of *P. falciparum* infection has been reported earlier in patients infected with human immunodeficiency virus (HIV) (Abu-Raddad et al., 2006). Few other studies like Snow et al. (2005) and Jacobsen et al. (2004) studied the role of environmental factors in predisposing the population to *Plasmodium* and hepatitis A virus infections, more so in children in developing nations (Snow et al., 2005; Jacobsen and Koopman 2004). Concomitant infections with these hepatotrophic organisms could escalate or inhibit the progression of either or both of them, suggesting a direct or immunological interaction between the two. Promotion of replication or facilitation of survival of one pathogen can occur in the presence of the other one. Either of these could lead to increased number of infective particles/bodies leading to increased likelihood of subsequent infections. This could be a possible explanation for the synergistic interaction between the two pathogens. To the best of our knowledge, it is the first case reported of such kind. Moreover, in our case, the three infections were present simultaneously in two siblings with almost similar clinical presentation, biochemical derangements and therapeutic response. This further substantiates the role of immunogenetics and co infection in modifying the natural history of a disease.

Conclusion

As we are already aware of multi-factorial nature of non-communicable diseases responsible for their varied presentations, the similar analogy could explain the vast spectrum of communicable disease presentations and response to treatments offered despite similar biochemical abnormalities. In developing countries with high burden of communicable diseases, this paradigm approach could play a substantial role in the...
management of such diseases. But much work is needed in this regard and larger prospective studies are required to further elucidate the epidemiological interactions between these important human pathogens, if any.

REFERENCES

Ultrasound image acquisition by a personal computer- Application of artificial neural network

Mitra Ahmad Soltani-MD, MS
Lutalo Medical Research Corporation 15- Shariaty all- Kord St- Ressalat HW- Tehran –Iran.
E-mail: m_a_sol@yahoo.com. Tel: 00989127964990.

Accepted 20 January, 2012

Traditional probes consist of 40 to 60 crystals each attached to a pin attached to a specialized cable of minimum 2 to 3 m. Each crystal has piezoelectric properties. To capture images by personal computers to improve accessibility and reduce the cost of having ultrasonic image with special reference to obstetrics and gynecology emergency settings, a probe was designed consisting of three Doppler transducers (each with 4 pins hence generating 4 signals, altogether 12 signal) that by an analog switching with micro (1000 HZ per second) can generate 12000 signals per second changing the scan line form linear into a plane. The signals are translated into WAV sound format file that can be displayed by a Windows-based program of a personal computer. The pattern produced is created by the sound of blood flow in an organ. This vascular pattern was matched with traditional sonography of the organ. By training the network, the resolution of images can be improved further based on the formula:

output = 0.77*target + 38. The probe can capture images 1/6 resolution of a traditional probe, deeper penetration (19 cm depth), 1/34 price and weight of a traditional ultrasound equipment

Key words: Doppler transducers, scan line, artificial neural network, ultrasound, obstetrics and gynecology.

INTRODUCTION

Ultrasound imaging is based on the same principles involved in the sonar used by bats, ships, fishermen and the weather service. When a sound wave strikes an object, it bounces back, or echoes. By measuring these echo waves, it is possible to determine the objects’ size, shape and nature. Doppler ultrasound is a special application of ultrasound that can measure the direction and speed of blood cells as they move through vessels (Radiologyinfo.org, 2011). There are two types of Doppler system (Figures 1a and b):

1. Continuous wave systems use continuous transmission and reception of ultrasound. Continuous wave Doppler is used in adult cardiac scanners to investigate the high velocities in the aorta.
2. Pulsed Wave Ultrasound are used in general and obstetric ultrasound scanners which allows measurement of the depth (or range) of the flow site. It is used to provide data for Doppler sonograms and color flow images. The best resolution of the sonogram occurs when the B-mode image and color image are frozen, allowing all the time to be employed for spectral Doppler (Deane, 2002).

MATERIALS AND METHODS

For the objective of providing an image acquisition system in an emergency setting of Obstetrics and Gynecology (pelvic and Lower Quadrants views for determination of intraperitoneal free fluid, fetal presentation and viability, and intrauterine space in instrumentations), a probe was designed based on three goals of isolating analog and digital signals, minimizing connector pin counts, and reducing power and cost.

