ABOUT JPP

The Journal of Pharmacognosy and Phytotherapy (JPP) is published monthly (one volume per year) by Academic Journals.

The Journal of Pharmacognosy and Phytotherapy (JPP) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as ethnobotany, phytochemistry, ethnopharmacology, zoopharmacognosy, medical anthropology etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JPP are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jpp@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Pharmacognosy and Phytotherapy (JPP) will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Dr. (Mrs) Banasri Hazra
Research Scientist (U.G.C.)
Department of Pharmaceutical Technology
Jadavpur University
Calcutta - 700032
India

Dr. Yuanxiong Deng
Dept of Pharmaceutical Science
School of Medicine
Hunan Normal University
Tongziro Road 371, Changsha 410013,
Hunan China

Prof. Maha Aboul Ela
Beirut Arab University, Faculty of Pharmacy, Beirut
Campus

Dr. S. RAJESWARA REDDY
Assistant Professor, Division of Animal Biotechnology
Department of Biotechnology, School of Herbal
Studies and Naturo Sciences,
Dravidian University, Kuppam – 517 425, A.P.
India

Dr. Mekhfi Hassane
University Mohammed the First, Faculty of Sciences,
Department of biology, Oujda, Morocco
Morocco

Dr. Ilkay Erdogan Orhan
Faculty of Pharmacy, Gazi University,
Ankara, Turkey
Turkey

Dr. Arun Kumar Tripathi
Central Institute of Medicinal and Aromatic Plants
P.O. CIMAP, LUCKNOW-226015,
India

Dr. Wesley Lyeverton Correia Ribeiro
Universidade Estadual do Ceará, Faculdade
de Veterinária/Laboratório de Doenças
Parasitárias Av. Paranjana, 1700
Itaperi - Fortaleza
60740-903, CE - Brazil

Dr. Maryam Sarwat
C/O A.M. Khan, House No. 195

Dr. Yong-Jiang Xu
Saw Swee Hock School of Public Health,
National University of Singapore, Singapore.

Prof. Dr. Adeolu Alex Adedapo
Department of Veterinary Physiology,
Biochemistry and Pharmacology
University of Ibadan, Nigeria

Dr. Joana S. Amaral
Campus de Sta Apolónia,
Ap. 1134, 5301-857 Bragança,
Portugal

Dr. Asad Ullah Khan
Interdisciplinary Biotechnology UNIT
Aligarh Muslim University,
India

Dr. Sunday Ene-ojo Atawodi
Biochemistry Department
Ahmadu Bello University
Zaria, Nigeria

Prof. Fukai Bao
Department of Microbiology and Immunology,
Kunming Medical College
China

Dr. Bhaskar C Behera
Agharkar Research Institute
Dept. of Science &Technology,
Plant Science Division
India

Prof. R. Balakrishna Bhat
Walter Sisulu University
Department of Botany
Mthatha, South Africa

Dr. Mohammad Nazrul Islam Bhuiyan
BCSIR Laboratories;
Chittagong cantonment;
Chittagong-4220;
Bangladesh
Dr. Baojun Bruce Xu
Beijing Normal University-Hong Kong Baptist University United International College Zhuhai, Guangdong Province, China

Dr. Hamad H. Issa
Department of Physical Sciences, School of natural Sciences, The University of Dodoma, Tanzania

Dr. Gagan Deep
Department of Pharmaceutical Sciences School of Pharmacy, University of Colorado Denver, Colorado, USA

Dr. Fengguo Xu
Dept of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Dr. Haitao Lv
Medicine and Endocrinology, Albert Einstein College of Meidicine, Yeshiva University, USA

Hassane MEKHFI
University Mohammed the First, Faculty of Sciences, Department of biology, Laboratory of Physiology and Ethnopharmacology, Morocco

Dr. Subhash C. Mandal
Division of Pharmacognosy Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, India.

Dr. Adibe Maxwell Ogochukwu
Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka Enugu state, Nigeria.

Dr. Odukoya, Olukemi Abiodun
Department of Pharmacognosy, Faculty of Pharmacy University of Lagos, Nigeria.

Dr. Qinxue Richard Ding
Medical Center at Stanford University, Palo Alto, USA

Dr. Sulejman Redžić
Faculty of Science of the University of Sarajevo 33-35 Zmaja od Bosne St., Sarajevo, Bosnia and Herzegovina

Dr. Michal Tomczyk
Medical University of Bialystok, Faculty of Pharmacy, Department of Pharmacognosy, Poland

Dr. Ugur Çakilcioglu
Firat University, Faculty of Science and Arts, Department of Biology, Elazig, Turkey

Prof. Samson Sibanda
National University of Science and Technology Cnr Gwanda Road/Cecil Avenue, Ascot, Bulawayo, Zimbabwe
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author's full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers' comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JPP to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 key words that will provide indexing references should be listed. A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b; Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences:

(1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Pharmacognosy and Phytotherapy (JPP) is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2013, Academic Journals.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JPP, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Review

Medicinal importance of genus Origanum: A review
Shayista Chishti, Zahoor A. Kaloo and Phalestine Sultan 170

Research Articles

Antimicrobial effect of Microdacyn 60, OxOral, and sodium hypochlorite 5.25% in anaerobic bacteria
Elvia Denisse Mena-Mendivil, Jorge Jaime Flores-Treviño, Idalia Rodríguez-Delgado, Myriam A. de la Garza-Ramos, Hilda H. Torre-Martínez and Gustavo Israel Martínez- González 178
Review

Medicinal importance of genus Origanum: A review

Shayista Chishti¹*, Zahoor A. Kaloo¹ and Phalestine Sultan²

¹Department of Botany, University of Kashmir, Hazratbal, Srinagar, J&K, India.
²Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, J&K, India.