Traditional probes consist of 40 to 60 crystals each attached to a pin attached to a specialized cable of minimum 2 to 3 m cable. Each crystal has piezoelectric properties. The claimed probe consists of three Doppler transducers (Summit Doppler Systems,
Inc.LifeDop user manual 2011) with 4 pins each generating 4 signals that by an analog switching can generate 12000 signals per second changing the linear image into a plane. The signals are translated into WAV format that is displayed by a Windows- based program (Beskow and Sjölander, 2011) which can also provide concentrating all echoes into the central lobe. In a traditional probe of 77000 signals per second the depth of penetration is 1 cm per period of 13 µs (one-millionth of a second) (Fleischer et al., 2004). The period of the invented probe is 250 µs which gives the penetration of 19 cm but the resolution is 1/6 of the traditional probe.

The simplicity of the probe causes deeper penetration, less unwanted divergence, but at the expense of resolution. But the solution of this problem is by image modifying software with hamming properties (Anderson and MacNeill, 1999) applicable to personal computers.

To estimate the degree of fitness of images obtained from the probe with traditional image acquisition, a clinical trial was designed. Nine points on the abdomen were chosen and marked to apply the probes (I-probe and T-probe) perpendicular to the surface in coronal and sagittal planes. The procedure was: taking the image by the T-probe (right angle to the skin, in coronal and then sagittal view) and then by I-probe in that order. This was the rule because subject’s position, bladder fullness and GI contents can alter images to a great extent. The points were in the Right Upper Quadrant (Figures 2a and b), Right Kidney region (Figures 3a and b), Right Lower Quadrant (Figures 4a and b), Left Upper Quadrant (Figures 5a and b), Left kidney region (Figures 6a and b) Left Lower Quadrant (Figures 7a and b), Heart (Figures 8a and b), Suprapubic (Figures 9a and b) and Pelvis (Figures 10a and b). Eighteen images were obtained as controls (inputs or targets) for their 18 matched images captured by the I-probe (output). Images were cropped and modified by Wavelet tool box so they can be processed in MATLAB in R2011a. Then the Neural Network was trained to calculate the average square difference between outputs and targets (MSE) and the correlation between outputs and targets based on Levenberg Marquardt Back Propagation (R). The results are presented in Table 1.

RESULTS

According to table-1, the R value obtained by tests of fitness shows that the invented probe (I-probe) images were correlated with the traditional convex probe (T-
Figure 3. A) Right Kidney region- Coronal view of the Invented probe and the Traditional probe; B) Sagital view of the invented probe and the Traditional probe.

Figure 4. A) Right Lower Quadrant- Coronal view of the Invented probe and the Traditional probe; B) Right Lower Quadrant- Sagital view of the invented probe and the Traditional probe.

Figure 5. A) Left Upper Quadrant- Coronal view of the Invented probe and the Traditional probe; B) Sagital view of the invented probe and the Traditional probe.
Figure 6. A) Left kidney region- Coronal view of the Invented probe and the Traditional probe; B) Sagital view of the invented probe and the Traditional probe.

Figure 7. A) Left Lower Quadrant - Coronal view of the Invented probe and the Traditional probe; B) Sagital view of the invented probe and the traditional probe.

Figure 8. A) Heart- Coronal view of the invented probe and the Traditional probe; B) Heart- Sagital view of the invented probe and the Traditional probe.
Figure 9. A) Suprapubic - Coronal view of the invented probe and the traditional probe; B) Sagital view of the invented probe and the traditional probe.

Figure 10. A) Pelvis- Coronal view of the invented probe and the traditional probe; B) Sagital view of the invented probe and the traditional probe.

probe) images. The R values in the order from higher to lower was from Right Upper Quadrant (coronal view = 8.59) (sagital = 8.44), Pelvis (c = 8.81, s = 8.76), Right Kidney (c = 7.55, s = 4.17), Left Upper Quadrant (c = 7.54, s = 7.74), Right Lower Quadrant (c = 7.52, s = 5.48), Left Kidney (c = 7.27, s = 6.00), Left Lower Quadrant (c = 5.42, s = 5.11), Suprapubic (c = 4.90, s = 5.89), and the heart (c = 4.36, s = 6.75). This means that the I-probe can be used for its objective of utility in emergency settings of obstetrics and gynecology (Pelvic and lower quadrants views for determination of intra abdominal free fluid, fetal presentation and viability, and intrauterine space in instrumentations). By training the network, the resolution of images can be improved further based on the formula:

\[\text{Output} = 0.77 \times \text{target} + 38 \] (Figure 11). In order to test the network, an image taken by the I-probe was given to the network and it provided the image based on its training.