Accepted 1 August, 2013

Genus Origanum is important medicinally as it has antimicrobial, antifungal, antioxidant, antibacterial, antithrombin, antimutagenic, angiogenic, antiparasitic and antihyperglycaemic activities. Phytochemical investigations of the species of this genus have resulted in the extraction of a number of important bioactive compounds. This emphasizes on the need of extensive study for reporting the additional information on the medicinal importance of other unattended species of genus Origanum.

Key words: Lamiaceae, secondary metabolites, Origanum, carvacrol.

INTRODUCTION

Primary and secondary metabolites produced by plants, encompass a wide array of functions. Secondary metabolites have been subsequently exploited by humans for their beneficial role. At the same time, essential oils and their components are also being exploited for potential multipurpose functional use (Sawamura, 2000; Ormancy et al., 2001; Gianni et al., 2005). Thus, medicinal and aromatic plants are valued for their biological activities which can be justified from the fact that about 80% of the local population still depend on these plants for primary health care. The formation and accumulation of essential oil in plants has been reviewed by many workers (Guenther, 1972; Corteau, 1986; Fischer, 1991). The compounds from the plant based essential oil are useful as an alternative therapy, either directly or as models for new synthetic products (Houghton, 2000).

Origanum is an important multipurpose medicinal plant which belongs to the family Lamiaceae, tribe Mentheae and comprises of 42 species and 18 hybrids widely distributed in Eurasia and North Africa (Ietswaart, 1980; Duman et al., 1988). It is native to the mountainous parts of Mediterranean region of Europe and Asia. Following Ietswaart (1980) classification, the genus Origanum has been divided into 10 sections. These include the following.

Amaracus (Gleditsch) Bentham

Amaracus (Gleditsch) Bentham consists of seven species, all restricted in the east Mediterranean region. The species are mainly characterized by their usually purple bracts, 1 or 2-lipped sepals without teeth, and saccate corollas: Origanum boissieri Ietswaart, Origanum calcaratum Jussieu, Origanum cordifolium (Montbret et Aucher ex Bentham) Vogel, Origanum dictamus L., Origanum saccatum Davis, Origanum solymicum Davis and Origanum symes Carlstrom.

Anatolicon Bentham

Anatolicon Bentham comprises of eight species, presenting a very restricted distribution in Greece, Asia Minor, Lebanon and Libya. The plants have strongly bilabiate 5-toothed sepals: Origanum akhdarense Ietswaart et Boulos, Origanum cyrenaicum Beguinot et Vaccari, Origanum hypericifolium Schwarz et Davis, Origanum libanoticum Boissier, Origanum scabrum Boissier et Heldreich, Origanum sipyleum L., Origanum vetteri Briquet et Barbey and Origanum pampaninii (Brullo et Furnari) Ietswaart.

*Corresponding author. E-mail: shayista29nov@rediffmail.com.
Brevifilamentum letswaart

Brevifilamentum letswaart comprises of six species which are steno-endemics mainly in the eastern part of Turkey. These species are characterized by bilabiate sepal and strongly unequal length of stamens; upper two stamens are very short and enclosed in the corolla: *Origanum acutidens* (Handel-Mazzetti) letswaart, *Origanum bargyli* Moûtherde, *Origanum brevidens* (Bornmuller) Dinsmore, *Origanum haussknechtii* Boissier, *Origanum leptocladium* Boissier and *Origanum rotundifolium* Boissier.

Longitubus letswaart

Longitubus letswaart consists of a single species found in a few places in the Amanus Mountains. It is mainly characterized by the slightly bilabiate calyx, the lips of the corolla are nearly at right angles to the tube and has the presence of very short staminal filaments: *Origanum amanum* Post.

Chilocalyx (Briquet) letswaart

Chilocalyx (Briquet) letswaart includes four species which are steno-endemics of South Anatolia or of the island of Crete. The plants are slightly bilabiate, conspicuously pilose in throat sepal: *Origanum bigleri* Davis, *Origanum micranthum* Vogel, *Origanum microphyllum* (Bentham) Vogel and *Origanum minutiflorum* Schwarz et Davis.

Majorana (Miller) Bentham

Majorana (Miller) Bentham consists of three species. The species are characterized by 1-lipped sepal and green bracts. Out of these *Origanum syriacum* is further subdivided into three geographically distinct varieties; these are recognized mainly from differences in their indumentum and leaf shape: *Origanum majorana* L., *Origanum onites* L., *O. syriacum* L. Var. *syriacum*, Var. *bevanii* (Holmes) letswaart and Var. *sinaicum* (Boissier) letswaart.

Campanulaticalyx letswaart

Campanulaticalyx letswaart consists of six local endemic species. The sepal of the plants have 5 sub equal teeth and are campanulate even when bearing fruits: *Origanum dayi* Post, *Origanum isthmicum* Danin, *Origanum ramonense* Danin, *Origanum petraeum* Danin, *Origanum punonense* Danin and *Origanum jordanicum* Danin and Kunne.

Elongatispica letswaart

Elongatispica letswaart comprises of three steno-endemic species of North Africa, which are characterized by loose and tenuous spikes and tubular calyces with 5 equal teeth: *Origanum elongatum* (Bunnet) Emberger et Maire, *Origanum floribundum* L. Munby and *Origanum grosii* Pau et Font Quer ex letswaart.