Conclusions

To achieve three goals of isolating analog and digital signals, minimizing connector pin counts, and reducing power and cost, three Doppler transducers each having 4 pins (generating 4 signals) were connected to an analog switching to generate 12000 signals per second changing
Table 1. Results of test of fitness of I-probe images with T-probe images.

<table>
<thead>
<tr>
<th>Site</th>
<th>Plane</th>
<th>Training MSE</th>
<th>Training R</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUQ</td>
<td>Coronal</td>
<td>134.22</td>
<td>8.59</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>154.34</td>
<td>8.44</td>
</tr>
<tr>
<td>RLQ</td>
<td>Coronal</td>
<td>324.39</td>
<td>7.52</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>513.29</td>
<td>5.48</td>
</tr>
<tr>
<td>Right Kidney</td>
<td>Coronal</td>
<td>242.83</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>187.01</td>
<td>4.17</td>
</tr>
<tr>
<td>LUQ</td>
<td>Coronal</td>
<td>392.69</td>
<td>7.54</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>347.81</td>
<td>7.74</td>
</tr>
<tr>
<td>LLQ</td>
<td>Coronal</td>
<td>488.60</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>460.75</td>
<td>5.11</td>
</tr>
<tr>
<td>Left Kidney</td>
<td>Coronal</td>
<td>274.33</td>
<td>7.27</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>292.74</td>
<td>6.00</td>
</tr>
<tr>
<td>Heart</td>
<td>Coronal</td>
<td>637.00</td>
<td>4.36</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>429.39</td>
<td>6.75</td>
</tr>
<tr>
<td>suprapubic</td>
<td>Coronal</td>
<td>1215.64</td>
<td>4.90</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>1159.07</td>
<td>5.89</td>
</tr>
<tr>
<td>Pelvis</td>
<td>Coronal</td>
<td>501.18</td>
<td>8.81</td>
</tr>
<tr>
<td></td>
<td>Sagital</td>
<td>487.92</td>
<td>8.76</td>
</tr>
</tbody>
</table>

Figure 11. Fitness of Images captured by the invented probe with Images captured by the traditional probe.
the linear images into a plane. The signals are translated into WAV format displayed by a Windows-based program could provide images 1/6 resolution of a traditional probe, with 19 cm depth penetration, 1/34 price and weight of a traditional ultrasound equipment.

REFERENCES

Full Length Research paper

A survey of hepatitis B and C virus prevalence in human immunodeficiency virus positive patients in a tertiary health institution in North Eastern Nigeria

Ballah Akawu Denue¹*, Babajide Ajayi², Abubakar Usman Abja³, Abubakar Abdullahi Bukar⁴, Cecilia Akawu⁵, Ernest Eko⁶ and Mohammed Bashir Alkali⁷

¹Department of Medicine, University of Maiduguri Teaching Hospital, Maiduguri, Borno State Nigeria.
²Department of Immunology University of Maiduguri Teaching Hospital, Maiduguri, Borno State Nigeria.
³Department of Haematology University of Maiduguri Teaching Hospital, Maiduguri, Borno State Nigeria.
⁴Department of Haematology University of Maiduguri Teaching Hospital, Maiduguri, Borno State Nigeria.
⁵Department of Geography University of Maiduguri, Maiduguri, Borno State Nigeria.
⁶AIDS Preventive Initiative in Nigeria (APIN), Nigeria.
⁷Department of Medicine University of Maiduguri Teaching Hospital.

Accepted 26 December, 2011

Co-infection of hepatotropic virus(es), with HIV has been associated with a reduced survival rate, an increased risk of progression to severe liver disease, and an increased risk of hepatotoxicity associated with active antiretroviral therapy. Information regarding prevalence of HBV and HCV co-infection with HIV in Nigeria is limited. This study was designed to determine the seroprevalence of hepatitis B virus (HBV) and hepatitis C virus (HCV), and the impact of co-infection on baseline serum alanine transaminase (ALT), CD4+ T lymphocyte (CD4) count, and plasma HIV-RNA (viral load) in a cohort of HIV-infected Nigerians. Patients confirmed to be positive for HIV infection by Western blot analysis were consecutively recruited into the study from Infectious Disease Clinic, General Out-patient Department and Medical Wards of University of Maiduguri Teaching Hospital, Nigeria. Demographic data and pre-treatment laboratory results (hepatitis B surface antigen (HBsAg), and HCV antibodies (anti-HCV), ALT, CD4 count and viral load) were analysed. A total of 569 HIV-infected patients (male: female ratio, 1:1.4) were consecutively recruited. HBsAg was present in 12.3%; anti-HCV in 0.5% and both markers was not present in any patients. HBsAg prevalence was 12.3% in both male and females, while anti-HCV was detected in 0.8% in males and 0.3% females. HIV-infected patients alone had a higher mean baseline CD4 count compared to those without anti-HCV or HBsAg (181 vs. 117 cells/mm³, respectively; p = 0.01). Serum ALT was higher among patients co-infected with HBsAg or anti-HCV than only HIV infected (37 vs. 34 International Units (IU), respectively p = 0.1). The high frequency of HBsAg confirms the need for routine screening for these markers in HIV-infected patients in our setting. CD4 count was significantly lower, in patients with prior exposure to hepatitis B or C, while ALT was slightly higher among those positive for HBV or C infection. These findings are pointer to the importance of testing for HBV and HCV in all HIV-infected persons in our setting.

Key words: Hepatitis B, hepatitis C, CD4, HIV.

INTRODUCTION

Chronic viral hepatitis due to hepatitis B virus (HBV) and hepatitis C virus (HCV), as well as infection with human immunodeficiency virus (HIV) are global public health problems (Alter, 1997; World Health Organization, 1998 Geneva; Soriano et al., 2004). It has been estimated that about 2 billion people have been infected with hepatitis B virus (HBV) and 350 million have chronic lifelong infection. The prevalence of hepatitis C virus (HCV) is
is also high and it is estimated that about 170 million people are chronically infected while 3 to 4 million people are newly infected every year (http://www.who.int/media centre/fact sheet/fs 164/en/ accessed; Merican et al., 2000) A considerable proportion of these patients will progress onto cirrhosis and hepatocellular carcinoma (Guan et al., 1995; Furusyo et al., 2002).

Worldwide, HIV is responsible for 38.6 million infections as estimated at the end of 2005 (http://www.unaids.org/en/HIV_data/2011GlobalReport). An estimated one-third of deaths in HIV patients are directly or indirectly related to liver disease. Liver diseases in HIV infected persons can occur due to hepatitis B virus (HBV) and hepatitis C virus (HCV) co-infections, chronic alcoholism, hepatic tuberculosis, or due to the effects of antiretroviral therapy (ART) (Kumarasamy et al., 2005; Rathi et al., 1997).

Since the principal routes for HIV transmission are similar to that followed by the hepatotropic viruses, as a consequence, infections with HBV and HCV are expected in HIV infected patients. Co-infections of HBV and HCV with HIV have been associated with reduced survival, increased risk of progression to liver disease and increased risk of hepatotoxicity associated with antiretroviral therapy. The reported co-infection rates of HBV and HCV in HIV patients have been variable worldwide depending on the geographic regions, risk groups and the type of exposure involved (Alter, 2006; Rockstroh, 2003; Dodig and Tavill, 2001; Tien, 2005; Sungkanuparph et al., 2004). In Europe and USA, HIV-HBV co-infection has been seen in 6 to 14% (Alter, 2006; Rockstroh, 2003) of all patients while HIV-HCV co-infection has been variably reported ranging from 25 to almost 50% (Dodig and Tavill, 2001; Tien, 2005) of these patients. Evidence of exposure to HBV and HCV has been found in 8.7 and 7.8%, respectively, of HIV patients from Thailand (Sungkanuparph et al., 2004) in Southeast Asia. The HIV sero-prevalence in adult Nigerians is estimated at 5%. Viral hepatitis and HIV/AIDS having become so intertwined have constituted a major public health problem in the country. However in spite of this, very little information on viral hepatitis and HIV-co-infection is available. The few reports documented were on HBV-HIV co-infection (Halim et al., 1992; Baba et al., 1998) and HIV/HBV-HCV co-infection in low risk group (Egah et al., 2007). With this background, we set out to determine the prevalence of hepatitis B and C virus infections in HIV-positive patients coming to a tertiary care hospital located in North Eastern Nigeria.