Origanum

Origanum is a monospecific section consisting of the species *O. vulgare*, widely distributed in North Africa and in temperate and arid zones of Eurasia (Baser et al., 2010). Introduced by humans, this species has also been encountered in North America (letswaart, 1980). The plants of *O. vulgare* have dense spikes, and tubular 5-toothed calyces, never becoming turbinate in fruit: *O. vulgare* L.

Six subspecies have been recognized within *O. vulgare* based on differences in indumentum, number of sessile glands on leaves, bracts and calyces, and in size and colour of bracts and flowers: subsp. *vulgare*, subsp. *glandulosum* (Desfontaines) letswaart, subsp. *gracile* (Koch) letswaart, subsp. *hirtum* (Link) letswaart, subsp. *viridulum* (Martrin-Donos) Nyman and subsp. *vires* (Hoffmannsegg and Link) letswaart.

Prolaticorolla letswaart

Prolaticorolla letswaart comprises of three species endemic to eastern or western parts of the Mediterranean. These species are characterized by dense spikes and tubular calyces becoming turbinate in fruiting: *Origanum compactum* Bentham, *Origanum ehrenbergii* Boissier and *Origanum laevigatum* Boissier.

ORIGANUM SPECIES

Origanum spp. have been used for thousands of years as spice and in ethnomedicine (Fleisher and Fleisher, 1988). It has antifungal, antimicrobial, insecticidal and antioxidant activities (Kokkinis, 1997; Baydar et al., 2004; Kulsic et al., 2004; Bakkali et al., 2008). Antispasmodic, antitumor, antifungal and analgesic activities of *Origanum* spp. have been reported (E eligyar et al., 2001; Puertas et al., 2002; Sokovic et al., 2002; Sari et al., 2006). Baser (2002) and Dundar et al. (2008) reported that *Origanum* has been used as expectorant, antiparasitic, antihelminthic and for gastrointestinal complaints in Turkish folk medicine. *Origanum* spp. are also used as a carminative, diaphoretic, stimulant and tonic (Hummer et al., 1999). Silva et al. (2012) have suggested that carvacrol present in the essential oil of *Origanum* probably interferes in the release and/or synthesis of inflammatory mediators, such as the prostanoids and thus favour the healing process for gastric ulcers. Further as a
folk remedy, it is used against colic, cough, toothaches and irregular menstrual cycles (Force et al., 2000; Kintzios, 2002a). Oregano spp. are also used as powerful disinfectant, flavouring agent in perfumes and in scenting soaps (Guenther, 1949; Chieze, 1984; Kotb, 1985). As a culinary herb, it is used in flavouring food products and alcoholic beverages (Aligiannis et al., 2001; Bendahou et al., 2008; Sivropoulou et al., 1996). Oregano has a promising potential for preventing diabetes complications in the long term treatments and has an anti-inflammatory efficacy as depicted by inhibiting soybean lipoxygenase (Koukoulitza et al., 2006). The secondary metabolites of this plant have been well studied in terms of polyphenolic compounds and essential oils. Consequently, more than one hundred nonvolatile compounds have already been identified in this plant which includes flavonoids, depsides and origanosides (Nakatani et al., 1987; Lin et al., 2003; Koukoulitza et al., 2006; Liang et al., 2010; Skaltsa et al., 2010). The species of this plant which have been subjected to chemical profiling as discussed subsequently.

Origanum vulgare (L.)

O. vulgare (L.) is a medicinal and perennial plant, locally known as Jungali Tulsi or Oregano or Himalayan marjoram. It is widely distributed in Mediterranean areas and Northern Africa (Ietswaaart, 1980; Kokkini, 1997). This is the only species of genus *Origanum* which is found in India. It is found in temperate Himalayas from Kashmir to Sikkim at an altitude of 1500 to 3600 m. It is particularly grown in Simla Hills, Gilgit, Nilgris and in the Kashmir valley.

Vokou et al. (1993), Kokkini et al. (1997), D'antuonu et al. (2000) and Skoula (2002) reported carvacrol and thymol as dominant components of its essential oil. Andreas et al. (2013) found carvacrol as dominant component in the essential oil of *O. vulgare* ssp. *hirtum*. Lagouri et al. (1993), Aeschbach et al. (1994), and Yanishlieva et al. (1999) revealed that antioxidant effect of this plant is as a result of carvacrol and thymol. Mastelic et al. (2008) reported its antimicrobial and antioxidant properties and in addition revealed carvacrol's antiproliferative activity on tumor cells of Hela. Essential oil of this plant possesses a variety of biological activities, namely, antiradical (Cervato et al., 2000; Ahmad et al., 2010a, b; 2011a, b), antifungal (cleff et al., 2010; Farag et al., 1989; Curtis et al., 1996; Sahin et al., 2004), antihyperglycaemic (Lemhadi et al., 2004), antibacterial (Dorman and Deans, 2000; Govaris et al., 2001; Harpaz et al., 2003; Burt and Reinders, 2003; Burt, 2004), and antithrombin (Goun et al., 2002). Antioxidant (Lamaison et al., 1991; Lagoun and Boskou, 1996; Nakatani, 2000; Vichi et al., 2001; Stashenko et al., 2002) function of this species could become helpful agent in treatment of cancer, heart disease and high blood pressure. Cervato et al. (2000) reported that antioxidant activities of *O. vulgare* leaves can inhibit all places of lipid peroxidative processes.