PATIENTS AND METHOD

Study area

The study was conducted in the Department of Medicine, University of Maiduguri Teaching Hospital, Borno State. This is a 500 bedded hospital designated as a Centre of Excellence for infectious diseases and provides primary, secondary and tertiary services for the North Eastern part of Nigeria. It also caters for the neighbouring countries such as Cameroon, Niger and Chad Republics. Maiduguri, the capital of Borno State, is situated in the North Eastern Nigeria and the largest settlement near the Lake Chad, located on the fringe of the Sahara desert between longitude 11° 8E and 14° 4E and latitudes 10°2’N 19°4’N.

Study participants

Patients confirmed to be positive for HIV infection by Western blot analysis were recruited into the study from Infectious Disease Clinic, General Out-patient Department and Medical Wards of the Hospital from January to December 2010. Informed consent was obtained from each participant with the assurance that all information would be treated with utmost confidentiality. Using a structured, pre-evaluated questionnaire, information was obtained on demographic, clinical manifestation, blood transfusion, sexual behaviour and intravenous drug use. Seroprevalence of HBsAg and Anti-HCV antibodies in apparently, HIV-negative blood donors and those that presented for pre-marital HIV counselling and testing during the same period was also analysed for comparison with the prevalence of hepatitis markers in HIV positive individuals.

Viral diagnosis

Five millilitres of blood were obtained from each participant, the blood were allowed to clot and spun at 1000 xg for 10 min. The serum samples were separated into 2 ml cryorials containers and stored at -20°C until required for testing. The coded samples were anonymously tested using enzyme linked immunosorbent assay kits at a later date for the presence of HBsAg and HCV antibodies (DIA, PRO, Diagnostic Bioprobes Sri, via columella no 20128 Milano-Italy).

RESULT

A total of 569 patients were consecutively recruited into the study comprising 235 (41.5%) males and 333 (58.5%) females, with male to female ratio of 1:1.4. The mean age of both sexes was 34.2± 10.1 (14 to 81) years. Male patients were younger than females, 37.7 ±10.8 (14 to 81) and 31.8±8.7 (14 to 72) years respectively (p<0.05). The presumed mode of acquiring HIV infection was through heterosexual contact in all the participants.

Data was available for 291 prospective blood donors during the same period. It was presumed that these blood donors represent the general population and they are exposed to similar risk as the general population. There were 249 males and 42 females. The mean age of the donors was 27.8±5.9 (18 to 52).

Prevalence of viral co-infection in HIV positives

The frequency of HBsAg co-infection in HIV+ cohort as reflected in Table 1, was 12.3% (70 in 569) compared to HCV antibody prevalence of 0.5% (3 in 569) with P value < 0.05. Triple infection with both HBsAg and HCV was not seen in any HIV patient.
Table 1. Seroprevalence of HBsAg and anti-HCV antibodies in HIV positive patients.

<table>
<thead>
<tr>
<th>Variable</th>
<th>HBsAg (n(%))</th>
<th>HCV (n(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV patients (n=569)</td>
<td>70 (12.3)</td>
<td>3 (0.5)</td>
</tr>
<tr>
<td>Males (n=236)</td>
<td>29 (12.3)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Females (n=333)</td>
<td>41 (12.3)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Controls (n= 291)</td>
<td>15 (5.2)</td>
<td>4 (1.4)</td>
</tr>
<tr>
<td>Males (n=249)</td>
<td>12 (4.8)</td>
<td>4 (1.6)</td>
</tr>
<tr>
<td>Females (n=42)</td>
<td>3 (7.1)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

The frequency of HBsAg co-infection in blood donors was 5.2% (15 in 291) compared to HCV antibody prevalence of 1.4% (4 in 291) with P < 0.05 as depicted in Table 1. Co-infection of infection with both HBsAg and HCV was not seen in any blood donor.