O. onites

O. onites (L.) is distributed in Western and Southern Turkey. Baser et al. (2010) have reported that it grows naturally in Agean and Mediterranean regions of Turkey. It is a perennial species with woody stem and is commonly known as 'Turkish oregano'. An essential oil reported from this plant contains carvacrol as a major component and has the potential to be utilized at reasonable concentrations to control tick infestations (Sevki et al., 2008). Diversified effects such as anti spasmodic (Daferera et al., 2000, 2003), antibacterial (Burt, 2004), and antifungal (Ullte et al., 1997) have been attributed to this plant by modern pharmacological study. It is also used in flavouring Turkish delight candy (Facciola et al., 1998) and is also used in tea, salads and meat dishes (Small et al., 1997). Consumption of *O. onites* distillate has beneficial effects on lipid profiles, antioxidant status and endothelial functions in patients with mild hyperlipidaemia (Ozdemir et al., 2008).

O. syriacum

O. syriacum commonly known as 'Syrian marjoram' is an aromatic, herbaceous and perennial plant growing wild in the Sinai desert of Egypt (Tackholm, 1974). Biblical authorities consider this plant to be referred in the Bible as hyssop, particularly in the old Testament pages (Moldenke et al., 1952). It is a very popular culinary herb that has been used through ages in traditional medicine mainly in Lebanon and Arab world. It has antiseptic properties and has the ability to relieve stomach and intestinal pain. It is also used to treat heart problems, cough, toothaches (Gardner et al., 1989), cold, anxiety and wounds (Chandler et al., 2004). Kamela et al. (2001) and Baser et al. (2003) isolated thymol and carvacrol as a major constituent of its essential oil. Carvacrol is the signature chemical largely responsible for its sharp, pungent oregano flavor (Tucker et al., 1992). The volatile phenolic oil has been reported to be among the top 10 essential oils (Letchamo et al., 1995), showing antibacterial, antimycotic, antioxidative, natural food preservative and mammalian age delaying properties (Jackson and Hay, 1994; Letchamo et al., 1995).

O. majorana (L.)

O. majorana (L.) is an endemic medicinal plant of Cyprus and is commonly known as 'Sampsishia'. Johannes et al. (2002) reported sabinene linalyl acetate and Cis-sabinene...
hydrate from the essential oil of this plant species. It is used against common cold, as spasmyloytic and as an antirheumatic. Dried leaves and flowering tips of this species are used in formulation of vermouths and bitters. The essential oil is used for flavouring sauces, condiments and other products (de Vincenzi et al., 1997). In India, it is used as diuretic, antiasthmatic and an antiparalytic drug (Yadava and Khare, 1995). This was a common salad herb in the 16th century (Picton et al., 2000). It is also used in herbal vinegars and tea can be made from its leaves (Facciola et al., 1998). Furthermore, it has been used to treat cancer as well (Johnson et al., 2002; Leung et al., 2003). Stefanakis et al. (2013) have assayed the essential oil extracted from *O. majorana* L., *O. onites* L. and *O. vulgare* L. ssp. *hirtum* as potential antibacterial agents for disinfection of rotifers (*Brachionus plicatilis*). Abdel Massih et al. (2010) suggested that Marjoram extracts exhibit antiproliferative effect and have high antioxidant activity as well.

O. microphyllum

O. microphyllum is a medicinal plant species of genus *Origanum*, endemic to Cretan and commonly known as ‘Cretan marjoram’ (Karousou, 1995). Aligannis et al. (2001) and Gotsiou et al. (2002) isolated carvacrol, terpinol-4, linalool, sabinin, α-terpinene, γ-terpinene, cis-sabinene hydrate and trans-sabinene hydrate from the essential oil of this species. This small leaved oregano has a strong spicy flavor (Small et al., 1997).

O. hypericifolium

O. hypericifolium is an endemic species of Turkey. It is used as a condiment, for flavouring meat and as herbal tea for treatment of common cold and stomach complaints (Baser et al., 1994). The essential oil of pre flowering stage extracted from this plant species is carvacrol rich.

O. dictamnus

O. dictamnus commonly known as ‘Dittany of Crete’ is native to the Island of Crete, Greece. It is used in traditional medicine in Greece and all over Europe (Christos et al., 2010). It possesses numerous medicinal uses like antibacterial (Aureli et al., 1992; Biondi et al., 1993; Vokou et al., 1993) and antifungal (Arras and Picci, 1984; Collin et al., 1989; Paster et al., 1993). It is also used in cooking as well. As a culinary and medicinal herb, it is used as a tonic and digestive aid (Simon et al., 1984; Bown et al., 2001) for treating kidney and liver problems, obesity and headaches (Skoula et al., 1997). Its flowers and bracts are used to make tea and the plant when combined with garlic, thyme, salt and pepper is used in a Saxon fish sauce (Jones et al., 1973). Harvala and Skaltsa (1986) and Harvala et al. (1987) reported that the leaves of this plant contain flavonoids and flavonoid glycosides some of which have spasmyloytic activity. The essential oil has carvacrol, α-terpinene, p-cymene, carvophyllene, borneol, terpin1-en-4-ol and carvacrol methyl ether as predominant compounds. Various studies, concerning *O. dictamnus*, have shown that their oils possess strong antimicrobial activity; this activity could be attributed to their high percentage of phenolic compounds and specifically, carvacrol, thymol, p-cymene and their precursor c-terpinene (Sivropoulou et al., 1996). The variety of non-polar components such us fatty acids, lipids, sterols and essential oil has been identified from *O. dictamnus* (Revinthi-Moraiti et al., 1985; Komaitis et al., 1988).