Taking the prevalence’s of co-infection in HIV-positive with hepatitis viruses based on gender into accounts, HIV/HBV co-infection was the same in both sexes, it was seen in 29 of 236 (12.3%) males and in 41 of 333 (12.3%) females respectively (P>0.05). HIV co-infection with HCV antibody was seen in 2 of 236 (0.8%) males and in only 1 of 333 (0.3%) females.

The frequency of HBsAg was 4.8% (12 of 249) and 7.1% (3 of 42) in male and female blood donors respectively; the prevalence of HCVab was 1.6% in males and 0% in females.

Figure 1 shows age related prevalence of HIV co-infection with HBsAg and HCV antibodies. Individuals of age group 10 to 19 years had the highest prevalence of HBsAg (21.4%). This was followed by those of age-group 60 to 69 years (16.7%) and 14.4% in age group 40 to 49 years, while age-group 40 to 49 years has the highest prevalence of HCVab with 0.8% followed by age-groups 20 to 29 and 30 to 39 years with prevalence’s of 0.6% and 0.4% respectively.

Table 2 shows immuno-virological parameter of the participants. The mean CD4 count for the HBsAg/HCVab negative was 181 cells/µl and it was significantly higher.
DISCUSSION

According to WHO estimates, the global burden of HIV, HCV and HBV is 33.2 million, 170 million and 400 million, respectively. Knowledge of the prevalence and distribution of blood borne viruses and sexually transmitted diseases (STDs) in different parts of the world, and particularly in Africa, is important for the planning of preventive measures and the development of vaccination programmes. More females than males presented for care during the study period, but majority of blood donors were males, all the females were pregnant autologous donors. This gender inequality in presentation for therapy is consistent with the sex distribution documented in the majority of treatment centres particularly in the first decade of antiretroviral therapy. A potential explanation for more females at our centre is that women present for care after positive HIV test on their sick children, death of their husband, or perhaps they are more sensitive to changes in their health and may be socially conditioned to seek and receive assistance for their sickness. This, however, does not translate to more women are infected with HIV in our population, as study in Nigeria actually found that more men were afflicted with HIV/AIDS (Ola et al., 2005).

When asked about the risk factors concerning the viral infections, none of the study subjects reported the history of intravenous drug use or multiple sexual partnership. It is well known that HIV/HBV co-infection is linked most often to sexual intercourse (both heterosexual and men who have sex with men (MSM), followed by IDU, while HIV/HCV co-infection has predominantly been associated with a non-sexual parenteral route of transmission of blood or blood products, particularly IDU (Thomas et al., 1994; Gilson et al., 1997; Kellerman et al., 2003; Rodríguez-Méndez et al., 2000; Sherman et al., 2002). In our study, absence of triple HIV/HBV/HCV may be due to low prevalence of HIV/HCV co-infection as none of the subjects reported the history of intravenous drug use, neither was needle tract was noticed in their limbs. These results are in agreement with previous reports that HCV is not efficiently transmitted by perinatal or sexual exposure, which are major modes of transmission for HBV and HIV (Kellerman et al., 2003; Rodríguez-Méndez et al., 2000; Sherman et al., 2002). HCV is predominantly found in persons who have had percutaneous exposure to blood products and IDU in particular (Wasley and Alter, 2000). Studies had demonstrated that IDU is the most important factor associated with triple infections with HIV/HBV/HCV in urban HIV-infected populations. It has been reported that the prevalence of HIV-HCV co-infection among IDUs can surpass 90%, highlighting the need for special attention to populations with IDU for screening viral co-infections with HIV and HBV/HCV (Maier and Wu, 2002; Aceijas and Rhodes, 2007).