Origanum dubium

O. dubium an endemic Mediterranean shrub is widely spread in Cyprus, Greece and in Southern Turkey. It is commonly called ‘Rigani’. An infusion of its leaves, flowering stems and flowers is used as a digestive aid while its essential oil when applied externally acts as an antirheumatic (Arnold et al., 1993). Carvacrol is the major component of its essential oil. The essential oil shows antimicrobial activity and their potential antioxidant activity was investigated and found to be significant in scavenging O₂ (Karioti et al., 2006). Further, *O. dubium* shows inhibition of soybean lipoxygenase LOX and has high inhibitory activity (Karioti et al., 2006).

O. sipyleum (L.)

O. sipyleum (L.) commonly called ‘Showy Pink Oregano’ is a polymorphic species of eastern Mediterranean area and is native to Western Anatolia, Turkey. It is used as a spice and against cough. It is also beneficial for the treatment of various respiratory and gastrointestinal disorders. The essential oil of this species is rich in α-terpinene and monoterpenes (Baser et al., 1992).

O. compactum

O. compactum is found in Morocco, South-West Spain and North Africa (Tutin et al., 1972). It is commonly called ‘Compact Oregano’. It produces one of the most powerful antimicrobial essential oil. It has antibacterial (Bouhidid, 2009), antioxidant (Bouhidid, 2008) and antifungal (Bouchra, 2003) properties. It demonstrates cytotoxic activity by oxidative stress as seen by mitochondrial damage (Bakkali, 2005). It has carvacrol, p-cymene and γ-terpinene as major components of its essential oil.

O. floribundum

O. floribundum is recorded in Algerian site. It is used to
stimulate the appetite of cattle, sheep and horses. Furthermore, it is also used against diarrhoea and other digestive disorders (Houmani et al., 2002). Carvacrol, linalool, p-cymene and ß-terpinene were isolated by Baser et al. (2000) from the essential oil of this species.

O. acutidens

O. acutidens is an endemic, herbaceous, and perennial plant growing mainly in calcareous and non calcareous rocks, slopes, and screes in the Central Anatolia region of Turkey (Davis, 1982). The major components of *O. acutidens* oil are carvacrol, p-cymene, borneol, ß-terpinene, ß-caryophyllene and linalool. Sokmen et al. (2004) has suggested that its essential oil has antagonistic activity against food-borne pathogenic bacteria and hence could be used in the food and pharmaceutical industries, and as an alternative to common synthetic antimicrobial products.

DISCUSSION

The aim of the present review is to present comprehensive information about the medicinal importance of genus *Origanum*. Although, there are 42 species of genus *Origanum*, only about less than 50% species have been subjected to chemical profiling. Other species have not been broadly subjected to chemical characterization and biological studies as evident from perusal of the literature. Current studies have shown that the essential oil, as well as their active principles possess several pharmacological properties like antimutagenic, angiogenic, antiparasitic, antiplatelet, antielastase, antihepatotoxic ones (Baser, 2008). The species studied by various workers indicate that the genus *Origanum* is a potent source for isolation of a variety of bioactive molecules like terpenes, phenols, flavonoids, etc. Thereby, this genus has important biological activities and acts against different types of diseases and is being used for culinary and economic uses. Furthermore it is also used as a feed additive, in honeybee breeding and in treatment of gastrointestinal ailments (Baser, 2008).

The recent scientific data and the rich historical evidence of its medicinal uses could support further research as well as its use as a safe herbal medicinal product. The antimicrobial activity can promote the use of the aforementioned natural products as potent preservative and conservation agents, not only in the food industry after testing the toxic and irritating effects on humans, but also in cosmetics and medical preparations. The present literature study further reveals that the biological properties of the investigated genus are not due only to their essential oils and their main compounds such as cavaclor and thymol, but also to the other polar constituents acting synergistically or possessing different biological activities.

Conclusion

The synthesis of medicinally important phytochemicals by the species of genus *Origanum* has been established beyond doubt. The plant species are being used both in allopathic and traditional system of medicine as a remedial measure for number of ailments. Since, only limited species are being subjected to phytochemical investigation, there is a need to broaden this study for further phytochemical and pharmacological studies for the rest of the species as well, which may prove of vital importance and could lead to new therapeutic products. Furthermore, since the plant extracts of the genus *Origanum* and its essential oils are used as dietary supplements or for medicinal purposes, it has become crucial to screen them for ensuring authenticity and product quality as toxic adulterants may prove to be life threatening.

REFERENCES

Ietswaart (1984). The Macdo...

Antimicrobial effect of Microdacyn 60, OxOral, and sodium hypochlorite 5.25% in anaerobic bacteria

Elvia Denisse Mena-Mendiivil, Jorge Jaime Flores-Treviño, Idalia Rodríguez-Delgado, Myriam A. de la Garza-Ramos, Hilda H. Torre-Martínez and Gustavo Israel Martínez-González

1Facultad de Odontología, Universidad Autonoma de Nuevo Leon, Calle Dr. Eduardo Aguirre Pequeño s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico.
2Centro de Investigación y Desarrollo en Ciencias de la Salud, Calle Dr. Carlos Canseco y Ave. Gonalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico.

Accepted 19 September, 2013

Irrigants have traditionally been used in the root canal. Sodium hypochlorite (NaOCl) is the most commonly used solution, because of its advantages; however, it is known to be toxic to periradicular tissues and can cause necrosis of support tissues and edema. The objective of this study is to compare the antimicrobial effect of Microdacyn 60®, OxOral®, and NaOCl 5.25% against Streptococcus sobrinus, Porphyromona gingivalis, Streptococcus intermedius, Tanerella forsyntensis, and Enterococcus faecalis. Thirty-three extracted uniradicular teeth were inoculated with 10 µl of a mixture of anaerobic bacteria. After seven days, the samples were irrigated with the solutions and samples were taken. These were placed in an Eppendorf tube and incubated at 37°C. After seven days, a sample was taken for a bacterial count. Polymerase chain reaction (PCR) was performed to identify the bacteria present in the samples. Student’s t test and analysis of variance were used with a 95% confidence interval. NaOCl showed complete bacteria elimination with no statistically significant difference with OxOral. The saline and Microdacyn 60 groups showed greater bacterial growth than OxOral. In the Microdacyn 60 group, E. faecalis was the most resistant microorganism. NaOCl 5.25% had a greater antibacterial effect, followed by OxOral, and lastly by Microdacyn 60.

Key words: Irrigants, sodium hypochlorite (NaOCl), Enterococcus faecalis, Microdacyn 60, OxOral, irrigation.

INTRODUCTION

Successful treatment of the root canal system depends on the method and quality of instrumentation, irrigation, disinfection, and three-dimensional obturation of the root canal space (Himel and DiFore, 2009; Canalda-Sahli, 2006). For this, different types of handpieces, machining, and irrigation solutions have been used to obtain a clean space, shaped to receive a filling (Sen et al., 1995). Basrani and Cañete (1988) define endodontic irrigation as the introduction of one or more solutions in the pulp chamber and the root canals with subsequent aspiration. Furthermore, it is an essential complement to instrumentation; therefore, it must be used before, during, and after it. Sodium hypochlorite (NaOCl) is the most commonly used irrigating solution in current practice because of its effectiveness in eliminating vital and non-vital tissue and its broad effect against bacteria, spores, fungi and viruses (including HIV, rotavirus, HSV-1 and Hepatitis A and B) (Siqueira et al., 2000). However, NaOCl has toxic effects on vital tissues, which can result in haemolysis, skin ulceration, and necrosis (Hülsmann and Hahn, 2000).
It does not remove the smear layer since it only acts on the organic matter in the pulp and predentine (Di Lenarda et al., 2000). In the past 20 years, super oxidized solutions (SOSS) have shown to be potent antimicrobial agents and disinfectants through oxidative damage (Huang et al., 2008). Electrolyzed water (EW) contains a mixture of inorganic oxidants such as hypochlorous acid (HClO), hypochlorous acidic ion (ClO\(^-\)), chlorine (Cl\(_2\)), hydroxide (OH), and ozone (O\(_3\)), which are effective for inactivating a variety of microorganisms (Chittoria, 2007). This product is prepared with purified water plus a saturated solution of sodium chloride (NaCl). SOSS have been used mainly as disinfectants in endoscopic equipment and minimally invasive instruments as well as for washing and disinfecting hemodialysis equipment. Different types of electrolyzed solutions have been the subject of many studies and reviews as a method of decontaminating vegetables, killing infectious strains of Salmonella, Bacillus anthracis, and many other infectious strains (Horiba et al., 1999; Guentzel et al., 2008). Their mechanism of action is based on the effect that Na\(^+\), Cl\(^-\), and O\(_3\) ions have on the bacterial wall, where they cause protein denaturation, and fragmentation of carbohydrates and lipids, in addition to viral alteration of capsids, DNAses, and RNAses (Tang et al., 2011). They have been approved by the Food and Drug Administration (FDA) to debride traumatic wounds and burns, to lubricate and moisten wounds and burns, and to disinfect medical equipment (Gutierrez, 2006). OxOral\(^\circ\) is a pH neutral SOSS 0.005% (50 ppm) of active Cl\(^-\), formulated for dilution at 1:5. It is effective against viruses, fungi, and Gram-positive and Gram-negative bacteria (PLM México, 2012). Microcyn 60\(^\circ\) (60 ppm) is an electrolyzed solution manufactured in Mexico for the care of skin wounds. It does not cause irritation, or sensitize, and requires no rinsing. It is an antiseptic and disinfectant with a neutral pH and a broad spectrum against microorganisms. Its bactericidal effect takes place in 30 s and disinfection occurs in 15 min with a long shelf life (>12 months). It is a hypotonic solution with an osmolarity of 13 mOsm/kg (Chittoria et al., 2007; Landa-Solis et al., 2005; Yahagi et al., 2000).

The aim of this study is to compare the antimicrobial effect of two electrolyzed water solutions, Microdacyn 60 and OxOral, and NaOCl 5.25% against Streptococcus sobrinus, Porphyromona gingivalis, Streptococcus intermedius, Tannerella forsythensis, and Enterococcus faecalis.

MATERIALS AND METHODS

Five anaerobic bacteria strains from the laboratory of the School of Dentistry of the Universidad Autonoma de Nuevo Leon that were present in necrotic tissue were selected: *S. sobrinus* (ATCC 27607), *P. gingivalis* (ATCC 33277), *S. intermedius* (ATCC 27335), *T. forsythensis* (ATCC43037) and *E. faecalis* (ATCC 11420). Uniradicular teeth with a single straight canal, complete root formation, free of fractures, and free of caries in their root portion with a closed apex were also selected.

Preparation of teeth

A total of 33 extracted human single root teeth were selected. The crowns were sectioned at the cementoenamel junction and the working length was determined with #15 K-type Maillefer file subtracting a millimeter from its outlet, flush with the apical foramen. The teeth were instrumented to a #40 apical diameter with ProTaper Universal files (Dentsply International, York, PA) and using irrigation with NaOCl 5.25%. After instrumentation to maintain the canal permeable, root canals were dried with Hygenic #40 Sterile Absorbent Paper Points (Hygenic Corporation, Akron, Ohio) and canals were filled with 17% ethylenediaminetetraacetic acid (EDTA) for 5 min after which the solution was removed with a NaOCl 5.25% wash and again dried with paper points. The outer surface of the roots was covered with a layer of clear lacquer, which also sealed the apical foramen to avoid external contamination.

At the end of this process, teeth were placed in a rack made of heavy silicone (Speedex Trial™, Coltene whaledenta, Altstätten, Switzerland). The teeth were autoclaved for 30 min at 121°C and under 15 pounds of pressure. After this, a sample of the specimens was taken with a #40 Hygenic sterile paper point (Coltene) and placed in an Eppendorf tube with trypticase soy broth for incubation for 24 h. At the end of this time, if there was no turbidity, this showed that there were no bacteria. If turbidity was present, the presence of bacteria needed to be confirmed by seeding this broth in a Petri dish with 5% sheep blood agar and incubating it for 24 h. Subsequently, the test specimen was resterilized and the procedure repeated.

Preparation of strains

Inside an anaerobic chamber, 100 µl of each bacterium was obtained with an Eppendorf pipette and inoculated individually in Eppendorf tubes with trypticase soy broth. The tubes were placed in an incubator at 37°C for 7 days to activate them. At the end of this time, 100 µl from each tube was inoculated and plated on 5% sheep blood agar plates individually, sealing them with tape and placing them in airtight bags. The dishes were taken to the incubator for 7 more days. After this time, Gram staining of the bacterial colonies was performed to observe their morphology with an optical microscope at 100x, and the viability of each bacterial strain was confirmed.

To confirm optimal growth of the strains, 1000 µl were taken from each tube containing the reactive bacteria and this was placed in a single test tube containing 5000 µl of trypticase soy broth to mix the five bacterial strains, obtaining a total volume of 10,000 µl, simulating the clinical conditions of the oral environment, living as an ecological community and not isolated.

Inoculation of specimens and placement of solutions

The teeth were divided into three experimental and one control group (10 teeth in each experimental group and 3 teeth in the control group). These were placed in individual silicone racks for easy handling inside the anaerobic chamber.

After sterilization of dental specimens was proven and the bacteria mixture cultured, starting with a bacterial concentration of 0.5×10\(^6\) CFU/ml, 10 µl of this mixture was used to fill the root canal using an Eppendorf micropipette, slowly withdrawing it from the canal and later sealing it with sterile tape. Each group was placed in airtight sealed bags and subsequently incubated for 7 days. After bacterial incubation, we proceeded to irrigate the samples with different solutions under aseptic conditions and in strict
anaerobiosis: Group 1, sterile saline/NaCl (n = 3); Group 2, Microdacyn 60 (n = 10); Group 3, OxOral (n = 10); and Group 4, Sodium Hypochlorite/NaOCl 5.25% (n = 10). The samples were irrigated with 5 ml of each solution for 5 min with a 5 ml syringe and a NaviTip ISO 30 (Ultradent) hypodermic needle, and afterwards rinsed with sterile saline solution. The same procedure was performed for each group.

Sampling
Five minutes after irrigating each specimen, they were dried with sterile paper points and a sample was collected from each with a paper point previously dampened with sterile saline. Each sample was introduced into an Eppendorf tube with 1,000 µl of tryptase soy broth. Subsequently, the tubes were placed in a Vortex Maxi-Mix Thermolyne M16700 (Thermo, Fisher Scientific Inc., Asheville, NC) for homogenization, and again in the anaerobic chamber; 100 µl was drawn from each tube and its contents were seeded in Petri dishes with 5% sheep blood agar and incubated at 37°C for seven days.

Bacterial count
After seven days, a sample was taken from each of the dishes to make a 10² dilution in sterile bidistilled water, since this dilution proved to be the best to carry out a viable cell count. From the dilution, 10 µl was obtained and placed in a Neubauer chamber and a bacterial cell count was performed under an optical microscope to determine the number of cells per milliliter. Mean colony-forming unit (CFU) counts were log transformed for performing calculations and statistical analyses.

Statistical analysis
To compare results between irrigation solutions and each irrigation solution, analysis of variance (ANOVA) was used. Tukey honestly significant difference (HSD) test was also applied to specifically determine significant differences between irrigants. The tests were performed considering an alpha of 0.05 and a confidence interval (CI) of 95%.

RESULTS
The mean number of bacteria present in the different solutions was the following: the three elements irrigated with NaCl (control group) had an average of 3.52 ± 0.16 CFU/ml (95% CI: 3.12 to 3.92). The 10 elements irrigated with Microdacyn 60 had a mean of 2.57 ± 1.58 CFU/ml (95% CI: 1.44 to 3.69), while the 10 elements irrigated with OxOral had a mean of 0.26 ± 0.46 CFU/ml (95% CI: 0.08 to 0.59). The 10 elements irrigated with NaOCl showed no bacterial growth (Figure 1). Values for NaCl were in the range of 3.40 to 3.70 CFU/ml. The sample irrigated with Microdacyn 60 had values between 0.90 and 5.85 CFU/ml, while the sample irrigated with OxOral was 0.00 to 1.40 CFU/ml. The best antimicrobial effect was observed with NaOCl, followed by OxOral. There was no statistically significant difference between OxOral and NaOCl (P = .924) or between NaCl and Microdacyn 60 (P = .408). A statistically significant difference was found between the groups NaCl and Microdacyn 60 versus OxOral and NaOCl (P < .01).

DISCUSSION
The results show a greater antibacterial effect with NaOCl, followed by OxOral, with a statistically significant difference between the control group (NaCl) plus Microdacyn 60 and OxOral and NaOCl. These results are similar to those by Prabhakar et al. (2010) who analyzed the antimicrobial efficacy of Triphala, green tea polyphenols, MTAD, and NaOCl 5% against _E. faecalis_ biofilm formation on tooth substrate. NaOCl 5% showed complete bacterial inhibition against _E. faecalis_ biofilm formation.

Retamozo et al. (2010) investigated the concentration and irrigation time of NaOCl for disinfecting dentin canals colonized by _E. faecalis_. Their findings were that irrigation with NaOCl 5.25% for 40 min was the most effective, while irrigation with lower concentrations and lower exposure times to NaOCl were not effective against _E. faecalis_. They concluded that high concentrations and long exposure to NaOCl are needed for removal of _E. faecalis_ in contaminated dentin. These results agree with those of the present study, although the exposure time in our study was 5 min; however, one of the drawbacks of our study was that NaOCl was not neutralized with sodium thiosulfate. Prabhakar et al. (2010) used human single premolars and NaOCl 5% without neutralization by sodium thiosulfate and found maximum antibacterial activity against _E. faecalis_ biofilm with an exposure time of 10 min.

Root canal irrigation is an important part of the preparation procedure. NaOCl and H₂O₂ are the irrigants most frequently used in the debridement and disinfection of the root canal. In the clinical setting, irrigant exposure time should be short to avoid patient discomfort and allow better endodontic conditions for the clinician. In a review of complications of NaOCl during root canal irrigation, Hulsmann and Hahn (2000) reported that NaOCl has toxic effects on vital tissues, resulting in haemolysis, skin ulceration and necrosis. It can also damage clothing and the eye, and produce tissue necrosis when NaOCl is injected beyond the apical foramen when wide apical foramina is present or the apical constriction has been destroyed during root canal preparation.

Electrolyzed water (superoxidized solution) has been used to disinfect produce because of its strong bactericidal effect (Guentzel et al., 2008; Huang et al., 2008). The active substances in SOSS are Cl₂, HClO, and ClO⁻ (Tang et al., 2011; Huang et al., 2008; Landa-Solis et al., 2005). It has been used in dentistry for disinfection of dental instruments, and root canal irrigation (Horiba et al., 1999). Horiba et al. (1999) also studied the bacteriostatic/bactericidal effect of electrolyzed neutral water against 15 bacteria strains obtained from infected root canals. They found that electrolyzed neutral water had a bactericidal or growth-inhibitory effect against...
the bacteria studied.

With regard to biofilm, Ozaki et al. (2012) studied biofilm removal and antimicrobial effects of microbubbled tap water and electrolyzed water with Candida albicans and Streptococcus mutans. They found that electrolyzed water in the microbubbled state was effective against both planktonic and biofilm microorganisms. This is evidence that superoxidized solutions could be effective in removing biofilm. Studies with microorganisms present in the oral cavity and dental materials need to be carried out.

Our results found a growth-inhibitory effect with the two electrolyzed solutions studied (Microdacyn 60 and OxOral). OxOral showed a greater effect than Microdacyn 60 and an effect similar to NaOCl, although this similarity was not statistically significant. The difference in effectiveness between Microdacyn 60 and OxOral could be because one comes in a closed container and the other in an open container, but this requires further study.

Superoxidized solutions represent a possible alternative to NaOCl for irrigating root canals; however, these formulas need to be tested clinically in order to determine their antibacterial effect in root canal procedures when confronted with the diversity of organisms that populate necrotic root canals.

REFERENCES

Figure 1. Effect of NaCl, superoxidized solutions (Microdacyn 60, OxOral), and NaOCl 5.25%, on mean bacterial growth.

Prabhakar J, Senthilkumar M, Priya MS, Mahalakshmi K, Sehgal PK,
UPCOMING CONFERENCES

International Conference on Biological, Health and Environmental Sciences, London, UK, 19 Jan 2014

International Conference on Psychology, Psychiatry, Neurological, Behavioral and Cognitive Sciences, Barcelona, Spain, 27 Feb 2014
Conferences and Advert

July 2014
17th World Congress of Basic and Clinical Pharmacology,
Cape Town, South Africa, 13 Jul 2014

January 2014
International Conference on Medical, Biological and Pharmaceutical Sciences,
London, UK, 19 Jan 2014
Journal of Pharcomagnosy and Phytotherapy

Related Journals Published by Academic Journals

■ African Journal of Pharmacy and Pharmacology
■ Research in Pharmaceutical Biotechnology
■ Medical Practice and Reviews
■ Journal of Clinical Pathology and Forensic Medicine
■ Journal of Medicinal Plant Research
■ Journal of Drug Discovery and Development
■ Journal of Clinical Virology Research