The co-infection prevalence of 12.3% for HIV and HBV is a pointer to the fact that HBV is a major threat to HIV/AIDS patients in Nigeria, as reported in other parts of the world (Weber et al., 2006) The HBV co-infection rate in this study is similar to prevalence of 11.9% documented in southwestern part of Nigeria,(Otegbayo et al., 2008) but higher than the 9.7% reported in healthy urban population Northern region (Sirisena et al., 2002) but lower than the 25.9% reported in HIV positive in the same region (Uneke et al., 2005). The factors driving these regional differences are unclear. No gender difference in prevalence of HBV was observed in this study. This finding is in contrast with higher prevalence in male, that observed that a high proportion of HBV infections in sub-Saharan Africa is acquired vertically or horizontally (from family members and other children) before the age of 5 years (Davis et al., 1989). Since boys have a predilection for aggressive sports and plays that may result in injury with bleeding, they may be more predisposed to horizontal HBV transmission. Further, societal acceptance of multiple sexual partners for men may contribute to the higher HBV prevalence among HIV-infected men (Zhou et al., 2007).

Anti-HCV co-infection was detected in 0.5% of the patients in this study. In an earlier study, HCV co-infection based on plasma HCV RNA quantification was detected in 8.2% of HIV-infected patients in Northern Nigeria (Agwale et al., 2004). However, cross-study
comparisons may be misleading because of the differences in HCV detection techniques. Quantifiable plasma HCV RNA is present only in patients with active HCV replication. In contrast, anti-HCV can be detected in patients with previous HCV exposure, including those with ongoing HCV replication and those whose immune responses curtailed viral replication. There may be very rare cases of falsely negative anti-HCV in patients with advanced immunosuppression (Mphahlele et al., 2006; Bonacini et al., 2001). In the current study, although the absolute number (n = 3) was relatively small for analysis, the rates of anti-HCV detection were comparable in males (0.8%) and females (0.3%). Although the association between HCV positivity and CD4 count shows conflicting reports (Greub et al., 2000; Anderson et al., 2004; Hershov et al., 2005) It would appear that the immunological status of monoinfection is higher than HBV/HCVab coinfection, as evidenced by the higher CD4 counts in HIV monoinfected than HIV-coinfected with HBV/HCVab. Contrary to observations made Idoko et al in the North-central (Idoko et al., 2009) and Ortegbayo et al in South-western part of Nigeria (Otegbayo et al., 2011). The viral load was higher in HBV/HCVab than HIV monoinfected. The mean values of transaminases (ALT) among HBV/HCVab coinfected patients, was similar to HIV monoinfected in this study.

HCV by itself has not been shown conclusively to be an independent risk factor for more rapid CD4 decline, although it has been associated with increased occurrence of AIDS-defining events (Rockstroh et al., 2005; Stebbing et al., 2005). Studies enrolling a larger number of subjects are needed to elucidate these potential associations further. The limitations of this study are that plasma HCV-RNA was not quantified in patients who had anti-HCV, making it impossible to distinguish active HCV infection from those that have spontaneously cleared the infection.

Conclusion

The high frequency of HBsAg confirms the need for routine screening for these markers in HIV-infected patients in our setting. Significantly lower CD4 and higher viral load, was observed in patients with prior exposure to hepatitis B or C, while ALT was similar among those positive for HBsAg/HCVab and HIV mono-infection. These findings underscore the importance of testing for HBV and HCV in all HIV-infected persons in our setting.

REFERENCES

UPCOMING CONFERENCES

18th International Integrative Medicine Conference
Friday 31 August - Sunday 2 September 2012
Hilton On The Park, Melbourne

Recent Advances in Nuclear Medicine, Vinnitsa, Ukraine, 18-19 Sep 2012
August 2012
MIPS XIV — Medical Image Perception Society XIV Conference, Dublin, Ireland, 9 Aug 2012

September 2012
Recent Advances in Nuclear Medicine, Vinnitsa, Ukraine, 18 Sep 2012

Preventive Medicine, Barcelona, Spain, 20 Sep 2012
Processing and Managing Medical Data Streams, Rome, Italy, 20 Jun 2012

14th International Conference on Emergency Medicine (ICEM), Dublin, UK, 27 Jun 2012
Related Journals Published by Academic Journals

- Journal of Medicinal Plant Research
- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences