ABOUT AJB

The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals.

African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajb@academicjournals.org.

With questions or concerns, please contact the Editorial Office at ajb@academicjournals.org.
Editor-In-Chief

George Nkem Ude, Ph.D
Plant Breeder & Molecular Biologist
Department of Natural Sciences
Crawford Building, Rm 003A
Bowie State University
14000 Jericho Park Road
Bowie, MD 20715, USA

Editor

N. John Tonukari, Ph.D
Department of Biochemistry
Delta State University
PMB 1
Abraka, Nigeria

Associate Editors

Prof. Dr. AE Aboulata
Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt
30 D, El-Karama St., Alf Maskan, P.O. Box 1567,
Ain Shams, Cairo,
Egypt

Dr. S.K Das
Department of Applied Chemistry
and Biotechnology, University of Fukui,
Japan

Prof. Okoh, A. I.
Applied and Environmental Microbiology Research
Group (AEMREG),
Department of Biochemistry and Microbiology,
University of Fort Hare.
P/Bag X1314 Alice 5700,
South Africa

Dr. Ismail TURKOGLU
Department of Biology Education,
Education Faculty, Firat University,
Elazığ,
Turkey

Prof T.K.Raja, PhD FRSC (UK)
Department of Biotechnology
PSG COLLEGE OF TECHNOLOGY (Autonomous)
(Affiliated to Anna University)
Coimbatore-641004, Tamilnadu,
INDIA.

Dr. George Edward Mamati
Horticulture Department,
Jomo Kenyatta University of Agriculture and Technology,
P. O. Box 62000-00200,
Nairobi, Kenya.

Dr. Gitonga
Kenya Agricultural Research Institute,
National Horticultural Research Center,
P.O Box 220,
Thika, Kenya.
Editorial Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Sagadevan G. Mundree</td>
<td>Department of Molecular and Cell Biology</td>
</tr>
<tr>
<td></td>
<td>University of Cape Town</td>
</tr>
<tr>
<td></td>
<td>Private Bag Rondebosch 7701 South Africa</td>
</tr>
<tr>
<td>Dr. Martin Fregene</td>
<td>Centro Internacional de Agricultura Tropical (CIAT)</td>
</tr>
<tr>
<td></td>
<td>Km 17 Cali-Palmira Recta</td>
</tr>
<tr>
<td></td>
<td>AA6713, Cali, Colombia</td>
</tr>
<tr>
<td>Prof. O. A. Ogunseitan</td>
<td>Laboratory for Molecular Ecology</td>
</tr>
<tr>
<td></td>
<td>Department of Environmental Analysis and Design</td>
</tr>
<tr>
<td></td>
<td>University of California, Irvine, CA 92697-7070, USA</td>
</tr>
<tr>
<td>Dr. Ibrahima Ndoye</td>
<td>UCAD, Faculte des Sciences et Techniques</td>
</tr>
<tr>
<td></td>
<td>Departement de Biologie Vegetale</td>
</tr>
<tr>
<td></td>
<td>BP 5005, Dakar, Senegal</td>
</tr>
<tr>
<td></td>
<td>Laboratoire Commun de Microbiologie</td>
</tr>
<tr>
<td></td>
<td>IRD/ISRA/UCAD</td>
</tr>
<tr>
<td></td>
<td>BP 1386, Dakar, Senegal</td>
</tr>
<tr>
<td>Dr. Bamidele A. Iwalokun</td>
<td>Biochemistry Department</td>
</tr>
<tr>
<td></td>
<td>Lagos State University</td>
</tr>
<tr>
<td></td>
<td>P.M.B. 1087. Apapa – Lagos, Nigeria</td>
</tr>
<tr>
<td>Dr. Jacob Hodeba Mignouna</td>
<td>Associate Professor, Biotechnology</td>
</tr>
<tr>
<td></td>
<td>Virginia State University</td>
</tr>
<tr>
<td></td>
<td>Agricultural Research Station Box 9061</td>
</tr>
<tr>
<td></td>
<td>Petersburg, VA 23806, USA</td>
</tr>
<tr>
<td>Dr. Bright Ogheneovo Agindotan</td>
<td>Plant, Soil and Entomological Sciences Dept</td>
</tr>
<tr>
<td></td>
<td>University of Idaho, Moscow</td>
</tr>
<tr>
<td></td>
<td>ID 83843, USA</td>
</tr>
<tr>
<td>Dr. A.P. Njukeng</td>
<td>Département de Biologie Végétale</td>
</tr>
<tr>
<td></td>
<td>Faculté des Sciences</td>
</tr>
<tr>
<td></td>
<td>B.P. 67 Dschang, Université de Dschang</td>
</tr>
<tr>
<td></td>
<td>Rep. du CAMEROUN</td>
</tr>
<tr>
<td>Dr. E. Olatunde Farombi</td>
<td>Drug Metabolism and Toxicology Unit</td>
</tr>
<tr>
<td></td>
<td>Department of Biochemistry</td>
</tr>
<tr>
<td></td>
<td>University of Ibadan, Ibadan, Nigeria</td>
</tr>
<tr>
<td>Dr. Stephen Bakiamoh</td>
<td>Michigan Biotechnology Institute International</td>
</tr>
<tr>
<td></td>
<td>3900 Collins Road</td>
</tr>
<tr>
<td>Dr. N. A. Amusa</td>
<td>Institute of Agricultural Research and Training</td>
</tr>
<tr>
<td></td>
<td>Obafemi Awolowo University</td>
</tr>
<tr>
<td></td>
<td>Moor Plantation, P.M.B 5029, Ibadan, Nigeria</td>
</tr>
<tr>
<td>Dr. Desouky Abd-El-Haleem</td>
<td>Environmental Biotechnology Department & Bioprocess Development Department</td>
</tr>
<tr>
<td></td>
<td>Genetic Engineering and Biotechnology Research Institute (GEBRI),</td>
</tr>
<tr>
<td></td>
<td>Mubarak City for Scientific Research and Technology Applications,</td>
</tr>
<tr>
<td></td>
<td>New Burg-Elarab City, Alexandria, Egypt</td>
</tr>
<tr>
<td>Dr. Simeon Onoli Kotchoni</td>
<td>Department of Plant Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>Institute of Botany, Kirschallee 1,</td>
</tr>
<tr>
<td></td>
<td>University of Bonn, D-53115 Germany</td>
</tr>
<tr>
<td>Dr. Eriola Betiku</td>
<td>German Research Centre for Biotechnology, Biochemical Engineering Division,</td>
</tr>
<tr>
<td></td>
<td>Mascheroder Weg 1, D-38124, Braunschweig, Germany</td>
</tr>
<tr>
<td>Dr. Daniel Masiga</td>
<td>International Centre of Insect Physiology and Ecology,</td>
</tr>
<tr>
<td></td>
<td>Nairobi, Kenya</td>
</tr>
<tr>
<td>Dr. Essam A. Zaki</td>
<td>Genetic Engineering and Biotechnology Research Institute, GEBRI, Research</td>
</tr>
<tr>
<td></td>
<td>Area, Borg El Arab, Post Code 21934, Alexandria Egypt</td>
</tr>
</tbody>
</table>
Dr. Alfred Dixon
International Institute of Tropical Agriculture (IITA)
PMB 5320, Ibadan
Oyo State, Nigeria

Dr. Sankale Shompole
Dept. of Microbiology, Molecular Biology and Biochemistry,
University of Idaho, Moscow,
ID 83844, USA.

Dr. Mathew M. Abang
Germplasm Program
International Center for Agricultural Research in the Dry Areas (ICARDA)
P.O. Box 5466, Aleppo, SYRIA.

Dr. Solomon Olawale Odemuyiwa
Pulmonary Research Group
Department of Medicine
550 Heritage Medical Research Centre
University of Alberta
Edmonton
Canada T6G 2S2

Prof. Anna-Maria Botha-Oberholster
Plant Molecular Genetics
Department of Genetics
Forestry and Agricultural Biotechnology Institute
Faculty of Agricultural and Natural Sciences
University of Pretoria
ZA-0002 Pretoria, South Africa

Dr. O. U. Ezeronye
Department of Biological Science
Michael Okpara University of Agriculture
Umudike, Abia State, Nigeria.

Dr. Joseph Hounhouigan
Maître de Conférence
Sciences et technologies des aliments
Faculté des Sciences Agronomiques
Université d’Abomey-Calavi
01 BP 526 Cotonou
République du Bénin

Prof. Christine Rey
Dept. of Molecular and Cell Biology,
University of the Witwatersand,
Private Bag 3, WITS 2050, Johannesburg, South Africa

Dr. Kamel Ahmed Abd-Elsalam
Molecular Markers Lab. (MML)
Plant Pathology Research Institute (PPathRI)
Agricultural Research Center, 9-Gamma St., Orman,
12619,
Giza, Egypt

Dr. Jones Lemchi
International Institute of Tropical Agriculture (IITA)
Onne, Nigeria

Prof. Greg Blatch
Head of Biochemistry & Senior Wellcome Trust Fellow
Department of Biochemistry, Microbiology & Biotechnology
Rhodes University
Grahamstown 6140
South Africa

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Dr. Jackie Hughes
Research-for-Development
International Institute of Tropical Agriculture (IITA)
Ibadan, Nigeria

Dr. Robert L. Brown
Southern Regional Research Center,
U.S. Department of Agriculture,
Agricultural Research Service,
New Orleans, LA 70179.

Dr. Deborah Rayfield
Physiology and Anatomy
Bowie State University
Department of Natural Sciences
Crawford Building, Room 003C
Bowie MD 20715,USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Marlene Shehata</td>
<td>University of Ottawa Heart Institute</td>
</tr>
<tr>
<td></td>
<td>Genetics of Cardiovascular Diseases</td>
</tr>
<tr>
<td></td>
<td>40 Ruskin Street</td>
</tr>
<tr>
<td></td>
<td>K1Y-4W7, Ottawa, ON, CANADA</td>
</tr>
<tr>
<td>Dr. Hany Sayed Hafez</td>
<td>The American University in Cairo, Egypt</td>
</tr>
<tr>
<td>Dr. Clement O. Adebooye</td>
<td>Department of Plant Science</td>
</tr>
<tr>
<td></td>
<td>Obafemi Awolowo University, Ile-Ife, Nigeria</td>
</tr>
<tr>
<td>Dr. Ali Demir Sezer</td>
<td>Marmara Universitesi Eczacilik Fakultesi, Tibbiye cad. No: 49, 34668, Haydarpasa, Istanbul, Turkey</td>
</tr>
<tr>
<td>Dr. Ali Gazanchain</td>
<td>P.O. Box: 91735-1148, Mashhad, Iran.</td>
</tr>
<tr>
<td>Dr. Anant B. Patel</td>
<td>Centre for Cellular and Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>Uppal Road, Hyderabad 500007</td>
</tr>
<tr>
<td>Prof. Arne Elofsson</td>
<td>Department of Biophysics and Biochemistry</td>
</tr>
<tr>
<td></td>
<td>Bioinformatics at Stockholm University, Sweden</td>
</tr>
<tr>
<td>Prof. Bahram Goliaei</td>
<td>Departments of Biophysics and Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>Laboratory of Biophysics and Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>University of Tehran, Institute of Biochemistry and Biophysics</td>
</tr>
<tr>
<td>Dr. Nora Babudri</td>
<td>Dipartimento di Biologia cellulare e ambientale</td>
</tr>
<tr>
<td></td>
<td>Università di Perugia, Via Pascoli, Italy</td>
</tr>
<tr>
<td>Dr. S. Adesola Ajayi</td>
<td>Seed Science Laboratory</td>
</tr>
<tr>
<td></td>
<td>Department of Plant Science</td>
</tr>
<tr>
<td></td>
<td>Faculty of Agriculture</td>
</tr>
<tr>
<td></td>
<td>Obafemi Awolowo University</td>
</tr>
<tr>
<td>Dr. Yee-Joo TAN</td>
<td>Department of Microbiology</td>
</tr>
<tr>
<td></td>
<td>Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore</td>
</tr>
<tr>
<td></td>
<td>MD4, 5 Science Drive 2, Singapore 117597, Singapore</td>
</tr>
<tr>
<td>Prof. Hidetaka Hori</td>
<td>Laboratories of Food and Life Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan</td>
</tr>
<tr>
<td>Prof. Thomas R. DeGregori</td>
<td>University of Houston, Texas 77204 5019, USA</td>
</tr>
<tr>
<td>Dr. Wolfgang Ernst Bernhard Jelkmann</td>
<td>Medical Faculty, University of Lübeck, Germany</td>
</tr>
<tr>
<td>Dr. Moktar Hamdi</td>
<td>Department of Biochemical Engineering, Laboratory of Ecology and Microbial Technology, National Institute of Applied Sciences and Technology, BP: 676. 1080, Tunisia</td>
</tr>
<tr>
<td>Dr. Salvador Ventura</td>
<td>Department de Bioquímica i Biologia Molecular</td>
</tr>
<tr>
<td></td>
<td>Institut de Biotecnologia i de Biomedicina</td>
</tr>
<tr>
<td></td>
<td>Universitat Autònoma de Barcelona Bellaterra-08193, Spain</td>
</tr>
<tr>
<td>Dr. Claudio A. Hetz</td>
<td>Faculty of Medicine, University of Chile</td>
</tr>
<tr>
<td></td>
<td>Independencia 1027, Santiago, Chile</td>
</tr>
<tr>
<td>Prof. Felix Dapare Dakora</td>
<td>Research Development and Technology Promotion</td>
</tr>
<tr>
<td></td>
<td>Cape Peninsula University of Technology, Room 2.8 Admin. Bldg. Keizersgracht, P.O. 652, Cape Town 8000, South Africa</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. Geremew Bultosa</td>
<td>Department of Food Science and Post harvest Technology</td>
</tr>
<tr>
<td>Dr. José Eduardo Garcia</td>
<td>Londrina State University</td>
</tr>
<tr>
<td>Prof. Nirbhay Kumar</td>
<td>Malaria Research Institute</td>
</tr>
<tr>
<td>Prof. M. A. Awal</td>
<td>Department of Anatomy and Histplogy, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh</td>
</tr>
<tr>
<td>Prof. Christian Zwieb</td>
<td>Department of Molecular Biology</td>
</tr>
<tr>
<td>Prof. Danilo López-Hernández</td>
<td>Instituto de Zoología Tropical, Facultad de Ciencias, Universidad Central de Venezuela. Institute of Research for the Development (IRD), Montpellier, France</td>
</tr>
<tr>
<td>Prof. Donald Arthur Cowan</td>
<td>Department of Biotechnology</td>
</tr>
<tr>
<td>Dr. Ekhaise Osaro Frederick</td>
<td>University Of Benin, Faculty of Life Science Department of Microbiology</td>
</tr>
<tr>
<td>Dr. Luisa Maria de Sousa Mesquita Pereira</td>
<td>IPATIMUP R. Dr. Roberto Frias, s/n 4200-465 Porto Portugal</td>
</tr>
<tr>
<td>Dr. Min Lin</td>
<td>Animal Diseases Research Institute</td>
</tr>
<tr>
<td>Prof. Nobuyoshi Shimizu</td>
<td>Department of Molecular Biology, Center for Genomic Medicine</td>
</tr>
<tr>
<td>Dr. Adewunmi Babatunde Idowu</td>
<td>Department of Biological Sciences University of Agriculture Abia</td>
</tr>
<tr>
<td>Dr. Yifan Dai</td>
<td>Associate Director of Research</td>
</tr>
<tr>
<td>Dr. Zhongming Zhao</td>
<td>Department of Psychiatry</td>
</tr>
<tr>
<td>Prof. Giuseppe Novelli</td>
<td>Human Genetics, Department of Biopathology, Tor Vergata University, Rome, Italy</td>
</tr>
<tr>
<td>Dr. Moji Mohammadi</td>
<td>402-28 Upper Canada Drive</td>
</tr>
</tbody>
</table>
Prof. Jean-Marc Sabatier
Directeur de Recherche Laboratoire ERT-62
Ingénierie des Peptides à Visée Thérapeutique,
Université de la Méditerranée-Ambrilia Biopharma inc.,
Faculté de Médecine Nord, Bd Pierre Dramard,
13916, Marseille cédex 20. France

Dr. Fabian Hoti
PneumoCarr Project
Department of Vaccines
National Public Health Institute
Finland

Prof. Irina-Draga Caruntu
Department of Histology
Gr. T. Popa University of Medicine and Pharmacy
16, Universitatii Street, Iasi, Romania

Dr. Dieudonné Nwaga
Soil Microbiology Laboratory,
Biotechnology Center. PO Box 812, Plant Biology Department, University of Yaoundé I, Yaoundé, Cameroon

Dr. Gerardo Armando Aguado-Santacruz
Biotechnology CINVESTAV-Unidad Irapuato
Departamento Biotecnología
Km 9.6 Libramiento norte Carretera Irapuato-León Irapuato, Guanajuato 36500, Mexico

Dr. Abdolkaim H. Chehregani
Department of Biology
Faculty of Science
Bu-Ali Sina University
Hamedan, Iran

Dr. Abir Adel Saad
Molecular oncology
Department of Biotechnology
Institute of graduate Studies and Research Alexandria University, Egypt

Dr. Azizul Baten
Department of Statistics
Shah Jalal University of Science and Technology
Sylhet-3114, Bangladesh

Dr. Bayden R. Wood
Australian Synchrotron Program
Research Fellow and Monash Synchrotron Research Fellow Centre for Biospectroscopy
School of Chemistry Monash University Wellington Rd. Clayton, 3800 Victoria, Australia

Dr. G. Reza Balali
Molecular Mycology and Plant Pthology
Department of Biology
University of Isfahan
Isfahan, Iran

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108 USA

Prof. H. Sunny Sun
Institute of Molecular Medicine
National Cheng Kung University Medical College
1 University road Tainan 70101, Taiwan

Prof. Ima Nirwana Soelaiman
Department of Pharmacology
Faculty of Medicine
Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur, Malaysia

Prof. Tunde Ogunsanwo
Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

Dr. Evans C. Egwim
Federal Polytechnic, Bida
Science Laboratory Technology Department, PMB 55, Bida, Niger State, Nigeria
Prof. George N. Goulielmos
Medical School,
University of Crete
Voutes, 715 00 Heraklion, Crete,
Greece

Dr. Uttam Krishna
Cadila Pharmaceuticals limited ,
India 1389, Tarsad Road,
Dhalka, Dist: Ahmedabad, Gujarat,
India

Prof. Mohamed Attia El-Tayeb Ibrahim
Botany Department, Faculty of Science at Qena,
South Valley University, Qena 83523,
Egypt

Dr. Nelson K. Ojijo Olang’o
Department of Food Science & Technology,
JUAT P. O. Box 62000, 00200, Nairobi,
Kenya

Dr. Pablo Marco Veras Peixoto
University of New York NYU College of Dentistry
345 E. 24th Street, New York, NY 10010
USA

Prof. T E Cloete
University of Pretoria Department of
Microbiology and Plant Pathology,
University of Pretoria,
Pretoria,
South Africa

Prof. Djamel Saidi
Laboratoire de Physiologie de la Nutrition et de
Sécurité
Alimentaire Département de Biologie,
Faculté des Sciences,
Université d’Oran, 31000 - Algérie
Algeria

Dr. Tomohide Uno
Department of Biofunctional chemistry,
Faculty of Agriculture Nada-ku,
Kobe., Hyogo, 657-8501,
Japan

Dr. Ulises Urzá
Faculty of Medicine,
University of Chile Independencia 1027, Santiago,
Chile

Dr. Aritua Valentine
National Agricultural Biotechnology Center,
Kawanda
Agricultural Research Institute (KARI)
P.O. Box, 7065, Kampala,
Uganda

Prof. Yee-Joo Tan
Institute of Molecular and Cell Biology 61 Biopolis
Drive,
Proteos, Singapore 138673
Singapore

Prof. Viroj Wiwanitkit
Department of Laboratory Medicine,
Faculty of Medicine, Chulalongkorn University,
Bangkok
Thailand

Dr. Thomas Silou
Universit of Brazzaville BP 389
Congo

Prof. Burtram Clinton Fielding
University of the Western Cape
Western Cape,
South Africa

Dr. Brnčić (Brncic) Mladen
Faculty of Food Technology and Biotechnology,
Pierottijeveja 6,
10000 Zagreb,
Croatia.

Dr. Meltem Sesli
College of Tobacco Expertise,
Turkish Republic, Celal Bayar University 45210,
Akhisar, Manisa,
Turkey.

Dr. Idress Hamad Attitalla
Omar El-Mukhtar University,
Faculty of Science,
Botany Department,
El-Beida, Libya.

Dr. Linga R. Gutha
Washington State University at Prosser,
24106 N Bunn Road,
Prosser WA 99350-8694.
Dr Helal Ragab Moussa
Bahnay, Al-bagour, Menoufia, Egypt.

Dr VIPUL GOHEL
DuPont Industrial Biosciences
Danisco (India) Pvt Ltd
5th Floor, Block 4B,
DLF Corporate Park
DLF Phase III
Gurgaon 122 002
Haryana (INDIA)

Dr. Sang-Han Lee
Department of Food Science & Biotechnology,
Kyungpook National University
Daegu 702-701,
Korea.

Dr. Bhaskar Dutta
DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI)
U.S. Army Medical Research and Materiel Command
2405 Whittier Drive
Frederick, MD 21702

Dr. Muhammad Akram
Faculty of Eastern Medicine and Surgery,
Hamdard Al-Majeed College of Eastern Medicine,
Hamdard University,
Karachi.

Dr. M. Muruganandam
Department of Biotechnology
St. Michael College of Engineering & Technology,
Kalayarkoil,
India.

Dr. Gökhan Aydin
Suleyman Demirel University,
Atabey Vocational School,
Isparta-Türkiye,

Dr. Rajib Roychowdhury
Centre for Biotechnology (CBT),
Viswa Bharati,
West-Bengal,
India.

Dr Takuji Ohyama
Faculty of Agriculture, Niigata University

Dr Mehdi Vasfi Marandi
University of Tehran

Dr Fügen DURLU-ÖZKAYA
Gazi University, Tourism Faculty, Dept. of Gastronomy and Culinary Art

Dr. Reza Yari
Islamic Azad University, Boroujerd Branch

Dr Zahra Tahmasebi Fard
Roudehen branche, Islamic Azad University

Dr Albert Magrí
Giro Technological Centre

Dr Ping ZHENG
Zhejiang University, Hangzhou, China

Dr. Kgomotso P. Sibeko
University of Pretoria

Dr Greg Spear
Rush University Medical Center

Prof. Pilar Morata
University of Malaga

Dr Jian Wu
Harbin medical university , China

Dr Hsii-Chi Cheng
National Cheng Kung University and Hospital.

Prof. Pavel Kalac
University of South Bohemia, Czech Republic

Dr Kürsat Korkmaz
Ordu University, Faculty of Agriculture,
Department of Soil Science and Plant Nutrition

Dr. Shuyang Yu
Department of Microbiology, University of Iowa
Address: 51 newton road, 3-730B BSB bldg. Iowa City, IA, 52246, USA

Dr. Binxing Li
Dr. Mousavi Khaneghah
College of Applied Science and Technology
Applied Food Science, Tehran, Iran.

Dr. Qing Zhou
Department of Biochemistry and Molecular Biology,
Oregon Health and Sciences University Portland.

Dr Legesse Adane Bahiru
Department of Chemistry,
Jimma University,
Ethiopia.

Dr James John
School Of Life Sciences,
Pondicherry University,
Kolapet, Pondicherry
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types

Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process

All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles

All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author's name should be mentioned, followed by 'et al.'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $650 handling fee. Publication of an article in the African Journal of Biotechnology is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2014, Academic Journals.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJB, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review
Hrudayanath Thatoi and Sameer Kumar Singdevsachan

Nanosilver: Potent antimicrobial agent and its biosynthesis
Vikas Sarsar, Krishan K. Selwal and Manjit K. Selwal

Genetic polymorphism of milk protein variants and their association studies with milk yield in Sahiwal cattle
Shahlla N Mir, Obaid Ullah and Riazzuddin Sheikh

Selection and optimization of extracellular lipase production using agro-industrial waste
Pabline Rafaella Mello Bueno, Tatianne Ferreira de Oliveira, Márcio Caliari, Gabriel Luis Castiglioni and Manoel Soares Soares Júnior

New fruit and seed disorders in Papaya (Carica papaya L.) in India
P. L. Saran, R. Choudhary, I. S. Solanki and P. R. Kumar

Development of specific primers for the detection of HVA1 from barley in transgenic durum wheat by polymerase chain reaction (PCR) technology
Marouane Melloul, Driss Iraqi, Sripada M Udupa, My Abdelaziz El Alaoui, Sanaa Amine Alaoui, Mohammed Ibriz and Elmostafa Elfahime

Age-dependent prevalence of Loa loa microfilaremia and microfilaremia status as defined by two markers: microfilaria and specific IgG4
Dijkeussi, E. D., and Akue, J. P.

Phytochemical and antimicrobial study on the leaf extracts of Erythrophleum africanum (Caesalpiniaeae)
M. Mohammed, A. M. Musa, M. A. Garba, A. A. Adeiza and U. A. Hanwa
Seasonal variation in phytochemicals and antioxidant activities in different tissues of various *Broccoli* cultivars
Shiva Ram Bhandari and Jung-Ho Kwak

Antibacterial activity of honey and medicinal plant extracts against Gram negative microorganisms

Establishment of a heterologous immunoassay for detecting enrofloxacin residues in poultry muscles
Jin-qing Jiang
Review

Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review

Hrudayanath Thatoi* and Sameer Kumar Singdevsachan

Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar-751003, Odisha, India.

Accepted 2 January, 2014

Mushrooms are the higher fungi which have long been used for food and medicinal purposes. They have rich nutritional value with high protein content (up to 44.93%), vitamins, minerals, fibers, trace elements and low calories and lack cholesterol. There are 14,000 known species of mushrooms of which 2,000 are safe for human consumption and about 650 of these possess medicinal properties. Among the total known mushrooms, approximately 850 species are recorded from India. Many of them have been used in food and folk medicine for thousands of years. Mushrooms are also sources of bioactive substances including antibacterial, antifungal, antiviral, antioxidant, antiinflammatory, anticancer, antitumour, anti-HIV and antidiabetic activities. Nutriceuticals and medicinal mushrooms have been used in human health development in India as food, medicine, minerals among others. The present review aims to update the current status of mushrooms diversity in India with their nutritional and medicinal potential as well as ethnomedicinal uses for different future prospects in pharmaceutical application.

Key words: Mushroom diversity, nutritional value, therapeutic potential, bioactive compound.

INTRODUCTION

Mushroom is a general term used mainly for the fruiting body of macrofungi (Ascomycota and Basidiomycota) and represents only a short reproductive stage in their life cycle (Das, 2010). Mushroom can be epigeous or hypogeous, large enough to be seen with the naked eyes and can be picked by hand (Chang and Miles, 1992). From the taxonomic point of view, mainly basidiomycetes but also some species of ascomycetes are mushroom forming fungi. Total mushrooms on the earth are estimated to be 140,000 species in which 10% (14,000 approximately) are known. Assuming that the proportion of useful mushrooms among the undiscovered and unexamined mushrooms will be only 5%, implies that there are 7,000 yet undiscovered species, which if discovered will be provided with the possible benefit to mankind (Hawksworth, 2001).

Mushrooms have a long association with humankind and provide profound biological and economical impact. From ancient times, wild mushrooms have been consumed by man with delicacy probably, for their taste and pleasing flavor (Das, 2010). They have rich nutritional value with high content of proteins, vitamins, minerals, fibers, trace elements and low/no calories and cholesterol (Agahar-Murugkar and Subbulakshmi, 2005; Wani et al., 2010).

*Corresponding author. E-mail: hnthatoi@gmail.com. Tel: (+91) 9437306696

Abbreviations: NEH, North-eastern hills; FRAP, ferric reducing antioxidant power; DPPH, 2,2-diphenyl-1-picrylhydrazyl; ABTS, 2,2-azobis-3-ethylbenzthiazoline-6-sulphonic acid; RPA, reducing power ability; FRS, free radical scavenging activity; NOS, nitric oxide synthase; EAC, Ehrlich’s ascites carcinoma; DLA, Dalton’s Lymphoma Ascites.
Many of them have been used in folk medicine for thousands of years. Some of them are nutraceuticals (natural food having potential value in maintaining good health and boosting immune system of the human body) while others can produce potent nutraceuticals (compounds that have medicinal and nutritional attributes and are consumed as medicines in the form of capsules or tablets but not as food) (Elmastas et al., 2007; Ribeiro et al., 2007). Mushrooms are known to be rich sources of various bioactive substances like antibacterial, antifungal, antiviral, antiparasitic, antioxidant, anti-inflammatory, antiproliferative, anticancer, antitumour, cytotoxic, anti-HIV, hypocholesterolemic, antidiabetic, anticoagulant, hepatoprotective compounds, among others (Wasser and Weis, 1999; Lindequist et al., 2005; Ajith and Janardhanan, 2007). Out of approximately 14,000 known species, 2,000 are safe for human consumption and about 650 of these possess medicinal properties (Rai et al., 2005). In developing countries like India with rich biodiversity, mushrooms are a boon for progress in the field of food, medicine and unemployment because of several nutraceuticals and medicinal mushrooms that have been found to be useful towards human health development as food, medicine, minerals and drugs among others. (Rai et al., 2005; Sheena et al., 2005; Wani et al., 2010). The present review provides information on mushroom diversity in India and their nutritional and therapeutic importance of various Indian mushrooms towards human health and benefits such as food, medicine, minerals, drugs among others.

MUSHROOM DIVERSITY IN INDIA

In India the total recorded mushrooms are approximately 850 species (Deshmukh, 2004). There are references to the use of mushrooms as food and medicine in India in the ancient medical treatise, Charaka Samhita (3000±500 BC). However, the scientific study of mushrooms in India started with the identification and description of *Podaxis pistillaris* (L.: Pers.) by Linnaeus in the 18th century which was collected and sent by Koenig from Tamil Nadu State. Later, Sir J.D. Hooker made extensive collection mostly from Assam, Darjeeling, Sikkim and Khasi hills which led to the publication of a series of papers by an English mycologist, Revd M.J. Berkeley between 1850 and 1882 (Natarajan, 1995).

Collection and scientific study of mushrooms in India really began during the 19th century and continued till date (Kaul, 2002). The period can be divided into three phases. The first phase lasted from 1825 to 1899 and in addition to Berkeley and Montagne, recorders during this phase included Fries, Léveillé, Currey, Cooke, Massee, Watt and Lloyd (Sathe, 1979; Natarajan, 1995). The second phase (1900-1969) started with Paul Henning’s significant contributions which have described another 32 genera and 68 species from India (Natarajan, 1995). A significant feature of the second phase was the involvement, besides European and American workers, of a number of Indian workers in research on higher fungi (Sathe, 1979). Special mention should be made of the work on Indian fungi by E.J. Butler at Pusa (Bihar) in the post of Imperial Mycologist who has produced the first authoritative list, *Fungi of India*, in collaboration with G.R. Bisby (Butler and Bisby, 1931). This publication was updated until the latest edition by Sarbhoy et al. (1996). Notable Indian workers of this period were Professor S.R. Bose (Calcutta, West Bengal) and Professor K.S. Thind (Punjab University, Chandigarh). The third phase of the work is said to have started in the early 1970s and continuing till date provided much needed impetus to the development of an edible mushroom industry in India. After that, several researchers are continuing their study all over India on mushroom diversity and their uses as food and medicine (Patil et al., 1995; Swapna et al., 2008; Das, 2010, Sachan et al., 2013). Details of region wise studies undertaken on mushroom diversity in India have been discussed below.

North India

Several reports on higher fungi and mushroom have been conducted from northern India which includes North Western region, Eastern Himalaya proper and North-Eastern hilly areas. North western region of India includes Punjab, Haryana, Chandigarh and Gujrat while the Eastern Himalaya proper includes the northern parts of Assam, the whole of Arunachal Pradesh and Sikkim, and North-Eastern covers the hilly states of Nagaland, Meghalaya, Manipur, Mizoram and Tripura (Khoshoo, 1992). Berkeley in 1876 was probably the first to report higher fungi from the Kashmir valley. Later, T. N. Kaul and his group provided fragmentary records on higher fungi in the late 1960s working at the Regional Research Laboratory, Srinagar and Kashmir. Due to sustained work carried out by Kaul, Kapoor and Abraham from Northern India, 262 higher fungi have been recorded from Kashmir valley, among which 226 taxa were agarics (Abraham, 1991). They described a number of species of *Coprinus, Morchella, Pleurotus, Lycoperdon, Calvatia* and *Helvella*. A significant contribution to their study was made by Professor Watling from Edinburgh, UK, who, besides providing constant guidance to these workers, published a list of 119 species of higher fungi from the Kashmir valley, based on his personal collection (Watling and Gregory, 1980).

North-Western Himalaya has been the centre of intensive research on higher fungi since the 1950s. An edible species of *Agaricus*, namely *Kbasianulosus* was first reported from Punjab of North-West Himalaya by Paracer and Chahal (1962). Now there are two active centers (Department of Botany, Punjab University,
Chandigarh and Punjabi University, Patiala) of research on macrofungi in this region and collections have mostly been made from North-West Himalaya. Professor K. S. Thind (Punjabi University, Chandigarh) has published a series of papers on operculate discomycetes, particularly Pezizales. A total of 226 operculate discomycetes have been recorded from India so far; the major contribution from Thind and his associates. Thind and his associates have also worked on clavarioid homobasidiomycetes in the Himalaya, recording 181 taxa in 20 genera from Indo-Himalaya (Thind, 1961; Kaul, 1992). Thind and his colleagues have also published a series of papers on the Polyporaceae of India, and later Rattan (1977) recorded 198 species of resupinate aphyllophoroid taxa from North-West Himalaya.

A number of reports on mushroom from North Western Himalaya have been provided by Atri and Saini since 1988 to till date from Department of Botany, Punjab University, Patiala (second center). Atri and Saini (1989) reviewed work on the Russulaceae worldwide including the Indian components. They have described many species of mushrooms which include Russula, Lactarius (Saini et al. 1988, Atri et al. 1991a), Agaricus campestris (Atri et al. 1991b), Termitomyces (Atri et al., 1995), Agaricales and Gasteromycetes (Saini and Atri, 1995), Lepiota (Atri et al., 1996). Atri et al. (1997) also studied the taxonomy, distribution, ecology and edibility of 30 taxa of genus Russula which are new records from India. To date only 81 taxa (55 of Russula and 26 of Lactarius) have been recorded from India.

Some fleshy fungi from Himachal Pradesh were described by Sohi et al. (1964). They prepared a list of 15 fleshy fungi of which 3 (viz; Macroplepiota procera, Cantharellus minor and Cantharellus cibarius) were noted as edible. Sohi et al. (1965) also described 10 species in which four belonging to Morchella (viz; M. hybrida, M. angusticeps, M. conica, M. esculenta) and two of Helvella (viz; Emitra, and E. crispa) are edible. Three important centers of work on macrofungi in the state of Himachal Pradesh are the Biosciences Department, University of Himachal Pradesh, Shimla; the Agricultural and Horticultural University, Solan, and the National Research Centre on Mushrooms (ICAR), Solan. Professor Lakhanpal, working at the University of Himachal Pradesh, Shimla, has made a major contribution with a list of 190 species of Agaricales occurring over the entire North-west Himalayan region (Lakhanpal, 1995). Agarwal et al. (1984) made additions to fleshy fungi of India by recording Collybia albijorida, Calvaria flava, Amanita phallidiodes, Lysurus borealis and Calvatia species from Palampur district of Himachal Pradesh. A review of Himalayan Agaricales was also conducted by Lakhanpal (1993) and listed all genera by family and the number of species present in India and their distribution in both north-western and eastern Himalaya. An attempt has been made by Pande et al. (2004) to give an assessment of the species diversity of epigeous ectomycorrhizal fungi of the temperate forests of Western Himalaya, based on studies carried out in this region. They have reported several major genera in terms of species of Amanita (15 sp.), Russula (13 sp.), Boletus (12 sp.), Lactarius (9 sp.), Hygrophorus (4 sp.) and Cortinarius (4 sp.).

A new record of twenty eight species of the macrofungi distributed in eighteen genera belonging to ten families of the order Agaricales have been reported by Upadhyay et al. (2007) from North Western Himalaya, India (Table 1). Futher, Vishwakarma et al. (2011) have reported some medicinal mushrooms (Ganoderma lucidum, A. campestris, Hydnum repandum, Coprinus comatus, M. esculenta and Cantharellus cibarius) from Garhwal Himalaya, Uttarakhand, India. Later, macrofungi diversity in moist temperate forests of Garhwal Himalaya has been reported by M.P. Vishwakarma and his group (Vishwakarma et al., 2012). As a result of their study, total 40 taxa belonging to 11 families were identified (Table 1).

Sharma and Sidhu (1991) reported the occurrence and distribution of Geoglossaceae in the Eastern Himalayan ranges of India. They maintained that the Himalaya in general and Eastern Himalaya and adjoining hills in particular are relatively rich in Geoglossaceae. They surveyed localities in and around West Bengal, Meghalaya, Assam and Arunachal Pradesh states and recorded 12 species distributed among nine genera with ecological notes (Table 1). In India as a whole, the family is represented by 48 species within nine genera. Verma et al. (1987) described fleshy fungial flora of the north-eastern hills (NEH) India from Manipur and Meghalaya belonging to the family Auriculariaceae, Clavariaceae, Cantharellaceae, Tricholomataceae, Pluteaceae, Paxillaceae, Cortinariaceae, Cypoperdaceae, and Schlerodermataceae of Basidiomycotina and Halvellaceae of Ascomycotina. Again, Verma et al. (1995) recorded the results of a macrofungal survey of the NEH and confirmed ninety five species of higher fungi. Among these, 85 species were new records from the NEH region and others were from different locations of India.

Three new species of Lactarius (L. sanjappae, L. mukteswaricus and L. verbekanew) in different regions of Kumaon Himalaya were extensively studied and described by Das et al. (2004). Total 126 wild mushrooms from Barsey Rhododendron Sanctuary of the state Sikkim were also recently reported by Das (2010) which were enlisted with their scientific names, common names, distribution, growing period and status of edibility. Medicinally important 46 mushrooms were also highlighted with their medicinal properties. Acharya et al. (2010) have reported 151 species of Agaricales belonging to 42 genera from the Darjeeling and Sikkim hilly areas of Sikkim Himalaya. The number of representative species under each of the 42 genera varied with 13 genera having a single species each and the genera Mycena and Collybia, having 20 and 16 species, respectively. A total of 11 edible macrofungi
Table 1. Diversity of Indian mushrooms and their location.

<table>
<thead>
<tr>
<th>Mushrooms diversity</th>
<th>Location in India</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricus compestris</td>
<td>West Bengal</td>
<td>Bose and Bose (1941)</td>
</tr>
<tr>
<td>Cantharellus aurantiacus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantharellus cibarius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coprinus comatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentinus subnudus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termitomyces microsporus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talbuminosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volvariella teratius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truffles and Boletus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volvariella diplasia</td>
<td>Baroda State</td>
<td>Moses (1948)</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boletus crocatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agaricus arvensis and some puff-balls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 fleshy fungi of Macrolepiota procera, Cantharellus minor and C. cibarius</td>
<td>Himachal Pradesh</td>
<td>Sohi et al. (1964)</td>
</tr>
<tr>
<td>10 species of which four belonging to Morchella (viz; M. hybrida, M. angusticeps, M. conica, M. esculenta) and two of Helvella (viz; Emitra, and E. crispa)</td>
<td>Himachal Pradesh</td>
<td>Sohi et al. (1965)</td>
</tr>
<tr>
<td>Calocybe indica and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termitomyces eurihizus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 species belong to Calvatia, 2 to Lycoperdon and one each to Geastrum and Bovista</td>
<td>West Bengal</td>
<td>Purkayastha and Chandra (1974; 1975)</td>
</tr>
<tr>
<td>58 species of Agaricus, Amanita, Chlorophyllum, Coprinus, Macrolepiota, Pleurotus, Termitomyces and Volvariella</td>
<td>Lucknow, Uttar Pradesh</td>
<td>Pathak and Gupta (1979)</td>
</tr>
<tr>
<td>Collybia albijorida, Calvaria flava, Amanita phalliodes, Lysurus borealis and Calyatia sp.</td>
<td>Palampur, Himachal Pradesh</td>
<td>Agarwal et al. (1984)</td>
</tr>
<tr>
<td>Agaricus argyropotamicus, Agaricus solidipes and Strophariapokhraensis</td>
<td>Garhwal district, Uttar Pradesh</td>
<td>Dancholia and Bahukhandi, (1988)</td>
</tr>
<tr>
<td>12 species distributed in nine genera: Cudonia, Leotia, Maasoglossum, Microglossum, Mitrula, Thuenenium, Spathularia, Trichoglossum and Geoglossum.</td>
<td>West Bengal, Meghalaya, Assam and Arunachal Pradesh</td>
<td>Sharma and Sidhu (1991)</td>
</tr>
<tr>
<td>Mushrooms diversity</td>
<td>Location in India</td>
<td>References</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Termitomyces mammiformis and T. tylerianus</td>
<td>Punjab, India</td>
<td>Atri et al. (1995)</td>
</tr>
<tr>
<td>Cantharellus luteocomus, Lentinus giganteus, Marasmins caryotea, and Pholiota ealaensis</td>
<td>South India</td>
<td>Joseph et al. (1995)</td>
</tr>
<tr>
<td>Volvarella nigrodisca, V. taylori, Vapalotricha and V. glandiformis</td>
<td>Kerala, India</td>
<td>Pradeep et al. (1998)</td>
</tr>
<tr>
<td>Lentinus sanjappae, L. mukteswaricus and L. verbekenae</td>
<td>Kumaon Himalaya</td>
<td>Das et al. (2004)</td>
</tr>
<tr>
<td>Eighteen genera belonging to ten families of the order Agaricales are Agaricus, Amanitaceae (Amanita), Boletiaceae (Agrocybe), Coprinaceae (Lacrymaria), Cortinariaceae (Cortinarius, Gymnopilus, Phaeocollybia), Entolomataceae (Entoloma), Hygrophanaceae (Hygrotrama), Pluteaceae (Pluteus), Strophariaceae (Phollota) and Tricholomataceae (Collybia, Laccaria, Lepista, Calocybe, Clitocybe, Melanoleuca, Tricholomopsis)</td>
<td>North Western Himalaya</td>
<td>Upadhyay et al. (2007)</td>
</tr>
<tr>
<td>Ganoderma lucidum, Agaricus campestris, Hydnum repandum, Coprinus comatus, Morchella esculenta, Cantharellus cibarius Xyrocomus chrysenteron Suilleus spragaei Russula aquosq Russula solaris Russula violacea Nictalis asterophora Agaricus campestris Macrolopiota procera Amanita veginata Amanita pantherina Amanita caesarea Termitomyces microcarpus Termitomyces hemi Ganoderma lucidum Thelephora caryophyllea (Schaeff.) Pers., Coltricia cinnamomea (Pers.) Murr., and Guepinia helvelloides</td>
<td>Garhwal Himalaya, Uttarakhand, India</td>
<td>Vishwakarma et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Amarkantak Biosphere Reserve, Madhya Pradesh, India</td>
<td>Dwivedi et al. (2012)</td>
</tr>
</tbody>
</table>
Table 1. Contd.

<table>
<thead>
<tr>
<th>Mushrooms diversity</th>
<th>Location in India</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 40 taxa belonging to 11 families. Two families and 2 taxa belonged to class- Ascomycetes viz: Family- Helvellaceae and Morchellaceae and nine families and 38 taxa to class-Basidiomycetes viz: Family-Agaricaceae, Amanitaceae, Boletaceae, Cantharellaceae, Coprinaceae, Ganodermataceae, Hydnangiaceae, Lycoperdaceae and Russulaceae.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agaricus bisporus Quell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agaricus campestris L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auricularia auricular (Hook.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantharellus cibarius Fr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganoderma lucidum (Leys ex. Fr.) karsten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenzites betulina Fries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycoperdon perlatum Pers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termitomyces mummiformis (Heim.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricholoma luscinum Fr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricholoma colossus Fr. (Quell.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricholoma strictipes Fr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scleroderma citrinum, Psilocybe subtopicalis, Ganoderma applanatum, Cyttotrama asprata and Entoloma serrulatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphus floccosus (Schw.) Singer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricholoma virioiolivaceum stev.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craterellus odoratus (Schwein.) Fr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactarius volemus (Fr.) Fr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantharellus cibarius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricholoma saponaceum (Fr.) P. Kumm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricholoma sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laccaria laterita Malencon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albatrellus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramaria sp. and Clavulina sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russula sharmane, R. dubdiana and R. sikkimensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russula emetica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russula delica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termitomyces eurrhizus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termitomyces sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agaricus silvaticus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agaricus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volvorella volvacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volvorella sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentinus sajor-caju</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentinus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurotus sp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Garhwali Himalaya, Uttarakhand, India
Vishwakarma et al. (2012)

Dhemaji District, Assam, India
Gogoi and Sarma (2012)

Rajouri district, Jammu & Kashmir, India
Anand and Chowdhry (2013)

Khasi hills of Meghalaya, India
Khaund and Joshi (2013)

West district of Sikkim, India
Das et al. (2013)

Similipal Biosphere Reserve, Odisha, India
Sachan et al. (2013)
species (Table 1) in Dhemaji district, Assam were explored by Gogoi and Sarma (2012). Recently, Khaund and Joshi (2013) have reported diversity of wild edible mushrooms from Khasi hills of Meghalaya, India. During their study period, a total of 11 different species were identified based on morphology that belongs to 9 genera and 8 families (Table 1). Further, three new species of Russula (Russula sharmae, R. dubidiana and R. sikkimensis) from Sikkim (India) have been reported by Das et al. (2013).

Another centre of work in the northern India is the National Botanical Research Institute, Lucknow, Uttar Pradesh. Pathak and Gupta (1979) reported 58 species of agarics from Lucknow area distributed among 25 genera. Prominent genera were Agaricus, Amanita, Chlorophyllum, Coprinus, Macrolepiota, Pleurotus, Termitomyces and Volvariella. Danchola and Bahukhandi (1988) discovered Agaricus argyropotamicus, Agaricus solidipes and Stropharia pokhraensis as new Agaricus from Garhwal district of Uttar Pradesh.

One of the important areas of northern India is Rajasthan. An intensive survey of wild mushrooms was conducted throughout the state by A. Doshi working at the Department of Plant Pathology, Rajasthan College of Agriculture for 8 years (1989-1996). Sharma et al. (1992) reported fifteen species of fungi from Rajasthan and many of these are first record of genus Auricularia; (A. delicata, A. auricula-judea, A. mesentrica), Phellorina inquinans, Boletus sp., Termitomyces microcarpus, Termitomyces striatus, Pleurotus pulmonarius, Pleurotus ostreatus, Pleurotus sapidus, Pleurotus sajor-caju, Agaricus compestris, Volvariella bombycina, Volvariella speciosa and Lepiota spp. Doshi and Sharma (1997) provided a detailed list of macrofungi occurring in the region with mycological notes. A total of 173 species belonging to 95 genera were recorded from this area. Most genera (18) were gasteromycetes or aphyllophoroid taxa (17). Special mention should be made of two edible gasteromycetes, Phellorina inquinans Berk and Podaxis pistillaris, tonnes of which can be collected from desert areas. P. inquinans is associated with sand dunes in the area (Singh, 1994).

Morchella has a wide distribution in India and is very common in the temperate zones of forests in Jammu and Kashmir, Punjab, Himachal Pradesh and Uttaranchal (Negi, 2006). Six species of Morchella have been identified by Negi (2006), which include M. esculenta, M. conica, Morchella delicosa, M. angusticeps, Morchella crassipes and Morchella semilibera (Table 1). Besides that, recently Anand and Chowdhry (2013) reported five wild mushrooms (Scleroderma citrinum, Psilocybe subtropicalis, Ganoderma applanatum, Cyptotrama asprata and Entoloma serrulatum) from Rajouri district of Jammu and Kashmir (JandK), India.

Central India

Mushroom research of central part of India covers Maharashtra, Madhya Pradesh, West Bengal and Odisha states. Moses (1948) identified the edible mushrooms of Baroda state including Volvorella diplasia, P. ostreatus, Boletus crocatus, Agaricus arvensis and some puff-balls. Mushroom recording in Maharashtra was neglected for a long time and only 21 species of agarics had been recorded from the state by year 1967 (Kamat et al., 1971). Intensive work in the region began only after 1974 when A.V. Sathe and his group, working at the Maharashtra Association for Cultivation of Sciences, published a series of papers mainly on Agaricales (Sathe, 1979; Sathe and Kulkarni, 1987). Later a comprehensive list of 231 mushrooms recorded from all regions of Maharashtra state was published by Patil et al. (1995). Recently Bhosle et al. (2010) reported 15 species and 3 varieties of Ganoderma lucidum (of which one variety remains unidentified) from the Western parts of Maharashtra (India) and in their study, only 9 valid Ganoderma species have been reported from India. Karwa and Rai (2010) also surveyed six different zones of Melghat forest of Amravati District, Maharashtra State from July 2005 to December 2008 for the availability of wild edible and medicinal mushrooms. In their study, out of total 153 species, ten species of Agaricus were recorded from different localities. Of these, seven species namely Agaricus bitorquis, A. subrufescens, A. augustus, A. placomyces, A. essettei, A. basioanolosus and Agaricus sp. nov (a new species) are being reported for the first time from this region (Table 1). Biodiversity of mushrooms of Amarkantak Biosphere Reserve, Madhya Pradesh have been reported by Dwivedi et al., (2012). They have collected 52 mushroom samples from Amarkantak region forests which were belonging to different genera out of which only 14 mushroom samples were identified up to species level (Table 1). Rests were identified only up to the genus level.

Bose (1921) reported a few edible species from undivided
Bengal. In 1940, Bose and Bose prepared a list of about 28 varieties of edible species including *A. compestris, Cantharellus aurantiacus, C. cibarius, C. comatus, Lentinus subnudus, T. microsporus, Termitomyces albuminosus, Volvariella terastia, Truffles and Boletus sp.* Two edible species, namely *Calocybe indica* and *Termitomyces eurhizus* have been reported by Purkayastha and Chandra (1974) from West Bengal. The former was a new species while the latter was first recorded from India. Ten species of *Calvatia* and *Lycoperdon* have been incorporated in the list of edible fungi by Gupta et al. (1974). Out of the 10 species described, 7 were edible in their immature stage. Among seven edible mushroom, 3 species belong to *Calvatia*, 2 to *Lycoperdon* and one each to *Geastrum* and *Bovista*. Purkayastha devoted attention to wild edible mushrooms of West Bengal and succeeded in cultivating one of them, *C. indica* Purkayastha and Chandra. Purkayastha and Chandra (1985) compiled lists of Indian edible mushrooms which included 283 species of higher fungi. Recently a total of 14 species of fleshy mushrooms belonging to 8 genera and 6 families (Table 1) were reported by authors from Similipal Biosphere Reserve, Odisha, India (Sachan et al., 2013).

South India

Study on mushrooms in South India such as Tamil Nadu, Kerala, Karnataka and Andhra Pradesh was neglected as regards to studies on agarics until 1975 (Natarajan, 1995). The genus of *Volvariella* from Kerala, India was first time investigated by Pradeep et al. (1998). Out of ten species of *Volvariella* treated, *Volvariella nigrodisca, Volvariella taylori, Volvariella apalotricha* and *Volvariella gandiformis* are described and illustrated for the first time from Kerala by Pradeep et al. (1998). Natarajan listed 115 species of mushroom from Kerala (Kaul, 1992) and a macrofungal survey of Kerala was carried out at the Plant Pathology Department of Kerala Agricultural University at Vellayani, Thiruvananthapuram, by Ms Bhavani Devi from 1985 to 1988. The collections were made from 12 agroclimatic zones in four monsoon seasons and revealed the presence of 134 species of mushrooms (including 14 gasteromycete species) belonging to 45 genera (Bhavani Devi, 1995). Edible fruiting bodies included species of *Termitomyces, Volvariella, Pleurotus, Macro lepiota, Boletus and Calvatia.* *Tuber magnatum* Vitt. (Ascomycotina), a highly prized truffle, is regularly collected and consumed by tribal people in the forest area of the southern part of this state.

Staff of the Botany Department of Calicut University and the Tropical Botanic Garden and research Institute at Thiruvananthapuram were also surveyed macrofungi, but it was at only a preliminary stage. Natarajan started work at the Centre of Advanced Studies in Botany, University of Madras in 1975 and his group had collected mushrooms from the entire southern and south-western region. They started a series entitled ‘South Indian Agaricales’, publishing over two dozen papers. Natarajan (1995) presented a list of 230 agaric and bolete species distributed among 67 genera from southern Indian states excluding Kerala.

A survey of macrofungi diversity has been conducted in semi-evergreen and in moist deciduous forest of Shimoga District-Karnataka, India during 2005 to 2007 by Swapna et al. (2008). In their survey, a total of 778 species of macrofungi belonging to 43 families, 101 genera were enumerated of which 242 species were identified to genus level and 73 were identified to species level. Further, Pushpa and Purushothama (2012) have studied the biodiversity of Mushrooms in and around Bangalore (Karnataka), India and recorded 90 species in 48 genera belonging to 19 families in 05 orders. Among them, 28 species were found to be recorded for the first time in India.

NUTRITIONAL POTENTIAL OF MUSHROOMS

Man has been hunting for the wild mushrooms since ancient time (Cooke, 1977). Thousands of years ago, the fruiting body of higher fungi has been used as a source of food (Mattila et al., 2001) due to their chemical composition which is attractive from the nutrition point of view. During the early days of civilization, mushrooms were consumed mainly for their palatability and unique flavors. Present use of mushrooms is totally different from traditional because, lot of research has been done on the chemical composition which revealed that mushrooms can be used as a diet to combat diseases. The early history regarding the use of mushrooms in different countries has been reviewed by number of workers (Rolfe and Rolfe, 1925; Bano and Rajarathnam, 1982; Wani et al., 2010). Rolfe and Rolfe (1925) mentioned that mushrooms like *A. compestris, M. esculenta, Helvella crispa, Hydnum coralloides, Hypoxylon vernicosum* and *Polyergus mylittae* were used much earlier in India. Lintzel (1941) recommended that 100 to 200 g of mushrooms (dry weight) is required to maintain an optimal nutritional balance in a man weighing 70 kg. Several researchers have determined the nutritional value of different mushrooms. Among them, Bano et al. (1963) determined the nutritive value of *Pleurotus flabellatus* as 0.974% ash, 1.084% crude fibre, 0.105% fat, 90.95% moisture, 0.14% non-protein nitrogen and 2.75% protein. Bano (1976) suggested that food value of mushrooms lies between meat and vegetables. Gruen and Wong (1982) indicated that edible mushrooms were highly nutritional and compared favorably with meat, egg and milk food sources. Crisan and Sands (1978) observed that mushrooms in general contain 90% water,
10% dry matter with the protein content varying between 27 and 48% and carbohydrates are less than 60% and lipids are between 2 to 8%. Orgundana and Fagade (1981) indicated that an average mushroom is about 16.5% dry matter out of which 7.4% is crude fiber, 14.6% is crude protein and 4.48% is fat and oil. In case of Indian mushrooms, several reports on nutritional status of different mushrooms have been published in different manner which is discussed below.

PROXIMATE COMPOSITION

Protein and amino acids

Protein is an important constituent of mushrooms (Agrahar-Murugkar and Subbulakshmi, 2005; Wani et al., 2010). Protein content of mushrooms depends on the composition of the substratum, size of pileus, harvest time and species of mushrooms (Bano and Rajarathnam, 1982). Protein content in Pleurotus sp. has been documented to range between 8.9 and 38.7% on dry weight basis (Bano and Rajarathnam, 1982). Rai and Sohi (1988) also reported protein content of Agaricus bisporus to be 29.3% on dry weight basis. Purkayastha and Chandra (1985) found 14 to 27% crude protein on dry weight basis in A. bisporus, L. subnudus, C. indica and Volvariella volvacea. Samajipati (1978) found 30.16, 28.16, 34.7 and 29.16% protein in dried mycelium of A. campestris, A. arvensis, M. esculenta and M. deliciosa, respectively. Sharma et al. (1988) reported 14.71 to 17.37% and 15.20 to 18.87% protein in the fruiting bodies of Lactarius deliciosus and Lactarius sanguifuss, respectively. Nutritional analysis of two edible wild mushrooms (Schizophyllum commune and Lentinula edodes) from northeast India have been studied by Longvah and Deosthale (1998) and reported that protein content of L. edodes (26%) is much higher than the S. commune (16%). Nutritional values of seven wild edible mushrooms were analyzed by Agrahar-murugkar and Subbulakshmi (2005) which are commonly consumed in the Khasi hills of Meghalaya and reported that 27.3, 27.5, 21.1, 24.1, 21.1, 21.2. 19.0% protein content present in Calvatia gigantea, Clavulina cinerea, C. cibarius, Ramaria brevispora, Russula integra, Gomphus floccosus and Lactarius queticolor, respectively.

Pushpa and Purushothama (2010) have analyzed the nutrition of five mushroom species and found 21.60, 41.06, 27.83, 26.25, 18.31% protein in C. indica, A. bisporus, P. florica, Russula delica and Lyophyllum decastes, respectively. Jagadeesh et al. (2010) analyzed the proximate composition of V. bombycina and found 25.5% crude protein in mycelia and 28.3% in fruit body (Table 2). Nutrient composition of Lentinus tuberregium in both wild and cultivated type were analyzed by Manjunathan and Kaviyarasan (2011) and found that the cultivated variety had higher concentration of protein (25%) than the wild one (18.07%). The nutritional values of 10 edible mushrooms from Western Ghats of Kanyakumari district have been analyzed by Johnsy et al. (2011) and reported that edible mushrooms are highly valued as a good source of protein ranged from 28.93 to 39.1% of dry weight (Table 2). Manjunathan et al. (2011) reported the proximate composition of four wild mushrooms from Tamil Nadu, India in which A. polytrichus had the highest concentration of protein (37%) and Clitocybe sp. had the least (24.8%). Recently, nutrient content of 15 selected mushrooms from Nagaland, India have been studied by Kumar et al. (2013) and found 22.50 to 37.80% protein (Table 2).

Further, Singdevsachan et al. (2013) reported the nutrient values of two wild mushrooms (Lentinus sajor-caju and Lentinus turulosus) from Similipal Biosphere Reserve, Odisha, India where highest protein content (28.36%) was found in L. sajor-caju and lowest (27.31%) in Lentinus turulosus. However, protein contents of mushrooms were reported to vary according various factors such as mushroom strain/type, composition of growth media, time of harvest, management techniques, handling conditions, and the preparation of the substrates (Manzi et al., 2001).

In terms of the amount of crude protein, mushrooms rank below animal meats but well above most other foods including milk (Chang, 1980). Mushrooms in general have higher protein content than most other vegetables (Bano and Rajarathnam, 1988). On a dry weight basis, mushrooms normally contain 19 to 35% proteins as compared to 7.3% in rice, 12.7% in wheat, 38.1% in soybean and 9.4% in corn (Crisan and Sands, 1978; Bano and Rajarathnam, 1988). Verma et al. (1987) reported that mushrooms are very useful for vegetarians because they contain some essential amino acids which are found in animal proteins. Mushrooms contain all the essential amino acids required by an adult (Hayes and Haddad, 1976). Gupta and Sing (1991) reported 41.4% essential amino acids in P. pistillaris. Longvah and Deosthale (1998) also analyzed the amino acid content of two edible wild mushrooms (Schizophyllum commune and L. edodes) from northeast India and reported that 34% and 39% essential amino acids are present in S. commune and L. edodes respectively. Agrahar-murugkar and Subbulakshmi (2005) also analyzed the essential amino acid of seven wild edible mushrooms from the Khasi hills of Meghalaya and found average ranges between 16.3 (lysine) and 45.8% (methionine). The digestibility of Pleurotus mushrooms proteins is as that of plants (90%) whereas that of meat is 99% (Bano and Rajarathnam, 1988). The protein conversion efficiency of edible mushrooms per unit of land and per unit time is far more superior compared to animal sources of protein (Bano and Rajarathnam, 1988).

Carbohydrate

The carbohydrate content of mushrooms represents the
Table 2. Proximate composition of some Indian mushrooms shown in percentage.

<table>
<thead>
<tr>
<th>Species</th>
<th>Protein</th>
<th>Carbohydrate</th>
<th>Lipids/fats</th>
<th>Ash</th>
<th>Fiber</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricus arvensis</td>
<td>32.87</td>
<td>32.91</td>
<td>-</td>
<td>0.18</td>
<td>0.14</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Agaricus bisporus</td>
<td>41.06</td>
<td>28.38</td>
<td>2.12</td>
<td>7.01</td>
<td>18.23</td>
<td>Pushpa and Purushothama (2010)</td>
</tr>
<tr>
<td>Agaricus bisporus</td>
<td>33.48</td>
<td>46.17</td>
<td>3.10</td>
<td>5.70</td>
<td>20.90</td>
<td>Manikandan (2011)</td>
</tr>
<tr>
<td>Agaricus heterocystis</td>
<td>32.23</td>
<td>48.55</td>
<td>2.90</td>
<td>11.42</td>
<td>19.7</td>
<td>Manimozhi and Kaviyarasan (2013)</td>
</tr>
<tr>
<td>Agaricus langei</td>
<td>35.14</td>
<td>34.83</td>
<td>-</td>
<td>14.10</td>
<td>3.28</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Auricularia auricula</td>
<td>4.20</td>
<td>82.80</td>
<td>8.30</td>
<td>4.70</td>
<td>19.80</td>
<td>Manikandan (2011)</td>
</tr>
<tr>
<td>Auricularia auricula</td>
<td>36.3</td>
<td>33.23</td>
<td>1.63</td>
<td>7.07</td>
<td>8.4</td>
<td>Johns et al. (2011)</td>
</tr>
<tr>
<td>Auricularia auricula-judae</td>
<td>36.30</td>
<td>33.23</td>
<td>-</td>
<td>7.07</td>
<td>2.81</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Auricularia polytricha</td>
<td>37.0</td>
<td>38.48</td>
<td>0.74</td>
<td>6.87</td>
<td>21.97</td>
<td>Manjunathan et al. (2011)</td>
</tr>
<tr>
<td>Boletus aestivalis</td>
<td>32.76</td>
<td>52.07</td>
<td>-</td>
<td>14.97</td>
<td>12.13</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Calocybe indica</td>
<td>17.69</td>
<td>64.26</td>
<td>4.10</td>
<td>7.43</td>
<td>3.40</td>
<td>Manikandan (2011)</td>
</tr>
<tr>
<td>Calvatia gigantea</td>
<td>27.3</td>
<td>-</td>
<td>1.0</td>
<td>6.3</td>
<td>22.0</td>
<td>Agrahar-murugkar and Subbulakshmi (2005)</td>
</tr>
<tr>
<td>Cantharellus cibarius</td>
<td>34.17</td>
<td>47.00</td>
<td>-</td>
<td>7.78</td>
<td>1.40</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Clavulina cinerea</td>
<td>27.5</td>
<td>-</td>
<td>2.5</td>
<td>13.9</td>
<td>8.4</td>
<td>Agrahar-murugkar and Subbulakshmi (2005)</td>
</tr>
<tr>
<td>Citocybe sp.</td>
<td>24.8</td>
<td>42.0</td>
<td>1.24</td>
<td>15.73</td>
<td>13.04</td>
<td>Manjunathan et al. (2011)</td>
</tr>
<tr>
<td>Cookeina sulcipes</td>
<td>28.93</td>
<td>50.20</td>
<td>-</td>
<td>6.55</td>
<td>0.16</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Flammulina velutipes</td>
<td>17.60</td>
<td>73.10</td>
<td>1.90</td>
<td>7.40</td>
<td>3.70</td>
<td>Manikandan (2011)</td>
</tr>
<tr>
<td>Gomphus floccosus</td>
<td>21.2</td>
<td>-</td>
<td>5.3</td>
<td>8.0</td>
<td>9.2</td>
<td>Agrahar-murugkar and Subbulakshmi (2005)</td>
</tr>
<tr>
<td>Grifola frondosa</td>
<td>31.47</td>
<td>40.77</td>
<td>1.49</td>
<td>5.13</td>
<td>7.0</td>
<td>Johns et al. (2011)</td>
</tr>
<tr>
<td>Hypsizygus tessulatus</td>
<td>37.80</td>
<td>51.20</td>
<td>-</td>
<td>9.09</td>
<td>12.90</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Lactarius hygrophoroides</td>
<td>44.93</td>
<td>42.00</td>
<td>-</td>
<td>2.00</td>
<td>10.58</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Lactarius quieticolor</td>
<td>19.0</td>
<td>-</td>
<td>2.6</td>
<td>6.6</td>
<td>14.4</td>
<td>Agrahar-murugkar and Subbulakshmi (2005)</td>
</tr>
<tr>
<td>Lentinus edodes</td>
<td>32.93</td>
<td>47.60</td>
<td>3.73</td>
<td>5.20</td>
<td>28.80</td>
<td>Manikandan (2011)</td>
</tr>
<tr>
<td>Lentinus edodes</td>
<td>22.8</td>
<td>64.4</td>
<td>2.1</td>
<td>6.0</td>
<td>0.5</td>
<td>Longvah and Deosthale (1998)</td>
</tr>
<tr>
<td>Lentinus sajor-caju</td>
<td>28.36</td>
<td>68.24</td>
<td>02.42</td>
<td>04.88</td>
<td>-</td>
<td>Singdevsachan et al. (2013)</td>
</tr>
<tr>
<td>Lentinus squarrosulus</td>
<td>37.13</td>
<td>47.83</td>
<td>2.58</td>
<td>8.33</td>
<td>11.33</td>
<td>Johns et al. (2011)</td>
</tr>
<tr>
<td>Lentinus tigrinus</td>
<td>18.07</td>
<td>60.0</td>
<td>2.25</td>
<td>5.14</td>
<td>14.69</td>
<td>Manjunathan et al. (2011)</td>
</tr>
<tr>
<td>Lentinus torulosus</td>
<td>27.31</td>
<td>64.95</td>
<td>1.36</td>
<td>13.16</td>
<td>-</td>
<td>Singdevsachan et al. (2013)</td>
</tr>
<tr>
<td>Lentinus tuber-regium</td>
<td>28.93</td>
<td>50.2</td>
<td>2.17</td>
<td>6.56</td>
<td>12.17</td>
<td>Johns et al. (2011)</td>
</tr>
<tr>
<td>Lepiota ilacea</td>
<td>28.12</td>
<td>49.33</td>
<td>-</td>
<td>8.09</td>
<td>11.98</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Lepiota magnispora</td>
<td>27.55</td>
<td>35.00</td>
<td>-</td>
<td>3.05</td>
<td>5.20</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Lepista irina</td>
<td>26.12</td>
<td>50.20</td>
<td>-</td>
<td>3.16</td>
<td>6.08</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Lycophyllum decastes</td>
<td>18.31</td>
<td>34.36</td>
<td>2.14</td>
<td>14.20</td>
<td>29.02</td>
<td>Pushpa and Purushothama (2010)</td>
</tr>
<tr>
<td>Macrolepiota rhacodes</td>
<td>34.31</td>
<td>48.0</td>
<td>2.25</td>
<td>11.80</td>
<td>4.78</td>
<td>Manjunathan et al. (2011)</td>
</tr>
<tr>
<td>Melanoleuca grammopodia</td>
<td>36.27</td>
<td>33.04</td>
<td>-</td>
<td>4.13</td>
<td>8.12</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Panus fulvus</td>
<td>27.06</td>
<td>33.04</td>
<td>-</td>
<td>3.11</td>
<td>6.08</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Pleurotus florida</td>
<td>27.83</td>
<td>32.08</td>
<td>1.54</td>
<td>9.41</td>
<td>23.18</td>
<td>Pushpa and Purushothama (2010)</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>30.40</td>
<td>57.60</td>
<td>2.20</td>
<td>9.80</td>
<td>8.70</td>
<td>Manikandan (2011)</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>37.63</td>
<td>43.4</td>
<td>2.47</td>
<td>10.17</td>
<td>4.2</td>
<td>Johns et al. (2011)</td>
</tr>
<tr>
<td>Pleurotus pulmonarius</td>
<td>37.63</td>
<td>43.40</td>
<td>-</td>
<td>10.17</td>
<td>4.12</td>
<td>Kumar et al. (2013)</td>
</tr>
<tr>
<td>Pleurotus roseus</td>
<td>30.27</td>
<td>42.97</td>
<td>2.02</td>
<td>5.57</td>
<td>4.2</td>
<td>Johns et al. (2011)</td>
</tr>
<tr>
<td>Pleurotus sajor-caju</td>
<td>39.1</td>
<td>38.57</td>
<td>1.17</td>
<td>5.73</td>
<td>4.9</td>
<td>Johns et al. (2011)</td>
</tr>
<tr>
<td>Pleurotus sajor-caju</td>
<td>19.23</td>
<td>63.40</td>
<td>2.70</td>
<td>6.32</td>
<td>48.60</td>
<td>Manikandan (2011)</td>
</tr>
</tbody>
</table>
bulk of fruiting bodies accounting for 50 to 65% on dry weight basis. Free sugars amounts to about 11%. Nutritional analysis of two edible wild mushrooms (S. commune and L. edodes) from northeast India have been studied by Longvah and Deosthale (1998) and reported that 64.4% carbohydrate content present in L. edodes and 68% in S. commune (16%). Jagadeesh et al. (2010) reported that 34.75 and 38.9% of carbohydrate content present in mycelia and fruit body of V. bombycina. Pushpa and Purushothama (2010) have analyzed the nutrition of five mushroom species and found 49.20, 28.38, 32.08, 34.88, 34.36% carbohydrate content in C. indica, A. bisporus, P. florida, R. delica, and L. decastes, respectively. Nutrient composition of L. tuberregium in both wild and cultivated type were analyzed by Manjunathan and Kaviyarasan (2011) and found 58.05 and 55.8% carbohydrate in cultivated variety and in wild variety respectively. Manikandan (2011) reported that total carbohydrate content varies from 26-82% on dry weight basis in different mushrooms (Table 2). Nutritional values of wild mushrooms have been studied by Johnsy et al. (2011) and found good source of carbohydrates ranged from 33.23% in A. auricula to 50.2% in L. tuberregium (Table 2). Proximate composition of four wild mushrooms have been revealed by Manjunathan et al. (2011) and found highest carbohydrate (48%) in M. rhodocus in comparison to other studied mushrooms. Kumar et al (2013) reported the carbohydrate contents of 15 selected mushrooms from Nagaland, India ranged from 32.43% in S. commune to 52.07% in Boletus aestivais (Table 2). Recently total carbohydrate contents of two wild mushrooms was studied by Singdevsachan et al. (2013) and found highest in L. sajor-caju (68.24%) and lowest in L. torulosus (64.95%).

Lipid/fat

In mushrooms, the fat content is very low as compared to proteins and carbohydrates. The fats present in mushroom fruiting bodies are dominated by unsaturated fatty acids. Singer (1961) determined the fat content of some mushrooms as 2.04% in Suillus granulatus, 3.66% in Suillus luteus and 2.32% in A. campestris. Crude fat content in the range of 1.08 to 9.4% with an average of 2.85% has been reported in Pleurotus species (Bano and Rajarathnam, 1982). On fresh weight basis, the fat content of 0.10 to 0.19% in Pleurotus species has been reported by Rai et al. (1988). Fat content of fresh A. bisporus (Lange) Sing and P. ostreatus (Jacq: Fr.) Kumm was analyzed by Manzi et al. (2001) and found to be 0.3 and 0.4 g/100 g, respectively. Longvah and Deosthale (1998) has reported that crude fat content (2%) were similar in two edible wild mushrooms (S. commune and L. edodes) from northeast India. Agrahar-murugkar and Subbulakshmi (2005) also reported the fat content (ranged from 1.0% in C. gigantean to 5.3% in G. floccicus) of seven different wild mushrooms collected from the Khasi hills of Meghalaya (Table 2). Kavishree et al. (2008) have analyzed twenty-three species of naturally grown and collected mushroom fruiting bodies from different geographic locations of India for their total fat and fatty acid contents and mushroom species were found to contain 0.6-4.7% total fat. These mushroom species were also high in unsaturated fatty acids (52-87%), compared to saturated fatty acids. Jagadeesh et al. (2010) also
reported that 1.15 and 2.72% lipid contents were present in mycelia and fruit body of *V. bombycina*, respectively. Pushpa and Purushothama (2010) have also analyzed the fat content of five mushrooms which were 4.96, 2.12, 1.54, 5.38, 2.14% in *C. indica*, *A. bisporus*, *P. florida*, *R. delica*, and *L. decastes*, respectively. Manjunathan and Kaviyarasan (2011) reported that the fat content in the cultivated variety (1.54%) of *L. tuberregium* was lower than that in the wild one (1.6%).约翰等 (2011) have studied the nutritional values of wild mushrooms from Western Ghats of Kanyakumari district and revealed very less amounts of fats ranged from 1.17% to 2.58% (Table 2). According to proximate composition of four wild mushrooms studied by Manjunathan et al. (2011), the fat contents was very less ranged from 0.74% to 2.25% (Table 2). Further fat contents of two wild mushrooms was determined by Singdevsachan et al. (2013) and found lowest amount of fats (2.42 and 1.36%) in both studied mushrooms (*L. sajor-caju* and *L. torulosus*, respectively).

Vitamins

Mushrooms are one of the best sources of vitamins especially vitamin B (Mattilla et al., 1994, 2000). Manning (1985) gave a comprehensive data of vitamin content of mushrooms and some vegetables which are present in the world. But in India, the information on vitamin content of mushrooms has been lacking. Agrahar-murugkar and Subbulakshmi (2005) determined the vitamin C content (mg/g) in seven wild edible mushrooms commonly consumed in the Khasi hills of Meghalaya, India and found that 14.9, 41.8, 41.9, 28.0, 19.6, 25.8, 18.1 vitamin C present in *C. gigantea*, *C. cinea*, *C. cibarius*, *R. brevispora*, *R. integra*, *G. floccosus* and *L. queticolor*, respectively. Recently, vitamin content such as thiamine, riboflavin and ascorbic acid were analyzed by Singdevsachan et al. (2013) in wild mushrooms (*L. sajor-caju* and *L. torulosus*) from Similipal Biosphere Reserve, Odisha, India. The highest thiamine content was found in *L. torulosus* (0.19 mg/g) and lowest in *L. sajor-caju* (0.13 mg/g). Both the studied wild mushrooms were showed good qualities of ascorbic acid (17.75 mg/g in *L. sajor-caju* and 52.91mg/g in *L. torulosus*) whereas riboflavin was not detected (Singdevsachan et al., 2013). Unfortunately, information on the bioavailability of vitamins from mushrooms has been lacking.

Mineral constituents

Ash content of different mushrooms is usually 0.18-15.73% of dry matter (Table 2). The fruiting bodies of mushrooms are characterized by a high level of well assimilated mineral elements. Major mineral constituents in mushrooms are Na, K, Ca, Mg, P, S and elements like As, Cd, Cr, Co, Cu, Fe, Mo, Mn, Ni, Pb, Se, Zn among others form minor constituents (Bano and Rajarathanum, 1982; Bano et al., 1981). The mineral content of wild edible mushrooms has been found to be higher than cultivated ones (Mattilla et al., 2001). Kaual (1978) has reported that *M. esculenta* contains Ca (0.57 mg/g), P (3.31 mg/g), Fe (1.21 mg/g) and K (3.83 mg/g). Bano et al. (1981) and Bisaria et al. (1987) have also assessed the minerals and heavy metals content in *Pleurotus* sp. which are given in Table 3. Longvah and Deosthale (1998) analyzed the two species of mushrooms (*S. commune* and *L. edodes*) from northeast India and found that both mushrooms appear to be rich in minerals (Table 3).

Micronutrient profile of seven wild edible mushrooms were also analyzed by Agrahar-murugkar and Subbulakshmi (2005) which are commonly consumed in the Khasi hills of Meghalaya (Table 3) and reported that the calcium (g%) content ranged from 0.82 in *C. cibarius* to 1.91 in *C. cinea*. Phosphorus (g%) levels were the highest in *C. cibarius* (0.58), followed by *R. brevispora* (0.51) whereas *R. integra* had the lowest levels with 0.24. *C. cinaera* had a very high content of iron (mg%) at 75.2.

The rest fell in the range 7.17 (*R. brevispora*) to 56.2 (*R. integra*). Manganese (mg%) levels ranged between 4.41 in *C. gigantea* to 11.4 in *R. brevispora*. The copper (mg%) of the mushrooms studied was between 1.39 (*C. gigantea*) and 23.9 (*C. cinea*). Zinc (mg%) levels varied between 6.76 in *R. brevispora* and 39.4 in *L. queticolor*. Sodium (mg%) ranged from 0.14 in *G. floccosus* to 0.56 in *R. integra*. Potassium (mg%) levels varied between 17.0 (*L. queticolor*) and 52.1 (*C. cinea*). Magnesium (mg%) content was between 25.3 in *L. queticolor* and 327 in *R. virescens*. The content of selenium (µg/kg), ranged from negligible levels in *G. floccosus* to very high levels in *L. queticolor* (975) and *C. cibarius* (295). Mineral composition of *L. tuberregium* in both wild and cultivated type were also analyzed by Manjunathan and Kaviyarasan (2011) and found that the potassium concentration in the cultivated mushroom (90.8%) was higher than in the wild (75.3%). Zinc was distributed such that the cultivated variety had a higher concentration (4.9%) than the wild one (0.41).

Proximate composition of four wild mushrooms has been studied by Manjunathan et al. (2011) with their maco- and microminer content. Macro mineral such as calcium content was 208 mg/g for *Clitocybe* sp., and 195 mg/g for *M. rhodocus*. The highest sodium and potassium content (858.4 and 1369.1 mg/g respectively) found in *Clitocybe* sp. whereas *M. rhodocus* had the highest magnesium content (250 mg/g) (Table 3). Further, micro-mineral such as Iron content varied from *A. polytricha* with 16.3 mg/g to *M. rhodocus* with 85.6 mg/g. Copper content ranged from *A. polytricha* (0.3 mg/g) to *M. rhodocus* 9.0 mg/g. Manganese content in *M. rhodocus*, *Clitocybe* sp., *A. polytricha*, and *L. tigrinus* were 3.4, 2.7,
Table 3. Mineral nutrients of some Indian mushrooms.

<table>
<thead>
<tr>
<th>Species</th>
<th>Ca</th>
<th>P</th>
<th>Fe</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>Na</th>
<th>K</th>
<th>Mg</th>
<th>Se</th>
<th>Cr</th>
<th>Pb</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricus</td>
<td></td>
</tr>
<tr>
<td>Heterocyctis a</td>
<td>81</td>
<td>39</td>
<td>39</td>
<td>3.72</td>
<td>1.9</td>
<td>39.0</td>
<td>422.0</td>
<td>39.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manimozhi and Kaviyarasas (2013)</td>
</tr>
<tr>
<td>Auricularia</td>
<td></td>
</tr>
<tr>
<td>polytricha a</td>
<td>607</td>
<td>16.3</td>
<td>1.3</td>
<td>0.3</td>
<td>1.0</td>
<td>858.4</td>
<td>588.4</td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manjunathan et al. (2011)</td>
</tr>
<tr>
<td>Calvatia gigantea a</td>
<td>630</td>
<td>330</td>
<td>1.7</td>
<td>4.41</td>
<td>1.39</td>
<td>10.3</td>
<td>0.18</td>
<td>22.3</td>
<td>150</td>
<td>91.2</td>
<td></td>
<td></td>
<td>Agrahar-murgukar and Subbulakshmi (2005)</td>
</tr>
<tr>
<td>Cantharellus cibarius a</td>
<td>420</td>
<td>580</td>
<td>53.5</td>
<td>7.68</td>
<td>4.36</td>
<td>6.83</td>
<td>0.29</td>
<td>47.9</td>
<td>46.2</td>
<td>295</td>
<td></td>
<td>Agrahar-murgukar and Subbulakshmi (2005)</td>
<td></td>
</tr>
<tr>
<td>Cittocybe sp. a</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>Lentinus edodes a</td>
<td></td>
</tr>
<tr>
<td>Lentinus sajor-</td>
<td></td>
</tr>
<tr>
<td>caju a</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Lentinus tigrinus a</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>Lentinus torulosus a</td>
<td></td>
</tr>
<tr>
<td>Lentinus</td>
<td>2.66</td>
<td></td>
</tr>
<tr>
<td>tuberregium</td>
<td></td>
</tr>
<tr>
<td>(Wild type) a</td>
<td></td>
</tr>
<tr>
<td>Lentinus tuberregium</td>
<td></td>
</tr>
<tr>
<td>(Cultivated type) a</td>
<td></td>
</tr>
<tr>
<td>Macrolepiota rhacades a</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Pleurotus eous a</td>
<td>23</td>
<td>1410</td>
<td>9.0</td>
<td></td>
<td>17.8</td>
<td>82.7</td>
<td>78</td>
<td>4570</td>
<td>242</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Pleurotus flabellatus a</td>
<td>24</td>
<td>1550</td>
<td>12.4</td>
<td></td>
<td>21.9</td>
<td>58.6</td>
<td>75</td>
<td>3760</td>
<td>292</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Pleurotus florida a</td>
<td>24</td>
<td>1850</td>
<td>18.4</td>
<td></td>
<td>15.8</td>
<td>11.5</td>
<td>62</td>
<td>4660</td>
<td>192</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Pleurotus sajor-</td>
<td>20</td>
<td>760</td>
<td>12.4</td>
<td></td>
<td>12.2</td>
<td>29</td>
<td>60</td>
<td>3260</td>
<td>221</td>
<td></td>
<td></td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>caju a</td>
<td></td>
</tr>
<tr>
<td>Ramaria brevispora a</td>
<td>530</td>
<td>510</td>
<td>7.17</td>
<td>11.4</td>
<td>16.7</td>
<td>6.76</td>
<td>0.31</td>
<td>35.5</td>
<td>217.2</td>
<td>5.28</td>
<td></td>
<td></td>
<td>Agrahar-murgukar and Subbulakshmi (2005)</td>
</tr>
<tr>
<td>Russula integra a</td>
<td>1270</td>
<td>240</td>
<td>56.2</td>
<td>7.28</td>
<td>3.33</td>
<td>10.5</td>
<td>0.56</td>
<td>41.0</td>
<td>327</td>
<td>26.9</td>
<td></td>
<td></td>
<td>Agrahar-murgukar and Subbulakshmi (2005)</td>
</tr>
<tr>
<td>Schizophyllum commune a</td>
<td>188</td>
<td>408</td>
<td>12.3</td>
<td></td>
<td>0.9</td>
<td>5.7</td>
<td></td>
<td>227</td>
<td></td>
<td></td>
<td></td>
<td>0.133</td>
<td></td>
</tr>
</tbody>
</table>

^1 Ca, P, Fe, Mn, Cu, Zn, Na, K and Mg contents in mg%; ^2 Se content in µg/kg; ^3 All mineral contents in mg/100g; ^4 P and K in g/100 g and rest of the metals in mg/kg; X: negligible quantities; -: No results.
MEDICINAL POTENTIAL OF MUSHROOMS

Medical mycology is as old as traditional uses of mushrooms. They have been used in medicine since the Neolithic and Paleolithic eras (Samorini, 2001). Although mushrooms as medicine have been used in China since 100 A.D. (Gunde-Cimmerman, 1999), but it was only in 1960 that scientists investigated the basic active principles of mushrooms which are health promoting. Mushrooms have been used in health care for treating simple and age old common diseases like skin diseases to present day complex and pandemic disease like acquired immunodeficiency syndrome (AIDS). Mushrooms in the twentieth century are well known to people all over Asian countries as an important bi-source of novel secondary metabolites. In India, particularly the alternative systems of medicine, utilize the curative properties of mushrooms. The secondary metabolites of these mushrooms are chemically diverse and possess a wide spectrum of biological activities, which are explored in traditional medicines (Rai et al., 2005). In India, several mushrooms have been reported as medicinal mushrooms which have antioxidant, antimicrobial, anti-inflammatory activity with antitumor and other properties.

Antioxidant properties

Several researchers investigated that a number of medicinal mushrooms occurring in India possessed promising antioxidant properties. Extracts from fruiting bodies and mycelia of Ganoderma lucidum, Phellinus rimosus and several Pleurotus sp. occurring in South India were found to possess antioxidant activity with high free radical scavenging activity (Jones and Janardhanan, 2000; Ajith and Janardhanan, 2001; Lakshmi et al., 2003). Ethyl acetate, methanol and aqueous extract of G. lucidum has been reported to effectively scavenge the O2·- and ·OH radicals, however the aqueous extract was not effective to inhibit the ferrous ion induced lipid peroxidation (Jones and Janardhanan, 2000) whereas ethanol extracts of the mycelium of G. lucidum showed high antiperoxidative activity (Lakshmi et al., 2003). The methanol extract of fruiting bodies of P. florida was found to possess -OH radical scavenging and lipid peroxidation inhibiting activities (Jose and Janardhanan, 2000). The extract also showed significant reducing power and radical scavenging property as evident from ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals scavenging assay. Ethyl acetate, methanol and aqueous extracts of the Phellinus rimosus were effective to scavenge O2– generated from the photoillumination of riboflavin, ·OH generated from Fenton's reaction, nitric oxide radical released from aqueous solution of sodium nitroprusside in a dose dependent manner (Ajith and Janardhanan, 2001). All these three extracts of P. rimosus also inhibited dose dependently ferrous ion induced lipid peroxidation in the rat whole liver homogenate.

Sheena et al. (2005) also studied the therapeutic potential of G. lucidum and reported that the sample of G. lucidum from South Indian tropics has greater antioxidant activity through suppression of formation capacity of the free radicals and also possesses high 2,2-azobis-3-ethylbenzthiazolone-6-sulphonic acid (ABTS) and DPPH scavenging activity. The antioxidant potential from water and methanolic extracts of fruiting bodies of 23 species of mushrooms naturally grown in different geographic locations of India (forest area of Himachal Pradesh and Kerala) was measured by Puttaraju et al. (2006). The antioxidant ability of each species was analyzed for the total antioxidative status, employing multimechanistic antioxidative assays such as inhibition of lipid peroxidation, determination of reducing power, and free radical scavenging ability with determination of total phenolics, because the phenolics are known to contribute largely to antioxidant potential. Termotomyces heinii was identified as the best variety, which showed 37 mg of phenolics/g of sample, 418 units of reducing power ability (RPA)/g, and an IC50 of ~1.1 mg (dry weight)/mL, free radical scavenging activity (FRS) in the water extract followed by 11.2 mg of phenolics/g, 275 units of RPA/g, and an IC50 of ~2.7 mg (dry weight)/mL of FRS in the methanolic extract. Antioxidant and nitric oxide synthase (NOS) activation properties of Armillaria mellea Quel was evaluated by Rai et al. (2009). In vitro evaluation of antioxidant activities of A. mellea Quel showed significant inhibition of lipid peroxidation, potent hydroxyl and DPPH radical scavenging activity with IC50 values of crude, boiled and ethanolic extracts ranging from 36.3 to 388.92 μg/ml. Among three kinds of extracts, the ethanolic extract was the most effective in relation to antioxidant activity and NOS activation property. Antioxidant activity and bioactive compounds from six wild mushrooms (Lycoperdon perlatum, C. cibarius, Clavaria vermiculiris, Ramaria formosa, Marasmius oreades, P. pulmonarius)
of Western Ghats of Karnataka, India were studied by Ramesh and Pattar (2010). All the mushrooms showed high phenol and flavonoid content with promising antioxidant properties (Ramesh and Pattar, 2010). Antioxidant and phytochemical properties of ethanolic extracts from the wild edible mushroom Termitomyces reticulatus and their individual parts (Cap and Stipe) were evaluated by Loganathan et al. (2010) through the reducing power, β-carotene bleaching, ABTS and DPPH radicals scavenging activity methods. Antioxidant components like total phenol, flavonoid, β-carotene and lycopene were also determined and the amount of phenol was correlated with the antioxidant property. All the extracts showed potent antioxidant activities, in which the entire mushroom extract showed more antioxidant property when compared with the other two extracts (Cap and Stipe). Kumari et al. (2011) have investigated the antioxidant activity of Cantharellus friessii, Cantharellus subcibarius, Cantharellus cinerius and P. florida collected from North-Western Himalayan region of India including their bioactive compounds such as phenol, flavonoid, ascorbic acid and β-carotene. Among them C. friessii showed significantly higher antioxidant activity through β-carotene bleaching method and with the high phenol content (16.80 mg/g) than the other mushroom species. Methanolic extracts of cap and stipe of commercially obtained mushrooms A. bisporus, Hypsizygus ulmarius, and C. indica were analysed by Babu and Rao (2011) for their antioxidant activity in different chemical systems including reducing power, free radical scavenging, ferric reducing antioxidant power (FRAP), superoxide scavenging, peroxide scavenging, and metal chelating activities. All the three commercially grown mushrooms exhibited moderate to high antioxidant activities. All the activities increased steadily with increase in the concentration. Hypsizygus ulmarius cap showed excellent DPPH radical scavenging, peroxide scavenging, FRAP and reducing power abilities which may be attributed to its highest total phenol content whereas the excellent ferrous ion chelation and superoxide scavenging abilities exhibited by A. bisporus cap may be attributed to its highest flavonoid content (Babu and Rao, 2011). It has been reported that free radical-scavenging activity is greatly influenced by the phenolic composition of samples (Cheung et al., 2003) and the reducing power of mushrooms might be due to their hydrogen-donating ability (Shimada et al., 1992). Accordingly, above studied mushrooms might contain higher amounts of reductone, which could react with free radicals to stabilise and block radical chain reactions. Beside that, the activity difference among the results obtained from antioxidant studies with the mushroom extracts might be related to the different conditions of measurement and the sensitivity of the assays. Therefore several methods should be used in parallel to elucidate the complex field of antioxidants and oxidation (Ciz et al., 2010).

Antimicrobial properties

The petroleum ether, chloroform, acetone and water extracts of the mushroom *Osmoporus odoratus* have been tested for their antibacterial activity against *Staphylococcus aureus*, *Streptococcus pyogenes*, *Bacillus subtilis*, *Escherichia coli* and *Pseudomonas aeruginosa*; the water extract alone showed antibacterial activity against the tested organisms and the results were comparable with that of ampicillin rather than chloramphenicol (Sivakumar et al., 2006). Two edible mushrooms (*A. bisporus* and *P. major-caju*) were assayed in vitro for their antimicrobial activities by Tambekar et al. (2006) using aqueous and organic solvent extracts. In their study, *E. coli* 390, *E. coli* 739, *Enterobacter aerogenes*, *P. aeruginosa* and *Klebsiella pneumonia* were most sensitive to aqueous, ethanol, methanol and xylene extracts of these mushrooms. *Pleurotus* species had a narrow antibacterial spectrum against Gram-negative bacteria and strongly inhibited the growth of the Gram-positive bacteria tested, including *B. subtilis*, and *M. luteus* (Loganathan et al., 2008). The antimicrobial activity of various solvent extracts (methanol, ethanol, acetone and aqueous extract) of *G. lucidum* was tested by Quereshi et al. (2010) against six species of bacteria: *E. coli*, *S. aureus*, *K. pneumoniae*, *B. subtilis*, *S. typhi* and *P. aeruginosa*. Acetone extract exhibited maximum antibacterial activity, while the most susceptible bacterium observed was *K. pneumoniae*. Methanolic extracts of six wild mushrooms (*L. perlatum*, *C. cibarius*, *C. vermiculris*, *R. formosa*, *M. oreades*, *P. pulmonarius*) of Western Ghats of Karnataka, India showed significant antimicrobial activity against *B. subtilis*, *S. aureus*, *E. coli*, *P. aeruginosa* and *Candida albicans* (Ramesh and Pattar, 2010).

Manjunathan and Kaviyarasan (2010) studied the solvent based effectiveness of antibacterial activity of edible mushroom *L. tuberregium* (Fr.). In vitro antimicrobial properties of *L. tuberregium* culture filtrate extracted using four different solvent systems (Hexane, dichloromethane, chloroform and ethyl acetate) were the most active to inhibit the growth of *S. aureus*, *Micrococcus luteus*, *E. coli*, *Salmonella typhi* and *Shigella flexneri*. The antibacterial activity of *V. bombycina* extracts (hexane, chloroform, ethyl acetate and methanol) were evaluated by Jagadeesh et al. (2010) against the clinically important bacterial strains *B. subtilis*, *S. aureus*, *E. coli*, *K. pneumonia* and *P. aeruginosa* and reported that the *V. bombycina* extracts possess compounds which have the antibacterial properties.

The antibacterial and antifungal activity of methanol and aqueous extract of fruit bodies from *Phellinus* was tested by Balakumar et al. (2011) against five bacterial pathogens such as *E. coli*, *P. aeruginosa*, *S. typhi*, *S. aureus* and *Streptococcus mutans* and five fungal strains *Penicillium* sps., *Aspergillus fumigatus*, *Aspergillus*
among them, cultured mycelium of morel mushroom, *M. esculenta* was determined by Nitha et al. (2006) using both DLA cell line-induced solid tumor and EAC cell line-induced ascites tumor models in mice. The extract exhibited significant antitumor activity against both ascites and solid tumors (Nitha et al., 2006).

Immunomodulatory properties

In India, only a few studies have been carried out with mushrooms for immunomodulatory properties. Structural aspects of mushroom polysaccharides from *P. osreatus*, *Astraeus hygrometricus*, *P. sajor-caju* and *P. florida* has been studied at Vidyasagar University, West Bengal, India (Chakraborty, 2004; Rout et al., 2004; 2005) with their immunomodulatory effects. A water-soluble glucan (Figure 1) was isolated from *P. florida* fruit bodies and investigated for its structural characterization and immunomodulatory effects by Rout et al. (2004) which exhibited significant macrophage activity through the release of nitric oxide whereas Chakraborty et al. (2004) investigated another water-soluble glucan (Figure 2) from an edible mushroom, *A. hygrometricus* and found that glucan is a strong immune-enhancing material showing strong splenocyte activation. A glucan (Figure 3) that was soluble in aqueous sodium chloride was isolated from the aqueous extract of the fruiting bodies of *P. flora* which stimulated the phagocytic activity of macrophages (Rout et al., 2005). Roy et al. (2009) studied an immune-enhancing water-soluble glucan (Figure 4) isolated from hot water extract of an edible mushroom, *P. flora*, cultivar Assam Florida and found that the glucan stimulates macrophages, splenocytes, and thymocytes. A heteroglycan (Figure 5) isolated from an aqueous extract of an edible mushroom, *L. squarrosulus* and analyzed for its structural characterization with immune-enhancing activity by Bhunia et al. (2010) which showed macrophage as well as splenocyte and thymocyte activation. Dey et al. (2010) have also analyzed an immunoenhancing water-soluble polysaccharide (Figure 6) of an edible mushroom, *P. flora* blue variant and they have also found that the molecule activated macrophages, splenocytes, and thymocytes. A structural and biological study of a heteropolysaccharide (Figure 7) from aqueous extract of an edible mushroom, *P. ostreatus* has also been conducted by Maity et al. (2011) and revealed that the heteroglycan stimulates macrophages, splenocytes, and thymocytes (Table 4).

Ethnomycological knowledge of ethnic-tribes in India

The traditional uses of the mushroom are known to the

niger, Aspergillus flavus and *Mucor indicus*. The fruit body of *Phellinus* showed potential antibacterial activities against the selected strains whereas aqueous extract showed maximum inhibition zone (42 mm) against *P. aeruginosa* and the methanolic extract showed the maximum antifungal activity against *A. flavus* (35 mm). Ethyl acetate extract of four different edible mushrooms (*P. sajor-caju*, *V. volvacea*, *A. bisporus* and *P. ostreatus*) were investigated for their antimicrobial activity against *B. subtilis*, *S. aureus*, *E. coli*, *K. pneumoniae* and *P. vulgaris* (Surekha et al., 2011). Among them, only *A. bisporus* and *P. ostreatus* showed effective inhibition zone against all pathogenic strains.

Anti-inflammatory properties

Ethanolic extract of cultured mycelium of *M. esculenta* were investigated by Nitha et al. (2006) for their anti-inflammatory activity. The extract showed significant dose-dependent inhibition of both acute and chronic inflammation in mice model which was comparable to that of the standard reference drug, Diclofenac. In yet another report, the acute and chronic anti-inflammatory activities of ethyl acetate and methanolic extracts from *G. lucidum* were determined by Sheena et al. (2005) through carrageenan-induced acute and formalin-induced chronic inflammatory models in mice. Both the extracts showed significant effect on carrageenan-induced acute and formalin-induced chronic inflammation in mice which was comparable with standard drug, diclofenac. However, chloroform extract of *G. lucidum* also exhibited significant anti-inflammatory activity (Joseph et al., 2009).

Antitumor properties

The methanolic and aqueous extracts of *G. lucidum* were tested by Jones and Janardhanan (2000) for antitumor activity which effectively inhibited Ehrlich’s ascites carcinoma (EAC) cell line-induced solid tumor in mice when administered orally (Jones and Janardhanan, 2000). Methanol extract of the fruiting bodies of *P. flora* and *P. pulmonarius* occurring in South India also showed profound antitumor activity against the EAC cell line-induced solid tumor model in mice (Jose and Janardhanan, 2000; Jose et al., 2002). The three different extracts (ethyl acetate, methanol and aqueous) of *P. rimosus* were found to inhibit the Dalton’s Lymphoma Ascites (DLA) cell line-induced solid tumor and EAC cell line-induced ascites tumor in mice whereas the antitumor effect was high in ethyl acetate extract than the other extracts (Ajith and Janardhanan, 2003). Antitumor activity of *G. lucidum* was again confirmed by Sheena et al. (2005) through the EAC cell line-induced solid tumor model in mice where both the extracts (methanol and aqueous) showed significant antitumor properties by inhibiting the tumor development. Polysaccharides, extracted from mycelium and fruiting bodies of *L. tuberregium* effectively inhibited solid tumor proliferation in mice (Manjunathan and Kaviyarasan, 2010). Antitumor activity of the Ethanolic extract from cultured mycelium of morel mushroom, *M. esculenta* was determined by Nitha et al. (2006) using both DLA cell line-induced solid tumor and EAC cell line-induced ascites tumor models in mice. The extract exhibited significant antitumor activity against both ascites and solid tumors (Nitha et al., 2006).
Figure 1. Repeating unit of glucan isolated by Rout et al. (2004).

\[\rightarrow 6 \)-\(\alpha \)-D-Glc\(_p \)(1->)

Figure 2. Repeating unit of glucan isolated by Chakraborty et al. (2004).

\[\rightarrow 4 \)-\(\alpha \)-D-Glc\(_p \)(1->6)-\(\beta \)-D-Glc\(_p \)(1->

Figure 3. Repeating unit of glucan isolated by Rout et al. (2005).

\[\rightarrow 3 \)-\(\alpha \)-D-Glc\(_p \)(1->3)-\(\beta \)-D-Glc\(_p \)(1->3)-\(\alpha \)-D-Glc\(_p \)(1->

Figure 4. Repeating unit of glucan isolated by Roy et al. (2009).

\[\rightarrow 3 \)-\(\alpha \)-D-Glc\(_p \)(1->3)-\(\beta \)-D-Glc\(_p \)(1->3)-\(\beta \)-D-Glc\(_p \)(1->6)-\(\beta \)-D-Glc\(_p \)(1->

Figure 5. Repeating unit of heteroglycan isolated by Bhunia et al. (2010).

\[\rightarrow b \)-\(\beta \)-D-Glc\(_p \)(1->6)-\(\beta \)-D-Glc\(_p \)(1->b)-\(\alpha \)-D-Gal\(_p \)(1->3)-\(\beta \)-D-Glc\(_p \)(1->4)-\(\beta \)-D-Glc\(_p \)(1->

Figure 6. Repeating unit of polysaccharide isolated by Dey et al. (2010).
Wild mushrooms are a valuable non-timber forest resource used by mycophilic societies and their use has been documented in many countries around the world (Chang and Lee, 2004; Roberto G.O et al., 2005; Sarma et al., 2010). They are sold in traditional markets (Roberto G.O et al., 2005) or commercially exploited as food (Bhaben et al., 2011) or medicines (Sachan et al., 2001). In Nigeria, Puff balls (Lycoperdon pusillum and C. gigantea) are used to cure sores, abrasion or bruises, deep cut, haemorrhages and urinary infections (Buswell and Chang, 1993). Traditional mycological knowledge of most Indian ethnic groups has proven to be extensive and profound, consuming nearly 283 species of wild mushrooms out of 2000 species recorded world over (Purkayastha and Chandra, 1985).

Ethnomycological aspects were also dealt with by few workers in different parts of India and world over (Harsh et al. 1993; Bulakh, 2001). Some of the wild edible mushrooms have also been reported from Manipur and Arunachal Pradesh of North East India (Sing and Sing, 1993; Sing et al., 2002) whereas, from Assam, Baruah et al. (1971) reported few Basidiomycetes fungus of Sibsagar District. In Central India G. lucidum is used as herbal medicine by the Baiga tribes to cure asthma and Agaricus sp. is used in goiter and L. pusillum in wound healing and also for controlling bleeding (Rai et al., 2005). Sarma et al. (2010) reported that some Ethnic Tribes of Western Assam use the wild edible mushroom as food source. Ethnic tribes such as Garos, Adivashis, Bodos and Rajbangshi of Western Assam are consuming at least seven species of mushrooms as

<table>
<thead>
<tr>
<th>Biological source</th>
<th>Medicinal properties</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricus bisporus</td>
<td>Antioxidant activity, antimicrobial activity, antiproliferative activity</td>
<td>Jagdish et al. (2009)</td>
</tr>
<tr>
<td>Astraeus hygrometricus</td>
<td>Immunoan enhancing activity</td>
<td>Chakraborthy et al. (2004)</td>
</tr>
<tr>
<td>Cantharellus cibarius</td>
<td>Antioxidant activity, antimicrobial activity</td>
<td>Ramesh and Pattar (2010)</td>
</tr>
<tr>
<td>Clavaria vermicularis</td>
<td>Antioxidant activity, antimicrobial activity</td>
<td>Ramesh and Pattar (2010)</td>
</tr>
<tr>
<td>Ganoderma lucidum</td>
<td>Antioxidant activity, antimitogenic activity</td>
<td>Jones and Janardhanan (2000); Lakshmi et al. (2004)</td>
</tr>
<tr>
<td>Lentinus squarrosulus</td>
<td>Immunoan enhancing activity</td>
<td>Bhunia et al. (2010)</td>
</tr>
<tr>
<td>Lentinus tuberregium</td>
<td>Antibacterial activity</td>
<td>Manjunathan and Kaviyarasan (2010)</td>
</tr>
<tr>
<td>Lycoperdon perlatum</td>
<td>Antioxidant activity, antimicrobial activity</td>
<td>Ramesh and Pattar (2010)</td>
</tr>
<tr>
<td>Marasmius oreades</td>
<td>Antioxidant activity, antimicrobial activity</td>
<td>Ramesh and Pattar (2010)</td>
</tr>
<tr>
<td>Phellinus rimosus</td>
<td>Antioxidant activity and antitumor activity</td>
<td>Ajith and Janardhanan (2002; 2006)</td>
</tr>
<tr>
<td>Pleurotus florida</td>
<td>Antioxidant activity, antiinflammatory, immunoan enhancing activity</td>
<td>Jose and Janardhanan (2000); Jose et al. (2002); Roy et al. (2009); Dey et al. (2010)</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>Immunoan enhancing activity</td>
<td>Maity et al. (2011)</td>
</tr>
<tr>
<td>Pleurotus pulmonarius</td>
<td>Antioxidant activity, antimicrobial activity</td>
<td>Ramesh and Pattar (2010)</td>
</tr>
<tr>
<td>Pleurotus sajor-caju</td>
<td>Antitumor activity</td>
<td>Jose et al. (2002)</td>
</tr>
<tr>
<td>Ramaria formosa</td>
<td>Antibacterial activity</td>
<td>Tambekar et al. (2006)</td>
</tr>
<tr>
<td>Volvariola bombycina</td>
<td>Antioxidant activity, antimicrobial activity</td>
<td>Ramesh and Pattar (2010)</td>
</tr>
</tbody>
</table>

Figure 7. Repeating unit of heteropolysaccharide isolated by Maity et al. (2011).

CONCLUSION

India with diverse habitats with varied ecological conditions, harbors wide varieties of mushrooms potentially rich with nutritional and medicinal values. Several mushrooms are known to be the sources of various bioactive substances like antibacterial, antifungal, antiviral, antiparasitic, anti-oxidant, antiinflammatory, antiproliferative, anticancer, antitumour, cytotoxic, anti-HIV, hypcholesterolemic, anti-diabetic, anticoagulant, hepatoprotective among others. These mushrooms have been used as ethnomedicines by tribals for treatment of various diseases. Many mushrooms still remain unreported and their nutritional as well as health benefits are unknown to us. If discovered, some of them may have high nutritional value and serve as valuable sources of bioactive compounds with many pharmaceutical applications. Further, several products such as antidiabetic mushroom powder, weight gain powder, sex enhancement medicine, mushroom chyawanprash, mushroom pickles among others, have been developed from mushrooms in India and other medicines such as anticancer, anti-tumor, anti-inflammatory among others. are under trials.

Bose SR, Bose AB (1940). An account of edible mushrooms of India. Sci. and Culture. 6:141-149.

Wasser SP, Weis AL (1999). Medicinal properties of substances

Review

Nanosilver: Potent antimicrobial agent and its biosynthesis

Vikas Sarsar, Krishan K. Selwal* and Manjit K. Selwal

Department of Biotechnology, Deenbandhu Chotu Ram University of Science and Technology, Murthal, Sonipat, India.

Accepted 16 January, 2014

Silver ions and its salts are well known for their potent antimicrobial agent. These days, the nanosilver are widely used in a growing number of applications ranging from home disinfectants and medical devices to water purifier due to properties of silver at the nano level. Nanosilver has a large ratio of surface which dramatically increases the potential for silver ions to be accessed anywhere in body where larger silver particles cannot. The synthesis of silver nanoparticles has been reported using chemical and physical methods. This review describes a cost effective and ecofriendly approach for the synthesis of silver nanoparticles. Thus, in this review we focus on the role of microorganisms and plants in the synthesis of nanosilver and their potent application as antimicrobial agent.

Key word: Nanosilver, antimicrobial, disinfectant, nanoparticles.

INTRODUCTION

Nanoscale science is the discipline that examine the unique behaviors and properties of materials that emerge at the size range of 1 to 100 nanometers (a billionth of a meter). Nanobiotechnology is a sub-discipline of nanoscience that has arisen more recently. It manipulates unique behaviors and properties at the nanoscale to manipulate materials for various applications in biology. Nanobiotechnology already impact in medicine as therapeutic agent.

Nanobiotechnology promises to be critical in advances in other related fields. Silver has been valued for many of its properties that are useful for mankind. It is used in precious goods such as currencies, ornaments, jewelry, electrical contacts and photography, among others. The one of the most potent uses of silver as antimicrobial agent that is toxic to bacteria, fungi, and viruses. Due to their size, nanosilver have a very large surface area which typically results in greater biological activity, chemical reactivity and catalytic behavior compared to larger particles of the same chemical composition (Garnett and Kallinteri, 2006; Limbach et al., 2007). Nanotechnology is being utilized in offering many new developments in the fields of biosensors, biomedicine, bio nanotechnology diagnosis, therapeutic drug delivery and the development of treatments for many diseases and disorders. Nanosilver have novel or enhanced properties based on specific characteristics such as size, distribution and morphology. Nanosilver show potential of applications in various fields such as catalysts in chemical reactions, electrical batteries and in selective coatings for absorption of solar energy, as optical elements, pharmaceutical components and in chemical sensing and biosensing (Kamat, 2002), plasmonics (Maier et al., 2001), optoelectronics (Gracias et al., 2002), biological sensor (Mirkin et al., 1996; Han et al., 2001) and pharmaceutical applications like their potential in drug delivery formulations and routes.

The synthesis of nanosilver has been remarkable developments in the field of nanotechnology from the decade. A large numbers of methods have been reported for the synthesis of nanosilver of particular shape and size depending on specific requirements (Figure 1). Nanosilver was produced by physical and chemical methods. Some of the commonly used physical and chemical

*Corresponding author. E-mail: krishan.kselwal@gmail.com. Tel: 0130-2484128/ 9416989067. Fax:0130-2484004.
methods are ion sputtering, thermal synthesis, Inert gas condensation, reduction and sol gel technique.

Unfortunately, nanosilver synthesis involves the use of hazardous chemicals, low material conversions, high energy requirements, difficult and wasteful purifications. Further, the synthesis of nanosilver including physical and chemical processes is costly. Therefore, there is a growing need to develop environmentally friendly processes for nanoparticle synthesis without using toxic chemicals. Biosynthetic methods employing either microorganisms or plant extracts have emerged as a simple and viable alternative to chemical synthetic procedures and physical methods.

The development of cheaper reliable, eco-friendly processes for the synthesis of nanosilver is an important aspect of current nanotechnology research. One of such promising process is green synthesis. Silver nanoparticles can be synthesized by several physical, chemical and biological methods.

However for the past few years, various rapid chemical methods have been replaced by greens synthesis because of avoiding toxicity of the process and increased quality.

Approaches for nanosilver synthesis

Basically there are two approaches for nanoparticle synthesis namely the Bottom up approach and the Top down approach (Figure 2).

Top down approach

In the Top down approach involve production of nanosilver involve mechanical grinding of a bulk piece of the material.

Bottom up approach

The Bottom up approach involves chemical and biological methods to make nanostructures and nanoparticles. These processes involve controlled condensation of solute molecules that are formed during a chemical reaction. The restriction of the condensation or growth leads to the formation of particles of desired size and shape.

Biosynthesis of nanoparticles is a kind of scale down or bottom up approach where the main reaction occurring is reduction/oxidation. The microbial enzymes or the phytochemicals with anti oxidant or reducing properties are usually responsible for reduction of metal compounds into their respective nanoparticles.

NANOSILVER SYNTHESIS- AN OVERVIEW

Nano silver are one of the promising products in the nanotechnology industry. The development of consistent processes for the synthesis of silver nanoparticles is an important aspect of current nanotechnology research. One of such promising process is green synthesis. Silver nanoparticles can be synthesized by several physical, chemical and biological methods.
Physical and chemical methods of nanosilver synthesis

Some of the very successful physical methods for the synthesis of nanoparticles include radiolysis, ultrasonicication, laser ablation, microwave and electrochemical methods. However, physical methods have had limited success and therefore chemical methods for the synthesis of inorganic nanoparticles are widely accepted and commonly practiced. Nanosilver can be synthesized chemically by reduction or oxidation of metal ions, inert gas condensation, or by the sol gel methods.

Disadvantages of using physical and chemical methods

The synthesis of nanoparticles including physical and chemical processes is costly. The use of these synthesis methods requires both strong and weak chemical reducing agents and protective agents like sodium borohydride, sodium citrate and alcohols. These agents are mostly toxic, flammable, cannot be easily disposed off due to environmental issues and also show a low production rate.

There is need to search of cheaper path-ways for nanoparticle synthesis, so used microorganisms and plant extracts for synthesis. The biosynthesis of nanoscale nanosilver may contribute to the development of relatively new and largely unexplored area of research.

Biological synthesis of nanosilver

Green plant and microorganisms have a remarkable ability to form exquisite nanosilver. Biological synthesis using plant and microorganisms is eco-friendly and cheaper. Nowadays a large number of microorganisms and plant extracts are used for nanosilver synthesis (Figure 3).

APPLICATIONS OF NANOSILVER

Nanosilver as powerful antimicrobial

The potent application of nanosilver is use as antimicrobial agent. Nanosilver shows strong antimicrobial activity is a major reason for the development of nano-
Table 1. List of bacteria synthesizing silver nanoparticles.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Size of the particle (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus licheniformis</td>
<td>50</td>
<td>Kalimuthu et al., 2008</td>
</tr>
<tr>
<td>Bacillus megaterium</td>
<td>46.9</td>
<td>Fu et al., 2009</td>
</tr>
<tr>
<td>Pseudomonas stutzeri</td>
<td>200</td>
<td>Tanja et al., 1999</td>
</tr>
<tr>
<td>Corynebacterium sp.</td>
<td>10-15</td>
<td>Zhang et al., 2005</td>
</tr>
<tr>
<td>Bacillus licheniformis</td>
<td>50</td>
<td>Kalishwaralal et al., 2008</td>
</tr>
<tr>
<td>Geobacter sulfurreducens</td>
<td>200</td>
<td>Law et al., 2008</td>
</tr>
<tr>
<td>Morganella sp.</td>
<td>20-25</td>
<td>Parikh et al., 2008</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>5-60</td>
<td>Saifuddin et al., 2009</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1-100</td>
<td>Gurunathan et al., 2009b</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>50</td>
<td>Ahmad et al., 2007</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>10-20</td>
<td>Samadi et al., 2009</td>
</tr>
<tr>
<td>Bacillus sp.</td>
<td>5-15</td>
<td>Pugazhenthiran et al., 2009</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>1-100</td>
<td>Nanda and Saravanam, 2009</td>
</tr>
<tr>
<td>Lactic acid bacteria</td>
<td>11.2</td>
<td>Sintubin et al., 2009</td>
</tr>
<tr>
<td>Brevibacterium casei</td>
<td>50</td>
<td>Kalishwaralal et al., 2010</td>
</tr>
<tr>
<td>Cryphonectria sp.</td>
<td>30-70 nm Dar</td>
<td>Dar et al., 2013</td>
</tr>
</tbody>
</table>

Figure 4. Attachment and penetration of nanosilver with bacterial cell membrane.
silver containing products. Nano-silver have used for thousands of years without ill effects. Nanosilver is an effective killing for bacteria, fungus, and viruses.

Nanosilver as antibacterial

Nanosilver is an effective killing agent against a broad spectrum of Gram negative and Gram-positive bacteria (Burrell et al., 1999; Wijnhoven et al., 2009; Yin et al., 1999) including antibiotic-resistant strains (Percival et al., 2007; Wright et al., 1998). Silver nanoparticles show potential antimicrobial effects against infectious organisms including *Escherichia coli*, *Bacillus subtilis*, *Vibrio cholera*, *Psuedomonas aeruginosa*, *S. typhus*, and *Staphyloccocus aureus*. It is important that silver is a natural element that is commonly used throughout the world at low concentrations with no evidence to support a concern for widespread bacterial resistance. Nanosilver has a large surface which increases the potential for silver ions to interact with the bacteria and reduction in size of silver at nanoscale make enable it to be released

Table 2. List of Fungi synthesizing silver nanoparticles.

<table>
<thead>
<tr>
<th>Fungi</th>
<th>Size of the particle (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus fumigates</td>
<td>5-25</td>
<td>Bhainsa et al., 2006</td>
</tr>
<tr>
<td>Phaeonerochaete</td>
<td>100</td>
<td>Vigenshwaran et al., 2006</td>
</tr>
<tr>
<td>Fusarium semitectum</td>
<td>10-60</td>
<td>Basavaraja et al. 2008</td>
</tr>
<tr>
<td>Pencillium fellutanum</td>
<td>1-100</td>
<td>Kathiresan et al, 2009</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>5-50</td>
<td>Ahmad et al., 2003</td>
</tr>
<tr>
<td>Trichoderma viride</td>
<td>5-40</td>
<td>Fayaz et al., 2010</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>5-40</td>
<td>Kumar et al., 2007</td>
</tr>
<tr>
<td>Fusarium semitectum</td>
<td>13-18</td>
<td>Basavaraja et al., 2007</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>20</td>
<td>Gade et al., 2008</td>
</tr>
<tr>
<td>Fusarium acuminatum</td>
<td>5-40</td>
<td>Ingle et al., 2008a</td>
</tr>
<tr>
<td>Trichoderma asperellum</td>
<td>13-18</td>
<td>Mukherjee et al., 2008</td>
</tr>
<tr>
<td>Penicillium</td>
<td>10-100</td>
<td>Sadowski et al., 2008</td>
</tr>
<tr>
<td>Phoma glomerata</td>
<td>60-80</td>
<td>Birla et al., 2009</td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>5-35</td>
<td>Ingle et al., 2008b</td>
</tr>
<tr>
<td>Coriolus versicolor</td>
<td>67.6-74.52</td>
<td>Sanghi and Verma, 2009</td>
</tr>
<tr>
<td>Cladosporium cladosporioides</td>
<td>10-100</td>
<td>Balaji et al., 2009</td>
</tr>
</tbody>
</table>

Table 3. List of plant synthesizing silver nanoparticles.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Size of the particle (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangifera indica</td>
<td>-</td>
<td>Selwal et al., 2013</td>
</tr>
<tr>
<td>Argemone mexicana</td>
<td>10-50</td>
<td>Singh et al., 2009</td>
</tr>
<tr>
<td>Eucalyptus hybrid</td>
<td>50-150</td>
<td>Dubey et al., 2009</td>
</tr>
<tr>
<td>Brassica juncea</td>
<td>15-25</td>
<td>Lamb et al., 2001</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>5-100</td>
<td>Shankar et al., 2004</td>
</tr>
<tr>
<td>Emblica officinalis</td>
<td>10-20</td>
<td>Ankamwar et al., 2005</td>
</tr>
<tr>
<td>Aloe vera</td>
<td>15±4.2</td>
<td>Chandran et al., 2006</td>
</tr>
<tr>
<td>Capsicum annum</td>
<td>-</td>
<td>Li et al., 2007</td>
</tr>
<tr>
<td>Helianthus annus</td>
<td>-</td>
<td>Leela and Vivekanandan, 2008</td>
</tr>
<tr>
<td>Glicricida sepium</td>
<td>10-50</td>
<td>Raut et al., 2009</td>
</tr>
<tr>
<td>Jatropha curcas</td>
<td>10-20</td>
<td>Bar et al., 2009</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>60-80</td>
<td>Mude et al., 2009</td>
</tr>
<tr>
<td>Coriandrum sativum</td>
<td>26</td>
<td>Sathyavathi et al., 2010</td>
</tr>
<tr>
<td>Artemisia nilagirica</td>
<td>70-90</td>
<td>Vijayakumar et al., 2013</td>
</tr>
<tr>
<td>Rhinacanthus nasutus</td>
<td>11.5-22</td>
<td>Pasupuleti et al., 2013</td>
</tr>
</tbody>
</table>
anywhere in the body where larger silver particles cannot. The exact mechanism of silver nanoparticles is not scientifically justified and is a debated topic. There are however various theories are put forwarded on the possible mechanism for the antimicrobial action of nanosilver. The possible mechanisms of action are:

1. Nanosilver as nanometer scale silver provides an extremely large surface area for better contact with bacteria. These silver nanoparticles get attached to the cell membrane and easily penetrate inside the bacteria (Rai et al., 2009).
2. Nanosilver attack the respiratory chain in microbial mitochondria which lead in to the death (Sondi and Salopek-Sondi, 2009).
3. Nanosilver interacts with sulphur containing proteins on microbial cell membrane causing disruption (Liau et al., 1997) (Figures 4 and 5).
4. The surface of microbes having phosphorus containing compound like DNA, nanosilver inhibit their functions (Matsumura et al., 2003).
5. Nanosilver release Ag+ ion inside the microbial cell which may create free radicals and induce oxidative stress, thus further enhancing their bactericidal activity (Kim et al., 2007).

Nanosilver as antiviral

Nanosilver (average diameter ~10 nm) inhibit HIV-1 virus replication (Sun et al., 2005). Size-dependent antiviral activity of silver nanoparticles has been shown with HIV-1 virus (Elechiguerra et al., 2005). It is evident that nanosilver due to its biological and physiochemical properties is potent as antimicrobials and therapeutic agents. They can be used for many challenges in the field of nanomedicine.

Nanosilver in medicine

Nanosilver shows potent antibacterial activities against various pathogens and immensely useful in the medical field (Guzman et al., 2012). Earlier studies have suggested that nanosilver can inhibit the gamma interferon and alpha tumor necrosis factor which are involved in inflammation (Shin et al., 2007). These anti-inflammatory responses induced by nanosilver make it an anti-inflammatory agents. Polymethyl methacrylate along with nanosilver is being considered as bone cement as the nanosilver can encourage antimicrobial activity (Bechert et al., 2004). The antimicrobial property of nanosilver shows enormous potential to be used in disinfectants (Brady et al., 2003).

The plasmonic properties of nanosilver can effectively
biosense that makes it ideal biosensors for a large number of proteins that normal biosensors find more difficulty in detections. This unique advantage that nanosilver has, can be utilized for detecting various abnormalities and diseases in the human body including cancer (Moores and Goettmann, 2006; Zhang et al., 2009; Ghodselahi et al., 2011). Due to potent application as antimicrobial agent nanosilver used for development of novel chitin/nanosilver composite scaffolds for wound dressing (Madhumathi et al., 2010), nanosilver are currently being used in many household products such as cloths, washers, water purification systems, tooth paste, shampoo, fabrics, deodorants, filters, paints, kitchen utensils, and toys to impart antimicrobial properties (Baker et al., 2005).

CONCLUSION AND FUTURE PROSPECTS

Silver nanoparticles are conveniently prepared through leaves extract. The biological synthesis of silver nanoparticles is fast, ecofriendly and cheaper. The biological method for synthesis of silver nanoparticles with high antimicrobial activity has been developed. Nanosilver is an excellent antimicrobial and has been used for many years. Chemical and physical methods of nanosilver synthesis have been used for decades, but they are found to be expensive and the use of various toxic chemicals for their synthesis therefore, the biological synthesis is the most preferred option. Plant, bacterial, and fungal extract can be used for nanosilver synthesis, the easy availability, the nontoxic nature, the various options available, and the advantage of quicker synthesis make plant extracts the best and an excellent choice for nanosilver synthesis.

Rapid synthesis and excellent reproducibility of silver nanoparticles from the plant extract is a time saving and advantage over microbial synthesis because laborious and lengthy procedures are involved in maintenance of microbial cultures. Nanosilver contributes into potential application as antimicrobial agent. This has been utilized in various processes in the medical field and has hence been exploited well.

ACKNOWLEDGMENT

The first authors are thankful to University Grant Commission (UGC), New Delhi for the award of Junior Research Fellowship.

REFERENCES

Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Harirahan N, Eom SH (2009b). Biosynthesis, purification and characterization of silver nanoparticles...
using *Escherichia coli*. Colloids Surf B. 74(1):328-335

nanoparticles, microbially fabricated. Proc Natl. Acad. Sci. 96:13611-13614

Genetic polymorphism of milk protein variants and their association studies with milk yield in Sahiwal cattle

Shahlla N Mir*, Obaid Ullah and Riazuddin Sheikh

87 West Canal Bank Road, Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.

Accepted 10 January, 2014

The objective of this study was to determine the allele and genotype frequencies of genetic variants in five milk protein genes and estimate the effect of these variants on milk yield in Sahiwal cattle. Genotypes of five milk protein genes (alpha s1 casein, beta casein, kappa casein, alpha lactalbumin and beta lactoglobulin) were detected using SNaPshot genotyping method. All the five milk protein genes studied exhibited polymorphism with high allele frequencies of 0.51 for alpha s1 casein C, 0.93 for beta casein A2, 0.92 for kappa casein A, 0.93 for alpha lactalbumin B and 0.91 for beta lactoglobulin B. Statistically significant differences (p > 0.05) were observed in kappa casein genotypes AA (AA) and AB (AC) that is, genotype AB had more milk yield in 1st lactation (422 kg) and 2nd lactation (612 kg), respectively. In conclusion, the AB genotype identified in kappa casein gene is associated with higher milk production therefore incorporation of AB and BB genotypes for kappa casein may help to improve the milk yield in Sahiwal cattle population of Pakistan. To the best of our knowledge, this is the first detailed study involving frequency distribution of genetic variants and their effects on milk yield in Bos indicus Sahiwal cattle of Pakistan.

Key words: Genetic variant, milk protein genes, Sahiwal cattle.

INTRODUCTION

For centuries, animal breeders have greatly and effectively manipulated the genomes of livestock species and enhanced production traits in their herds by selecting superior individuals as predecessors for the next generations. This indirect use of hereditary information without involving molecular knowledge may give useful results in terms of production but may ignore some reproductive traits of animal. Hence, there is need to use selection methods that are based on genomic studies (André, 2012). Genes that are correlated with performance parameters can improve the estimation of breeding value and hence can work as a suitable supplement to conventional breeding procedures. Genetic polymorphism related to the differences in animal performance can be taken into account in the selection process.

Milk is an important source of essential nutrients for lactating calves and a key raw material for human food preparations (Reinhardt et al., 2012). All over the world people fulfill approximately 13% of their protein requirement from milk and milk products. Bovine milk proteins are generally classified as caseins, which make up about 80% of the milk proteins, consisting of four proteins: Alpha S1 (CSN1S1, 39-46% of total caseins), alpha S2 (CSN1S2, 8-11%), beta (CSN2, 25-35%), and kappa (CSN3, 8-

*Corresponding author. E-mail: mirshehla@gmail.com.

Abbreviations: NCBI, National Centre of Biotechnology Information; PCR, polymerase chain reaction; SNP, single nucleotide polymorphism; MFGM, milk fat globule membrane; RFLP, restriction fragment length polymorphism; SSCP, single strand conformation polymorphism.
15%) (Eigel et al., 1984). Whey proteins make about 16% of the total milk protein and contain two major proteins \textit{alpha lactalbumin} and \textit{beta lactoglobulin}. Other minor part is made by peptones/low molecular weight peptides (3%) and milk fat globule membrane (MFGM) proteins (1%) (D’Alessandro et al., 2011).

Ruminant’s milk proteins are coded by highly polymorphic genes, containing an unusually large number of polymorphisms (Nilsen et al., 2009). Since the pioneer work done by Aschaffenburg and Drewry in 1955 who discovered alleles A and B of \(\beta\) lactoglobulin in cattle the researchers worldwide became interested in genetic polymorphisms of major milk proteins. This chain of studies continued and according to a recent review by Caroli et al. (2009) of milk protein variants, 9 \(\alpha_s1\) - CN (A, B, C, D, E, F, G, H, I), 4 \(\alpha_s2\) -CN (A, B, C, D), 12 \(\beta\)-CN (A1, A2, A3, B, C, D, E, F, G, H1, H2, I), 14 kappa-CN (A, A1, B, B2, C, D, E, F1, F2, G1, G2, H, I, J), 11 kappa-LG (A, B, C, D, E, F, G, H, I, J, W), and 3 \(\alpha\)-LA (A, B, C), modified from Farrell et al. (2004) have been reported.

These allelic forms are controlled by codominant autosomal genes according to the Mendelian mode of inheritance. The different genetic variants of milk proteins differ from each other by only a few amino acid substitutions or deletions within the polypeptide chain (Eigel et al., 1984). Several studies have been carried out to determine the frequencies of genetic variants of milk proteins in different cattle breeds (Erhardt, 1996; Baranyi et al., 1996; Lien et al., 1999; Jeichitra et al., 2003; Caroli et al., 2004) and possible relationships between milk protein polymorphism and economically important production traits, milk com-position, and quality have been widely studied (Yasemin and Cengiz, 2006) due to the potential use of milk protein types as an aid to genetic selection. However no compre-hensive and detailed studies are available in Sahiwal cattle breed. The study of various allelic forms is im- portant in terms of their effect and frequencies in this breed.

The Sahiwal is breed of \textit{Bos indicus}, known to have the greatest potential for milk production, growth and reproduc-tive efficiency in tropical environments compared with other \textit{B. indicus} breeds (Mwandotto, 1994; Dahlin et al., 1998; Khan et al., 1999; Muhuyi et al., 1999). In Pakistan, the major breeding tracts of Sahiwal lie in Montgomery (Sahiwal) district Rachagani et al. (2006). Its ability to endure and produce in harsh environments coupled with its dual purpose role has widened the distri-bution of this breed in tropical and subtropical countries. Among \textit{B. indicus} breeds, the Sahiwal is the most frequently used in dairy crossbreeding in the tropics (Muhuyi, 1997; Kahi et al., 2000).

Milk protein genetic variability in cattle has been exten-sively studied at both the DNA and protein levels for evolutionary and biodiversity analyses (Caroli et al., 2004). Typing milk proteins at the DNA level does not require the gene product, which renders feasible the genotyping of males and non-lactating females and even embryos.

Recent advances in single nucleotide polymorphism (SNP) detection allow different genotyping ways of detecting poly-merisms. One of these techniques, SNaPshot geno-tying has been optimized to genotype SNPs in the bovine \(\alpha_s1\)-casein, \(\beta\)-casein, \(\kappa\)-casein, \(\alpha\)-lactalbumin and \(\beta\)-lactoglobulin genes. SNaPshot geno-tying is a newly optimized rapid and efficient screening procedure that could provide more accurate predictions of breeding values of animals to be selected, and thus improve response to selection.

This study was designed to identify variants in five milk protein genes, three caseins (\(\alpha S1\), \(\beta\) and \(\kappa\)) and two whey proteins (\(\alpha\)-lactalbumin and \(\beta\)-lactoglobulin) and to determine allele and genotype frequencies of milk protein genetic variants in Sahiwal cattle of Pakistan. We also investigated the association between observed milk protein genetic variants and milk yield in this group of animals. Moreover, we report the effects of identified milk protein genetic variants on milk yield. Although polymorphism was observed in genes of all five studied proteins, only \textit{Kappa casein} polymorphism had statistically significant (\(p > 0.05\)) association with milk yield in Sahiwal cattle.

Genotype AB of \textit{Kappa casein} had more milk yield in 1st lactation (422 kg) and 2nd lactation (612 kg), respectively. Hence genotype information at an early age can help the farmers to improve milk yield by replacing tradition selection methods currently being used in Pakistan.

MATERIALS AND METHODS

Phenotypic data and genomic DNA samples

Phenotypic data of the selected animals was collected which include animal’s age, milking record, calving record, sire and dam names. Blood samples of 120 Sahiwal cattle breed were collected from Research Centre for Conservation of Sahiwal cattle (RCCSC, Khanewal) and Livestock Production Research Institute (LPRI, Okara). DNA was extracted using a standard protocol (Sambrook et al., 2001).

Primers design

Primers were designed using the bovine \(\alpha_s1\)casein, \(\beta\) casein, \textit{kappa casein}, \(\alpha\)-lactalbumin and \(\beta\)-lactoglobulin gene sequences available at the National Centre of Biotechnology Information (NCBI) website. Promoter regions of \(\alpha_s1\)casein and \(\alpha\)-lactalbumin were amplified by polymerase chain reaction (PCR) using primers AS1CN and PLAL while exon VII of \textit{beta casein}, exon IV of \textit{kappa casein} and exon IV of \textit{beta lactoglobulin} were amplified by PCR using primers X7.1Bcn, KCN and X4Blg, respectively (Table 1). Primers for SNaPshot SNP genotyping were designed using the website http://www.basic.northwestern.edu/biotools/oligocalc.html. The primers were tailored to immediately end 5’ site before the target SNP (Table 1).

Genomic DNA amplification

PCR reaction (25 \(\mu\)l total volume) included 100 ng of bovine genomic DNA, 0.16 pmol of amplification primer (Table 1), 2.5 U Taq DNA polymerase, 2 mM MgCl\(_2\) and 100 \(\mu\)M dNTPs. Thermal profile included initial denaturation for 3 min at 94°C, followed by 35
Table 1. Primer sequences.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Primer sequences (5’-3’)</th>
<th>Tm (°C)</th>
<th>Amplicon size</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1CN (a)</td>
<td>F-TGCATGGTTCCTCATAATAACC R-GAAGAAGCAGCAAGCTGG</td>
<td>52</td>
<td>310</td>
</tr>
<tr>
<td>7.1BCN (b)</td>
<td>F-GATTGGTTTTCTCCTTTCCAGGAT R-GTGGGAGGAGGCTGTTG</td>
<td>58</td>
<td>357</td>
</tr>
<tr>
<td>KCN (c)</td>
<td>F-ATCATTTATGGCCATCCCACAAAG R-GGCCCATTTCGCCTTCTGTACACAA</td>
<td>60</td>
<td>350</td>
</tr>
<tr>
<td>PLAL (d)</td>
<td>F-AGATTCTGGGAGGAAGGGA R-GGTGGGAGCAAGATACGGAT</td>
<td>58</td>
<td>250</td>
</tr>
<tr>
<td>X4BLG (e)</td>
<td>F-TGGGGGCTGCCAGAGAAC R-CTCTCTCCCTGGAATCA</td>
<td>60</td>
<td>282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker</th>
<th>Primer sequences (5’-3’)</th>
<th>Tm (°C)</th>
<th>Amplicon size</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1CN (f)</td>
<td>Forward 1st round TGCATGGTTCCTCATAATAACC Reverse 1st round GAAGAAGCAGCAAGCTGG</td>
<td>56</td>
<td>310</td>
</tr>
<tr>
<td>BCN (g)</td>
<td>Forward 1st round AACATCCTCTCTTTACTCAACCCCCT Reverse 1st round ATATCTCTCTCGGATAGGCACTGCT Extension Primer sequence GTTGAGCCTTTACTGAAA</td>
<td>66</td>
<td>338</td>
</tr>
<tr>
<td>KCN (h)</td>
<td>Forward 1st round AACATCCTCTCTCTTACTCAACCCCCT Reverse 1st round ATATCTCTCTCGGATAGGCACTGCT Extension Primer sequence GTTGAGCCTTTACTGAAA</td>
<td>60</td>
<td>350</td>
</tr>
<tr>
<td>ALAL (i)</td>
<td>Forward 1st round AGATTCTGGGAGGAAGGGA Reverse 1st round GGGGTGGCATGGGATACGGAT Extension Primer sequence GGGGTGGCATGGGATACGGAT</td>
<td>58</td>
<td>250</td>
</tr>
<tr>
<td>BLG (j)</td>
<td>Forward 1st round Primer TGGGGGCTGCAGCAAC Reverse 1st round Primer CTCTCTCCCTGGAATCA Extension Primer sequence AGGCGGAGCAAGCTGG</td>
<td>60</td>
<td>282</td>
</tr>
</tbody>
</table>

a, Sequencing primers for promoter region of alpha s1 casein gene; b, sequencing primers for exon 7 of beta casein gene; c, sequencing primers for exon 4 of kappa casein gene; d, sequencing primers for promoter region of alpha lactalbumin gene; e, sequencing primers for exon 4 of beta lactalbumin gene; f, SNaPshot primer set for alpha s1 casein gene; g, SNaPshot primer set for beta casein gene; h, SNaPshot primer set for kappa casein; i, SNaPshot primer set for alpha lactalbumin gene; j, SNaPshot primer set for beta lactoglobulin, bp: base pair; Tm, melting temperature.

PCR amplification for sequencing

The PCR products from 120 cattle DNA samples were purified by Microcon (Millipore Corporation, MA) and sequenced using the Big Dye Terminator Cycle Sequencing v3.1 Ready Reaction kit on an ABI PRISM 3730 automated sequencer (Applied Biosystems, CA).

PCR amplification for SNaPshot genotyping

The SNaPshot® Multiplex Kit a single-tube was used to interrogate SNPs at known locations using recommended protocol from Applied Biosystems, CA.

Genotyping by SNaPshot protocol

The minisequencing reaction produced one (homozygote) or two (heterozygote) peaks depending on the genotype at this locus. Three genotypes each for alpha s1 casein, kappa casein and beta lactoglobulin were studied in 120 animals, while beta casein and alpha lactalbumin were not polymorphic.
alpha lactalbumin showed only two genotypes. For the mini-
sequencing technique, black color is assigned to ddCTP and blue
color is assigned to ddGTP which is opposite to sequencing where
black color depicts ddGTP and blue stands for ddCTP. Forward
extension primers were used for beta casein, kappa casein, alpha
lactalbumin and beta lactoglobulin whereas reverse extension
primer was used to genotype alpha s1 casein reported variant. As a
result, red color peak for A allele (B variant) and black color peak
for G allele (C variant) were observed (Figure 1).

Statistical data analysis

Gene counting method (Chang, 1995) was used to estimate allele
and genotypic frequencies of the five milk proteins. The chi-square
test was used to find association of different milk protein genotypes
with milk production. Influences of milk protein loci on milk yield
were analyzed by linear model without interaction as follows:

\[Y_{ijkl} = \mu + P_i + G_i + e_{ijkl} \]

Where, \(Y_{ijkl} \) is the Observed value of milk yield; \(\mu \), is the population
mean; \(P_i \), is the fixed effect of parity; \(G_i \), is the fixed effect of milk
protein genotypes \((i = 1, 2, \ldots)\); and \(e_{ijkl} \), is the random residual
effect.

All data were input by Excel and Statistical Program for Social
Sciences (SPSS Version 15.0) was used to adjust 1st lactation and
2nd lactation milk records obtained from dairy farms, those greater
than 150 and less than 305 days were fixed to 305 days (simple
linear regression model) and one way Analysis of Variance for
statistical significance of genotypes.

RESULTS AND DISCUSSION

Allele and genotype frequency distribution

The SNAPshot protocol was successfully used to genotype all the alleles of five milk protein genes. Genotyping one hundred and twenty animals revealed ten DNA polymorphisms (alleles) in five milk protein genes and their allele frequencies were also calculated. Figures 2 and 3 summarize the estimated genotype and allele frequencies of the alpha
s1 casein, beta casein, kappa casein, alpha lactalbumin and beta lactoglobulin in Sahiwal cattle breed, respectively.

In alpha s1 casein, the genotype frequencies of Sahiwal animals were 0.23, 0.25 and 0.52 for BB, CC and BC genotypes, respectively. Alpha s1 casein locus showed an approximately even distribution of alpha s1 casein B (0.49) and C (0.51) alleles in Sahiwal cattle.

Most common allelic forms observed in different breeds are B and C. The present data agree with previous reports (Aschaffenburg, 1968; Aschaffenburg et al., 1968) that predominance of the alpha s1 casein C allele in the Sahiwal cattle (B. indicus) contrasts with the high frequency of the alpha s1 casein B allele (90 to 95%) in Bos taurus breeds. A frequency close to 0.9 was
reported for the C variant in *B. indicus* (Ivana and Marco, 1997) and *Bos grunniens* (Eigel et al., 1984) while in *B. taurus* its frequency ranges from 0.2 to 0.4 (Baker and Manwell, 1980; Baranyi, 1992; Golijow et al., 1999; Yasemin and Cengiz, 2006). This asymmetric distribution in *B. indicus* breeds and European cattle breeds has been explained by the different processes of domestication to which these animals were submitted (Grosc laude et al., 1974). Ivana and Marco (1997) studied frequency distribution at *alpha s1 casein* locus in Brazilian Zebu cattle (Gyr, Guzerat, Sindí, Nelore) and reported predominance of allele B (0.000 - 0.136) over C allele (0.864 - 1.000). Caroli et al. (2008) also reported dominance of B allele (0.8) over C allele (0.08) in Carora cattle. Creangă et al. (2010) reported allele B is more frequently encountered with a higher frequency than 0.7 and allele C had the frequency of 0.2 for the animals of Romanian Grey Steppe Breed.

At β-CN locus, A2A2 and A2B genotypes had frequencies of 0.14 and 0.86, respectively (Figure 2). B allele was less frequent (0.07) and the A2 allele more frequent (0.93) within the *beta casein* locus (Figure 3). There was no A1 genotype in animals under study. The present data agree with previous reports (Ng-Kwai-Hang et al., 1984; Ivana and Marco, 1997; Malik et al., 2000; Jann et al., 2002) that indicate predominance of the β-CN A2 allele in the Sahiwal cattle (*B. indicus*). Mishra et al. (2009) also reported absence of A1 allele in most of Indian cattle breeds which is predominant in most of *B. taurus* breeds (Kaminski et al., 2007). The frequency of A1 allele in different breeds varies between 0.01-0.06 (Guernsey), 0.09-0.22 (Jersey), 0.31-0.66 (Holstein), 0.43-0.72 (Ayrshire) and 0.71 (Danish Red) as reviewed by Kaminski et al. (2007). Frequency of B allele in Sahiwal cattle (0.07) is close to Polish Red and Red Danish dairy cattle (0.06) as reported by Erhardt et al. (1998).

Recently Ganguly et al. (2013) reported frequency distribution at *beta casein* locus in Frieswal (HF X Sahiwal Crossbred) hence allele A1 is hypothesized to be of *B. taurus* origin rather than *B. indicus*. The frequency of A2 and A1 allele was 0.65 and 0.35, respectively and this high frequency of A1 in Frieswal due to crosses between Holstein (*B. taurus*) and Sahiwal (*B. indicus*). Olenski et al. (2010) have reported the frequencies of A1 (0.35) and A2 (0.65) alleles from Polish Holstein-Friesian bulls which are found to be very similar to Frieswal population.

Kappa casein (CSN3) is the most extensively studied milk protein in cattle which showed two predominant DNA genotypes AB and AA in present study with 0.16 and 0.82 frequencies respectively (Figure 2), two out of 120 animals studied were with CC genotype (frequency = 0.02). Allele A was more frequent in Sahiwal cattle than allele B, that is, 0.92 and 0.08, respectively (Figure 3) corroborating several findings (Ng-Kwai-Hang et al., 1984; Pinder et al., 1994; Kemenes et al., 1999; Golijow et al., 1999; Lara et al., 2002; Yasemin and Cengiz, 2006; Alipanah et al., 2008) that observed this in *B. indicus* and *B. taurus* . The genotyping results are also similar to earlier studies reported for Korean native cattle, Japanese brown, Angus, Hereford, Charolais and Holstein cows by Hung et al. (1995, 1998). Malik et al. (2000) reported similar observations in fourth-generation crossbred cattle (50% Holstein, 25% Jersey, 25% Zebu, that is, Haryana and Sahiwal cattle). Rachagani and Gupta (2008) studied the dominance of A allele in their study performed on Sahiwal and Tharparker breeds of India. High frequency of A allele was also observed in Brazilian zebu Gyr, Guzerat and Nelore cattle (Azevedo et al., 2008). Bonvillani et al. (2010) and Ren et al. (2011) observed a higher frequency of allele A and lower frequency of allele B in Holstein cows. Contrary to these findings, Ceriotti et al. (2004) reported that allele B has higher frequency than allele A in *B. taurus* breeds as compared to *B. indicus* breeds. Moin and Supriyanto (2012) also compared allele frequencies at *kappa casein* locus in the breeds of *B. taurus* and reported higher frequency of B alleles than the breeds of *B. indicus*. Lukac et al. (2013) studied genotype distribution of *kappa casein* in Serbian Holstein-Friesian and found that this locus is at Hardy-Weinberg equilibrium (P>0.05), similar to that found by Hanusová et al. (2010) in Holstein cattle of Slovakia.

Alpha lactalbumin gene had AB and BB genotypes with frequencies of 0.14 and 0.86 while genotype AA was absent in this study (Figure 2). Alleles A and B of *alpha lactalbumin* were observed in this study with frequency of 0.07 for allele A and 0.93 for allele B (Figure 3). The observed higher frequency of the *alpha lactalbumin* B allele was consistent with results reported previously that *B. indicus* had high frequency for B allele than A allele compared to *B. taurus* breeds (Blumberg and Tombs, 1958, Bhattacharya et al., 1963; Bleck et al., 1993b; Ivana and Marco, 1997). Several workers have reported two genetic variants A and B at this locus in *B. indicus* and the droughtmasher (*B. indicus x B. taurus*) (Blumberg and Tombs, 1958; Bhattacharya et al., 1963; Bell et al., 1970; Osterhoff and Pretorius, 1966; Chianese et al., 1988), whereas a third variant, namely, C was reported in Balinese cattle (*B. javanicus*) by Bell et al. (1981).

AB, AA and BB genotypes of *beta lactoglobulin* occurred at frequencies 0.056 for AB and AA each while BB genotype had highest frequency (0.89) in this study (Figure 2). The frequency of allele A and allele B in Sahiwal cattle were 0.09 and 0.91, respectively (Figure 3). These findings are consistent with studies of other authors (Aschaffenburg, 1964; Ivana and Marco, 1997; Litwinczuk and Krol, 2002; Celik, 2003; Yasmin and Cengiz, 2006; Daniela et al., 2008) who observed that allele A has less frequency than B allele in *B. taurus* as well as in *B. indicus* breeds. Karimi et al. (2009) showed that allele frequency of B allele (0.9125) was higher than that of the A allele 0.0875). In contrast to these findings Heidari et al. (2009) reported allele (frequencies of A and
Table 2. 1st lactation record and observed milk protein genotypes.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Genotype</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-S1 Casein</td>
<td>BB</td>
<td>1952.8</td>
<td>610.93244</td>
<td>0.555 NS</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>1715.0</td>
<td>724.01986</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>1636.8</td>
<td>671.68244</td>
<td></td>
</tr>
<tr>
<td>β-Casein</td>
<td>A2A2</td>
<td>1727.7</td>
<td>602.71792</td>
<td>0.188 NS</td>
</tr>
<tr>
<td></td>
<td>A2B</td>
<td>2027.7</td>
<td>802.18974</td>
<td></td>
</tr>
<tr>
<td>κ-Casein</td>
<td>AA</td>
<td>1935.7</td>
<td>465.12855</td>
<td>0.041 S</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>2357.5</td>
<td>619.92349</td>
<td></td>
</tr>
<tr>
<td>α-Lactalbumin</td>
<td>BB</td>
<td>1638.2</td>
<td>287.13450</td>
<td>0.068 NS</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>1879.4</td>
<td>396.66632</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. 2nd lactation record and observed milk protein genotypes.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Genotype</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-S1 Casein</td>
<td>BB</td>
<td>2780.6</td>
<td>825.22309</td>
<td>0.823 NS</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>2746.6</td>
<td>937.67345</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>2975.0</td>
<td>1049.21113</td>
<td></td>
</tr>
<tr>
<td>β-Casein</td>
<td>A2A2</td>
<td>2529.6</td>
<td>964.81080</td>
<td>0.671 NS</td>
</tr>
<tr>
<td></td>
<td>A2B</td>
<td>2379.2</td>
<td>635.35901</td>
<td></td>
</tr>
<tr>
<td>κ-Casein</td>
<td>AA</td>
<td>2523.0</td>
<td>811.96566</td>
<td>0.047 S</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>3111.8</td>
<td>950.83972</td>
<td></td>
</tr>
<tr>
<td>α-Lactalbumin</td>
<td>BB</td>
<td>2542.1</td>
<td>1000.78859</td>
<td>0.073 NS</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>3313.4</td>
<td>2015.84518</td>
<td></td>
</tr>
<tr>
<td>β-Lactoglobulin</td>
<td>BB</td>
<td>2623.6</td>
<td>891.98183</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>2343.0</td>
<td>1319.46125</td>
<td>0.910 NS</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>2543.5</td>
<td>1191.47493</td>
<td></td>
</tr>
</tbody>
</table>

NS: Non-Significant; S: Significant.

B in Holstein cattle as 0.53 and 0.47, respectively. Lucak et al. (2013) reported similar findings for the Serbian Holstein Friesian cattle that beta lactoglobulin locus fitted with Hardy-Weinberg equilibrium (P<0.05), and was similar to that demonstrated by Gouda et al. (2011) in Egyptian Holstein cattle, and Ren et al. (2011) in Chinese Holstein and Jersey cows.

Genotype effects

Data published in research reports regarding correlations between the alpha s1 casein gene polymorphism and the milk traits is controversial that may partly be due to the differences in parameters used and/or variety in cattle breeds. In our study on Sahiwal cattle at alpha s1 casein locus all three variants studied (BB, BC and CC) had no effect (p > 0.05) on milk 1st lactation, 2nd lactation, (Tables 2 and 3). According to other publications (Ng-Kwai-Hang et al., 1984; Aleandri et al., 1990) alpha s1 casein BB genotype correlated with higher milk production than those with either AB or BC genotype. Results of Hristov et al. (2013) also agree with the dominance of the B allele over the C allele relative to the milk production. On the other hand Havliček (1996) and Micinski et al. (2007)
reported superiority of the heterozygous BC genotype with reference to milk yield.

In this study, beta casein reported variant had no effect (p > 0.05) on 1st lactation, 2nd lactation milk yield (Tables 2 and 3). There are similar findings (Aleandri et al., 1990; Mao et al., 1992; Famula and Medrano, 1994) which agree with our data. But according to Ng-Kwai-Hang et al. (1984), Bovenhuis et al. (1992), Ortrner et al. (1995) and Cardak (2005), the beta casein genotypes had an effect on milk. Morris et al. (2005) showed superiority of A2 genotype with reference to milk yield in Holstein cattle. Tolenkhomba and Yadav (2012) also studied beta casein genotypes in Indian Sahiwal cattle and showed that cows with AB genotype produced more milk (11.81±2.10) than those with AA genotype whose values were 6.48±0.41. However genetic characterization of beta casein is important because A2 allele that is predominant in Sahiwal cattle is beneficial with reference to human health (Chatchatte et al., 2001).

Kappa casein has significant effect (p < 0.05) on 1st and 2nd lactation in this study (Tables 2 and 3) which agrees with studies of other authors (Ng-Kwai-Hang et al., 1986; Mao et al., 1992; Cardak, 2005) who suggested that the kappa casein is associated with high production for milk during the first lactation, but there is difference in genotypes effecting milk production and even some studies indicated no effect at all (Ng-Kwai-Hang et al., 1990; Lundén et al., 1997). In our study, the animals with genotype AB had a higher 1st and 2nd lactation milk yield than those with genotypes AA and BB. A similar effect had been noticed by Ng-Kwai-Hang et al. (1986) Bovenhuis et al. (1992) and Hirstov et al. (2013) who showed that animals with kappa casein AB genotype were better milk producers than either of the animals homozygous for this gene in Ayrshire, Holstein, Jersey, brown Swiss, Canadienne and Guernsey and Bulgarian Rhodopean cattle breeds. Contrary to these findings, Gonyon et al. (1987), Curi et al. (2005), Cardak (2005), Sitkowska et al. (2008) and Ahmadi et al. (2008) reported AA genotype was associated with higher milk production than BB. In contrast, Lin et al. (1986), Van Eenennaam and Medrano (1991), Mao et al. (1992) and Rachagani (2008) reported BB genotype to be significantly affecting milk production than those with genotypes AA and AB. However, Ikonen et al. (1999) showed that the kappa casein genotypes had no distinct effect on milk production, which was in agreement with previous studies (Ng-Kwai-Hang et al., 1986; Gonyon et al., 1987; Aleandri et al., 1990; Bovenhuis et al., 1992; Bovenhuis et al., 1994; Famula and Medrano, 1994). This is indicative of variations among species, environments and management practices adopted at different farms.

In Sahiwal cattle, alpha lactalbumin did not have significant effect in 1st lactation (p = 0.068) and 2nd lactation (p = 0.073) on milk production, however, the p values were very close to significance level (Tables 2 and 3). Our results revealed that animals having AB genotypes had a higher average milk yield than the animals with BB genotypes (Tables 2 and 3). Hence our results are consistent with findings of Bleck and Bernel (1993b) who reported that alpha lactalbumin (+15) A variant was associated with greater milk yield. Sashikanth and Yadav (2011) also reported that BB genotype in zebu cattle (Sahiwal, Hariana, Tharparkar) showed higher milk yield. Zhang et al. (2007) screened Chinese Holstein cattle for alpha lactalbumin locus and found no significant association between the two genotypes found and milk production traits in these cattle. Recently Zhou et al. (2013) identified single nucleotide substitution C→T (α-LA2516) at position 2516 of the α-LA gene in Chinese Holstein cattle with frequencies of T and C as 0.67 and 0.32, respectively. There was no significant association between genotypes resulting from this SNP and production traits in cattle. In a future study, increase in number of samples may give significant findings in Sahiwal cattle with reference to alpha lactalbumin.

There was no significant effect (p > 0.05) of beta lactoglobulin genotype on the 1st lactation, 2nd lactation in this study (Tables 2 and 3). Our data agree with the results of Lunden et al. (1997) and Ojala et al. (1997) who reported no significant associations of different beta lactoglobulin genotypes on milk production. Nevertheless, there are also reports for the positive influence on the milk quantity of all the genotypes, for example, Pupkova, (1980) and Cardak, (2005) reported that cows having AB genotype produce more milk than cows of AA and BB genotypes, however, Aleandri et al. (1990), Bovenhuis et al. (1992) and Ikonen et al. (1999) observed the rare beta lactoglobulin genotype AA was associated with the highest milk production. Similar results describing effects of the beta lactoglobulin genotypes on milk production traits that were observed (Ikonen et al., 1999) and have been frequently reported (Ng-Kwai-Hang et al., 1984; 1992; Mao et al., 1992).

Heidri et al. (2009) reported that cows with the AA genotype produced more milk than animals with the BB genotype (P< 0.006). Contrary to these findings, Jairam and Nair (1983) and Hirstov et al. (2013) showed that the BB genotype determines higher milk production. Ahmadi et al. (2008) reported strong association between BB genotype and protein percentage while there was no association between beta lactoglobulin genotypes and milk yield or milk fat percent. Chi square tests showed significant association between genotypes and milk yield in this study (Table 4).

Genotyping technique

The most commonly used techniques used for DNA typing milk protein genes are restriction fragment length polymorphism (RFLP) and single strand conformation polymorphism (SSCP). These techniques either require high quality and quantity of DNA or the low detection sensitivity when amplicon sizes exceed 200 bp. To milk
overcome these limitations SNaPshot genotyping was optimized to type genetic variants in all five milk proteins under study. In a future study, all five variants of major proteins will be multiplexed to make this technique cost effective and hence more efficient for genotyping in Sahiwal cattle.

Conclusion

In the present study, we designed a strategy to avoid long and costly traditional selection methods for dairy purposes in Sahiwal cattle. We worked on reported variants of alpha s1 casein, beta casein, kappa casein, alpha lactalbumin and beta lactoglobulin in Sahiwal cattle. Statistically significant differences were observed in kappa casein genotypes AA (AA) and AB (AC), that is, genotype AB had more milk yield than genotype AA in 1st lactation (422 kg) and 2nd lactation (612 kg), respectively. Results of our studies observe that A allele of kappa casein is near fixation limit in Sahiwal cattle so it would be difficult to increase frequency of B allele but we assume that selection of bulls with AB and BB genotype for kappa casein may help to increase the frequency of B allele in the Sahiwal cattle population of Pakistan. The favorable allele B of alpha lactalbumin in Sahiwal cattle breed is already found to be near fixation limit, hence we do not need to alter frequency. However, large population size of Sahiwal cattle must be studied to observe the statistically significant effects of AB genotypes.

Indirect milk tests are limited to mature lactating females and indirect genotyping of sires. These tests require extremely long times to obtain results which makes them impractical for establishing breeding development programs aimed at increasing the frequency of desired milk protein alleles in progeny. Breeding cows are selected on few performances and even before they start their first lactation, which is costly and does not always, result in precise identification of the animal breeds that produce higher milk yield. In dairy cattle, selection of bulls is mostly based on progeny-tests which involve recording the performances of large groups of female off springs of these bulls. A SNP genotyping method that was optimized in this study is simple and efficient which can be used not only for the selection of sires for artificial insemination but also for selection of immature cows and for pre-implantation embryos for embryo transfer. To the best of our knowledge, this is the first comprehensive study involving milk proteins in the B. indicus Sahiwal cattle breed of Pakistan.

REFERENCES

Bonvillani AG, Di Renzo MA, Tiranti IN (2010). Genetic polymorphism of

Table 4. Chi square test for association of genotypes with milk yield.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Value</th>
<th>df</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-S1 Casein</td>
<td>1.947E5</td>
<td>119</td>
<td>0.000</td>
</tr>
<tr>
<td>β-Casein</td>
<td>1.525E5</td>
<td>119</td>
<td>0.000</td>
</tr>
<tr>
<td>κ-Casein</td>
<td>1.412E5</td>
<td>119</td>
<td>0.000</td>
</tr>
<tr>
<td>α-Lactalbumin</td>
<td>1.597E5</td>
<td>119</td>
<td>0.000</td>
</tr>
<tr>
<td>β-Lactoglobulin</td>
<td>2.093E5</td>
<td>119</td>
<td>0.000</td>
</tr>
</tbody>
</table>

df, Degree of freedom; p-value, 0.05.

Selection and optimization of extracellular lipase production using agro-industrial waste

Pabline Rafaella Mello Bueno, Tatianne Ferreira de Oliveira*, Márcio Caliari, Gabriel Luis Castiglioni and Manoel Soares Soares Júnior

School of Agronomy, Department of Food Engineering, Federal University of Goiás-UFG, Campus Samambaia, Rodovia Goiânia-Nova Veneza, Km-0-Caixa Postal 131, CEP 74690-900, Goiânia, Brazil.

Accepted 16 January, 2014

The aim of this study was to isolate and select lipase-producing microorganisms originated from different substrates, as well as to optimize the production of microbial lipase by submerged fermentation under different nutrient conditions. Of the 40 microorganisms isolated, 39 showed a halo around the colonies and 4 were selected (Burkholderia, Bacillus sp., Penicillium lanosum and Corynebacterium glutamyi), where strains showing lipolytic halo Radius (R) / colony radius (r) ratio greater than 2.0 were selected. The results of submerged fermentation expressed as enzymatic activity revealed that the genera of microorganisms significantly influenced the enzymatic reaction, and lipase obtained from Burkholderia cepacia was the most promising, with activity of 0.0058 U.mL⁻¹. It was also observed in the optimization step of lipase production that the sodium nitrate content (NaNO₃) had a positive effect on enzyme production, and its increase was indicative of higher enzymatic activity. The addition of sources of organic nitrogen (corn steep liquor, p = 0.2398), carbon (soybean oil, p = 0.3379), magnesium MgSO₄.7H₂O (p = 0.4189) and potassium KH₂PO₄ (p = 0.8562) had no significant effects on the lipase production and could result in decreased production of extracellular lipases.

Key words: Burkholderia cepacia, hydrolytic enzymes, residue, submerged fermentation.

INTRODUCTION

Lipases (triacylglycerol acylhydrolases, EC3.1.1.3) are water-soluble enzymes that catalyze the hydrolysis of ester bonds of insoluble triacylglycerols, releasing free fatty acids, mono- or diacylglycerol in the oil-water interface (Linko et al., 1998; Treichel et al., 2010). Lipases may be of animal, microbial or plant origin, with variations in their catalytic properties, and can be obtained by solid-state fermentation or by submerged fermentation (Annibale et al., 2006; Rigo et al., 2010; Papagora et al., 2013). These enzymes catalyze a wide range of reactions such as hydrolysis, esterification, trans-esterification, alcoholysis, acidolysis and aminolysis (Joseph et al., 2008). Lipases represent an important group of enzymes with various applications in the food, chemical and pharmaceutical industry (Salihu et al., 2012), besides having great interest for the treatment of effluents with high lipid content (Dharmsthiti and Kuhasuntisuk, 1998; Jung et al., 2002; Jeganathan et al., 2007; Ertugrul et al., 2007). However, the high cost of commercial enzymes makes treatment costly in the production of enzymes and in the search for new microorganisms. In this context, the use of agroindustrial waste contributes in the reduction of production costs (Leal et al., 2006; Salihu et al., 2012). In the production of lipases, studying the optimization of fermentation conditions, relating the carbon and nitrogen sources to temperature and pH conditions is of fundamental importance (Silva et al., 2005). Some studies (Nascimento et al., 2007; Kona et al., 2001) reported the

*Corresponding author. E-mail: ferreira.tatianne @ yahoo.com.br. Tel: +055 (62) 3521-1613
use of some low-cost substrates in the production of enzymes such as corn steep liquor and soybean or olive oil, food industry by-products, as an alternative to reduce production costs, thus contributing to agro-industrial sustainability.

Corn steep liquor is a by-product rich in carbohydrates, amino acids, peptides, minerals, vitamins and phosphates and is thus considered as an excellent culture medium for enzyme production (Lee et al., 2003; Rivas et al., 2004).

Some studies have also shown that producing lipase by bacterial strains is more common because they offer higher enzymatic activity compared to fungi, tend to have optimal pH at neutrality or alkalinity, they are often thermostable and are mostly extracellular, facilitating their extraction from the fermented medium (Hasan et al., 2006; Li et al., 2010).

Thus, the aim of this study was to isolate and select lipase-producing microorganisms originated from different substrates (yeast extract, peptone and soybean oil), as well as to optimize the production of microbial lipase by submerged fermentation under different nutrient conditions of substrate (corn steep liquor, yeast extract, peptone, soybean oil), sources of sodium (Na₃HPO₄), magnesium (MgSO₄.7H₂O), potassium (KH₂PO₄) and nitrate (NaNO₃).

MATERIALS AND METHODS

Collection of effluent and microorganisms

Microorganisms were isolated from effluent collected from the “Cicopal Ltda” Potato chip industry, Senador Canedo, GO, and in the Sewage Treatment Plant (STP) in Goiânia-GO, Brazil. Burkholderia cepacia strain ATCC 25416 (BC25416) was obtained from the “Fundação Tropical André Tosello”, Campinas-SP, Brazil, originated from the collection of tropical crops. Other organisms such as Candida tropicalis CCT 5846 (UCT), Candida sp. (UCS), Zymomonas mobilis CCT 4494 (UZM), Escherichia coli (UEC), Kluyveromyces marxianus (UKM), Kocuria rhizophila (UKR), Bacillus subtilis NRRL 17473 (UBS14), Corynebacterium glutamicum (UGC), Bacillus sp. NRRL 41094 (UBS41) and Penicillium lanosum NRRL 3442 (UPL) were obtained from strains provided by the Laboratory of Wastewater Treatment and Fermentation Processes (LARPF), Faculty of Food Engineering, State University of Campinas-SP, Brazil.

Isolation of microorganisms

The effluents collected were incubated in Petri dishes in the following media: potato agar (PA), violet red bile lactose agar (VRBA) and standard count agar (PCA), according to methodology of the American Public Health Association (APHA, 2001). After incubation, they were analyzed for the development of microorganisms. The colonies were selected by visual analysis. For isolation, the selected colonies were inoculated in Petri dishes containing nutrient agar using the exhaustion technique and incubated at 30°C for 48 h in a bacteriological incubator. The microorganisms were maintained in test tubes containing nutrient agar pH 7.0 at 4°C.

Selection of lipase-producing microorganisms

The pre-selection of lipase-producing strains was performed by analyzing the formation of transparent halo around colonies on medium containing tributyrin, according to the methodology proposed by Freire (1997). A small fraction of each strain was inoculated in Petri dishes containing 0.5% peptone, 0.3% yeast extract, 2% agar and 0.1% tributyrin, pH 6.0 and incubated at 30°C for 48 h. Strains showing lipolytic halo radius (R) or colony radius (r) ratio greater than 2.0 were selected according to the study of Freire (1997) and Colen et al. (2005) choosing only the strains lipolytic that showed higher halos for further studies and submitted to submerged fermentation. The cultivation on solid medium was performed in a completely randomized design (CRD) with forty microorganisms and three replications, and the means were compared by the Tukey test at 5% probability.

Lipase production via submerged fermentation

The microorganisms previously selected were used in the liquid medium cultivation. In the preparation of inoculum, microorganisms were scraped with platinum loop and transferred to 125 ml Erlenmeyer flasks containing 50 ml medium culture solution of (g L⁻¹ of distilled water): yeast extract (5.0), peptone (5.0), and 1% soybean oil in the proportion of 1:2:0 inoculum in relation to the culture medium, incubated at 30°C for 48 h under stirring in a water bath (Tecnal TE-184). After the incubation period, 10 ml of the inoculum was transferred to each reactor to carry out fermentations. Fermentations were carried out in Erlenmeyer flasks with capacity of 125 ml and incubated at 30°C for 72 h under stirring (100 rpm) in water bath. Fifty milliliters (50 ml) of medium culture solution of (g L⁻¹ of distilled water): yeast extract (5.0), peptone (5.0) and soybean oil (1%w/w) were part of the culture medium. After fermentation, extracellular enzymes were extracted, where an aliquot of 5 ml of the reaction medium was centrifuged (TG16-WS Tabletop High Speed Centrifuge) at 2000 xg for 15 min. The supernatants were used as enzyme extract for analysis of the enzymatic activity.

Lipase activity determination

The enzymatic activity was determined by spectrophotometric method (Spectrophotometer BEL photonics), according to the methodology described by Parul et al. (2005). The Elisa plate well was added of 100 μL of solution containing sodium phosphate buffer pH 7 (0.1 M), 0.9% Triton X-100 and 0.27 M sodium chloride, as well as 100 μL of sample and 20 μL p-nitrophenyl phosphate substrate (pNPP). The mixture was incubated for 30 min in water bath at 37°C and readings were made in a spectrophotometer at 405 nm. The enzymatic activity unit was defined as 1 μmol min⁻¹ of p-nitrophenol released from the substrate.

Optimization of the production of lipases

To optimize the production of lipases from microorganism with the highest lipolytic potential, a 2ᵏ⁻² fractional factorial exploratory design was initially performed, which evaluated the effect of the corn steep liquor (5 to 30 g L⁻¹), soybean oil (4 to 12%) sources of sodium (0 to 4 g L⁻¹ Na₃HPO₄), magnesium (0.1 to 0.3 g L⁻¹ MgSO₄.7H₂O), potassium (2 to 4 g L⁻¹ KH₂PO₄) and nitrate (0 and 6 g L⁻¹ NaNO₃). Peptone and yeast extract were used at concentration of 1 g L⁻¹. Each effect varied in three levels (+1, 0, +1), with duplicates of the central point, totaling 18 assays. Fermentations were performed at 30°C for 72 h under stirring in water bath. The two nutrients that showed the greatest effect on the enzyme activity were chosen and evaluated by means of a central composite design. Each effect varied in five levels (-1.42, -1.0, +1, +1.42) with triplicate of the central point, totaling 11 assays. The model validation was performed in triplicate.
RESULTS AND DISCUSSION

Isolation and selection of microorganisms

Overall, 29 microorganisms were isolated, 24 from the Potato chip industry and 5 from the sewage treatment plant (STP). The coding for microorganisms isolated from industrial effluents was: IEA1, IEA2, IEB1, IEB2, IEB3, IEB4, IEV1, IEV2, ITEA1, ITEA2, ITEB1, ITEB2, ITEB3, ITEB4, ITEV1, ITEV2, IAT1, IAT2, ITB1, ITB2, ITB3, ITB4, TV1, TV2, and for isolates from the STP: ETDB1, ETDB2, ETDB3, ETDB4 and ETDB5. Of the 40 microorganisms used for the lipase activity evaluation (29 isolates from the effluents and 11 from research institutes), 39 showed a halo around the colonies, indicating the presence of degradation reaction of tributyrin by extracellular enzymes, inducing lipase production. Of these 39 microorganisms, 4 showed lipolytic halo radius (R) / colony radius (r) ratio greater than 2.0 (Table 1), among them are B. cepacia ATCC 25416, Bacillus sp. NRRL 41094, P. lansum NRRL 3442 and C. glutamit. These results showed that there was a variation of 23.1% in the hydrolysis halos, where strain BC25416 was the one showing the highest R/r ratio, and this difference in intensity between halos is due to the amount of extracellular lipase secreted by microorganism (Cardenas et al., 2001). Similar results were found by Griebeler et al. (2009), who studied the production capacity of lipolytic enzymes from different microorganisms on solid medium containing tributyrin, and obtained for strain Penicillium sp. and B. cepacia, the greatest hydrolysis halo (radius) of 9.35 and 9.1 mm, respectively, suggesting a probable lipolytic potential of these microorganisms.

Table 1 shows that although none of the organisms isolated from effluents have been pre-selected for submerged fermentation, this confirmed that lipase-producing microorganisms can be found in various habitats, especially those containing lipids (Sharma et al., 2001).

Submerged fermentation

The results of the submerged fermentation expressed in enzymatic activity of the 4 previously selected microorganisms are shown in Table 2. The results obtained reveal that the pre-selected microorganisms significantly influenced (p ≤ 0.05) the enzymatic degradation reaction of p-nitrophenyl palmitate. Among the microorganisms that differ from one another, the lowest activity was 0.0022 U.mL⁻¹, referring to lipase from C. glutamit (UCG), which showed 62% less activity than lipase from B. cepacia ATCC 25416 (BC25416), with activity of 0.0058 U.mL⁻¹. The enzymatic activities of microorganisms Bacillus sp. NRRL 41094 (UBS41) of 0.0032 U.mL⁻¹ and P. lansum NRRL 3442 (UPL) of 0.0027 U.mL⁻¹ were 45 and 53% less than the maximum activity found in the present study. These genera of microorganisms Burkholderia, Bacillus and Penicillium have been extensively studied for the production of extracellular lipases in order to optimize the production of enzymes for various applications, where there is great variation between the results, probably due to the different cultivation media, methods for determining the enzymatic activity and microorganisms are used.

Wolski et al. (2009) compared the production of lipase from Penicillium sp. in solid and submerged fermentation and found greater lipase production and activity at 42°C of 15.17 U.mL⁻¹. Annamalai et al. (2011) studied the production of thermostable lipase from Bacillus licheniformis isolated from the marine environment, using peanut oil as substrate and reported hydrolytic activity of 730 U.mL⁻¹ after 48 h of incubation at 55°C.

Optimization of the lipase production

Strain B. cepacia ATCC 25416 was selected to study the optimization of the production of extracellular lipase, where the effects of different nutrients on the lipase production were assessed. The results are shown in Table 3, where the enzymatic activity values ranged from 0 to 0.0181 U.mL⁻¹. Table 4 shows the results of the effects of variables on the enzymatic activity response. It was observed that the sodium nitrate concentration (NaNO₃) had a positive effect on the enzymatic activity, and the increase in the concentration of this salt in the reaction medium from 0 to 6 gL⁻¹ resulted in increased response, indicating increased production of extracellular lipase from B. cepacia ATCC 25416, and consequently, higher enzyme activity. Generally, microorganisms provide high lipase yields when organic nitrogen sources are used (Supakdamrongkul et al., 2010); however, in this experiment, the high yield was due to inorganic sources. Na⁺ ion has positive and significant effect only when sodium nitrate was used. For sodium phosphate monobasic (Na₂HPO₄), a positive effect was found, although not significant (p = 0.2352), and only sodium nitrate was statistically significant (p = 0.0463). The addition of sources of organic nitrogen (corn steep liquor, p = 0.2398), carbon (soybean oil, p = 0.3379), magnesium MgSO₄·7H₂O (p = 0.4189) and potassium KH₂PO₄ (p = 0.8562) had no significant effects on the lipase production. However, these effects had a negative sign, indicating that increases in the concentration of these nutrients showed little tendency to lower the enzymatic activity and could result in decreased production of extra-cellular lipases.

Some studies have revealed that vegetable oils such as soybean, corn, sunflower, olive, palm and cotton are referred to as inducers of lipase production, being used by microorganisms as carbon source in the reaction medium (Paques and Macedo, 2006). However, this phenomenon was not observed in this study with results obtained by varying the soybean oil concentration, being not statistically significant in the production of extracellular lipases from B. cepacia ATCC 25416. The induction of lipase production appears to be related not only to the length of the carbon chains of fatty acids in triacylglycerols and to the number of instaurations, but also to the concentration of the substrate used (Lima et al., 2003).
Table 1. Measurements of the radius of colonies (r), lipolysis halos (R) and R / r ratio in solid culture medium.

<table>
<thead>
<tr>
<th>Code</th>
<th>Radius of colonie (r)</th>
<th>Lipolysis halo (R)</th>
<th>R/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCT</td>
<td>0.25 ± 0.10</td>
<td>0.29 ± 0.04</td>
<td>1.15</td>
</tr>
<tr>
<td>UCS</td>
<td>0.29 ± 0.09</td>
<td>0.34 ± 0.04</td>
<td>1.17</td>
</tr>
<tr>
<td>UZM</td>
<td>1.06 ± 0.05</td>
<td>0.18 ± 0.02</td>
<td>0.16</td>
</tr>
<tr>
<td>UEC</td>
<td>0.50 ± 0.07</td>
<td>0.09 ± 0.04</td>
<td>0.18</td>
</tr>
<tr>
<td>UKM</td>
<td>0.25 ± 0.03</td>
<td>0.29 ± 0.04</td>
<td>1.15</td>
</tr>
<tr>
<td>UKR</td>
<td>0.25 ± 0.06</td>
<td>0.35 ± 0.14</td>
<td>1.40</td>
</tr>
<tr>
<td>UBS14</td>
<td>0.38 ± 0.12</td>
<td>0.65 ± 0.06</td>
<td>1.70</td>
</tr>
<tr>
<td>UCS</td>
<td>0.33 ± 0.08</td>
<td>0.70 ± 0.13</td>
<td>2.10</td>
</tr>
<tr>
<td>UBS41</td>
<td>0.33 ± 0.05</td>
<td>0.76 ± 0.08</td>
<td>2.30</td>
</tr>
<tr>
<td>UPL</td>
<td>0.34 ± 0.05</td>
<td>0.72 ± 0.07</td>
<td>2.15</td>
</tr>
<tr>
<td>EA1</td>
<td>0.30 ± 0.08</td>
<td>0.41 ± 0.02</td>
<td>1.33</td>
</tr>
<tr>
<td>EA2</td>
<td>0.45 ± 0.03</td>
<td>0.10 ± 0.04</td>
<td>0.22</td>
</tr>
<tr>
<td>EB1</td>
<td>0.27 ± 0.06</td>
<td>0.50 ± 0.11</td>
<td>1.87</td>
</tr>
<tr>
<td>EB2</td>
<td>0.25 ± 0.02</td>
<td>0.47 ± 0.04</td>
<td>1.86</td>
</tr>
<tr>
<td>EB3</td>
<td>0.44 ± 0.04</td>
<td>0.48 ± 0.07</td>
<td>1.09</td>
</tr>
<tr>
<td>EB4</td>
<td>0.38 ± 0.05</td>
<td>0.11 ± 0.04</td>
<td>0.30</td>
</tr>
<tr>
<td>TEB1</td>
<td>0.29 ± 0.07</td>
<td>0.29 ± 0.04</td>
<td>1.00</td>
</tr>
<tr>
<td>TEB2</td>
<td>0.35 ± 0.11</td>
<td>0.41 ± 0.09</td>
<td>1.18</td>
</tr>
<tr>
<td>TEB3</td>
<td>0.25 ± 0.00</td>
<td>0.47 ± 0.06</td>
<td>1.86</td>
</tr>
<tr>
<td>TEB4</td>
<td>0.30 ± 0.07</td>
<td>0.31 ± 0.04</td>
<td>1.04</td>
</tr>
<tr>
<td>TEV1</td>
<td>0.30 ± 0.07</td>
<td>0.47 ± 0.08</td>
<td>1.53</td>
</tr>
<tr>
<td>TEV2</td>
<td>0.43 ± 0.16</td>
<td>0.46 ± 0.04</td>
<td>1.09</td>
</tr>
<tr>
<td>BC25416</td>
<td>0.24 ± 0.05</td>
<td>0.91 ± 0.05</td>
<td>3.76</td>
</tr>
<tr>
<td>TA1</td>
<td>0.28 ± 0.03</td>
<td>0.02 ± 0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>TA2</td>
<td>0.30 ± 0.13</td>
<td>0.41 ± 0.04</td>
<td>1.38</td>
</tr>
<tr>
<td>TDB1</td>
<td>0.24 ± 0.05</td>
<td>0.10 ± 0.02</td>
<td>0.42</td>
</tr>
<tr>
<td>TDB2</td>
<td>0.40 ± 0.03</td>
<td>0.46 ± 0.04</td>
<td>1.16</td>
</tr>
<tr>
<td>TDB3</td>
<td>0.41 ± 0.18</td>
<td>0.19 ± 0.04</td>
<td>0.45</td>
</tr>
<tr>
<td>TDB4</td>
<td>0.38 ± 0.06</td>
<td>0.19 ± 0.07</td>
<td>0.50</td>
</tr>
<tr>
<td>TDB5</td>
<td>0.23 ± 0.07</td>
<td>0.34 ± 0.04</td>
<td>1.50</td>
</tr>
<tr>
<td>TV1</td>
<td>0.34 ± 0.04</td>
<td>0.41 ± 0.04</td>
<td>1.22</td>
</tr>
<tr>
<td>TV2</td>
<td>0.26 ± 0.11</td>
<td>0.36 ± 0.04</td>
<td>1.38</td>
</tr>
<tr>
<td>EV1</td>
<td>0.29 ± 0.04</td>
<td>0.28 ± 0.07</td>
<td>0.96</td>
</tr>
<tr>
<td>EV2</td>
<td>0.25 ± 0.04</td>
<td>0.31 ± 0.07</td>
<td>1.25</td>
</tr>
<tr>
<td>TB1</td>
<td>0.25 ± 0.06</td>
<td>0.35 ± 0.07</td>
<td>1.40</td>
</tr>
<tr>
<td>TB2</td>
<td>0.35 ± 0.11</td>
<td>0.68 ± 0.10</td>
<td>1.95</td>
</tr>
<tr>
<td>TB3</td>
<td>0.60 ± 0.08</td>
<td>0.23 ± 0.07</td>
<td>0.38</td>
</tr>
<tr>
<td>TB4</td>
<td>0.34 ± 0.12</td>
<td>0.29 ± 0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>TEA1</td>
<td>0.26 ± 0.14</td>
<td>0.26 ± 0.04</td>
<td>1.00</td>
</tr>
<tr>
<td>TEA2</td>
<td>0.55 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

UCT: Candida tropicalis CCT 5846; UCS: Candida sp.; UZM: Zymomonas mobilis CCT 4494; UEC: Escherichia coli; UKM: Kluyveromyces marxianus; UKR: Kocuria rhizophila; UBS14: Bacillus subtilis NRRL 14819; UCG: Corynebacter glutaminis; UBS41: Bacillus sp NRRL 41094; UPL: Penicillium lanosum NRRL 3442; BC: Burkholderia cepacia ATCC 25416; Industrial effluent: IEA1, IEA2, IEB1, IEB2, IEB3, IEB4, IEV1, IEV2, ITEA1, ITEA2, ITEB1, ITEB2, ITEB3, ITEB4, ITEV1, ITEV2, ITA1, ITA2, ITB1, ITB2, ITB3 e ITB4, TV1 e TV2; sewage treatment plant: ETDB1, ETDB2, ETDB3, ETDB4 e ETDB5.

These results show that the reduced lipase production at higher olive oil concentrations may be explained by the lower oxygen transfer to the medium, since lower oxygen supply could decrease the metabolism of microorganisms and consequently the lipase production (Elibol and Özzer, 2000). From the results previously obtained and all the substances tested, only sodium nitrate was significant for lipase production; however, another variable was selec-
Table 2. Enzymatic activity of pre-selected microorganisms after submerged fermentation.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Enzymatic activity (U mL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corynebacter glutamicum</td>
<td>0.0022<sup>a</sup></td>
</tr>
<tr>
<td>Pseudomonas cepacia</td>
<td>0.0027<sup>c</sup></td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>0.0032<sup>b</sup></td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>0.0058<sup>b</sup></td>
</tr>
</tbody>
</table>

Same letters indicate no significant difference (p> 0.05) in the production of lipase from microorganisms under study.

Table 3. Matrix of the 2⁶-2 fractional factorial exploratory design used to determine the enzymatic activity of lipases from *Burkholderia cepacia* ATCC 25416 with different nutrients.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CST (g L⁻¹)</th>
<th>Na<sub>2</sub>HPO<sub>4</sub> (g L⁻¹)</th>
<th>OS (g L⁻¹)</th>
<th>MgSO<sub>4</sub>.7H<sub>2</sub>O (g L⁻¹)</th>
<th>KH<sub>2</sub>PO<sub>4</sub> (g L⁻¹)</th>
<th>NaNO<sub>3</sub> (g L⁻¹)</th>
<th>Enzymatic activity (U mL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>0.1</td>
<td>2</td>
<td>0</td>
<td>0.0029</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0</td>
<td>4</td>
<td>0.1</td>
<td>4</td>
<td>0</td>
<td>0.0023</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0.1</td>
<td>4</td>
<td>6</td>
<td>0.0181</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td>0.1</td>
<td>2</td>
<td>6</td>
<td>0.0090</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>12</td>
<td>0.1</td>
<td>4</td>
<td>6</td>
<td>0.0089</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>0</td>
<td>12</td>
<td>0.1</td>
<td>2</td>
<td>6</td>
<td>0.0022</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>0.1</td>
<td>2</td>
<td>6</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>4</td>
<td>12</td>
<td>0.1</td>
<td>4</td>
<td>0</td>
<td>0.0080</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>0.3</td>
<td>2</td>
<td>6</td>
<td>0.0113</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>0</td>
<td>4</td>
<td>0.3</td>
<td>4</td>
<td>6</td>
<td>0.0017</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0.3</td>
<td>4</td>
<td>0</td>
<td>0.0012</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td>0.3</td>
<td>2</td>
<td>6</td>
<td>0.0063</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>0</td>
<td>12</td>
<td>0.3</td>
<td>4</td>
<td>0</td>
<td>0.0011</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>0</td>
<td>12</td>
<td>0.3</td>
<td>2</td>
<td>0</td>
<td>0.0025</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>0.3</td>
<td>2</td>
<td>6</td>
<td>0.0114</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>4</td>
<td>12</td>
<td>0.3</td>
<td>4</td>
<td>6</td>
<td>0.0011</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>2</td>
<td>8</td>
<td>0.2</td>
<td>3</td>
<td>3</td>
<td>0.0036</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>2</td>
<td>8</td>
<td>0.2</td>
<td>3</td>
<td>3</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

CST, Corn Steep Liquor; Na₂HPO₄, sodium phosphate monobasic; SO, soybean oil; MgSO₄.7H₂O, magnesium sulfate heptahydrate; KH₂PO₄, potassium phosphate monobasic; NaNO₃, sodium nitrate.

Table 4. Estimate of the effect of each nutrient added to the culture medium on the enzymatic activity of lipase from *Burkholderia cepacia* ATCC 25416.

<table>
<thead>
<tr>
<th>Sources of variation</th>
<th>Effect</th>
<th>Standard deviation</th>
<th>t (11)</th>
<th>p-value</th>
<th>Conf. Lim. -95%</th>
<th>Conf. Lim. +95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST</td>
<td>-0.00273</td>
<td>0.002</td>
<td>-1.243</td>
<td>0.23975</td>
<td>-0.00756</td>
<td>0.0021</td>
</tr>
<tr>
<td>Na<sub>2</sub>HPO<sub>4</sub></td>
<td>0.00276</td>
<td>0.002</td>
<td>1.256</td>
<td>0.23517</td>
<td>-0.00207</td>
<td>0.00758</td>
</tr>
<tr>
<td>OS</td>
<td>-0.00220</td>
<td>0.002</td>
<td>-1.002</td>
<td>0.33794</td>
<td>-0.00703</td>
<td>0.00263</td>
</tr>
<tr>
<td>MgSO<sub>4</sub></td>
<td>0.00184</td>
<td>0.002</td>
<td>-0.840</td>
<td>0.41890</td>
<td>-0.00667</td>
<td>0.00299</td>
</tr>
<tr>
<td>KH<sub>2</sub>PO<sub>4</sub></td>
<td>-0.0004</td>
<td>0.002</td>
<td>-0.186</td>
<td>0.85619</td>
<td>-0.00523</td>
<td>0.00442</td>
</tr>
<tr>
<td>NaNO<sub>3</sub></td>
<td>0.00493</td>
<td>0.002</td>
<td>2.245</td>
<td>0.04632*</td>
<td>0.00010</td>
<td>0.00975</td>
</tr>
</tbody>
</table>

* Significant at 5% probability. CST, corn steep liquor; Na₂HPO₄, sodium phosphate monobasic; SO, soybean.

The results obtained in the optimization stage are shown in Table 5, which are expressed as enzymatic activity response as a function of the culture medium costs.
Table 5. Matrix of the central composite design used to determine the enzymatic activity of lipase from *Burkholderia cepacia* ATCC 25416 due to the enrichment of the medium with corn steep liquor (CST) and sodium nitrate (NaNO₃).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CST (g L⁻¹)</th>
<th>NaNO₃ (g L⁻¹)</th>
<th>Enzymatic activity (U mL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>0.0068</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>1</td>
<td>0.0063</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>5</td>
<td>0.0025</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>5</td>
<td>0.0034</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>3</td>
<td>0.0110</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>3</td>
<td>0.0103</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>3</td>
<td>0.0089</td>
</tr>
<tr>
<td>8</td>
<td>5.858</td>
<td>3</td>
<td>0.0056</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>5.828</td>
<td>0.0044</td>
</tr>
<tr>
<td>10</td>
<td>34.142</td>
<td>3</td>
<td>0.0024</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>0.172</td>
<td>0.0039</td>
</tr>
</tbody>
</table>

Figure 1. Response surface for the activity of lipase from *Burkholderia cepacia* ATCC 25416 under different corn steep liquor (AMM) and sodium nitrate concentrations.

The corn steep liquor and sodium nitrate contents, which ranged from 0.0024 to 0.0110 U mL⁻¹. These results also show that both nutrients produced a negative effect on the enzymatic activity response, that is, the increase in the sodium nitrate and corn steep liquor concentration decreased the production of extracellular enzymes by *B. cepacia* ATCC 25416. This significant effect of the concentration of these nutrients was quadratic, indicating that there was an increase in the production of enzymes up to a maximum value, declining from this point on.

From the data obtained for the effect of each nutrient, a second-order mathematical model was built. Equation 1 represents the model representing the enzymatic activity (EA) versus STP (X₁) and NaNO₃ concentration (X₂). Words in bold refer to statistically significant variables (p ≤ 0.05). According to these results and Figure 1, it was found that the optimization of the production process was achieved, and the optimum production was achieved for concentrations from 13.8 to 26.2 g L⁻¹ of corn steep liquor and from 1.5 to 3.9 g L⁻¹ of sodium nitrate, with maximum response for the enzymatic activity of 0.0100 U mL⁻¹, which allows reduction of the culture medium costs in this process.
$EA = 0.001007 - 0.002864X_1^2 - 0.000826X_2 - 0.002806X_3^2$ \((1) \)

These results also showed that the lowest activity found (0.0040 U.mL\(^{-1}\)) by the model had response 60% lower than the maximum activity obtained, found when sodium nitrate concentrations higher than 5 g L\(^{-1}\) and lower than 0.17 g L\(^{-1}\) were used. Nitrogen is an essential nutrient for the production of enzymes, since these are composed of amino acids, which have nitrogen in their structure (Rodeva et al., 2010). Thus, sodium nitrate corn steep liquor both supplied nitrogen to microorganisms to produce lipases. These results also show that the fact that intermediate concentrations of these compounds provided high lipase production was probably a result of the balance between carbon and nitrogen concentrations in the medium, and usually, the carbon concentration must be greater than that of nitrogen in order to favor the physiological needs of microorganisms for lipase biosynthesis (Freire et al., 1997). Complex nitrogen sources have been traditionally used in the production of lipases (Lima et al., 2003). Roveda et al. (2010) evaluated the production of lipases from microorganisms isolated from dairy effluents using sodium nitrate as nitrogen source at fixed concentration of 0.1% and obtained satisfactory lipase activity for fungus of the genus Aspergillus. The validation of the model was performed by testing the enzymatic activity of the lipase enzyme extract of B. cepacia ATCC 25416 in culture medium containing 20 g L\(^{-1}\) corn steep liquor and 3 g L\(^{-1}\) sodium nitrate.

The results were a response estimated by the model of 0.0100 U.mL\(^{-1}\), and the average response experimentally obtained (EA) was 0.0110 U.mL\(^{-1}\), indicating good fit of the experimental points. This enzymatic activity is equivalent with almost 6.2% of the commercial enzymatic commercial enzyme lipase calculated under the same experimental conditions.

Conclusion

According to the experimental results, in the step of pre-selection of microorganisms with hydrolytic capacity performed with 40 microorganisms, 39 showed halo around the colonies, indicating degradation reaction of tributyrin by extracellular enzymes, inducing the production of lipases. It was possible to isolate microorganisms from agro-industrial waste. In the submerged fermentation stage, the results expressed as enzymatic activity showed that the highest activity observed was for strain B. cepacia ATCC 25416. The optimization step for the production of extracellular lipase allowed establishing appropriate conditions for the production of lipases when using corn steep liquor and sodium nitrate in the culture medium.

ACKNOWLEDGMENTS

Special thanks go to CAPES - (Coordination of Improvement of Higher Education Personnel), CNPq - National Council for Scientific and Technological Development – for the research productivity and technological innovation fellowship, to the local Sewage Treatment Plant and to “CicopalLdt” for supplying the samples.

REFERENCES

New fruit and seed disorders in Papaya (*Carica papaya* L.) in India

P. L. Saran*, R. Choudhary, I. S. Solanki and P. R. Kumar

Indian Agricultural Research Institute, Regional Station, Pusa, Samastipur, Bihar- 848 125.

Accepted 20 January, 2014

Systematic field screening was conducted in 14 important papaya germplasm lines to observe the severity of bumpy fruit incidence. The disease severity, fruit yield and economic losses due to physiological disorders were observed. Pune Selection-3 was most sensitive (64.6%) for the disorder while Pusa Selection Red was most tolerant (4.2%). The maximum yield was obtained in Pune Selection-3 (62 kg/plant) while lowest yield in Mokama Local (20 kg/plant). The lowest market acceptability and highest economic loss were also observed in Pune Selection-3 (Rs. 3.3/kg and 11, 21,580/ha, respectively) due to highest incidence of bumpy fruit disorder as compared to other germplasm. The highest frequency of deformed seeds/fruit (83.6%) and economic loss (Rs. 84,400/ha) under fruit production for market was noticed during February, while the lowest deformed seeds/fruit (2.7%) were observed during December. The maximum incidence of vivipary and white seed disorders were observed during May (13.4 and 75.7%, respectively) while least incidence was observed in February and March (10 and 5%, respectively). The increased incidence of vivipary was observed in harvested fruits from February to May with increasing average monthly temperature. The low and high temperatures during seed maturation period aggravate deformed and vivipary seeds, respectively.

Key words: *Carica papaya*, physiological disorders, bumpy, vivipary, white seeds.

INTRODUCTION

Papaya (*Carica papaya* L.) belongs to the family Caricaceae, one of the most important fruits cultivated throughout the tropical and subtropical regions of the world (Anonymous, 2000). The natural habitat of papaya lies in tropical, central and South America. Papaya flourishes in the frost-free and humid areas of the tropics and subtropics. It is regarded as an excellent source of ascorbic acid, a good source of carotene, riboflavin and a fair source of iron, calcium, thiamin, niacin, pantothenic acid, vitamin B-6 and vitamin K. Each and every part of papaya plant from root to shoot is used for medicament purposes. Seeds are also rich source of amino acids; scented oil was extracted, used in treatment of sickle cell disease and poisoning related disorders (Saran and Choudhary, 2013). The challenges that Indian Agriculture faces in the coming years remain enormous. Ensuring food and nutritional security and eliminating hunger, including hidden hunger, remain a high national priority. In order to effectively counter this demand, this crop will play an even more critical role in determining the productivity and food security. Papaya has gained more importance owing to its high palatability, early fruiting and highest productivity per unit area and multifarious uses like food, medicine and industrial input. It is cultivated in the world in an area of 3.83 lakh ha with a production of 8.05 million tones. In India, it is cultivated in 73,000 ha with a production of 23.17 lakh tones (Singh et al., 2010). The seed production in papaya with 100% genetic purity is difficult because of dioecious nature of the plant. Therefore, the seed should be produced either strictly
under controlled condition or in an isolated area.

Under diverse agro-climatic conditions of North Bihar, the autumn sown is best suited for seed production (Ram and Ray, 1992; Singh et al., 2010). Quality seed production, market value and export of papaya fruit suffer from several limiting factors including physiological disorders. Different nutrient deficiencies of boron, zinc and sulphur and environmental stresses cause several physiological disorders such as bumpy fruit which may lead to deformed/discolored seeds. Bumpy fruit, deformed / discolored seeds, vivipary seeds (Saha, 2007; Saran et al., 2013a) and white seeds (disturbed sarcotesta) were identified as new physiological disorders of papaya under diverse agro-climatic conditions of India. Deformity first starts in young fruits, but symptoms become more severe over fruits close to physiological ripening or of older age. The bumpiness begins in areas on the fruit epidermis and is due to boron deficiency, stopping the fruit growth (Wang and Ko, 1975; Chen and Raveendranathan, 1984). In addition to this, infected tissue continues increasing in size and ends forming a protuberance or "bump", similar to a ball. High incidence before maturity has also been a serious concern in papaya production.

During fruit and seed development period, proper temperature also plays important role. Keeping aforementioned facts in mind, the present study was conducted on the varietal screening for bumpiness; morphology and economics of bumpy fruits, deformed/discolored seeds, vivipary and white seeds (disturbed sarcotesta) and relationship between temperature and disorders (deformed seed and vivipary).

MATERIALS AND METHODS

The investigations were carried out at Indian Agricultural Research Institute Regional Station Pusa, Samastipur, Bihar (India) (elevation 52 m; latitude 25.98°N and longitude 85.67°E). The details of different experiments conducted are given as follows:

Screening of papaya germplasm

Screening of ten papaya germplasm lines was carried out during 2011 and 2012 for different physiological disorders. The plants selected were of uniform age (14 months). Ten plants of each germplasm line were randomly chosen for observations on bumpy fruit at fruit maturity. Each tree represented a replication and ten times replicated. Four germplasm lines, namely, Pune Selection-3, Pusa Dwarf, Pusa Nanha and Pusa Selection Red were studied for bumpy fruit incidence. Each tree of different selected germplasm was observed carefully and numbers of damaged fruits were recorded at weekly intervals. The values of different observations obtained from these trees were averaged to get the mean value. The bumpy fruit severity was calculated by own formular as given as follows:

\[
\text{Disease severity} \% = \left(\frac{Disease \text{ category scale} \times \text{Number of plants} + Disease \text{ category scale} \times \text{Number of plants}}{\text{Higher category scale} \times \text{Total number of plants}} \right) \times 100
\]

The observations on fruit yield were recorded to compare the yield of affected and non-affected trees of each germplasm in selected orchard of uniform age (first crop). The yield of ten normal plants was recorded for estimating average fruit yield (kg/tree). A survey was carried out during the year; 2008 to 2013. The data on rates of fruits/kg was collected for normal and bumpy fruits to work out the market acceptability. The rates of bumpy and normal fruits of papaya were collected from the fruit sellers. The economic loss was calculated by working out the difference between gross return from normal and bumpy fruits as rupees per hectare during study years. An economic loss was estimated by calculating the difference between normal and diseased (bumpy) plants yield per unit area and it was multiplied by the market rate of fruits. The data presented are the pooled mean of two years. The statistical analysis of the data was carried out using standard statistical procedures.

Studies on morphological and quantitative traits

The observations were recorded from December, 2008 to May, 2013. The average monthly temperature was recorded from IARI RS Pusa observatory. Morphological observations were recorded for fruit surface, seed attachment, seed color, seed surface, sarcotesta, removal of sarcotesta and vivipary in both varieties namely, Pusa Dwarf and Pune Selection-3. The fruits of Pusa Dwarf were observed with vivipary and morphological observation for fruit surface, seed attachment, seed color, seed surface, seed size, sarcotesta and removal of sarcotesta during fruit harvesting (initiation of colour turning stage) and seed extraction. The data were also recorded on the total number of seeds/fruit, number of normal seeds/fruit, number of deformed seeds/fruit, white seeds/fruit, vivipary seeds/fruit, deformed seeds (%), seed harvest (%) and economic losses (Rs/ha) in Pusa Dwarf at seed crop harvesting (December to May) due to deformed seed disorder in autumn crop. Each fruit was cut into two equal halves for observing the incidence. The deformed/discolored seeds were recorded by counting the seeds in different categories. An economic loss was estimated by calculating the seed yield per unit area in kilograms.

Loss was estimated by observing seed harvest (normal and deformed percent) in particular months and multiplied by our sale price (at Rs. 40,000/kg). Relationship between average monthly temperatures, time of fruit harvest and seed disorders, namely, deformed seed and vivipary seeds from December to May were shown during the study years.

RESULTS

Field screening of papaya cultivars

The field screening results had divulged that among all the selected germplasm, the bumpy fruit was significantly higher in Pune Selection-3 (64.6%), Pune Selection-2 (45.6%) and Pune Selection-1 (41.7%) followed by Co-7 (35.2%) and Pusa Dwarf (25%) while Pusa Selection Red (4.2%) was least affected. The maximum yield was obtained in Pune Selection-3 (62 kg/plant) followed by Pusa Selection Red (57.8 kg/plant), while lowest in Mokama Local (20 kg/plant) and Co-2 (22 kg/plant). The lowest market acceptability and highest economic losses were also observed in Pune Selection-3 (Rs 3.3/kg and Rs11, 21,580/ha), respectively due to highest incidence of bumpy fruit disorder as compare to other germplasm (Table 1).
increased incidence of deformed seeds was observed from December to February and decreased onward months harvested fruits with decreased and increase average monthly minimum temperature, respectively during study period. The maximum incidence was observed during February due to lower temperature during January which is seed maturity period for February harvest (Figure 3).

The vivipary fruits were also rough surfaced, while the normal fruits were smooth surfaced. The visual observations for vivipary were tight seed attachment, white seed color, rough seed surface, smaller size, disturbed sarcotesta and no need of removal of sarcotesta for seed germination, while just reverse of it was observed in case of normal seeds (Table 4 and Figure 4). Vivipary and white seeds (disturbed sarcotesta) are a serious economic problem only in Pusa Dwarf and the severity of damage varies with the harvesting/fruit maturity months. For vivipary and white seed disorders, the highest incidence were observed during May (13.4 and 75.7%, respectively), followed by April (8.1 and 66.3%, respectively), March (1.1 and 34.6%, respectively), and the lowest incidence was observed in February (0.0 and 10.0%, respectively). The maximum economic loss (Rs. 53,600/ha) was observed in April, while least during February (Rs. 16,800 /ha) in autumn sown crop of Pusa Dwarf (Table 5). The higher incidence of these seed disorders during May harvested fruits might have got aggravated due to high temperature during seed maturation period. Positive relationship between average monthly maximum temperature and vivipary (%) was observed from December, 2008 to May, 2013. The incidence of vivipary was observed increased from February to May harvested fruits with increased average monthly maximum temperature during
Table 3. Average incidence and economic loss due to deformed seed disorder in autumn sown papaya cultivar, Pusa Dwarf during 2011 and 2012.

<table>
<thead>
<tr>
<th>Month of harvest</th>
<th>Total number of seeds/fruit</th>
<th>Number of healthy seeds/fruit</th>
<th>Number of deformed seeds/fruit</th>
<th>Deformed seeds/fruit (%)</th>
<th>Economic loss (Rs/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>318.8</td>
<td>312.2</td>
<td>8.6</td>
<td>2.7</td>
<td>58,400.00</td>
</tr>
<tr>
<td>January</td>
<td>658.6</td>
<td>374.1</td>
<td>284.5</td>
<td>43.2</td>
<td>62,400.00</td>
</tr>
<tr>
<td>February</td>
<td>638.4</td>
<td>103.2</td>
<td>535.2</td>
<td>83.6</td>
<td>84,400.00</td>
</tr>
<tr>
<td>March</td>
<td>549.2</td>
<td>419.8</td>
<td>129.4</td>
<td>22.0</td>
<td>16,000.00</td>
</tr>
<tr>
<td>April</td>
<td>514</td>
<td>456.6</td>
<td>58.8</td>
<td>12.1</td>
<td>5,200.00</td>
</tr>
<tr>
<td>C.D. (P = 0.05)</td>
<td>31.653</td>
<td>4.646</td>
<td>25.369</td>
<td>2.7</td>
<td>1,466.18</td>
</tr>
</tbody>
</table>
Figure 3. Relationship between average monthly minimum temperature and deformed seed (%).

Table 4. Morphological description of vivipary fruits of papaya cultivar, ‘Pusa Dwarf’.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Normal fruit</th>
<th>Vivipary fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit surface</td>
<td>Smooth</td>
<td>Rough</td>
</tr>
<tr>
<td>Seed attachment</td>
<td>Loose</td>
<td>Tight</td>
</tr>
<tr>
<td>Seed color</td>
<td>Black</td>
<td>White</td>
</tr>
<tr>
<td>Seed surface</td>
<td>Smooth</td>
<td>Rough</td>
</tr>
<tr>
<td>Seed size</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Sarcotesta</td>
<td>Shining</td>
<td>Disturbed</td>
</tr>
<tr>
<td>Removal of sarcotesta</td>
<td>Easily-removable</td>
<td>Broken sarcotesta</td>
</tr>
</tbody>
</table>
Table 5. Average incidence and economic loss due to vivipary and white seeds disorder (disturbed sarcotesta) in autumn sown papaya cultivar, ‘Pusa Dwarf’ during 2011 and 2012.

<table>
<thead>
<tr>
<th>Month of harvest</th>
<th>Normal seeds (%)</th>
<th>Vivipary seeds (%)</th>
<th>White seeds (%)</th>
<th>Economic loss (Rs./ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>90.0</td>
<td>0.0</td>
<td>10.0</td>
<td>16,800.00</td>
</tr>
<tr>
<td>March</td>
<td>64.4</td>
<td>1.1</td>
<td>34.6</td>
<td>42,800.00</td>
</tr>
<tr>
<td>April</td>
<td>25.7</td>
<td>8.1</td>
<td>66.3</td>
<td>53,600.00</td>
</tr>
<tr>
<td>May</td>
<td>11.0</td>
<td>13.4</td>
<td>75.7</td>
<td>21,600.00</td>
</tr>
<tr>
<td>C.D. (P = 0.05)</td>
<td>9.3</td>
<td>1.4</td>
<td>4.5</td>
<td>481.00</td>
</tr>
</tbody>
</table>

Figure 5. Relationship between average monthly maximum temperature and vivipary (%).

study period (Figure 5).

DISCUSSION

Ram and Ray (1992) reported fruit yield in different papaya cultivars under agroclimatic conditions of North Bihar in autumn sown crop. Screening of different papaya varieties have been carried out against expression of boron deficiency symptoms by different workers (Wang and Ko, 1975; Chen and Ravendranathan, 1984) and fruit deformity has been found associated with boron deficiency. Visual differences in normal and bumpy fruits and seeds of Pune Selection-3 and Pusa Dwarf were observed. Similarly, the bumpy surface on the fruit epidermis at fruit maturity stage was also reported (Chen and Ravendranathan, 1984). The stress associated with bumpy fruits may aggravate the incidence in Pune Selection 3. Fruit and seed disorders in papaya cause high economic losses in seed production during autumn-sown crop (Saran et al., 2013a). The economics of Pusa Dwarf seed production and seed yield has already been reported (Ram and Majumder, 1990; Sing et al., 2010). Similarly, the economic loss was maximum in April and least in February in autumn-sown crop of ‘Pusa Dwarf’ under seed production at North Eastern Plains Zone of India (Saran et al., 2013b). Under normal conditions, the seed yields are 60 to 75 kg/ha in dioecious varieties. The high incidence of deformed seeds in Pusa Dwarf may be due to lower temperature during seed maturation period (January) in autumn sown crop. The stress associated with bumpy fruits may aggravate the incidence in Pusa Dwarf. The natural occurrence of precocious germination has been reported in papaya (Balakrishnan et al., 1986). These observations have revealed that the temperature during seed maturation period play an important role.

The low and high temperatures during seed maturation period aggravate deformed and vivipary seeds, respectively.
Conclusions

Fruit and seed disorders in papaya cause great economic losses in seed production during autumn sown crop. We observed that Pune Selection-3 and Pusa Dwarf were the most susceptible germplasm lines for bumpy fruit and deformed seed disorders, while vivipary and white seeds (disturbed sarcotesta) are a serious economic problem only in Pusa Dwarf. The incidence of deformed seeds was increased from December to February and decreased onward months harvested fruits and incidence of vivipary was increased from February to May harvested fruits with maximum temperature.

REFERENCES

Development of specific primers for the detection of HVA1 from barley in transgenic durum wheat by polymerase chain reaction (PCR) technology

Marouane Melloul1,2, Driss Iraqi3, Sripada M Udupa3,4, My Abdelaziz El Alaoui1,2, Sanaa Amine Alaoui2, Mohammed Ibriz1 and Elmostafa Elfahime2*

1Genetic and biometry Lab, Faculty of Sciences, University Ibn Tofail, BP, 133, 14000, Kenitra - Morocco.
2Functional genomic platform - Technical Unit (UATRS) - National Center for Scientific and Technological Research (CNRST), Angle Allal Fassi / Avenue des FAR, Hay Riad ,B.P. 8027, 10102 - Rabat - Morocco.
4ICARDA-INRA Collaborative Research Project, International Center for Agricultural research in the Dry Areas (ICARDA), Rabat, Morocco.

Key words: HVA1, durum wheat, transgenic plant, real time polymerase chain reaction (PCR), drought.

INTRODUCTION

Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and result in the deterioration of the environment (Boyer, 1982). Abiotic stress leads to a series of morphological, physiological, biochemical and molecular changes that adversely affect
plant growth and productivity (Wang et al., 2001). Among the abiotic stresses, the availability of water is the most important factor that limits the productive potential of higher plants (Rodriguez et al., 2006). Drought is one of the most severe environmental stresses that affect almost all plant function (Yamaguchi Shinozaki et al., 2002) and is also considered as the primary limitation to wheat production worldwide (Mardeh et al., 2006).

Durum wheat (Triticum durum L.) is the most important cereal crop in the Mediterranean basin. In Morocco, durum wheat is grown over an area ranging from 1 to 1.2 million hectares annually, and ranks the third after bread wheat and barley, with respect to production (MAPM, 2011). The country’s wheat productivity has been affected by various biotic and abiotic stresses (Karrou, 2003). To increase yields or reduce yield losses under such adverse conditions, it is necessary to improve tolerance to environmental stress (Shinozaki and Yamaguchi-Shinozaki, 2007). Developing a line of drought tolerant crops would alleviate the economical strain of losing crop yield due to insufficient water availability. Traditional breeding for increasing drought tolerance is difficult because of limited genetic diversity and the complex biochemical response plants have to drought stress (Bacsó et al., 2008). It is important, therefore, to look for alternative strategies to develop stress tolerant crops. They will provide an attractive and complementary option for improving a plant’s performance under stress conditions.

Genetic engineering has undoubtedly opened a new avenue to overcome crop losses due to various abiotic stresses prevalent in the agricultural ecosystems (Bajaj et al., 1999). It provides novel opportunities for the transfer of agronomically useful genes in an elite cultivar without disturbing its genetic background (Rohila et al., 2002). A number of stress related genes have been isolated which can potentially improve the stress tolerance in plants (Bajaj et al., 1999). Late embryogenesis abundant (LEA) proteins are among the best known of water stress-induced proteins. These proteins accumulate during the late stage of seed formation and in vegetative tissues under drought, heat, cold and salt stress conditions or with abscisic acid (ABA) application (Sivamani et al., 2000). A LEA gene HVA1 (which encodes a group 3 LEA protein) from barley was engineered in rice (Chandra et al., 2004; Rohila et al., 2002; Xu et al., 1996), the transformed lines produced showed enhanced tolerance to drought stress. It has been introduced also into wheat (Debasis and Paramjij, 2003; Sivamani et al., 2000), and the transgenic plants showed improved biomass productivity and water-use efficiency under water-deficit conditions. HVA1 has been used successfully to confer stable tolerance to osmotic stress in oat (Maqbool et al., 2002; Oraby et al., 2005) and mulberry (Lal et al., 2008). To produce transgenic plants, selection systems are used that lead to the selective growth of transformed cells. In many plant transformation systems, the availability of selectable markers is essential to recover transgenic plants. Genes conferring resistance to selective chemical agents, such as antibiotics and herbicides, are used routinely (Darbani et al., 2007). They have been found to be particularly effective for selection and provide a means for rapidly identifying transformed cells, tissues, and regenerated shoots (Goodwin et al., 2005). In many cases it has been regarded as unnecessary to carry out molecular analysis using vector DNA other than the gene of interest and the selectable marker (Smith et al., 2001). To confirm definitively the presence of a transgene, a sample with a positive signal in screening should be further analyzed using a construct-specific or event-specific method (Griffiths et al., 2002).

Expression of a transferred gene can be initially silenced or inactivated over time or generations by either transcriptional gene silencing (TGS) or post-transcriptional gene silencing (PTGS) triggered by diverse host defense responses (Matzke et al., 2000). Success at developing improved cultivars through genetic engineering depends on stable and predictable expression of the inserted gene. Thus it is widely considered necessary to confirm the expression of the transgenes before proceeding to downstream functional characterization. Polymerase chain reaction (PCR) is one of the most sensitive techniques for detecting the integrated gene in the transgenic plant genome (Wong and Medrano, 2005). Especially, real time PCR has been regarded as the most powerful tool for the detection and quantification of GMO despite its high expense (Tripathi, 2005). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a rapid, sensitive, and reliable method for the detection of messenger RNAs (mRNAs) (Bustin et al., 2005).

The objective of the study was to design specific primers sequences of barley HVA1 gene in transgenic wheat for conventional PCR and real time PCR analysis. Designing highly specific primers to amplify the transgene will help either in the detection of the gene of interest (HVA1) in transformed plants and, in the measurement of its mRNA abundance and changes. The barley HVA1 and the wheat genes are highly similar at both nucleotide level and predicted amino acid level (Curry et al., 1991), this sequence homology between the two genes makes the detection of the HVA1 gene and mRNA in wheat very difficult by PCR or real time PCR. To our knowledge, this is the first report describing the development of specific primers able to detect DNA and mRNA of HVA1 in transgenic durum wheat by conventional PCR and

*Corresponding author. E-mail: elfahime@cnrst.ma. Tél: (212) 5 37 71 29 83 / 29 83. Fax: (212) 5 37 71 32 05.

Abbreviation: LEA, Late embryogenesis abundant; ABA, abscisic acid; TGS, transcriptional gene silencing; PTGS, post-transcriptional gene silencing; PCR, polymerase chain reaction; CTAB, cetyltrimethyl ammoniac bromide; CT, cycle threshold.
quantitative real time PCR, respectively.

MATERIALS AND METHODS

Leaves from untransformed, transformed durum wheat line 1804, developed at National Institute of Agronomical Research, Laboratory of Biotechnology (Rabat -Morocco), kindly provided, were used in this study. For the specificity assessment, we used three durum wheat varieties, three bread wheat varieties, two maize, rice and oat.

DNA extraction

DNA was extracted from transformed, untransformed and other plants from frozen leaves. The cetyltrimethyl ammoniac bromide (CTAB) protocol was used for DNA extraction as described by Murray and Thompson (1980). The concentration of genomic DNA was determined by Nanodrop 8000 spectrophotometer (Thermo, Sydney, Australia). The quality and purity of the preparations was ascertained by denaturated agarose gel electrophoresis (2%). DNA treat-ted RNA samples were reverse-transcribed using The SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA) and oligo (dT)20 (Invitrogen) on 1 µg total RNA following the manufacturer's recommendations (final volume of 20 µl). The cDNAs were then stored at -20°C until used in real-time PCR amplification.

RNA isolation and cDNA synthesis

Total RNA was extracted from leaves by the Spectrum Plant Total Kit (Sigma Aldrich, St Louis, US) in accordance with the manufacturer's instructions. To avoid possible DNA contamination, a digestion by Ambion Turbo DNase (life technologies, US) was carried out on the RNA samples. RNA concentrations were measured at 260 nm by Nanodrop 8000. The quality and purity of the preparations were determined by measuring the OD260: OD280 nm absorption ratio (1.8-2.0), and the integrity of the preparations was ascertained by denatured agarose gel electrophoresis (2%). DNase-treated RNA samples were reverse-transcribed using the SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA) and oligo (dT)20 (Invitrogen) on 1 µg total RNA following the manufacturer's recommendations (final volume of 20 µl). The cDNAs were then stored at -20°C until used in real-time PCR amplification.

Primers design

As HVA1 barley gene show high sequence similarity with the endogenous gene in wheat, the primers were designed manually using an alignment performed by ClustalW programm of software Geneious (Drummond et al., 2011), of the HVA1 sequence in the plasmid PBY520 with its homologous in durum wheat on the basis of sequences present in the GenBank database (AJ613581, AJ716526, BE428267, BE428883) (Figure 1). Different primers sets were designed to target the HVA1 gene, two forward primers and five reverse primers. The plasmid PBY520 contained the linked selectable marker/herbicide resistance bar (phosphinothricin acetyl transferase) gene (driven by cauliflower mosaic virus 35S promoter and the nopaline synthase nos terminator). 35S and NOS primers were used, for the screening of the transformed plants (Pietsch et al., 1997). To verify the amplification of extracted DNAs, a pair of primers CDC(a).F/CDC(a).R targeting the cell division control gene was used (Gimenez et al., 2011). The primers were synthesized using Polyplex machine (Gene machine, USA) at functional genomic platform - UATRS-CNRSRT. Table 1 lists all the primers used in this study.

PCR conditions

Reactions were performed on genomic DNA (100 ng) extracted from transformed lines, on plasmid as positive control and on non-transformed lines as negative control for each designed primer. PCR's were performed with 1 U platinium Taq DNA polymerase (Invitrogen), 1x PCR Buffer, 2.5 mM MgCl2, 0.2 mM dNTP mix, and 400 nM of each primer in a 25 µl reaction volume under the following conditions: preheating at 96°C for 3 min, then 35 cycles of denaturation at 96°C for 30s, annealing at 60°C for 30 s and extension at 72°C for 60 s, followed by final extension of 10 min employing a veriti PCR thermal cycler (Applied Biosystems, USA). The following primers combinations were used: F2/R1, F2/R4, F2/R5, F2/MMR, F2/R10 and F14/R10. The amplified fragments were electrophoresed on 2% agarose gels and detected using ethidium bromide along with molecular weight markers. Different primers pairs have been tested for the HVA1 gene amplification by qualitative PCR and those giving a specific product were also tested by the more sensitive real time PCR to confirm their specificity.

Real time PCR: SYBR green detection

DNA

Reactions for real-time PCR using SYBR green detection consisted of 12.5 µl of SYBR green JumpStart Taq Ready Mix (Sigma-Aldrich, US), 400 nM forward and reverse primers, 100 ng of DNA template in 25 µl reaction volume. The PCR conditions were as follow, first denaturation at 94°C for 2 min, 45 cycles of denaturation at 94°C for 15 s, annealing and extension at 60°C for 60 s followed by a melting curve analysis with a temperature gradient of 0.1°C/s from 70 to 95°C.

Sensitivity, efficiency and reproducibility

Genomic DNA was serially diluted five-fold and conducted in triplicates to establish the standard curves. The extracted DNA was serially diluted to a final concentration of 20, 4, 0.8, 0.16, 0.032, 0.0064 and 0.00128 ng/µl. The amount of DNA per reaction is 20, 4, 0.8, 0.16, 0.032, 0.0064 and 0.00128 ng. Cycle threshold (CT), that is, the number of PCR cycles necessary to reach the threshold fluorescence level, was automatically determined by the Rotor gene software (Corbett Research, Sydney, Australia) based on the second derivative maximum method. Individual measurements for replicate real-time PCR reactions were plotted separately to obtain correlation coefficient (R²) that reflect the variation of the data set. The PCR efficiency was calculated using the slope of the standard curve as follows: PCR efficiency = 101/slope whereby an efficiency of 1 corresponded to 100% PCR efficiency, when all target molecules double in one PCR cycle and an efficiency of 0 indicates no amplification (Cankar et al., 2006). Each dilution was tested, using real-time PCR amplification, as previously described.

RNA

First strand cDNA was used as template for real time PCR amplifications with gene specific primers (confirmed specific by conventional PCR and real time PCR). KAPA SYBR fast qPCR Kit (KAPA Biosystems, cape town, SA) was used for the detection of HVA1 transcript. The PCR consisted of 10 µl SYBR green fast Ready Mix, 300 nM forward and reverse primers, 200 ng of cDNA and made up to 20 µl with water. The PCR's mixtures was denatured at 95°C for 3 min, followed by 45 cycles of denaturation at 95°C for 10 s, annealing at 60°C for 30s and extension at 72°C for 1 s. The amplification period was followed by a melting curve analysis as mentioned above to exclude amplification of unspecific products. The real time PCR amplifications for DNA and RNA were carried out on a RotorGene 6000 (Corbett Research, Sydney, Australia). The
Figure 1. Sequence alignment of barley HVA1 cDNA with its homologous in durum wheat on the basis of 4 sequences present in the GenBank database (AJ613581, AJ716526, BE428267, and BE428883). Positions of the primers are indicated by arrows.

Table 1. Primer sequences and length of PCR amplification products.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Target</th>
<th>Orientation</th>
<th>Sequence (5'-3')</th>
<th>Product length (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC(a)_F</td>
<td>CDC</td>
<td>Sense</td>
<td>CAGCTGCTGACTGAGATGGA</td>
<td>77</td>
<td>Gimenez et al. 2011</td>
</tr>
<tr>
<td>CDC(a)_R</td>
<td>Antisense</td>
<td></td>
<td>ATGTCTGGCCTGTTGGTAGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35S_F</td>
<td>35S</td>
<td>Sense</td>
<td>GCTCCTACAAATGCCATCA</td>
<td>195</td>
<td>Pietsch et al. 1997</td>
</tr>
<tr>
<td>35S_R</td>
<td>Antisense</td>
<td></td>
<td>GATAGTGGGATTGTGCGTCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nos_F</td>
<td>NOS</td>
<td>Sense</td>
<td>GAATCCTGTTGCCGGTCTTG</td>
<td>189</td>
<td>Pietsch et al. 1997</td>
</tr>
<tr>
<td>Nos_R</td>
<td>Antisense</td>
<td></td>
<td>TTATCCTAGTTTGCGCGCTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>HVA1</td>
<td>Sense</td>
<td>AGCTAGATCGTGAGACGAAGATG</td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>F14</td>
<td>Sense</td>
<td></td>
<td>AGGAGAAGACCGGGCAGA</td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>R1</td>
<td>Antisense</td>
<td></td>
<td>GCTTGTTGCGCTTGCTGTGTC</td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>R4</td>
<td>Antisense</td>
<td></td>
<td>CTTGTTGCGCTTGCGCCGT</td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>R5</td>
<td>Antisense</td>
<td></td>
<td>TATCTGCGCTTGGTCGGT</td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>R10</td>
<td>Antisense</td>
<td></td>
<td>CTTGCGCCGCTCTCGTACGTCTTGG</td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>MMR</td>
<td>Antisense</td>
<td></td>
<td>CTCTTGGCGCGCT</td>
<td></td>
<td>This work</td>
</tr>
</tbody>
</table>
Figure 2. 2% Agarose gel electrophoresis of cell division control (CDC) PCR products amplified from wheat genomic DNA. M, 100 bp DNA ladder; lane 1, negative control; lanes 2, 3, and 4, non-transformed wheat; lanes 5 to 10, transformed wheat.

Sequencing analysis

The products that were positive after conventional PCR analysis of DNA and real time PCR for RNA were subjected to sequencing, after purification using USB ExoSAP-IT reagent (Affymetrix). The sequences of each strand were determined by means of automated fluorescence sequencing on an ABI PRISM 3130xl sequencer (Applied Biosystems, USA) using BigDye Terminator v3.1 cycle sequencing Kit (Applied Biosystems) with the same primers used in PCR amplification. Sequence alignments were performed using the software MEGA 5.0 (Tamura et al., 2011).

RESULT

Qualitative polymerase chain reaction (PCR)

Amplification of DNA is generally influenced by the presence of PCR inhibitors, the extent of DNA damage and the length of the extracted DNA fragment. The endogenous gene CDC was used to confirm the presence of amplifiable wheat DNA, using the plant-specific primer pair CDC(a)_F/CDC(a)_R. Fragments of the expected target size (77 bp) were amplified in all tested samples, untransformed and transformed (Figure 2). Screening based on the 35S-PCR and Nos-PCR systems was performed using primer pairs previously described by Pietsch (Pietsch et al., 1997). The desirable PCR products of 195 bp fragment of CaMV 35S promoter and 180 bp fragments of NOS terminator (Figure 3) were amplified only in transgenic plants, while no such products were detected in non-genetically modified plants. After assessing the initial quality of the DNA extracted from the samples, and their screening using the selectable markers, we proceed to the detection of HVA1 with the aim of obtaining specific amplicons, using the following primers pair F2/MMR (300bp), F2/R1 (147bp), F2/R4 (212 bp), F2/R5 (100 bp), F2/R10 (290 bp) and F14/R10 (212 bp). Except the primer pair F2/R1 (presence of two bands), clear and intense bands, with the expected size for all the primers pair were obtained in all transformed plants, including the positive control (Figure 4); however primers pair F2/R1, F2/R4 and F2/R5 failed to yield a specific assay for HVA1. A weak 147 bp band corresponding to primers pair F2/R1 was observed in the 3 untransformed samples. A smear was observed in the non-transformed samples using the primer pair F2/R4. The primer pair F2/R5 was unable to differentiate the transgenic from non-transgenic plant, a weak intensity band with expected amplifications products were present in non-transformed plants. These primers could not distinguish between transgenic and non-transgenic wheat, whereas the primers pair F2/MMR, F2/R10 and F14/R10 were successful to yield appropriately sized fragments in only transgenic wheat. No amplification of non-transgenic wheat was observed. These primers pairs were specific to transgenic wheat, and no amplification was found in non-genetically modified wheat. They were chosen to perform real time PCR to check their specificity.

Real time PCR

The specificity and sensitivity a of primer pairs F2/MMR, F2/R10 and F14/R10 has been tested with real time PCR using SYBR green detection. This intercalating molecule fluoresces upon binding to dsDNA, allowing the detection of any products accumulated during amplification, including non-specific reaction products, such as primer-
Figure 3. Detection of GMO target DNA (CaMV35S and NOS fragments) by 2% agarose gel electrophoresis. M: 100 bp DNA markers; 1: Negative control; 2, 3, and 4: non-transformed wheat; 5 to 10: transformed wheat; 11: Positive control (Plasmid PBY520).

dimers. The real time PCR is specific and sensitive enough to distinguish between transformed and non-transformed plants. The evaluation of the dissociation curves makes it however possible to identify specific amplicons from other products, by assessing their own melting temperatures.

In order to assess the specificity of the selected primer pairs, amplifications have been carried out using DNAs extracted from various plants. The results indicate that no amplification was observed from the untransformed plants and from any of the species tested other than the target (Data not shown). With the primer pair F2/MMR, the melting curve analysis (Figure 5A) showed one product corresponding to transformed plants and positive control. No amplification was observed in non-transformed plants, whereas a signal was observed in non-genetically modified plants when using the primer pair F14/R10 with lower size (Figure 5E), this amplification was also observed in qualitative PCR. With primers pairs F2/R10 fluorescent signals were detected only for transformed samples; no amplification was detected for non-transformed samples and the NTC (no template control). The dissociation analysis (Figure 5C) showed that the PCR reactions only produced one specific product; the curves were shaped and clear with no trace of nonspecific products or of primer dimers. These indicated that the primers F2/R10 were highly specific for the detection of HVA1. The potentiality of the real time PCR system to detect HVA1 has been demonstrated. The SYBR green product of the three primers pair was analyzed on 2% electrophoresis gel, a clear bands corresponding to the expected size were detected in all transformed plants and the positive control, whereas no amplification products were detected in non-transformed plants (Figure 5B, 5D, and 5F).

To assess the sensitivity of these real-time PCR
Melloul et al.

Figure 4. PCR amplification of the HVA1 DNA after gene transfer into wheat using qualitative PCR. M, 100 bp marker; 1, negative control; 2 to 4, non-transformed wheat; 5 to 10, transformed wheat; 11, positive control (Plasmid PBY520). Forward primer F2 is combined with different reverse primers as follow: (A) F2/MMR; (B) F2/R1; (C) F2/R4; (D) F2/R5; (E) F2/R10. (F) Corresponds to primers combination F14/R10.

assays, standard curves were generated with genomic DNA using the primer pairs F2/MMR, F2/R10 and F14/R10 (Data not shown). The fluorescent signal could be detected when the amount of the DNA template was lowered to 6.4 pg. A very efficient amplification was obtained as indicated by the slope of the linear regression analysis (-3) with a good correlation coefficient (0.99) in all standard curves (Table 2). To further demonstrate the reproducibility of the quantitative system, we ran the real time PCR in triplicate with six dilutions of durum wheat genomic DNA using the 3 primers pair (F2/MMR, F2/R10 and F14/R14). The coefficients of variation (CV%) values and the standard deviation (SD) values for the 3 primers pair are indicated in Table 3. These data showed that the CV values and the SD values derived from these tests were relatively small and that this quantitative PCR detection system worked stably and reliably.

For the detection of HVA1 transcript we used the primer pair F2/R10 in all tested samples. Robust amplification of the HVA1 mRNA was observed in transgenic samples (Figure 6). The post-amplification melting curve (Figure 6A) showed a sole, symmetric and sharp curve, indicating that only one product was accumulated. The real time PCR product was analyzed on electrophoresis
Figure 5. Melting curves analysis, showing the specific amplification of the target gene HVA1, and confirmation by agarose gel electrophoresis analysis. (A, B): Primers F2/MMR; (C, D): primers F2/R10; (E, F) primers F14/R10. NTC (no template control), transformed, non-transformed wheat and positive control are shown by arrows on the amplification plots. Lane M: DNA marker 100 bp; lane 1: water control; lanes 2 to 4: non-transformed wheat; lanes 5 to 10: transformed wheat; lane 11: positive control (Plasmid PBYS20).

gel 2%, (Figure 6B); the reliability of the specific primers was confirmed by the unique fragment with expected size (290 bp). In controls with cDNAs from non-transformed plants, or with samples not treated with reverse transcriptase, no amplification products were detected. This result indicates that genomic DNA was completely removed from the RNA samples used for cDNA synthesis, thus, the HVA1 gene is transcribed in transgenic samples. The primer pair F2/R10 was considered highly specific for the detection of HVA1 mRNA.

Sequencing

The identity of the PCR product has been checked by nucleic acid sequencing to confirm the specific amplification-
Table 2. Real time PCR amplification efficiencies of HVA1 using genomic DNA obtained with three pairs of primers.

<table>
<thead>
<tr>
<th>Primer pair</th>
<th>Slope (gDNA)</th>
<th>Interception (gDNA)</th>
<th>Correlation coefficients (gDNA)</th>
<th>PCR efficiencies (gDNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2/MMR</td>
<td>-3.114</td>
<td>29.91</td>
<td>0.9986</td>
<td>109</td>
</tr>
<tr>
<td>F2/R10</td>
<td>-3.120</td>
<td>26.65</td>
<td>0.9980</td>
<td>109</td>
</tr>
<tr>
<td>F14/R10</td>
<td>-3.218</td>
<td>30.64</td>
<td>0.9941</td>
<td>105</td>
</tr>
</tbody>
</table>

Table 3. Reproducibility of the Ct measurements by real-time PCR for six levels of concentration of genomic DNA from transformed durum wheat using the 3 pair of primers (F2/MMR, F2/R10 and F14/R14).

<table>
<thead>
<tr>
<th>Starting concentration (ng/µl)</th>
<th>Ct Value</th>
<th>Average</th>
<th>SD(^{a})</th>
<th>CV(^{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Primer pair F2/MMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0064</td>
<td>36.34</td>
<td>34.62</td>
<td>34.36</td>
<td>35.11</td>
</tr>
<tr>
<td>0.032</td>
<td>33.76</td>
<td>32.44</td>
<td>33.43</td>
<td>33.21</td>
</tr>
<tr>
<td>0.16</td>
<td>30.28</td>
<td>30.43</td>
<td>30.39</td>
<td>30.37</td>
</tr>
<tr>
<td>0.8</td>
<td>28.86</td>
<td>28.67</td>
<td>28.08</td>
<td>28.03</td>
</tr>
<tr>
<td>4</td>
<td>25.64</td>
<td>25.72</td>
<td>25.7</td>
<td>25.69</td>
</tr>
<tr>
<td>20</td>
<td>23.27</td>
<td>23.83</td>
<td>23.75</td>
<td>23.78</td>
</tr>
<tr>
<td>Primer pair F2/R10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0064</td>
<td>29.86</td>
<td>31.59</td>
<td>29.05</td>
<td>29.88</td>
</tr>
<tr>
<td>0.032</td>
<td>28.04</td>
<td>26.7</td>
<td>27.53</td>
<td>27.43</td>
</tr>
<tr>
<td>0.16</td>
<td>24.71</td>
<td>24.88</td>
<td>24.71</td>
<td>24.77</td>
</tr>
<tr>
<td>0.8</td>
<td>22.6</td>
<td>22.84</td>
<td>22.82</td>
<td>22.75</td>
</tr>
<tr>
<td>4</td>
<td>20.13</td>
<td>20.16</td>
<td>20.09</td>
<td>20.12</td>
</tr>
<tr>
<td>20</td>
<td>18.24</td>
<td>18.31</td>
<td>18.42</td>
<td>18.32</td>
</tr>
<tr>
<td>Primer pair F14/R10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0064</td>
<td>32.08</td>
<td>31.34</td>
<td>32.05</td>
<td>31.82</td>
</tr>
<tr>
<td>0.032</td>
<td>30.42</td>
<td>29</td>
<td>29.37</td>
<td>29.6</td>
</tr>
<tr>
<td>0.16</td>
<td>27.71</td>
<td>27.34</td>
<td>27.71</td>
<td>27.59</td>
</tr>
<tr>
<td>0.8</td>
<td>25.21</td>
<td>25.09</td>
<td>25.03</td>
<td>25.11</td>
</tr>
<tr>
<td>4</td>
<td>22.74</td>
<td>22.7</td>
<td>22.51</td>
<td>22.65</td>
</tr>
<tr>
<td>20</td>
<td>20.76</td>
<td>20.76</td>
<td>20.74</td>
<td>20.75</td>
</tr>
</tbody>
</table>

\(^{a}\)Standard deviation. \(^{b}\)Coefficient of variation.

...of the expected region on the templates. The conventional PCR products amplified with the primers pair F2/MMR, F2/R10 and F14/R10 and the RT-real time PCR product amplified with the primers F2/R10 were sequenced. Using MEGA software, we aligned the sequences with the Reference sequence (Plasmid PBYS20), the alignment showed a complete homology with the sequence on which they were designed (data not shown). The alignment analysis indicated that the isolated fragment came from the transgenic construct.

DISCUSSION

Genetic engineering makes it feasible to transform drought resistance genes into plants; however a series of experiments are needed to confirm whether the genes are successfully transformed and the target genes are expressed. The detection of transgenic plants in most crop species requires the use of selectable marker genes and selective agent. Selectable marker genes are introduced into plant genome to express a protein generally with an enzymatic activity, which allows distinguishing transformed from non-transformed cells, however, the detection of the transgene of interest and the study of mRNA transcribed from the introduced DNA provides far more information than a screening method. A transgene incorporated into the plant genome is integrated randomly and in unpredictable copy numbers, often in the form of repeats, which can influence its expression. The integration site also has a profound effect on the expression of the transgene, which is affected by intrinsic and extrinsic factors that can trigger methylation and reduce the stability of the expression...
Silencing of introduced genes is routinely observed in polyploid plant species such as wheat. Such transgene silencing has been observed in transgenic wheat plants generated by microprojectile bombardment (Alvarez et al., 2000). There have been many reports about loss of transgene expression in subsequent generations (Brandle et al., 1995) and under certain environmental conditions (Meyer et al., 1992). Thus initial laboratory testing supplemented by extensive analyses of gene expression of the transgene are important. In some cases, the detection and the study of gene expression of a transgene is difficult due to sequence homology between the transgene and the endogenous genes. Because the wheat genome contains homologues of the barley HVA1 gene (Curry et al., 1991), the detection method of HVA1 transgene in the previous works, was only based on southern blot analysis using a probe that target a promoter (Sivamani et al., 2000), or a marker gene probe (Debasis and Paramjit, 2003).

The aim of this work has been to develop PCR primers to detect the introduced DNA from a durum wheat line transformed to express a barley gene (HVA1). This work was designed to investigate also the ability to detect the mRNA of the transgene in transformed plant samples by real time PCR. The polymerase chain reaction is a highly specific and sensitive method for the detection of small amounts of target DNA. In the past few years, several PCR methods have been developed to detect GMOs for screening purposes including the detection of specific genes of interest (Zimmermann et al., 1998). Primers for PCR were designed to avoid the amplification of genomic DNA with 90% identity in sequence to the corresponding cDNA sequence of the transgene. Information available was used to set up a PCR based detection system. We used several primer combinations in this study to detect the HVA1 transgene. Primer pairs F2/R1, F2/R4 and F2/R5 were not able to distinguish the transgene from the endogenous gene, whereas primer pairs F2/MMR, F2/R10 and F14/R10 were successful to amplify a 300, 290 and 212 bp fragments respectively from transgenic DNA, and no fragment was amplified from non-transgenic samples. The primers were specific to amplify the expected band sizes from DNA template. Identification of assay conditions that yield a single HVA1 transgene fragment without any amplification of non-transformed samples yields the potential of adaptation of our assay to real time quantification. Real-time quantitative PCR is considered to be an easy-to-use, accurate, specific, quantitative method. We amplify the HVA1 gene by the primers pair F2/MMR, F2/R10 and F14/R10. The specificity of the primers was confirmed by the absence of any fluorescence signal with the untransformed plants, and did not show any cross-reactivity with DNAs extracted from various plants. Analysis of the dissociation curves in real time PCR showed a specific amplification of target gene for all the primers. The assessment of the primers sensitivity, efficiency and reproducibility of the tests was determined by generating a standard curves. The analysis showed an acceptable efficiency. Each assay was 100% specific, reproducible and consistently detected DNA concentrations ≤7 pg.

Among the three primers, the primer pair F2/R10 clearly was the highly specific primers as no fluorescence corresponding to non-transformed samples or primer dimers was detected. This specificity is basically attributable to specific primer pair designed to amplify the HVA1 gene. We have concluded that the primer pair F2/R10 can reliably be defined highly specific for amplification of HVA1 transgene in wheat. Since the HVA1 transgene is under the control of the Actin promoter, the transgene is expected to be constitutively expressed. We tested the primer pair F2/R10, for the amplification of HVA1 mRNA in transgenic samples by real time PCR. Real-time RT-PCR is, at present, the most sensitive method for the

![Figure 6. Real time RT-PCR to detect HVA1 mRNA transcript. (A) Post-amplification melting curves of total HVA1 RNA extraction from transgenic wheat obtained by real-time PCR using primer pair F2/R10 and (B) confirmation of amplification by electrophoretic analysis of the real-time PCR products. Arrows show specific amplification at 92 °C. NTC: no template control; Lane M: DNA marker 100 bp; lane 1: water control; lanes 2 to 4: non-transformed wheat; lanes 5 to 10: transformed wheat.](image-url)
detection of low abundance mRNAs (Bustin, 2000). A major challenge was to detect HVA1 transcript. After several experiments, we successfully amplified the mRNA of HVA1 in transgenic samples, no fluorescence was observed in any of non-transgenic plants, the electrophoresis gel of the real time PCR product showed a clear bands corresponding to the expected size. The sequencing of PCR and real time RT-PCR products confirmed that the sequences corresponded to the target gene. We described here an assay based on PCR and real time PCR assays for specific and sensitive detection of HVA1 in transgenic durum wheat. The methods are reproducible since all experiments were repeated at least twice. We demonstrate in this study that HVA1 transgene can be specifically amplified even in a complex genetic background containing homologous gene, facilitating the identification and study of transformed plants. Development of specific primers capable of distinguishing the transgene transcript from other homologous transcript is essential for the study of transgene transcriptional regulation. The successful detection of HVA1 transcript will allow for the assessment of transgene transcription throughout plant development.

ACKNOWLEDGEMENTS

This work was supported by Moroccan Ministry of High Education and research via the National Center for Scientific and Technological Research (CNRST). We would like also to thank the ICGBE, Italy for generous funding. The authors would like to thank Naima lahlouhi for technical assistance.

REFERENCES

MAPM (2011). Situation de l'Agriculture Marocaine (Agriculture situation in Morocco), Ministry of Agriculture and Fisheries, Rabat, Morocco. 204.

Age-dependent prevalence of *Loa loa* amicrofilaremia and microfilaremia status as defined by two markers: microfilaria and specific IgG4

Dijkeussi, E. D.¹,² and Akue, J. P.¹*

¹Department of Medical Parasitology, Centre International de Recherches Médicales de Franceville (CIRMF), B.P 769, Franceville, Gabon.
²Université de Paris VI- Institut Santé et Développement 15-21 Rue de l’ Ecole de Médecine- 75270 Paris Cedex 06, France.

Accepted 10 January, 2014

Loiasis infection is characterised by long term stability in infection status. The bases of such stability are not well known. As preliminary step toward verification of possible genetic involvement in this stability, a survey in a homogeneous population (n = 106) of a village from an endemic zone of Gabon was undertaken. The distribution of *Loa loa* microfilariaemia according to age revealed a significant relationship between age and the presence of microfilariae in the blood ($p = 0.0059$). The proportion of microfilaremic individuals increased with age until 45 years old, and did not exceed 34% as its maximum. The other marker (specific IgG4) increased also significantly with age ($p = 0.0038$), but in contrast to microfilariaemia, the prevalence of specific IgG4 in the group from 45 years onward reached 100%. These observations show the importance of age for the definition of the amicrofilaremic or microfilaremic individual status in an endemic area and are in agreement with the hypothesis suggesting the existence of genetic factors controlling the outcome of the parasitological status in *L. loa* infection.

Key words: *Loa loa*, prevalence, age, IgG4, genetic.

INTRODUCTION

Loiasis is cause by the human filarial *Loa loa* which is endemic in the west and Central African forest block. An estimated 10 millions individuals are thought to harbour the parasite (Sasa, 1976; Akue et al., 2011; Zouré et al., 2011) and in some regions, the loiasis is the second cause of hospital consultation after malaria (Boulestiex and Carme, 1986). Several clinical symptoms varying from mild to severe have been documented in *L. loa* infection (Nutman et al., 1988; Klion et al., 1991; Akue, 2011). The treatment available (diethylcarbamazine citrate and Ivermectine) are mostly active on circulating microfilariae (Richard-Lenoble et al., 1988). Vector control is an unrealistic approach.

Therefore, a better understanding of this infection in human population from endemic area is required in order to elaborate new strategy for its control. Epidemiological studies have shown the diversity of infection status and the microfilaraemic status was used for long time to define loiasis (Richard-Lenoble, 1980). However, it is admitted today that some are infected without any
microfilariae detectable in their blood by microscopic technique even after blood concentration exist (Dupont et al., 1988). These individuals are designated as amicrofilaremic or occult infected. A good characterisation of these occult infected is principal for the understanding of mechanisms which control the infection. Besides the microscopic technique and the ocular passage of adult worms, new methods such as detection of Loa loa specific IgG4 (Akue et al., 1994) are now available. Furthermore, by using some of these methods, its appears clearly that occult infected individuals are more prevalent than microfilaraemic ones (Akue et al., 1996). Interestingly, different studies have shown the stability within the space concerning the prevalence of microfilariae carriers which never exceed one third of the Bantu population in any endemic country (Pinder et al., 1988). In contrast, Pampiglione et al. (1979) have shown up to 88% of microfilariae carriers in Bambuti Pygmy of Noth Zaire. There is not only stability in time for infection status but also for the density of parasite in the blood (Garcia et al., 1995; Akue et al., 1996). The existence of different parasitological status temporally stable suggests that some individuals once infected are capable of controlling durably their microfilaraemia (occult infected); in contrast to the others (microfilaraemic), remain susceptible for life span.

The phenomenon can be under control of some genetic factors as it was noticed in other parasitic infections (Wakelin and Blackwell, 1988; Bouchery et al., 2012). This study was carried out in the light of new tools for diagnosis to understand whether the absence of microfilaria is just time dependent or a genetic character for some people.

MATERIALS AND METHODS

Study population

The survey was carried out in the village of Dienga. A field station of Centre International de Recherches Medicales de Franceville (CIRMF) to study infectious diseases. Dienga is situated in the south-east of Gabon, Ogoue Lolo province, near the Congolese border. The climate is of equatorial type with the vegetation of savannah. Habitations are grouped along the main road. The population was recently evaluated at 1050 individuals. A proportional random sample was obtained within the population aged over five years which was divided into “stratums” according to age and sex. This random sampling method ensures the representativity of the results, and the structure of the sample to reflect the one in the general population from which the sample was taken. It also allows having sample from individuals of all age, and all level of exposure to infective bites of chrysops vector. Stratums were designed as follow: 1) Less than 6 years, very protected in general. 2) From 6 to 15 years old, spending most of their time in the villages and most often are school children. 3) From 16 to 45 years old, active population, farmers in general. 4) More than 45 years, less active, but sometimes participating during harvest time.

Each of those individuals had 5 ml of blood taken once, after their agreement, and treated if found positive. Blood was taken in tube containing EDTA and kept at 4°C for a maximum of 72 h at Dienga before it was taken to CIRMF laboratory where 1.1 ml was used for microscopic examination for the presence of microfilariae. The remaining blood samples were centrifuged and the plasma kept at - 20°C.

Examination for the presence of microfilariae in the blood

A wet preparation of 10 μl of uncoagulated blood plus a drop of saponine was systematically examined under microscope. In addition, a concentration technique was performed according to Akue et al. (1996). Briefly, in a conical 15 ml tube, the following mix was made: 1 ml of blood, 200 μl of saponine and 9 ml of phosphate buffered saline (PBS). This mixture was incubated at room temperature for 5 min, then centrifuged for 10 min at 500 g. The whole pellet was examined under microscope. Microfilariae (mf) were counted and the total obtained was expressed as mf/ml. The identification of microfilariae species was based on their size, mobility, the presence or the absence of sheath.

Diagnosis of L. loa infection by specific IgG4 detection

This was based on an enzyme linked immunosorbent assay (ELISA) using adult worm L. loa antigen as describe elsewhere (Akue et al., 1994). Briefly, adult worms removed from eye of patient during their ocular migration were washed and homogenised in Tris-HCl 10 mM buffer plus protease inhibitors and antigen extracted with 1% sodium deoxycholate. The ELISA was performed with 10 μg/ml of antigen and ant-human IgG4 (HP 6011) diluted at 1/30000 as described. Individuals with a mean optical density (OD) higher than the mean OD of African outside endemic zone of L. loa (Gambie, Mali) plus one standard deviation of this mean were considered positive.

Statistical analysis

The analysis were performed using Epi Info 6 program, Chi square test was used for the comparison between group and Yates correction was performed when necessary. Fischer exact test was used for comparison of prevalence of microfilariae between age group, and for seroprevalence result in men and women. P ≤ 0.05 was considered significant.

RESULTS

Characteristic of the study population

The individuals are Bantu from Nzebi ethnic group, farmers in general with women mostly involved in agriculture. Most of the children attended a school which is situated in the centre of the village. Only people who agreed were enrolled. Finally, the study population was formed by 106 persons from both sexes with age varying from 6 to more than 45 years old. Sex ratio (women/men = 1.25) with mean age of 26 is shown in Table 1.

Prevalence of microfilaraemia

Among the 106 individuals examined, 13 had microfilariae of L. loa (12.26%), 95% CI (confidence interval): 6.18-18.36. The microfilaraemia vary from 3 to 7475 mf/ml. Mansonella perstans was also present but less
Table 1. Study population.

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Sex</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male (n)</td>
<td>Female (n)</td>
</tr>
<tr>
<td>6-15</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>16-45</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>>45</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 2. Prevalence of microfilaraemia in different age groups.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Microfilaraemic individuals (n)</th>
<th>Number (N)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-15</td>
<td>1</td>
<td>43</td>
<td>2.35</td>
</tr>
<tr>
<td>16-45</td>
<td>4</td>
<td>34</td>
<td>11.43</td>
</tr>
<tr>
<td>>45</td>
<td>8</td>
<td>29</td>
<td>26.66</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>06</td>
<td>12.26</td>
</tr>
</tbody>
</table>

Table 3. Prevalence of specific IgG4 positive/negative individuals in different age group.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Specific IgG4+ n (%)</th>
<th>Specific IgG4- n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-15</td>
<td>24 (55.81)</td>
<td>19 (44.19)</td>
</tr>
<tr>
<td>16-45</td>
<td>27 (79.41)</td>
<td>7 (20.59)</td>
</tr>
<tr>
<td>>45</td>
<td>26 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>77 (74)</td>
<td>29 (26)</td>
</tr>
</tbody>
</table>

Prevalence of infection as detected by specific IgG4 test

Samples (n = 103) were analysed for the prevalence of specific IgG4 by ELISA. As shown in Table 3, it appears that 74.75% (95% CI: 65.55 - 82.47) of individuals were positive using this test. Again, there was a significant relationship between age and seroprevalence (p = 0.0038). The risk of being IgG4 positive increase with increasing age (p = 0.00118). When males and females were analysed separately, a significant difference was seen among female (p = 0.0052) and male (p= 0.042). The sex was not a risk factor for loiasis infection according to the serological test (p= 0.54). Following the dynamic of specific IgG4 (Figure 1, sero prevalence curve), the seroprevalence was already high between 6 and 15 years age (55.26%), but continued to increase to reach 100% of individuals at 45 years and above. Specific IgG4 remained in plateau at that level until 85 years olds.

DISCUSSION

Although, previous studies did not agreement with this (Garcia et al., 1995; Noireau et al., 1989; Pampiglione et al., 1979), it is shown that age affects the prevalence of microfilaraemic in such a way that the percentage of microfilariae carriers increases and reaches a plateau at about 45 years with a maximum of 33.33% in this study. It seems likely that individuals potentially "susceptible microfilariae carriers" are recruited gradually until they all become infected.

The low proportion of microfilaraemics in the age group of 6-15 years is in agreement with this hypothesis. The latter is supported by the fact that: Firstly, exposition time of this young people has not been sufficient to facilitate biting by infected chrysops. Another explanation may be related to the prepatent period during which larvae are
still immature to produce microfilariae. An alternative is the possible existence of single sex infection (Eveland et al., 1975). Interestingly, evolution of microfilariae carriers prevalence every ten years showed clear increase, then plateau followed by decrease at age 65. This plateau will not be surprising if we accepted the possible involvement of concomitant immunity which acts against establishment of new infection while the first infection remains (Rajakumar et al., 2006; Specht et al., 2011).

At 65 years, the decline of microfilariae carriers may be concomitant to the natural disappearance of infection acquired in younger age and to the low level of exposure as majority of the individuals over 45 years old age group stay indoor. This is substantiated by the evolution of the mean level of microfilariae density which is low in the younger age class (400 mf/ml) then increases for individuals aged between 16 and 45 (3006 mf/ml) and decreases for individuals over 45 years (627 mf/ml). Although no statistical significant difference was found when comparing means level of microfilariae density between age groups, similar trend was found in south-Cameroon (Garcia et al., 1995). When the prevalence of microfilaraemics is examined according to sex, it appears that relationship between sex and existence of microfilaraemia was significant only in males and not in females. Ripert et al. (1977) also mentioned this fact. Although certain studies have found a link between prevalence of microfilariae carriers and sex (Van Hoegarden et al., 1987; Noireau et al., 1989), our survey did not completely support these findings, but the small size of the sample in the group with defined status (45 years and over) as well as the level of exposure to infective larvae and a previous chemotherapy may affect the interpretation of this result.

Age is therefore a non-negligible factor in the definition of infection status. Thus, only individuals who have been in contact with infective larvae and without circulating microfilariae will be considered as amicrofilaremic. However, evidence to show that an individual has been in contact with L3 larvae is not clearly defined in natural conditions. It becomes necessary to define a "cut-off age" beyond which the infection status of an individual will be finally determined.

When loiasis infection was defined using specific IgG4 serology, sex did not affect the parasitological status. The curve of distribution of specific IgG4 test increases gradually and reaches a plateau at about 45 years. This plateau remains stable. Interestingly, the age of the beginning of this plateau is the same as the one determined by microfilaraemia (Figure 1, grey vertical area). Thus individuals in the group of "good responders" that is, individuals capable of controlling their microfilaraemia will not be identified in another way other than taking into account the notion of "cut-off age".

These results suggest the fact that in a given popula-
tion, the minority have a predisposition of being microfilaremic. These individuals will become micro-filariae positive in continual conditions of transmission before a certain age. This age is probably under influence of transmission intensity and the degree of exposure to infective bite. In the region of Chaillu mountains of Congo, for example, the beginning of pla-teau in the curve showing the prevalence of microfilariae according to age, has been found at 20 years old (Noireau et al., 1989).

In South-Cameroon, it is about 40-50 years old (Garcia et al., 1995). The majority of individuals seem to behave as "good responders". Meaning that their defence system, probably immunological, has capability of controlling microfilariae level. These individuals may also be infected before the "cut of age" in the case of Dienga, it is likely that 33% of the population may be predisposed to the microfilaraemic status but this will be apparent only after a long experience of 45 years. Therefore, during the follow up of a group, about 33% of individuals will probably be microfilariae carriers at 45 years old and the whole population infected before this age if there is transmission remains identical through out the follow-up time.

It has been shown that transmission intensity does not affect the prevalence of microfilaraemia and the density of microfilaria (Akue et al., 2002). Similarly, the prevalence of occult infection or amicrofilaricemia does not depend on transmission intensity. This suggests that it is only after a sufficient length of exposure that the real status (microfilaric or amicrofilaric) of an individual will be revealed. It is likely that the transmission will only either accelerate (High transmission) or decelerate (low transmission) the outcome. This need to be taken into account while the objective of the study is to search for genetic or protective mechanisms involved in the control of L. loa microfilaria in a given population. However, the fact that microfilaria did not exceed 34% while the serological test shows that 100% of individuals have been infected, suggests the existence of genetic factor which limit microfilaria appearance in only some individuals (Bouchery et al., 2012).

ACKNOWLEDGEMENTS

CIRMF is supported by the state of Gabon, Total-Gabon and Ministère Français des Affaires Etrangères.

REFERENCES

The leaf of *Erythrophleum africanum* was exhaustively extracted with ethanol using cold maceration techniques. This was subsequently partitioned with petroleum ether, chloroform, ethylacetate and n-butanol. The agar diffusion method was used to determine the antimicrobial activity against the following microorganisms: *ethicillin resistant Staphylococcus, Staphylococcus aureaus, Streptococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Proteus vulgaris, Candida albicans, Candida krusei and Candida tropicalis*. Minimum Inhibitory Concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) were determined. The *in vitro* antimicrobial screening revealed that the extracts exhibited diverse activities against different microbes with zones of inhibition ranging from 12 to 36 mm, MIC ranging from 3.25 to 60 mg/ml and MBC/MFC of 3.25 to 60 mg/ml for sensitive organisms at the tested concentrations. The activities observed could be attributed to the presence of terpenoids, saponins, flavonoids, alkaloids and tannins. The results justify the ethnomedicinal use of this plant in the treatment of sores, boils, wounds, dysentery, diarrhea and sexually transmitted infections.

Key word: *Erythrophleum africanum*, phytochemistry, antimicrobial activity.

INTRODUCTION

Despite the tremendous progress in human medicine, infectious diseases caused by bacteria, fungi, virus and parasites are still a major threat to public health. Their impact is particularly large in developing countries due to relative unavailability of medicine and emergence of drug resistance (Zampini et al., 2009). During the last two decades, the development of drug resistance as well as the appearance of undesirable side effects of certain antibiotics (Okemo et al., 2003), has led to the search for new biologically active compounds from natural sources as new antimicrobial agent with the view to discover new chemical structures, which could overcome the above disadvantages (Bouamama et al., 2006; Meenakshi et al., 2001). The development of resistance to current antibiotics by disease causing microbes has also reinforced research for discovery of new ones. Current trends in drug development process are focused on natural sources, especially of plant origin due to some proven correlation between the folkloric medicinal uses of some of these plants to biological activity. Therefore, the use of plant materials to prevent and treat infectious diseases successfully over the years has continued to attract the attention of scientists worldwide (Osawa et al., 1990; Kunle and Egharevba, 2009; Sophon et al., 2002; Begum et al., 2002).

Erythrophleum africanum (African black wood), is an
endangered African medicinal plant. Studies have revealed that, it is extremely toxic to livestock all over the world especially to goats, sheep and cows. Several species which include E. queneense, E. invorense, E. lasicanthum and E. chlorostachys are known to be poisonous (Watt and Breyer Brandwijk, 1963; Dalziel et al., 1959; Griffin et al., 1971). This plant is reputed for its uses as an ordeal poison for executing capital punishment for witches and also to kill or scare away stubborn pest from cultivated farm land (Dalma, 1970; Mattocks, 1987; Loder et al., 1974).

The leaf of E. africanum is used in the treatment of various ailment which include emetics, as an anti-inflammatory agent, as an analgesic and also in sore and wound dressing. It is also used to treat chicken pox and gangrenous sores. The leaf decoction of this plant is well known by the traditional healers in Congo, (Democratic Republic of Congo), Zaire, Eastern province of Cameroun and India which it used empirically for several ailment including cardio vascular disease, various inflammation, diabetes, simple goiter, dysentery, diarrhea and as an astringent (Dalziel, 1999). This plant is reported to contain flavonoids and anthocyanidins and as such was used as a tooth pick for oral hygiene (Nwude and Chineme, 1981; Watt and Bayer Bmadwyle, 1962; Burkil, 1995). Some alkaloids (pyrolizine alkaloids, PAS) from the leaf of this plant have been implicated to be gastrointestinal tract irritants, cholinesterase inhibitors and also affect the nervous system by causing drowsi-ness, salivation, labored breathing, trembling, loss of consciousness, coma and death due to paralysis (Roberts and Wink, 1998; Ahmad et al., 1994).

In the northern part of Nigeria (Africa), Gwaska as it is called by the Hausas, the leaf decoction with natron is taken for the treatment of sexually transmitted disease, as an abortificient agent and is also used in the treatment of leprosy (Jinju, 1990). The aqueous leave extract of this plant is also used to cure cancer of the blood and mentally related sickness (Watt and Breyer Brandwijk, 1963; Dalziel, 1999; Jinju, 1990). Consequently, we decided to screen the leaf part of this plant with a view to validate the folkloric claim.

MATERIALS AND METHODS

Plant materials

Fresh plant material E. africanum was obtained from Nimbia forest in Sanga Local Government Area of Kaduna State, Nigeria. The plant was identified at the Herbarium Biological Science Department, Ahmadu Bello University Zaria, Nigeria. Voucher specimen was kept with No. 1047.

Extraction

The dried powdered leaf (500 g) of E. africanum was macerated with 96% ethanol four times for 6 h each at room temperature. The alcoholic extract was concentrated in vacuo to afford (47.8 g). This was suspended in water and then partitioned successively with petroleum ether (3 x 2 L), chloroform (4 x 2 L), ethylacetate (2 x 1.5 L) and n-butanol (5 x 2 L). The partitioned portion of the extracts were concentrated using rotary evaporator to afford petroleum ether (2.542 g), chloroform soluble (4.834 g), ethylacetate soluble (2.113 g), n-butanol soluble (6.811 g) and aqueous residue (4.201 g). These extracts were subjected to phytochemical screening (Table 1) using standard protocols (Sofowora, 2008; Tressle and Evans, 2002; Brain and Tuner, 1975). All the extracts were stored at room temperature until required.

Test microorganisms

The test microorganisms were isolates obtained from the Medical Microbiology Department, Ahmadu Bello University Teaching Hospital, Zaria. These includes Mithicillin R. staph., Staphylococcus aureaus, Streptococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Proteus vulgaris, Candida albicans, Candida krusei and Candida tropicalis.

Antimicrobial assay

The minimum inhibitory concentration of the various leaf extracts against the test microorganisms were determined using broth dilution techniques (Vollokova et al., 2001; Sidney et al., 1978). Mueller-Hinton agar broth was prepared according to manufacturer’s instruction using 10 ml of the broth to dispense into test tubes. The broth was sterilized at 121°C for 15 min after which the broth was allowed to cool. Test microbes were inoculated and incubated at 37°C for 6 h.

Mcfarland’s turbidity scale number 0.5 was prepared to give a turbid suspension of the microorganisms. Dilution of the test microbes was done in normal saline until the turbidity matches with that of the Mcfarland’s scale by visual comparison (concentration of about 1.5 x 10⁵ cfu/ml). Two fold serial dilutions of the extract was made in the sterile broth to obtain the concentrations of 60, 30, 15, 7.5 and 3.25 mg/ml, respectively. The initial concentration was obtained by dissolving 0.6 g of the extract in the sterile broth. 0.1 ml of each test microbe in the normal saline was then inoculated into the different concentrations. After incubation at 37°C for 24 h, each test tube was observed for turbidity. The lowest concentration of the extract for which no turbidity was recorded was the minimum inhibition concentration (Osadebe and Okueze, 2004; Cowan, 1991).

MBC/MFC

The minimum bactericidal and fungicidal concentration of the extracts was determined (Table 4). Mueller-Hinton agar was prepared and sterilized at 121°C for 15 min poured into sterile petri dishes and allowed to cool and solidify. The content of the MIC in the serial dilution was then sub-cultured onto the medium. Incubation was made at 37°C for 24 h, after which the plates were observed for colony growth. The lowest concentrations of the extract for which no microbial growth was observed were registered as the minimum bactericidal or minimum fungicidal concentration (Ogbulie et al., 2007).

RESULTS AND DISCUSSION

The sensitivity test or solvent used for the reconstitution of different extracts was carried out. It was observed that
Table 1. Phytochemical screening of the ethanolic leaf extract of *Erythrophleum africanum*.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Test</th>
<th>Observation</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrate</td>
<td>Molisch</td>
<td>Red colour</td>
<td>+</td>
</tr>
<tr>
<td>Monosaccharide</td>
<td>Barfoed's</td>
<td>Red. ppt</td>
<td>+</td>
</tr>
<tr>
<td>Reducing sugar</td>
<td>Fehlings</td>
<td>Red. ppt</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>Lead ethanoate</td>
<td>White ppt</td>
<td>+</td>
</tr>
<tr>
<td>Monosaccharide</td>
<td>Methanol's</td>
<td>Red. ppt</td>
<td>+</td>
</tr>
<tr>
<td>Reduction sugar</td>
<td>Iron (III) chloride</td>
<td>Blue-black</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>Frothing</td>
<td>Persist frothing</td>
<td>+</td>
</tr>
<tr>
<td>Sterols</td>
<td>Liebermann, Burchad</td>
<td>Blue-green</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Salkowski</td>
<td>Red ring at interphase</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>Liebermann, Burchad</td>
<td>Brown ring with brown interphase</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>Dragendoff's</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Mayer's</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wagner's</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Shinoda</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Ferric chloride</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Sulphuric acid</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac glycoside</td>
<td>Keller-Kilanis</td>
<td>Reddish brown</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Legal's</td>
<td>Deep red colour</td>
<td>+</td>
</tr>
</tbody>
</table>

Results:

- Different concentrations of the extracts had different responses against the tested isolates. Increased concentrations of the extracts tend to increase the zone of growth inhibition of the sensitive micro-organisms (Table 3). The extract was found not to inhibit the growth of *S. faecalis*, *S. typhi* and *C. krusei*, respectively. The highest zone of growth inhibition of 36 mm diameter was exhibited by *S. aureus* while the lowest zone of growth inhibition was observed for *P. vulgaris* (12 mm diameter).

- Results obtained in this study indicated that the various extracts of *E. africanum* inhibited the growth of some of the microorganism except *S. faecalis*, *S. typhi* and *C. krusei*. This therefore shows that the extract contains substance(s) that can inhibit the growth of some microorganisms. Other workers have also shown that the extracts of plants inhibited the growth of various microorganisms at different concentrations (Akujobi et al., 2004; Nweze et al., 2004; Ntiejumokwu and Alemika, 1991; 2004; Osadebe and Ukwueze, 2004). The observed antimicrobial effects on the microorganism could be attributed to the presence of saponins, glycosides, flavonoids, tannins, alkaloids and terpenoids which have been shown to possess antimicrobial activities (Draughon, 2004; Cowan, 1999). The presence of these metabolites suggests great potential for the use of the studied plant as a source of phytomedicines. The presence of alkaloids in plants is known for decreasing blood pressure and balancing the nervous system in case of mental illness. The presence of tannins could also show that it is an effective astringent, that is, helps in wound healing and as anti-parasitic. The presence of terpenes suggest its possible use as an anti-tumor and anti-viral agent as some terpenes are known to be cytotoxic to tumor cells, while the saponins in plants are believed to have antioxidant, anti cancer, anti-inflammatory and anti-viral agent (Ronan et al., 2009; Yoshida et al., 1990; Balas and Agarwal, 1980).

- The large zone of inhibition exhibited by the plant extract against *Methicillin R. staph aureus*, *S. aureus*, *P. aeruginosa*, *E. coli* and *P. vulgaris* justified its use by the traditional medical practitioners in the treatment of sores, boils, open wounds, sexually transmitted diseases and in the treatment of dysentery (Table 2). *S. aureus* and *P. aeruginosa* have been implicated in cases of boils, sores and wounds (Braude et al., 1982). The MIC exhibited by the plant extract against *S. aureus* is of great significance in the health care delivery system, since it could be used as an alternative to antibiotics in the treatment of
Table 2. Zone of inhibition obtained from the microorganisms.

<table>
<thead>
<tr>
<th>Test organism</th>
<th>n-hex (mm)</th>
<th>ChCl₃ (mm)</th>
<th>EtoAc (mm)</th>
<th>n-BuoH (mm)</th>
<th>Aq (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mithicilin R. Staph. aureus</td>
<td>17</td>
<td>27</td>
<td>25</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>18</td>
<td>25</td>
<td>24</td>
<td>36</td>
<td>21</td>
</tr>
<tr>
<td>Streptococcus feacalis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>15</td>
<td>24</td>
<td>22</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>12</td>
<td>25</td>
<td>22</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>17</td>
<td>24</td>
<td>22</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Candida krusei</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

n-hex, n-hexane; CHCl₃, chloroform; EtoAc, ethylacetate; n-BuoH, n-Butanol; Aq, aqueous.

Table 3. Minimum inhibitory concentration of the extracts against test microorganism.

<table>
<thead>
<tr>
<th>Test-organism</th>
<th>n-Hexane (mg/ml)</th>
<th>CHCl₃ (mg/ml)</th>
<th>EtoAc (mg/ml)</th>
<th>n-BuoH (mg/ml)</th>
<th>Aq (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 30 15 7.5 3.25</td>
</tr>
<tr>
<td>Mithicilin R. staph. aureus</td>
<td>- - ox + + + +</td>
</tr>
<tr>
<td>S. aureus</td>
<td>- - ox + + + +</td>
</tr>
<tr>
<td>S. feacalis</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>- - ox + + + +</td>
</tr>
<tr>
<td>(-) E. coli</td>
<td>- ox + ++ ++ ++ +</td>
<td>- ox + ++ ++ ++</td>
</tr>
<tr>
<td>S. typhi</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>- - ox + + + +</td>
</tr>
<tr>
<td>C. albicans</td>
<td>- - ox + + + +</td>
</tr>
<tr>
<td>C. krusei</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>- - ox + + + +</td>
</tr>
</tbody>
</table>

n-hex, n-hexane; CHCl₃, chloroform; EtoAc, ethylacetate; n-BuoH, n-Butanol; Aq, aqueous; ox, MIC.

Infections caused by this microbe, especially as it frequently develops resistance to known antibiotics (Singleton, 1999). Their use will also reduce the cost of obtaining health care delivery. The inability of the extract to inhibit *S. typhi* may be due to a bacterial mechanism for detoxifying the active principle contained in the extract. Some bacteria are known to possess mechanisms by which they convert substances that inhibit their growth to non-toxic compounds (Singleton, 1999; Srinivasan et al., 2001). Therefore, the observed antimicrobial properties of this plant *E. africanum* corroborate its use in folkloric medicine.

Traditionally, extract from this plant is used in sore and wound dressing, treatment of boils,
sexually transmitted diseases, dysentery and also in the treatment of cancer.

Conclusion

The leaf extract of *E. africanum* provides a promising solution in the ethno medicine practice of disease control. This can hence be used to replace the synthetic antibiotics used in the treatment of related ailments as phytochemicals from natural resources are generally considered safer, available and affordable compared to the synthetic drugs in the treatments of infectious diseases.

REFERENCES

Table 4. Minimum bactericidal/fungicidal concentration of the extracts against test micro organisms.

<table>
<thead>
<tr>
<th>Test-organism</th>
<th>n-Hexane (mg/ml)</th>
<th>CHCl3 (mg/ml)</th>
<th>EtoAc (mg/ml)</th>
<th>n-BuOH (mg/ml)</th>
<th>Aq (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
<td>30</td>
<td>15</td>
<td>7.5</td>
<td>3.25</td>
</tr>
<tr>
<td>M. R. staph. aureus</td>
<td>Ox + ++ +++ ++++</td>
<td>-</td>
<td>-</td>
<td>0x + ++ +++++</td>
<td>0x + ++ +++++</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Ox + ++ +++ ++++</td>
<td>-</td>
<td>0x +</td>
<td>-</td>
<td>0x + ++ +++++</td>
</tr>
<tr>
<td>S. faecalis</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Ox + ++ +++ ++++</td>
<td>0x +</td>
<td>++ +++ ++++</td>
<td>Ox + ++ +++++</td>
<td>-</td>
</tr>
<tr>
<td>(-) E. coli</td>
<td>Ox + ++ +++ ++++</td>
<td>Ox + ++ +++++</td>
<td>Ox + ++ +++++</td>
<td>Ox + ++ +++++</td>
<td>Ox + ++ +++++</td>
</tr>
<tr>
<td>S. typhi</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>Ox + ++ +++ ++++</td>
<td>-</td>
<td>0x + ++ +++++</td>
<td>Ox + ++ +++++</td>
<td>Ox + ++ +++++</td>
</tr>
<tr>
<td>C. albicans</td>
<td>Ox + ++ +++ ++++</td>
<td>-</td>
<td>0x + ++ +++++</td>
<td>Ox + ++ +++++</td>
<td>Ox + ++ +++++</td>
</tr>
<tr>
<td>C. krusei</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
<td>NIL</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>Ox + ++ +++ ++++</td>
<td>-</td>
<td>0x + ++ +++++</td>
<td>Ox + ++ +++++</td>
<td>Ox + ++ +++++</td>
</tr>
</tbody>
</table>

n-hex, n-Hexane; CHCl3, chloroform; EtoAc, ethylacetate; n - BuOH, n-Butanol; Aq, aqueous; NIL, absent; ox, MIC; -, no turbidity (no growth); +, turbid (light growth); ++, moderate turbidity, ++++, high turbidity; ++++, extremely high turbidity.

Seasonal variation in phytochemicals and antioxidant activities in different tissues of various *Broccoli* cultivars

Shiva Ram Bhandari and Jung-Ho Kwak*

Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, 440-706, Republic of Korea.

Accepted 10 January, 2014

Florets, leaves, and stems of twelve commercial broccoli cultivars grown in the spring and fall seasons at the National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Suwon, South Korea were evaluated for glucosinolates, vitamin C, total phenol, and total flavonoid contents and antioxidant activity. The levels of all phytochemicals and antioxidant activity were significantly influenced by cultivar (C), plant part (P), and growing season (S). Among the glucosinolates, glucoraphanin and glucobrassicin were the major constituents. The highest total glucosinolate content was found in the florets of plants grown in both seasons. Phenols and flavonoids were highest levels in leaves, while vitamin C was highest in stems, suggesting that broccoli leaves and stems may be good sources of such phytochemicals. The levels of all phytochemicals were generally higher in florets in the spring than in the fall, but were higher in leaves and stems during the fall than the spring. Furthermore, higher cultivar-dependent and tissue-dependent variation was observed in the spring than in the fall. Total phenol content exhibited a strong positive correlation (r = 0.674**) with antioxidant activity, followed by total flavonoid content (r = 0.497**), indicating their significant contribution to total antioxidant activity.

Key words: Antioxidant activity, broccoli, glucosinolate, seasonal variation, total phenol, vitamin C.

INTRODUCTION

Broccoli is one of the most commonly consumed green vegetables. Like other species of the *Brassica* family, broccoli is a source of health-promoting phytochemicals. Broccoli is known mainly for its wide range of bioactive compounds and is rich in both nutritional and non-nutritional antioxidants, including vitamin C, vitamin E, and phenolic compounds including flavonoids, carotenoids, and glucosinolates (Lin and Chang, 2005) which possess both antioxidant and anticancer activities (Williamson et al., 1998; Cohen et al., 2000; Chu et al., 2002; Gundgaard et al., 2003; Podsedek, 2007). Glucosinolates constitute a major group of natural plant compounds in the family Brassicaceae. They are responsible for the hot and pungent flavor of crucifers and exhibit anti-cancer activity (Fahey et al., 2001). Glucosinolates can be used as an alternative to synthetic pesticides for pest and disease control (Kirkegaard and Sarwar, 1998). Vitamin C is a health-promoting antioxidant compound that protects against cell death, directly scavenges superoxide radicals, hydrogen peroxide singlet oxygen, and hydroxyl radicals.
vitamin E to regenerate membrane-bound oxidized α-tocopherol, creating an ‘antioxidant network’ (Valko et al., 2006). Phenolic compounds are secondary metabolites that can neutralize or quench free radicals (Picchi et al., 2012). Flavonoids and their derivatives are the largest group of plant polyphenols (Hounsome et al., 2009). They possess strong antioxidant activity due to their ability to scavenge reactive oxygen species and inhibit oxidative stress (Rice-Evans et al., 1995; Pourcel et al., 2007). Variation in the amounts of these phytochemicals depends upon factors such as cultivar genotype, developmental stage, growing conditions, season, soil properties, and post-harvest storage conditions (Kurilich et al., 1999; Vallejo et al., 2002; Jeffery et al., 2003; Singh et al., 2007; Nath et al., 2011; Samec et al., 2011; Samec et al., 2013).

Although genotypic differences in the contents of glucosinolates, vitamin C, phenolics, and total flavonoids and antioxidant activity in broccoli florets have been reported (Zhang and Hamauzu, 2004; Singh et al., 2007; Koh et al., 2009; Balouchedi et al., 2011; Naguib et al., 2012), information regarding the content of such phytochemicals specifically in leaves and stems is limited. Characterization of such phytochemicals to establish their distribution patterns in leaves and stems would also be useful. Seasonal variation in glucosinolate content in broccoli cultivars has been reported (Rosa and Rodrigues, 2001; Vallejo et al., 2003); however, most of the research focused only on variations in glucosinolates profiles. This study was conducted to evaluate glucosinolate, vitamin C, total phenol, and total flavonoid contents and to measure antioxidant activity in commercially cultivated broccoli cultivars in South Korea and to evaluate the cultivar- and season-dependent variation in such compounds in florets, leaves, and stems of different broccoli cultivars.

MATERIALS AND METHODS

Authentic standards and chemicals

Nine glucosinolate standards, glucoiberin, progoitrin, glucoraphanin, sinigrin, gluconapin, glucobrassicainapin, glucorucin, glucobrassicin, and glucorastatin, were purchased from Cfm Oskar Co. (Germany). Authentic standards for diethyl aminoethyl (DEAE) Sephadex-A25, aryl sulfatase from Helix pomatia, vitamin C, glucose, sucrose, fructose, gallic acid, and catechin hydrate were purchased from Sigma-Aldrich (St. Louis, MO, USA). Chemicals, including sodium hydroxide, sodium carbonate, sodium nitrite, aluminum chloride, Folin-Ciocalteu reagent, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Other chemicals including acetone (high performance liquid chromatography (HPLC)) grade, methanol (HPLC grade), and formic acid (ACS reagent) were purchased from J.T. Baker (Phillipsburg, NJ, USA).

Plant materials and growing conditions

Twelve commercial broccoli cultivars, 05-C3, AMAgi, BaeRiDom, CheongJae, Diamond, Grace, Grandeur, JikNok No. 28, NokJae, NokYeom No. 1, TS-2319, and YuDoRI No. 1 were used in this study study. The cultivars were grown in the field at the National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Suwon, South Korea in the spring and fall growing seasons of 2011. Sowing dates were 5 March 2011 for the spring season and 25 July 2011 for the fall season. For both seasons, seedlings were transplanted to the cultivation field 35 days after sowing. Seedlings were planted in rows with 50 cm between plants and 60 cm between rows. The plants were harvested 35 and 30 days after planting in the spring and fall seasons, respectively. During the field experiments, water, fertilizers, and pesticides were applied according to standard cultural practices at the NIHHS, RDA. After harvest, the plants were separated into different parts (florets, stems, and leaves), cut into small pieces, and freeze-dried. The samples were ground into a fine powder and stored at -80°C for subsequent analyses of glucosinolates, vitamin C, total phenol, and total flavonoid content and antioxidant activity.

Glucosinolate analysis

For glucosinolates analysis, freeze-dried broccoli powder (0.1 g) was extracted with 1 mL of boiling methanol (70%) for 20 min and centrifuged at 12,000 rpm for 10 min at 4°C. The pellet was re-extracted once following the same procedure, and the supernatants were combined. Desulfoglucosinolates were then prepared and quantitatively determined by ultra-performance liquid chromatography (UPLC) using purified sulphatase isolated from H. pomatia according to Lee et al. (2013). Briefly, the extract was loaded onto a Mini Biospin chromatography column (Bio-Rad) containing 0.5 mL of DEAE-Sephadex A 25 which was preactivated with 0.1 M sodium acetate (pH 4.0). Then, desulfuration was carried out by the addition of 200 µL of purified aryl sulphatase (EC 3.1.6.1, type H-1 from H. pomatia). The column was capped and left for 24 h at room temperature. The desulphoglucosinolates were eluted with 1.5 mL distilled water, filtered through a 0.2 µm syringe filter, and 10 µL samples were injected into a UPLC system (H-Class, Waters Co., USA) equipped with a sample manager flow-through-needle auto injector, quaternary solvent manager, and a photodiode array (PDA) eλ detector set at 229 nm. Separation was performed using a BEH-C18 column (2.1 x 100 mm, 1.7 µm, Waters Co., USA) at 25°C with a gradient elution of solvent A (100% distilled water) and solvent B (20% acetonitrile) with a flow rate of 0.2 mL min⁻¹. The gradient program used was as follows: a linear step from 1 to 99% of solvent B within 6 min, a constant step for 10 min, followed by a rapid drop down to 1% solvent B at 12 min, and isocratic conditions with 1% solvent B for 3 min. Authentic glucosinolate standards were used for the identification and quantification of the peaks.

Vitamin C analysis

Vitamin C content was determined according to a method described by Spinola et al. (2012) with modifications. Dried and powdered broccoli samples (0.5 g) were extracted in 5% metaphosphoric acid solution. After centrifugation and filtration (with a 0.20 µm syringe filter), the sample was analyzed using a UPLC system (Waters, USA), an Acquity UPLC® HSS T3 (2.1 x 100 mm, 1.8 µm) column, and a PDA detector (Waters, USA) set at a wavelength of 254 nm. The mobile phase used was as follows: a linear step from 1 to 99% of solvent B within 6 min, a constant step for 10 min, followed by a rapid drop down to 1% solvent B at 12 min, and isocratic conditions with 1% solvent B for 3 min. Authentic ascorbic acid standards were used for identification and quantification of the peaks.

Determination of total phenol content

Total phenolic content was estimated using the Folin-Ciocalteu colorimetric method based on the procedure of Singleton and Rossi (1965) using gallic acid as a standard phenolic compound. Freeze-dried powdered samples (1 g) were extracted in 80% methanol for
15 h at room temperature on an orbital shaker. The extracts were centrifuged and filtered through 0.45 μm syringe filters and 1 mL of each supernatant was mixed with 3.0 mL distilled water in 15 mL Falcon tubes. After adding 1 mL Folin reagent, the solutions were incubated in a water bath at 27°C for 5 min followed by addition of 1 mL of saturated sodium carbonate. After 1 h, absorbance of the extracts at 640 nm was measured using a micro plate reader (EON-C) (BioTek, USA) using 80% methanol as a blank. Gallic acid standards of various concentrations (5.0, 10.0, 25.0, 50.0, 75.0, and 100.0 ppm) were used for calibration and total phenol content was expressed as milligrams of gallic acid equivalent per gram (mg GAE g⁻¹) dry weight.

Determination of total flavonoid content

The broccoli extracts obtained for total phenol analysis were also subjected to total flavonoid analysis using a colorimetric method described by Zhishen et al. (1999). One milliliter of methanol extract (80%) was added to a 15 mL Falcon tube, mixed with 4 mL distilled water, and 0.3 mL 5% sodium nitrite added. After 5 min, 10% AlCl₃ was added to the solution. At the sixth minute, 2 mL 1 M NaOH was added and the solution was brought to a final volume of 10 mL with distilled water. The solution was mixed thoroughly and absorbance was measured at 510 nm in a micro plate reader (EON-C) (BioTek, USA) using 80% methanol as a blank. Catechin hydrates of different concentrations (5.0, 10.0, 25.0, 50.0, 75.0, and 100.0 ppm) were used as standards and total flavonoid was expressed as milligrams of catechin hydrate equivalent per gram (mg CE g⁻¹) dry weight.

Determination of antioxidant activity

Antioxidant activity in extracts of different broccoli tissues was determined using the DPPH radical-scavenging method according to Koleva et al. (2002) with modifications. The extracts obtained for total phenol analysis were also used for the measurement of antioxidant activity. A 400 μM DPPH solution in 80% methanol was prepared. Then, 100 μL of the DPPH solution were mixed with 100 μL of various concentrations (0.5, 1.0, 2.5, 5.0, 7.5, and 10.0 mg mL⁻¹) of the extracts in 96-well plates. After 30 min in darkness at room temperature, absorbance at 517 nm was measured in a micro plate reader (EON-C) (BioTek, USA) using 80% methanol without DPPH as a blank. Similarly, absorbance of samples was also measured after mixing 100-μL samples with 100 μL of 80% methanol. Free-radical-scavenging activity (%) was calculated using the following equation:

\[
\% \text{ DPPH radical-scavenging activity} = \left(\frac{B - A}{B} \right) \times 100/B
\]

Where, A is the absorbance of [(Sample + DPPH) – (Sample + Methanol)] and B is the absorbance of [(Methanol + DPPH) – (Methanol)]. The IC₅₀ value, which is the concentration required to obtain 50% antioxidant capacity, was calculated and was used to compare the antioxidant activities of sample extracts.

Statistical analysis

Means of at least two independent sample replications were used for all statistical analyses. Data were analyzed using the SAS (version 9.2) software. The statistical significance of differences among cultivars, growing seasons, and plant tissues was assessed using a fixed-factor analysis of variance (ANOVA).

RESULTS AND DISCUSSION

Glucosinolates content

Variations in glucosinolate profiles in florets, leaves, and stems of different broccoli cultivars during different growing seasons are presented in Tables 1, 2, and 3, respectively. Glucoraphanin was the most abundant glucosinolate in all tissue types in both cultivars in both growing seasons. Glucobrassicin was the second most abundant glucosinolate in florets and leaves. Glucoerucin was present only in stems and was the second most abundant glucosinolate after glucoraphanin. Progoitrin, sinigrin, and gluconapin were found in only some cultivars, which showed different cultivar-dependent distribution patterns according to tissue type and growing season. Similar variations in glucosinolate distributions in different growing seasons were reported by Vallejo et al. (2003). In florets, the highest content of total glucosinolates was measured in the TS-2319 cultivar (17.81 μmol g⁻¹) in the spring season, while the JikNok No. 28 cultivar (13.80 μmol g⁻¹) had the highest glucosinolate levels in the fall season (Table 1). In both seasons, we observed lower glucosinolate levels than reported by Lee et al. (2012), who found total glucosinolate levels of 15.90–59.30 μmol g⁻¹ from analysis of 95 broccoli accessions. This difference in values might be due to differences in genotypes and other environmental factors. Florets showed higher total glucosinolate levels (7.45 μmol g⁻¹) in the spring than in the fall (6.96 μmol g⁻¹); however, no specific trends were found among the cultivars. This result was somewhat similar to those of Charron and Sams (2004) and Justen et al. (2012) who also reported higher total glucosinolate amounts in spring growing conditions. These changes in glucosinolate concentration might be due to the interactions of several factors (Charron and Sams, 2004; Fabek et al., 2012). Two major glucosinolates, glucoraphanin and glucobrassicin, were present in all of the cultivars in both seasons, but other glucosinolates showed cultivar-dependent distribution patterns. The average total glucosinolate content was lower (4.20 μmol g⁻¹) in the spring than in the fall (5.35 μmol g⁻¹). Among the 12 cultivars, the highest total glucosinolate contents in the spring and fall seasons were found in NokYeam No. 1 (5.76 μmol g⁻¹) and AMaGi (6.73 μmol g⁻¹), respectively, suggesting their superiority in terms of leaf glucosinolate content.

Stems contained one additional glucosinolate, glucouerucin, not found in florets or leaves. Glucouerucin was one of the three major glucosinolates in stems in all cultivars and constituted approximately 25 and 10% of total glucosinolates in the spring and fall seasons, respectively (Table 3). Other major glucosinolates included glucoraphanin (spring, 2.19 μmol g⁻¹; fall, 3.60 μmol g⁻¹) and glucobrassicin (spring, 0.27 μmol g⁻¹; fall, 0.29 μmol g⁻¹). The average total glucosinolate content in stems showed a pattern similar to that in leaves with higher total glucosinolate levels in fall (4.96 μmol g⁻¹) than in spring (4.18 μmol g⁻¹). Among the 12 cultivars, only 2, BaeRiDom and TS-2319, contained all 6 glucosinolates analyzed in this study in their florets, leaves, and stems in both seasons. Among the three tissue types, florets exhibited the highest total glucosinolates, followed by leaves and stems, in both seasons, sug-
Table 1. Seasonal variation in glucosinolate contents (µmol g⁻¹, dry weight) in florets of broccoli cultivars.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Progoitrin</th>
<th>Glucoraphanin</th>
<th>Sinigrin</th>
<th>Gluconapin</th>
<th>Glucobrassicin</th>
<th>Total glucosinolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>05-C3</td>
<td>0.00±0.00²</td>
<td>0.17±0.00</td>
<td>2.30±0.15</td>
<td>4.03±0.04</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>AMaGi</td>
<td>2.25±0.08</td>
<td>1.83±0.01</td>
<td>2.61±0.11</td>
<td>1.41±0.01</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>BaeRiDom</td>
<td>1.28±0.00</td>
<td>1.15±0.02</td>
<td>1.81±0.05</td>
<td>1.37±0.06</td>
<td>0.21±0.00</td>
<td>0.19±0.00</td>
</tr>
<tr>
<td>CheongJae</td>
<td>0.19±0.01</td>
<td>0.56±0.04</td>
<td>1.67±0.00</td>
<td>2.62±0.20</td>
<td>0.00±0.00</td>
<td>0.10±0.00</td>
</tr>
<tr>
<td>Diamond</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>4.34±0.02</td>
<td>2.05±0.14</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Grace</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>5.83±0.33</td>
<td>1.75±0.10</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Grandeur</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>4.28±0.22</td>
<td>2.37±0.07</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>JikNok No. 28</td>
<td>2.58±0.25</td>
<td>3.72±0.14</td>
<td>3.38±0.26</td>
<td>5.12±0.52</td>
<td>0.83±0.01</td>
<td>0.97±0.02</td>
</tr>
<tr>
<td>NokJae</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>3.74±0.40</td>
<td>3.54±0.31</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>NokYeom No. 1</td>
<td>2.64±0.01</td>
<td>2.55±0.11</td>
<td>2.16±0.06</td>
<td>5.32±0.12</td>
<td>0.56±0.06</td>
<td>0.82±0.01</td>
</tr>
<tr>
<td>TS-2319</td>
<td>4.48±0.11</td>
<td>2.11±0.19</td>
<td>7.64±0.17</td>
<td>1.92±0.09</td>
<td>0.49±0.01</td>
<td>0.69±0.05</td>
</tr>
<tr>
<td>YuDoRi No. 1</td>
<td>1.86±0.07</td>
<td>2.36±0.19</td>
<td>3.31±0.09</td>
<td>3.49±0.09</td>
<td>0.44±0.01</td>
<td>0.61±0.04</td>
</tr>
<tr>
<td>Average</td>
<td>2.18</td>
<td>1.80</td>
<td>3.59</td>
<td>2.75</td>
<td>0.35</td>
<td>0.18</td>
</tr>
</tbody>
</table>

²Each value is the mean ± SD of two independent replications.

Table 2. Seasonal variation in glucosinolate contents (µmol g⁻¹, dry weight) in leaves of broccoli cultivars.

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Progoitrin</th>
<th>Glucoraphanin</th>
<th>Sinigrin</th>
<th>Gluconapin</th>
<th>Glucobrassicin</th>
<th>Total glucosinolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>05-C3</td>
<td>0.00±0.00²</td>
<td>0.00±0.00</td>
<td>3.18±0.23</td>
<td>4.70±0.29</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>AMaGi</td>
<td>0.34±0.02</td>
<td>0.60±0.02</td>
<td>2.05±0.16</td>
<td>3.38±0.06</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>BaeRiDom</td>
<td>0.26±0.02</td>
<td>0.22±0.01</td>
<td>2.00±0.09</td>
<td>1.36±0.11</td>
<td>0.07±0.00</td>
<td>0.06±0.01</td>
</tr>
<tr>
<td>CheongJae</td>
<td>0.00±0.00</td>
<td>0.19±0.01</td>
<td>1.66±0.11</td>
<td>5.05±0.06</td>
<td>0.00±0.00</td>
<td>0.06±0.00</td>
</tr>
<tr>
<td>Diamond</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>1.27±0.09</td>
<td>4.13±0.31</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Grace</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>3.56±0.03</td>
<td>4.11±0.05</td>
<td>0.00±0.00</td>
<td>0.12±0.01</td>
</tr>
<tr>
<td>Grandeur</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>2.40±0.07</td>
<td>3.70±0.31</td>
<td>0.00±0.00</td>
<td>0.10±0.00</td>
</tr>
<tr>
<td>JikNok No. 28</td>
<td>0.48±0.00</td>
<td>0.34±0.02</td>
<td>2.66±0.13</td>
<td>1.61±0.06</td>
<td>0.24±0.00</td>
<td>0.12±0.00</td>
</tr>
<tr>
<td>NokJae</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>3.39±0.11</td>
<td>7.45±0.33</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>NokYeom No. 1</td>
<td>0.54±0.00</td>
<td>0.45±0.04</td>
<td>1.92±0.00</td>
<td>2.07±0.11</td>
<td>0.20±0.00</td>
<td>0.12±0.00</td>
</tr>
<tr>
<td>TS-2319</td>
<td>0.10±0.01</td>
<td>0.38±0.01</td>
<td>1.56±0.04</td>
<td>2.82±0.07</td>
<td>0.05±0.00</td>
<td>0.08±0.00</td>
</tr>
<tr>
<td>YuDoRi No. 1</td>
<td>0.21±0.01</td>
<td>0.27±0.01</td>
<td>1.09±0.06</td>
<td>1.41±0.10</td>
<td>0.00±0.00</td>
<td>0.17±0.00</td>
</tr>
<tr>
<td>Average</td>
<td>0.32</td>
<td>0.35</td>
<td>2.23</td>
<td>3.48</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>

²Each value is the mean ± SD of two independent replications.
Table 3. Seasonal variation in glucosinolate contents (µmol g⁻¹, dry weight) in stems of broccoli cultivars.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Progoitrin</th>
<th>Glucoraphanin</th>
<th>Sinigrin</th>
<th>Glucoraphanin</th>
<th>Glucobrassicin</th>
<th>Total glucosinolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Glucoraphanin</td>
<td>Glucobrassicin</td>
</tr>
<tr>
<td>05-C3</td>
<td>0.00±0.00</td>
<td>2.95±0.10</td>
<td>6.42±0.40</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>4.35±0.11</td>
</tr>
<tr>
<td>AMaGi</td>
<td>1.16±0.04</td>
<td>2.39±0.14</td>
<td>3.22±0.06</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>5.74±0.07</td>
</tr>
<tr>
<td>BaeRiDom</td>
<td>0.88±0.01</td>
<td>1.7±0.06</td>
<td>2.05±0.19</td>
<td>0.13±0.01</td>
<td>0.12±0.02</td>
<td>5.37±0.09</td>
</tr>
<tr>
<td>CheongJa</td>
<td>0.00±0.00</td>
<td>1.00±0.04</td>
<td>3.07±0.24</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>3.55±0.12</td>
</tr>
<tr>
<td>Diamond</td>
<td>0.00±0.00</td>
<td>2.65±0.12</td>
<td>3.98±0.12</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>4.08±0.25</td>
</tr>
<tr>
<td>Grace</td>
<td>0.00±0.00</td>
<td>2.98±0.25</td>
<td>3.79±0.06</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>4.70±0.09</td>
</tr>
<tr>
<td>Grandeur</td>
<td>0.00±0.00</td>
<td>2.77±0.24</td>
<td>5.82±0.18</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>6.86±0.18</td>
</tr>
<tr>
<td>JikNok No. 28</td>
<td>1.22±0.01</td>
<td>1.29±0.06</td>
<td>1.55±0.00</td>
<td>1.40±0.03</td>
<td>0.29±0.01</td>
<td>3.41±0.10</td>
</tr>
<tr>
<td>NokJae</td>
<td>0.00±0.00</td>
<td>4.18±0.33</td>
<td>7.22±0.08</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>5.37±0.09</td>
</tr>
<tr>
<td>NokYeom No. 1</td>
<td>1.11±0.02</td>
<td>1.16±0.07</td>
<td>2.46±0.13</td>
<td>0.00±0.00</td>
<td>0.97±0.04</td>
<td>4.22±0.07</td>
</tr>
<tr>
<td>TS-2319</td>
<td>0.62±0.00</td>
<td>1.65±0.07</td>
<td>2.15±0.20</td>
<td>0.11±0.00</td>
<td>0.16±0.00</td>
<td>4.93±0.07</td>
</tr>
<tr>
<td>YuDoRi No. 1</td>
<td>0.78±0.06</td>
<td>1.31±0.12</td>
<td>1.59±0.02</td>
<td>0.10±0.00</td>
<td>0.89±0.01</td>
<td>3.47±0.09</td>
</tr>
<tr>
<td>Average</td>
<td>0.96</td>
<td>2.19</td>
<td>3.60</td>
<td>0.11</td>
<td>0.33</td>
<td>4.19</td>
</tr>
</tbody>
</table>

Each value is the mean ± SD of two independent replications.

suggesting that florets are a good source of glucosinolates. Variation in glucosinolate amounts, measured as the coefficient of variation (CV %), was highest in florets in both the spring (CV 51.9%) and fall (CV 42.4%) seasons. Two major glucosinolates (glucobrassicin and glucoraphanin) as well as total glucosinolates exhibited higher variation in florets in the spring than in the fall, but the opposite was the case in leaves and stems. In our study, amounts of total as well as individual glucosinolates were significantly dependent on cultivar (C), plant part (P), and season (S) (Table 4) in most cases. Most of the interactions were significant, except for C x S and C x S x P for glucoraphanin and S x P for glucoraphanin (Table 4). This result is in agreement with Rosa and Rodrigues (2001) and Vallejo et al. (2003) who also reported cultivar- and season-dependent variation in total and individual glucosinolate amounts. Such variation in total as well as individual glucosinolate contents in different plant tissues may be due to differences in the control mechanisms of the glucosinolate biosynthetic pathway, alteration of substrate availability, and degradation and mobilization of glucosinolates (Sang et al., 1984; Chen and Andreasson, 2001).

Vitamin C content

Vitamin C contents in different tissue types of broccoli cultivars cultivated in the spring and fall seasons are presented in Figure 1. Vitamin C amounts varied according to cultivar, tissue type, and season. In florets, vitamin C amounts ranged from 2.42 (JikNok No. 28) to 5.53 mg g⁻¹ (Grandeur) with an average of 3.94 mg g⁻¹ in the spring, and from 1.22 (NokJae) to 5.27 mg g⁻¹ (BaeRiDom) with a lower average value of 3.05 mg g⁻¹ in the fall. Variation in vitamin C amounts was higher in the fall (CV 41.7%) than in the spring (CV 23.0%). In leaves, the average vitamin C content (4.28 mg g⁻¹) was similar in both seasons, but variation was higher in the fall (CV 33.1%) than in the spring (CV 15.4%). In contrast, stems showed higher vitamin C levels (5.54 mg g⁻¹) in most of the cultivars and higher cultivar-dependent variation (CV 18.0%) in the spring than in the fall (CV 15.0%). The presence of higher vitamin C levels in the spring growing season might be due to higher temperature and radiation, as was reported previously for broccoli and other plants species (Merzlyak and Solovchenko, 2002; Hakala et al., 2003; Yao et al., 2005; Nilsson et al., 2006; Aires et al., 2011). However, no cultivar has
Table 4. Results of analyses of variance for antioxidant amounts and activities in broccoli cultivars.

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>Progoitrin</th>
<th>Glucoraphanin</th>
<th>Sinigrin</th>
<th>Gluconapin</th>
<th>Glucoerucin</th>
<th>Glucobrassicin</th>
<th>Total glucosinolate</th>
<th>Vitamin C</th>
<th>Total phenol</th>
<th>Total flavonoid</th>
<th>Antioxidant activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivar (C)</td>
<td>***</td>
</tr>
<tr>
<td>Season (S)</td>
<td>NS</td>
<td>***</td>
<td>***</td>
<td>NS</td>
<td>***</td>
<td>*</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Plant Parts (P)</td>
<td>***</td>
</tr>
<tr>
<td>C X S</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>NS</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>C X P</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>S X P</td>
<td>*</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>NS</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>C X S X P</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>NS</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

NS, *, **, ***: Non-significant or significant at p < 0.05, 0.01, and 0.001, respectively.

Figure 1. Seasonal variation in the vitamin C contents of florets, leaves, and stems of broccoli cultivars. Each bar represents the mean ± SD of three independent replications. 1. OS-C3; 2, AMaGii; 3, BaeRiDom; 4, CheongJae; 5, Diamond; 6, Grace; 7, Grandeur; 8, JikNok No. 28; 9, NokJae; 10, NokYeom No. 1; 11, TS-2319; and 12, YuDoRi No. 1.
higher vitamin C contents in both seasons as well as their respective parts (florets, leaves and stems), which suggests that genotype is one of the most important factors and that the effects of tissue types and environmental factors associated with growing seasons on vitamin C content are dependent on the genotype.

The average vitamin C content was highest in stems (spring, 5.54 mg g⁻¹; fall, 5.44 mg g⁻¹), followed by leaves, and was lowest in florets, indicating that stems are a good source of vitamin C in broccoli. In contrast, cultivar-dependent variation was highest in florets in both growing seasons. The data revealed that vitamin C levels were significantly (p < 0.001) affected by C, P and S (Table 4). Similarly, all interactions (C x S, C x P, S x P; and C x S x P) were statistically significant. Kurlich et al. (1999) also reported significant differences in vitamin C content among various cultivars in different growing seasons. Our study is the first report, to our knowledge, of changes in vitamin C content in different plant tissues and in different growing seasons in broccoli. Although our results suggest that the vitamin C content in broccoli plants is higher in stems than in florets or leaves and higher in the spring than in the fall, further careful investigation of vitamin C content using fresh samples is required.

Total phenol content

Phenolic compounds, which are important secondary metabolites, possess various biological activities, the most important of which is antioxidant activity associated with reduced cancer risk (Manach et al., 2005; Picchi et al., 2012). The seasonal variation in total phenol content in different tissues of various broccoli cultivars is presented in Figure 2. In florets, the total phenol content in the spring growing season ranged from 4.95 mg GAE g⁻¹ (Diamond) to 8.98 mg GAE g⁻¹ (NokJae), with an average of 6.67 mg GAE g⁻¹; this was higher than the average phenol content in the fall season (4.92 mg GAE g⁻¹). The variation in total phenol content in florets was higher in the spring season (CV 17.9%) than in the fall (CV 13.5%). In contrast, leaves and stems exhibited higher total phenol contents in the fall (4.92 mg GAE g⁻¹) than in the spring (CV 17.9%) and stems (CV 15.9%) in the spring than in the fall. Similar to the results of Howard et al. (2002), we found higher total phenol content in florets (6.67 mg GAE g⁻¹) than in leaves or stems in the spring growing season, possibly due to the
influence of biosynthesis of phenolic compounds; however, average total phenol contents were higher in leaves (7.76 mg GAE g⁻¹) and stems (3.60 mg GAE g⁻¹) in the fall season. Among the three tissue types, cultivar-dependent variation was highest in florets in both seasons (spring season, 17.9%; fall season, 13.5%). We found that the total phenol contents of broccoli were significantly affected by C, P, S and interactions between these factors (Table 4). However, seasonal variation was lower than cultivar-dependent and tissue-dependent variation in this case. Similar cultivar- and season-dependent variation was also reported by Eberhardt, et al. (2005), Singh et al. (2007) and Balouchi et al. (2011). However, this study describes the variation in total phenol among various tissue types of several broccoli cultivars.

Total flavonoid content

Flavonoids are important secondary plant metabolites (Koh et al., 2009) that possess strong antioxidant activity due to their ability to scavenge reactive oxygen species and inhibit oxidative stress (Hounsoume et al., 2009). The seasonal variation in total flavonoid content in florets, leaves, and stems of broccoli cultivars is presented in Figure 3. Total flavonoid content in florets ranged in the spring from 1.63 mg CE g⁻¹ in Diamond to 5.92 mg CE g⁻¹ in NokJae, with an average of 3.21 mg CE g⁻¹; this was higher than the average flavonoid content in the fall season (2.41 mg CE g⁻¹). Total flavonoid content was also higher in stems in the spring (0.80 mg CE g⁻¹) than in the fall (0.74 mg CE g⁻¹). However, leaves had higher average total flavonoid contents in the fall (8.14 mg CE g⁻¹) than in the spring (6.70 mg CE g⁻¹). Flavonoid contents ranged from 5.45 to 9.75 mg CE g⁻¹ in the 05-03 and JikNok No. 28 cultivars, respectively. Among the three tissue types, leaves had a significantly higher average total flavonoid content ca. threefold higher than in florets and eightfold higher than in stems in both seasons, indicating that leaves are a good source of flavonoids. Florets showed the highest cultivar-dependent variation in both the spring (CV 32.7%) and fall (CV 19.7%), while the variation was lowest in stems (spring, CV 11.8%; fall, CV 7.0%). No cultivar exhibited higher flavonoid contents in all tissue types and in both growing seasons. We found that total flavonoid content in broccoli was significantly (p > 0.001) affected by C, P, S and their interactions (Table 4), suggesting that total flavonoid content in broccoli cultivars is markedly influenced by genotype, growing season, and tissue type. Similar cultivar- and season-dependent variation was also reported by Koh et al. (2009) and Balouchi et al. (2011). However, this study addresses the variation in the total flavonoid contents in various tissue types of several broccoli cultivars.
Antioxidant activity

Antioxidant activities of broccoli samples were evaluated by measuring the DPPH radical scavenging activity of different concentrations of methanol extracts. IC$_{50}$ (50% of inhibition) values were calculated after linear regression analysis of the observed inhibition percentages vs. concentration (Figure 4), where lower IC$_{50}$ values indicate higher antioxidant activity. Measurement of DPPH radical scavenging activity is a technically simple and rapid method for the evaluation of antioxidant activity (Fukumoto and Mazza, 2000). In the spring season, the highest antioxidant activities were exhibited by NokJae (IC$_{50}$ 1.84 mg mL$^{-1}$), 05-C3 (IC$_{50}$ 2.43 mg mL$^{-1}$), and BaeRiDom (IC$_{50}$ 2.83 mg mL$^{-1}$) in florets, leaves, and stems, respectively. In the fall, the antioxidant activities in florets, leaves, and stems were highest in 05-C3 (IC$_{50}$ 2.68 mg mL$^{-1}$), 05-C3 (IC$_{50}$ 2.48 mg mL$^{-1}$), and Diamond (IC$_{50}$ 3.66 mg mL$^{-1}$), respectively (Figure 4). Almost all of the cultivars showed higher antioxidant activity in the spring than in the fall. The average antioxidant activities in the spring season in florets, leaves, and stems were 2.77, 2.74, and 3.60 mg mL$^{-1}$, respectively. This might be due to the higher temperature in the spring because temperature has an important influence on antioxidant activity (Aldrich et al., 2011). Among the three tissue types, leaves exhibited the highest antioxidant activity, followed by florets and stems. Cultivar-dependent variation was higher in florets in both the spring (CV 24.2%) and fall (CV 27.6%) than in leaves or stems. Similar to vitamin C, total phenol, and total flavonoid contents, antioxidant activity was also significantly influenced by C, P S and their interactions (Table 4).

Corelationships among phytonutrients

Several studies have evaluated the relationship between antioxidant activity and several antioxidants, such as vitamin C, phenolics, and flavonoids (Robards et al., 1999; Zhou and Yu, 2006; Sun et al., 2007; Aires et al., 2011; Naguib et al., 2012). To clarify the contribution of antioxidants to antioxidant activity and among phytonutrients (glucosinolates, vitamin C, total phenol and total flavonoid), we evaluated the correlations between vitamin C, phenolics, and flavonoids and antioxidant activity (Table 5). In this study, regardless of P or S, all of the glucosinolates showed significantly positive correlations with total glucosinolate contents, with the exception of glucoerucin, which was present only in stems and exhibited a non-significant negative correlation with total glucosinolates. Similarly, among the antioxidants, the total phenol content exhibited a significant positive correlation with total flavonoid content ($r = 0.808^{**}$), but a negative correlation with vitamin C content ($r = -0.282^{**}$), and a non-
Table 5. Correlation coefficients among antioxidants and antioxidant activities in broccoli cultivars.

<table>
<thead>
<tr>
<th>Glucoraphanin</th>
<th>Sinigrin</th>
<th>Gluconapin</th>
<th>Glucoerucinin</th>
<th>Glucobrassicin</th>
<th>Total glucosinolate</th>
<th>Vitamin C</th>
<th>Total phenol</th>
<th>Total flavonoid</th>
<th>Antioxidant activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progoitrin</td>
<td>0.562**</td>
<td>0.983**</td>
<td>0.689**</td>
<td>-0.100</td>
<td>0.503**</td>
<td>0.837**</td>
<td>-0.367**</td>
<td>-0.205</td>
<td>-0.385**</td>
</tr>
<tr>
<td>Glucoraphanin</td>
<td>0.638**</td>
<td>0.234*</td>
<td>0.356</td>
<td>0.706**</td>
<td>0.811**</td>
<td>0.712**</td>
<td>0.091</td>
<td>-0.230</td>
<td>-0.374**</td>
</tr>
<tr>
<td>Sinigrin</td>
<td>0.799**</td>
<td>0.402**</td>
<td>0.055</td>
<td>0.402**</td>
<td>0.594**</td>
<td>0.086</td>
<td>0.086</td>
<td>0.037</td>
<td>-0.191</td>
</tr>
<tr>
<td>Gluconapin</td>
<td>-0.055</td>
<td>-0.277**</td>
<td>-0.204</td>
<td>-0.439**</td>
<td>-0.184</td>
<td>0.354**</td>
<td>0.378**</td>
<td>0.309**</td>
<td>0.286**</td>
</tr>
<tr>
<td>Glucoerucinin</td>
<td>-0.277**</td>
<td>-0.037</td>
<td>-0.184</td>
<td>-0.184</td>
<td>-0.169</td>
<td>0.378**</td>
<td>0.309**</td>
<td>0.286**</td>
<td>0.472</td>
</tr>
<tr>
<td>Glucobrassicin</td>
<td>0.666**</td>
<td>0.086</td>
<td>0.086</td>
<td>0.086</td>
<td>0.037</td>
<td>0.086</td>
<td>0.037</td>
<td>0.086</td>
<td>0.086</td>
</tr>
<tr>
<td>Total glucosinolate</td>
<td>-0.282**</td>
<td>-0.231**</td>
<td>-0.204</td>
<td>-0.439**</td>
<td>-0.184</td>
<td>0.354**</td>
<td>0.378**</td>
<td>0.309**</td>
<td>0.286**</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>0.808**</td>
<td>0.674**</td>
<td>0.497**</td>
<td>0.497**</td>
<td>0.497**</td>
<td>0.497**</td>
<td>0.497**</td>
<td>0.497**</td>
<td>0.497**</td>
</tr>
</tbody>
</table>

*, **, Correlation is significant at p < 0.05 and 0.01, respectively.

significant positive correlation with total glucosinolate content (r 0.086 NS). Similarly, antioxidant activity exhibited a significantly positive correlation with total phenol content (r 0.674**) and total flavonoid content (r 0.497**). In contrast, non-significant positive and negative correlations were observed between antioxidant activity and total glucosinolate (r 0.027 NS) and vitamin C (r -0.028 NS) contents, respectively. The stronger correlations between antioxidant activity and total phenol content in this study are in agreement with Tavarini et al. (2008), Olajire and Azeez (2011), and Naguib et al. (2012), possibly due to the contribution of the high concentration of phenolics to antioxidant activity.

Conclusion

In this study, we identified changes in the amounts of various phytochemicals and in antioxidant activity in various broccoli tissues in different growing seasons. In most cases, the amounts of phytochemicals and antioxidant activities were significantly affected by C, P, S and their interactions. The average contents of vitamin C, glucosinolate, total phenol, and total flavonoid and antioxidant activities were significantly higher in florets in the spring than in the fall. Furthermore, florets exhibited the highest cultivar-dependent and season-dependent variation of all of the phytochemicals relative to leaves and stems. Similarly, leaves exhibited higher contents of phytochemicals in the fall. Stems exhibited higher levels of some of the phytochemicals in both seasons, indicating that seasonal variation in the phytochemical content of broccoli is dependent on genotype but is also affected by tissue type and the particular phytochemical compound. Similarly, leaves and stems had higher contents of vitamin C, total phenol, and total flavonoids than florets, indicating that leaves and stems are good sources of these phytochemicals.

ACKNOWLEDGEMENTS

This work was carried out with the support of the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ006722), Rural Development Administration, Republic of Korea.

REFERENCES

Antibacterial activity of honey and medicinal plant extracts against Gram negative microorganisms

Ramalivhana JN¹, Obi CL², Samie A³, Iweriebor BC³, Uaboi-Egbenni P², Idiaghe J.E.⁴ and Momba M. N. B⁵

¹College of Agriculture and Environmental Sciences, School of Agriculture and Life Sciences, University of South Africa.
²Academic and Research Division, Walter Sisulu University, Nelson Mandela Drive, Eastern Cape, South Africa.
³Department of Microbiology, University of Venda, South Africa.
⁴College of Education, Agbor, Delta State Nigeria.
⁵Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa.

Accepted 19 July, 2013

There has been a steady rise in antibiotic resistance of bacteria and this urgently calls for the discovery of alternative therapeutic agents. Honey possesses therapeutic potentials which includes antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, not much extensive studies of the antibacterial properties of South African honeys on enteric microorganisms have been conducted. The objective of this study was to compare the antibacterial activity of extracts of six different honeys with those of medical plants commonly used in South Africa. Using a broth dilution method, the antibacterial activity extracts of six South African honeys and medicinal plants against six enteric microorganisms viz- Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii isolated from geophagia samples and Aeromonas hydrophila and Plesiomonas shigelloides isolated both from stool and water samples using agar well diffusion method was done. Different concentrations of honey and plant extracts were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against each type of microorganism. Extracts from both South African honeys and medicinal plants showed zones of inhibition that ranged from 6.94 to 37.94 mm. The most susceptible bacteria were Escherichia coli, Aeromonas hydrophila and Plesiomonas shigelloides. MIC and MBC values of extracts were found in the range of 0.625 to 5.000 mg/ml. Extracts of honey showed good antibacterial activity against most organisms than the standard antibiotics such as Ampicillin and Gentamycin. Honey extracts showed antibacterial activity against most microorganisms which were showing some degree of resistance to commercial antibiotics. Extracts from South African honeys and medicinal plants exhibited variable activities against different microorganisms. This result suggests that the honeys could potentially be used as an alternative therapeutic agent against certain microorganisms.

Key words: Agar well diffusion assay, honey, minimum inhibitory concentration, minimum bactericidal concentration.

INTRODUCTION

Traditional medical practise has assumed exalted status in various communities around the world (Mathabe et al., 2006). People living in rural areas prefer using traditional medicines for the treatment of various diseases and disorders to orthodox medicines (ref). According to the World Health Organization (1999), an estimated 80% of...
people living in developing countries rely on harvested wild plants for their primary health care. Several reports on the antibacterial activities of medicinal plants against pathogenic organisms abound in literatures (Obi et al., 2003; Samie et al., 2009, 2010; Elloff et al., 2005; Kaushik et al., 2009; Vasutan et al., 2009). Furthermore, plant extracts and other natural substances have been in use as per the Indian system of medicine (Ayurveda) for the treatment of diseases requiring antimicrobial drugs. One of the popular natural antimicrobial substances described in Ayurveda as a potent medicine for several uses was honey.

Honey has been used for its medicinal properties to treat a wide variety of ailments since ancient times. In particular, it has been used in wound dressings (Molan and Cooper, 2000; Kingsley, 2001). Honey in general has high sugar content but a low water content and acidity, which prevent microbial growth (Farouk et al., 1988; Tan et al., 2009). Most types of honey generate hydrogen peroxide when diluted due to the activation of the enzyme glucose oxidase, which oxidizes glucose to gluconic acid and hydrogen peroxide (Bogdanov, 1984; Bang et al., 2003). Hydrogen peroxide is the major contributor to the antimicrobial activity of honey, and the different concentrations of this compound in different honeys result in their varying antimicrobial effects (Molan, 1992).

The bactericidal action could also be ascribed to the normal acidity of honey, its high sugar content, nitrogenous or other compounds (Radwan et al., 1974; Adeleke, 2006; Basualdo et al., 2007; Namias, 2003). Honey can inhibit the growth of a wide range of bacteria, fungi, protozoa and viruses (Molan, 1992; Blair et al., 2005). Microorganisms such as Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli frequently are isolated from skin wounds (Tan et al., 2009). There are many reports of honey being very effective as an adjunct in the treatment of wounds, burns, skin ulcers and as an anti-inflammatory agent (Lusby, 2002). Honey also contains various constituents such as water, carbohydrates, proteins, vitamins, amino acid, energy and minerals (Abhishek, 2010). It is also known to cure anaemia and improves calcium fixation in infants (Heerng, 1998) and also reduces and cures eye cataracts and conjunctivitis (Ilechie et al., 2012). The bactericidal effects of honey are reportedly dependent on concentrations of honey used and the nature of the bacteria (Adeleke, 2006). The aim of this study therefore was to ascertain the antibacterial activities of honey in comparison to commercial antibiotics and known medicinal plants extracts.

MATERIALS AND METHODS

Collection of honey samples

Raw honey samples were collected from rural areas in the Limpopo Province of South Africa.

Bacterial isolates

The following bacterial isolates: Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae and Citrobacter freundii were isolated from geophagic samples while Aeromonas hydrophila and Plesiomonas shigelloides were isolated from water and stool samples. The isolates were identified using a range of biochemical and morphological techniques, and the Microscan walk away automated bacterial identification instrument (McDonnell Douglas Health System Company). The isolates were stored on Protect Bacterial Preserver Beads (LabSupply Pierce) at −70°C.

Plant materials used in the study

The following medicinal plants: Carissa edulis, Erythrina lysistemom, Momordica balsamina, Psidium guajava and Ficus sycomorus were collected based on the information received from herbalists and their consorts on the basis of their effectiveness against microbial diseases. Plant parts used were leaves, bark, roots, ripe fruits, unripe fruits and twig tips. The plants were collected from their natural environment and stored in the dark at room temperature until they were dry.

Extraction of honey

Extraction of honey was performed by using methanol; 10 g of honey was placed in a centrifuge with 25 ml of solvent and then mixed well by vortexing and shaking with hands for about 30 min. This was centrifuged at 3000 rpm for 20 min at 25°C. Supernatant was collected from each centrifuged tube in a round bottom flask by filtration. The resulting supernatant was dried under nitrogen gas at a temperature of 50°C. All extracts were put in DMSO at a concentration of 100 mg/ml as the extract of honey. All the extracts dissolved in DMSO were collected in sterilized glass tubes and used within 24 h for the evaluation of bacteriostatic and bactericidal activity.

Extraction of medicinal plants

Collected plant materials were ground into fine powder using a local traditional grounding system (Musi and Mutuli, Tshivenda). Extractions were done as previously reported by Samie et al. (2010). About, 50 g of the ground materials of each plant was extracted in 500 ml methanol under continuous shaking for 24 h. The extract was filtered through a 22 μm paper filter. The filtrate was evaporated to dryness using a rotatory evaporator at 40°C. The residues in the form of powder materials were preserved in sterile glass bottles at room temperature until further use.

Antibacterial activity test

Bacterial suspensions were done as described by Ramalivhana and Obi (2010). Agar diffusion and micro-dilution methods were used to determine the antibacterial activity of the medicinal plant extracts against bacterial isolates. Brain heart infusion broth (BHI) was used for the preparation of bacterial cultures. The determination of the minimum inhibitory concentrations (MICs) was done as recommended by the manufacturer’s. Brain heart infusion agar

*Corresponding author. E-mail: c355251@yahoo.com.
(BHIA) was used to determine the activity of the plant extracts against bacterial organisms, this was prepared according to the manufacturer’s instruction.

Agar diffusion assay

Bacterial isolates were prepared to match 0.5 McFarland standards. Using the micropipette, 100 μl of organisms (BHIB or SDB) was spread over the surface of an agar plate. This procedure was the same for all test organisms. Using a sterile glass pipette, five holes were punched in each of the culture plates. One of the holes was punched in the center of the plate where 10 μl of Gentamicin was added as positive control; 10 μl of DMSO was added as a negative control in the other hole; 10 and 15 μl of the plant extracts were put in the remaining two holes. The culture plates were then incubated at 37°C for 24 h. The clear zone of inhibition around the plant extract was measured in mm. The experiments were done in triplicate.

Microdilution assay

The microdilution method was used to determine the minimum inhibitory concentrations (MICs) of the plant extracts using 96 well microtitration plates as previously described by Samie et al. (2005). One hundred and eighty-five microliter (185 μl) of the broth was added into each well in the first row of microtitration plate and 100 μl to the rest of the wells from the second row downwards. Fifteen microliter (15 μl) of the plant extracts was then added into each well on the first row (row A), starting with the positive control (Gentamicin for bacteria and Floconazole for yeast, all the antibiotics were from MAST), followed by the negative control (the 20% DMSO used to dissolve the plant extracts) and the plant extracts were then applied to the wells on that row. A twofold serial dilution was done by mixing the contents in each well of the first row and transferring 100 μl to the second well of the same column and the same was done up to the last well of the same column and the last 100 μl from the last well was discarded. Then 100 μl of yeast suspensions was added.

The results were observed after 24 h incubation at 37°C, followed by the addition of 40 μl of a 0.2% Iodo Nitro Tetrazolium (INT) solution after a further incubation of 4 h at 37°C.

Determination of minimum inhibitory concentration (MIC)

Prior to testing, each isolate was cultured from preserver beads by inoculating two beads into 9 mL of TS broth and incubating for 16 h at 37°C. Cultures obtained were diluted with TSB to obtain 2 to 3 × 10^7 cfu/mL, the minimum to produce confluent growth at inoculation positions. The minimum inhibitory concentration (MIC) of active extract was evaluated by tube dilution method. The MICs of all the extracts were determined by dilution of the extract to various concentrations (5.000 to 0.150 mg/mL). Decreasing concentrations of methanol extracts were prepared in serial twofold dilutions using Mueller Hinton Broth (MHB). Controls were included. After an overnight incubation at 37°C, the tubes were examined for turbidity indicating the growth of the microorganisms. The lowest solution of the extract that inhibited the growth of the microorganism as detected by the lack of visual turbidity (matching the negative growth control) was designated the minimum inhibitory concentration.

Determination of minimum bactericidal concentration (MBC)

The bactericidal activities of the extracts (both honey and plant extracts) were tested as follows: the number of the bacteria in the initial microorganism suspension was counted by the surface plate method. After ascertaining the MIC, the number of bacteria was counted in each of the tubes of broth that showed no visible turbidity after overnight incubation, and was compared with the number of bacteria in the initial microorganism suspension. According to NCCLS (1997), the lowest concentration of the extract solution that allowed less than 0.1% of the original inoculum to survive was taken to be the minimum bactericidal concentration.

Antibiotic susceptibility testing

The susceptibility of isolates to antimicrobial agents was examined by an agar diffusion method using paper disks containing the following antibiotic concentrations: Amikacin (30 μg), Ampicillin (10 μg), Gentamicin (10 μg), Cefotaxime (30 μg) and Ciprofloxacin (30 μg). Disks were purchased from Oxoid. Antimicrobial activities were interpreted according to the National Committee for Clinical Laboratory Standards (NCCLS, 1997). E. coli ATCC 25922 and P. aeruginosa ATCC 27853 were used as quality control strains.

RESULTS

In this study, we compared the MIC values of six honey extracts in comparison with the plants extracts and some commonly used antibiotics. The MBC values of honey extracts also were compared. Under visual inspection, the zones of inhibition for honey extracts ranged from 7.0 to 28.0 mm, while those for plants ranged between 7.0 mm to 29.5 mm and antibiotics from 14.5 mm to 36.0 mm (Table 1). Honey B had the highest in vitro activity of 28.0 mm when compared with other honey extracts against A. hydrophila. This was followed by extracts of honey E and F against C. frundii with 19.0 mm and 19.5 mm zones of inhibition respectively. All the test isolates showed some degree of sensitivity to the different honey extracts as the zones of inhibition ranged from 7.0 mm in honey D extract against E. coli to 28.0 mm of honey B extract against H. hydrophila.

On the action of honey B extract against the test isolates, the highest antibacterial activity was observed against A. hydrophila with 18.5 mm zone of inhibition and lowest activity of 8.5 mm against E. cloacae (Figure 1). Similarly, Honey B extract demonstrated the highest antimicrobial activity against A. hydrophila with 28.0 mm zone of inhibition and lowest activity of 8.0 mm zone of inhibition against E. Cloacae (Figure 2). Honey C extract showed the least activity as the highest zone of inhibition of 10.0 mm was observed against three of the test isolates; K. pneumonia, A. hydrophila and P. shigelloides and the lowest activity of 8.5 mm was against E. coli (Figure 3). The lowest activity of 7.0 mm was demonstrated by honey D extract against E. coli while the highest activity of this extract was observed on A. hydrophila with a zone of inhibition of 15.5 mm (Figure 4). Both extracts from honey E and F had the highest antibacterial activities of 19.0 and 19.5 mm zones of inhibition respectively against C. frundii while the lowest activity of Honey E was observed against E. cloacae and
Table 1. *In vitro* antibacterial activities of honey, antibiotics and medicinal plants against Gram negative bacteria.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Zone of inhibition (mm diameter)</th>
<th>Enterobacter cloacae</th>
<th>Escherichia coli</th>
<th>Klebsiella pneumonia</th>
<th>Citrobacter freundii</th>
<th>Aeromonas hydrophila</th>
<th>Plesiomonas shigelloides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honey A</td>
<td></td>
<td>8.5</td>
<td>10.0</td>
<td>9.0</td>
<td>15.5</td>
<td>18.5</td>
<td>10.0</td>
</tr>
<tr>
<td>Honey B</td>
<td></td>
<td>8.0</td>
<td>11.0</td>
<td>8.5</td>
<td>12.0</td>
<td>28.0</td>
<td>15.5</td>
</tr>
<tr>
<td>Honey C</td>
<td></td>
<td>9.0</td>
<td>8.5</td>
<td>10.0</td>
<td>9.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Honey D</td>
<td></td>
<td>8.5</td>
<td>7.0</td>
<td>11.5</td>
<td>8.5</td>
<td>15.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Honey E</td>
<td></td>
<td>9.0</td>
<td>9.5</td>
<td>12.0</td>
<td>19.0</td>
<td>10.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Honey F</td>
<td></td>
<td>9.5</td>
<td>9.0</td>
<td>10.0</td>
<td>19.5</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Antibiotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin (30 μg)</td>
<td></td>
<td>26.0</td>
<td>22.0</td>
<td>16.5</td>
<td>33.0</td>
<td>35.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Ampicillin (10 μg)</td>
<td></td>
<td>15.5</td>
<td>8.5</td>
<td>28.0</td>
<td>15.5</td>
<td>28.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Gentamicin (10 μg)</td>
<td></td>
<td>25.0</td>
<td>28.0</td>
<td>22.0</td>
<td>33.0</td>
<td>15.5</td>
<td>35.0</td>
</tr>
<tr>
<td>Cefotaxime (30μg)</td>
<td></td>
<td>15.0</td>
<td>33.0</td>
<td>19.5</td>
<td>22.0</td>
<td>15.5</td>
<td>19.0</td>
</tr>
<tr>
<td>Ciprofloxacin (5μg)</td>
<td></td>
<td>14.5</td>
<td>19.5</td>
<td>17.0</td>
<td>22.5</td>
<td>19.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Medicinal plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carissa edulis</td>
<td></td>
<td>19.0</td>
<td>19.5</td>
<td>12.0</td>
<td>19.0</td>
<td>20.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Erythrina lysistemon</td>
<td></td>
<td>18.5</td>
<td>10.0</td>
<td>19.0</td>
<td>15.5</td>
<td>18.5</td>
<td>20.0</td>
</tr>
<tr>
<td>Momordica balsamina</td>
<td></td>
<td>15.0</td>
<td>21.0</td>
<td>15.5</td>
<td>22.0</td>
<td>23.0</td>
<td>15.5</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td></td>
<td>19.5</td>
<td>25.0</td>
<td>20.0</td>
<td>29.5</td>
<td>19.5</td>
<td>20.5</td>
</tr>
<tr>
<td>Ficus sycomorus</td>
<td></td>
<td>8.5</td>
<td>7.0</td>
<td>11.5</td>
<td>8.5</td>
<td>15.5</td>
<td>8.5</td>
</tr>
<tr>
<td>DMSO</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1. Antibacterial activity of Honey A against Gram negative bacteria. The highest activity was against *E. coli* and moderate activity against *K. pneumonia*.

P. shigelloides with the lowest activity of honey F extract was against *E. coli* (Figures 5 and 6). Comparing the MICs of the honey extracts to those of the plants against the bacterial isolates, the MIC of all the honey extracts against *Aeromonas hydrophilia* was 1.25 mg/ml while for the plant extracts, 0.625 mg/ml was observed for *Dodonea angeostilola* and *E. lysistemon* respectively on the same isolate. For *C. frundii*, 0.625 mg/ml of extracts of honey A and E was the lowest MIC while on the same isolate the lowest MIC of 0.3125 was noted on extracts...
Figure 2. Antibacterial activity of Honey B against Gram negative bacteria. Activity was greatest on *P. shigelloides* and lowest in *C. frundii*.

Figure 3. Antibacterial activity of Honey C against Gram negative bacteria. *E. coli* exhibited the greatest sensitivity while *C. frundii* showed moderate sensitivity.

from *D. angeostifolia* and *F. sycomorus* respectively. The MIC of 0.625 mg/ml of honey C was the most effective against *K. pneumonia* while the MIC of 0.3125 mg/ml of *P. guajava* was the lowest of all the plant extracts. The lowest MIC of 0.625 mg/ml of the honey extracts against *E. cloacae* was that from honey C while those of the plant extracts of 0.625 were those of *P. guajava* and *M. balsamina* respectively on the same bacteria isolate. For *E. coli*, the lowest MIC 0.625 was from honey E while for the plant extracts, 0.3125 mg/ml *P. guajava* and *E. lysistemmon* were noticed. Similarly, the lowest MIC of 0.625 mg/ml of honey B was noticed against *P. shigelloides* with a similar MIC for extracts of *P. guajava* and *E. lysistemmon* as shown in Table 2.

Comparison of the minimum bactericidal concentrations of the both the honey and plant extracts against the test isolates showed that the bactericidal activities of the honey C and E along with those of *Dodonea angeostifolia*...
Antibacterial activity of honey D against gram negative bacteria. Honey D extract demonstrated a very high activity of 86% susceptibility against *A. hydrophila* with moderate effect of 55% on *E. Cloacae*.

Figure 4. Antibacterial activity of honey D against gram negative bacteria. Honey D extract demonstrated a very high activity of 86% susceptibility against *A. hydrophila* with moderate effect of 55% on *E. Cloacae*.

Antibacterial activity of Honey E against Gram negative bacteria. The highest antibacterial effect was on *C. frundii* and with the lowest activity of 45% was on *K. Pneumonia*.

Figure 5. Antibacterial activity of Honey E against Gram negative bacteria. The highest antibacterial effect was on *C. frundii* and with the lowest activity of 45% was on *K. Pneumonia*.

and *Erythrina lysistemon* had the lowest concentration of 0.625, respectively against *Aeromonas hydrophila* while honey C and D had the lowest MBC of 0.3125 each on *Citrobacter frundii* and *Psidium guajava* and *E. lysistemon* demonstrated the lowest MBC of 0.625 on the same organism (Figure 7). For *K. pneumonia*, honey A and F extracts showed the lowest MBC of 0.3125 while *P. guajava* and *M. balsamina* demonstrated the lowest MBC of 0.625 respectively against the isolate. Honey A, B and plant extracts of *P. guajava* and *M. balsamina* each exhibited the lowest MBC of 0.625 against *E. cloacae*. The MBC of extracts of honey A, *P. guajava*, *M. balsamina* and *E. lysistemon* against *E. coli* were 0.625 each while on *P. shigelloides*, extracts of *C. E.*, *D. angeostifolia* and *E. lysistemon* demonstrated the lowest MBC of 0.625 as shown in Table 3.

The lowest MIC value of 0.312 mg/ml was observed against *K. pneumoniae*, *E. coli* and *C. freundii* using *P. guajava*, *F. sycomorus*, *D. angeostifolia* and *E. lysistemon* extracts respectively.
Table 2. MIC values of different extracts of Honey and medicinal plants.

<table>
<thead>
<tr>
<th>Zone diameter of inhibition (in mm) including the diameter of well (6 mm) Isolates</th>
<th>Honey A</th>
<th>Honey B</th>
<th>Honey C</th>
<th>Honey D</th>
<th>Honey E</th>
<th>Honey F</th>
<th>Psidium guajava</th>
<th>Momordica balsamina</th>
<th>Dodonea angoestifolia</th>
<th>Ficus sycomorus</th>
<th>Erythrina lysistemmon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas hydrophila (n= 200)</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>2.5</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>0.625</td>
</tr>
<tr>
<td>Citrobacter freundii (n=49)</td>
<td>0.625</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>0.625</td>
<td>0.625</td>
<td>0.3125</td>
<td>0.3125</td>
<td>0.3125</td>
</tr>
<tr>
<td>Klebsiella pneumoniae(n=55)</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>0.3125</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Enterobacter cloacae (n=46)</td>
<td>1.25</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>1.25</td>
<td>0.3125</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>0.3125</td>
</tr>
<tr>
<td>Escherichia coli (n=88)</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>0.625</td>
<td>2.5</td>
<td>1.25</td>
<td>2.5</td>
<td>2.5</td>
<td>0.625</td>
</tr>
<tr>
<td>Plesiomonas shigelloides (n=89)</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>0.625</td>
<td>2.5</td>
<td>1.25</td>
<td>2.5</td>
<td>2.5</td>
<td>0.625</td>
</tr>
</tbody>
</table>

Figure 6. Antibacterial activity of Honey F against Gram negative bacteria. Honey F extract had the highest antibacterial effect on *Klebsiella pneumonia* while against the other test isolates it was moderate.

DISCUSSION

The antibacterial activities of six South African honeys and medicinal plants were investigated on some common entero pathogens isolated from geophagist and water samples. In this study, we found that extracts of different honeys and medicinal plants commonly used in South Africa has variable but broad-spectrum activities against many different species of enteric bacteria (Figure 8). Lusby et al. (2005) reported that honeys other than the commercially available honeys can have...
Antimicrobial activity of medicinal plants against Gram negative bacteria. The graph depicts the percentage activities of the different medicinal plants extracts against the test bacterial isolates. The highest antimicrobial activity of 89% was on *A. hydrophila* by the extract of *E. lysiemon* followed by 75% of *P. guajava* extract on *P. shigelloides* and 71% of *C. edulis* on *E. coli*.

Most bacteria showed similar growth inhibition patterns for all the six honeys tested, but some variations were detected. The observed differences might reflect how each type of bacteria reacts to honey treatment. That honey is effective in treating bacterial gastroenteritis in infants has been reported by Haffejee and Moosa (1985). Honey was reported to be effective when used as a substitute for glucose in oral rehydration and its antibacterial activity shortened the duration of bacterial diarrhoea (Tan et al., 2009). In our study, the growth of bacterial species that cause gastric infections, such as *C. frundai*, *P. shigelloides* and *E. coli*, were inhibited by honey extracts.

Results obtained reveal the varying levels of the antibacterial activities of honey against bacterial isolates studied. The observations are consistent with the reports of Ibrahim (1985) on the bactericidal activity of aqueous solution of honey on *Salmonella spp.* and *Shigella spp.* and other enteropathogens such as *E. coli*, *Vibrio cholera*, other Gram-negative and Gram-positive bacteria. Similarly, Allen et al. (2000) reported the antibacterial properties of honey against two laboratory isolates of *P. aeruginosa* and *E. coli*.

Our study is also in agreement with the study done by Samie et al. (2007) who reported on the activities of medicinal plants against 14 Gram negative microorganisms. Similarly, Obi et al. (2003) reported on the inhibitory properties of medicinal plants against a total number of fifty isolates of *E. coli* from various pathologic sources.
Table 3. MBC values of different extracts of honey and medicinal plants.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Honey A</th>
<th>Honey B</th>
<th>Honey C</th>
<th>Honey D</th>
<th>Honey E</th>
<th>Honey F</th>
<th>Psidium guajava</th>
<th>Momordica balsamina</th>
<th>Dodonea angoestifolia</th>
<th>Ficus sycomorus</th>
<th>Erythrina lysistemon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas hydrophila (n=200)</td>
<td>2.5</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>0.625</td>
<td>2.5</td>
<td>1.25</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>0.625</td>
</tr>
<tr>
<td>Citrobacter freundii (n=49)</td>
<td>0.625</td>
<td>0.625</td>
<td>0.3125</td>
<td>0.3125</td>
<td>2.5</td>
<td>0.625</td>
<td>0.625</td>
<td>2.5</td>
<td>1.25</td>
<td>1.25</td>
<td>0.625</td>
</tr>
<tr>
<td>Klebsiella pneumoniae (n=55)</td>
<td>0.3125</td>
<td>2.5</td>
<td>2.5</td>
<td>5</td>
<td>1.25</td>
<td>0.3125</td>
<td>0.625</td>
<td>0.625</td>
<td>2.5</td>
<td>2.5</td>
<td>1.25</td>
</tr>
<tr>
<td>Enterobacter cloaceae (n=46)</td>
<td>0.625</td>
<td>0.625</td>
<td>2.5</td>
<td>2.5</td>
<td>1.25</td>
<td>0.625</td>
<td>0.625</td>
<td>0.625</td>
<td>2.5</td>
<td>2.5</td>
<td>1.25</td>
</tr>
<tr>
<td>Escherichia coli (n=88)</td>
<td>0.3125</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>0.625</td>
<td>0.625</td>
<td>0.3125</td>
<td>0.3125</td>
<td>2.5</td>
<td>1.25</td>
<td>0.3125</td>
</tr>
<tr>
<td>Plesiomonas shigelloides (n=89)</td>
<td>2.5</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>0.625</td>
<td>2.5</td>
<td>1.25</td>
<td>1.25</td>
<td>0.625</td>
<td>1.25</td>
<td>0.625</td>
</tr>
</tbody>
</table>

Figure 8. Summary of antimicrobial activities of antibiotics, medicinal plants and honey on bacterial isolates.
Conclusion

The six honeys and plant extracts exhibited variable activities against many different microorganisms and in some cases they showed equivalent or better activities than some antibiotics. The potency of these honeys and plants against certain microorganisms suggests their potential to be used as an alternative therapeutic agent in the face of antibiotic resistance. It will also be of great advantage if they are administered together as they could have synergistic action.

ACKNOWLEDGEMENTS

We thank the National Research Foundation for the financial assistance and traditional Practitioners for their help and willingness to share knowledge on traditional medicine.

REFERENCES

Establishment of a heterologous immunoassay for detecting enrofloxacin residues in poultry muscles

Jin-qing Jiang

College of Animal Science, Henan Institute of Science and Technology, Xinxiang 453003, China.

Accepted 18 December, 2013

A heterologous indirect competitive enzyme linked immuno sorbent assay (icELISA) has been developed for the determination of enrofloxacin (ENR) residues in poultry. For this purpose, carbodiimide active ester method was employed to synthesize the artificial antigen of ENR- bovine serum albumin (BSA) while mixed-anhydride technique was used to synthesize the coating antigen of ENR- ovalbumin (OVA), to pursue the heterologous sensitivity. By square matrix titration, an icELISA method was developed, and the linear range was from 0.02 to 86.3 ng/mL, with limit of detection (LOD) and IC_{50} value of 0.8 and 0.01 ng/mL, respectively. After optimization, 5% of NaOH was used in the assay buffer and this ELISA system can tolerate methanol not higher than 30%. The correlation coefficients (R^2) between concentration spiked and concentration determined were 0.9975 in chicken muscle and 0.9959 in duck muscle, respectively. Therefore, this assay has the potential to be incorporated into a quantitative monitoring program for the rapid screening of ENR residue in poultry muscles.

Key words: Enrofloxacin, artificial antigen, polyclonal antibody, indirect competitive enzyme linked immuno sorbent assay (ELISA), heterologous, poultry.

INTRODUCTION

Enrofloxacin (ENR) is the first specific fluoroquinolone developed for veterinary application, which belongs to the second generation of quinolone antibiotics fluorinated in position 6 and bearing a piperazinyl moiety in position 7. Similar to other fluoroquinolones, enrofloxacin is used in the treatment of systemic infections including urinary tract, respiratory, gastro-intestinal and skin infections (Tong et al., 2010). Due to the very broad spectrum of activity against both gram-negative and gram-positive bacteria and lower side effects, ENR has also been widely used for the treatment of some infectious diseases in pets and livestock. However, ENR residues may persist in animal body and may result in the development of drug-resistant bacterial strains or allergies. In the present years, awareness of residual antibiotics in animal-derived food is growing as their application increases in both human and veterinary medicine (Yan et al., 2011).

In order to monitor enrofloxacin residue levels in livestock and poultry products, simple and rapid analytical methods are required. Various analytical methods, such as high performance liquid chromatography (HPLC) (Christodoulou et al., 2008), liquid chromatography-mass spectrometry (LC-MS) (Delepine et al., 1998; San Martin
et al., 2007), and LC-MS/MS (Dufresne et al., 2007; Hermo et al., 2008) have been reported. However, many of the instrumental methods used to monitor the residues are time-consuming, solvent intensive, and costly; therefore, chromatographic and mass spectrometry methods are not practical for screening large numbers of food samples for ENR. The enzyme-linked immunosorbent assay (ELISA) was widely employed because of its sensitivity of detection and ease of use. Several papers have reported the development of an immunoassay for the determination of ENR residue (Watanabe et al., 2002; Wang et al., 2007; Zhang et al., 2011). However, there have not yet any reports of preparation a rabbit polyclonal antibody (pAb) for ENR and development of a heterologous immunoassay. In this study, we aimed to prepare the artificial antigen of ENR and produce anti-ENR pAb. We have also developed an indirect competitive heterologous immunoassay for monitoring enrofloxacin residues in poultry muscles.

MATERIALS AND METHODS

Materials and equipment

Enrofloxacin, ciprofloxacin and other fluoroquinolones (FQs) were provided by Sigma (St. Louis, MO). 1-ethyl-3-(3-dimethylaminopropyl) (EDC), freund's complete adjuvant (FCA) and freund's incomplete adjuvant (FIA) were obtained from Pierce while N-hydroxy succinimidine (NHS) was from Japan; SDS available. O-(Carboxymethyl) hydroxylamine hemihydrochloride, succinic anhydride, bovine serum albumin (BSA) and ovalbumin (OVA) were supplied by Sigma while Dialysis bag (8000-14000 Da) was from Solarbio company. The peroxidase-conjugated rabbit anti-mouse IgG (GaRlgG-HRP) was purchased from Sino-American Biotechnology Company (Shanghai, China). 3,3,5,5-tetramethylbenzidine (TMB), phenacetin, urea peroxide were obtained from Sigma Company. All other solvents and reagents were of analytical grade or higher, unless otherwise stated. A spectrophotometric microtitre reader, Multiskan MK3 (Thermo company, USA), provided with a 450 nm filter, was used for absorbance measurements. Fresh meat samples of poultry (chicken tissue and duck) were purchased in retail outlets in Xinxiang, China. Female New Zealand white rabbits weighing 2–2.5 kg were obtained from the Laboratory Animal Center, Beijing Medical University, China, and raised under strictly controlled conditions in our laboratory chamber.

Synthesis of immunogen and coating antigen

The immunogen of ENR-BSA was prepared by carbodiimide active ester method. Briefly, a total of 4.18 mg of ENR, 20.64 mg of EDC, and 5.76 mg of NHS were added to 2 mL dimethylformamide (DMF) respectively. The mixture solution was incubated for 24 h at room temperature in dark. Then 2.5 mL of phosphate buffer saline (PBS) (0.01 mol/L, pH 7.4) with 26.4 mg BSA was added slowly to the mixture solution with stirring, followed by 4 h incubation at room temperature. The synthesis procedure is shown in Figure 1. Finally, the reaction mixture was dialyzed under stirring against PBS for 6 days with repeated changes of the PBS solution to remove the unconjugated hapten. The solution was stored at -20°C. An ENR-OVA conjugate was prepared as a modified previous paper (Huang et al., 2010) and the mixed-anhydride technique route was as shown in Figure 2.

Polyclonal antibody generation

Two female New Zealand white rabbits were subcutaneously immunized at multiple sites in the back with ENR-BSA conjugate, and under control of the local Ethical Committee for Research. The initial immunization was injected with 500 μg of conjugate in 0.5 mL of PBS and 0.5 mL of FCA. Subsequent 4 booster injections (0.5 mg of conjugate in 0.5 mL of PBS plus 0.5 mL of FIA) were performed three weeks later and then at 15 days intervals. Ten days after the last boost, all rabbits were exsanguinated by heart puncture under general anesthetic. The antiserum was prepared by allowing the blood to clot overnight at 4°C, followed by centrifugation at 10000 r/min for 20 min to remove particulate materials. The crude serum was purified by saturated ammonium sulfate (SAS) precipitation method (purified three times using SAS). The purified serum was then aliquotted and stored at -70°C.

Development of a heterologous icELISA

The checkerboard procedure was used to optimize the coating antigen and the primary antibody concentrations, resulting in the following optimized protocol. To each well of a 96 well plate, 100 μL of selected coating antigen was added and incubated for 2 h at 37°C. The plate was washed three times with PBST (PBS containing 0.05% Tween-20) and blocked with 250 μLwell of blocking buffer, followed by incubation for 1 h at 37°C. After another washing procedure, varying concentrations of ENR or competitive fluoroquinolones (50 μLwell) was added, followed by equal volume of ENR antiserum previously diluted 10, 000 folds in PBS according to the optimal data. The following steps were similar to the indirect ELISA (Jiang et al., 2011). Absorbances were corrected by blank reading and the results were expressed in percent inhibition rate.

Figure 1. The synthesis procedure for ENR immunogen through EDC method.
Sensitivity was evaluated according to the inhibition rate, and the
data were calculated using the IC50 values, which represented the
concentration of ENR that produced 50% inhibition of antiserum
binding to the hapten conjugate. The limit of detection (LOD) was
defined as the lowest concentration that exhibits a signal of 15% inhibition (Jiang and Wang, 2011). The dynamic range for the
icELISA was calculated as the concentration of the analyte
providing a 20–80% inhibition rate (IC20–IC80 values) of the
maximum signal. Specificity was defined as the ability of structurally
related chemicals to bind to the specific antibody. The cross-
reactivity was calculated as: (IC50 of ENR)/ (IC50 of competitors)
×100. The lower the CR, the higher the specificity of ENR pAb (Lei
et al., 2010).

Chemical effects on assay performance

It is commonly acknowledged that immunoassay performance is
often affected by chemical parameters such as ionic strength, pH
values, organic solvent concentration, and other substances in the
sample matrix. The effects of these parameters were estimated by the
maximum absorbance (Amax, the absorbance value at zero
concentration of ENR) and half-maximum inhibition concentration
(IC50, the value represents the concentration of ENR that produce
50% inhibition of antibody binding to the hapten), and the maximal
Amax/IC50 ratio was chosen (Hao et al., 2009). In our study, the
concentrations of NaOH and methanol contents in the assay buffer
have determinant effects on the standard inhibition curve, which
was checked for the optimal data.

Spiking tests in poultry samples

Prior to running the assay, poultry samples (chicken and duck
muscles) were homogenized, then 1 g of each meat sample was
weighed into a 10 mL polypropylene centrifuge tube. Next 2 mL of
0.1 mol/L sodium hydroxide-acetonitrile (1:10) was added, and the
mixture was agitated on a shaker for 10 min. The samples were
centrifuged at 5000 r/min for 10 min, and 1 mL of supernatants was
diluted with 9 mL of PBS (0.01 mol/L). 50 μL of this buffer solution
was used in the ELISA. For spiking tests, a standard stock of ENR
was prepared by diluting the initial solution prepared in HCl (0.03
mol/L) to give a final stock solution at 1 mg/mL. The stock solution
was serially diluted with PBS to give the working standard solutions.
The recoveries were calculated by interpolation of the mean absorb-
bance values on a standard curve constructed by icELISA in PBS.

RESULTS AND DISCUSSION

Hapten conjugation

UV-vis spectrum for ENR-BSA, ENR, and BSA are
presented in Figure 3. The absorbance for ENR-BSA
(279 and 321 nm) gave a significant shifted peak at 279
nm compared with the 269 nm peak for ENR (269, 321,
and 333 nm), which indicated the ENR was successfully
conjugated with BSA. The coating antigen of ENR-OVA
gave a UV pattern similar to that of immunogen. Calculated from the formula, molar ratio of 18:1 for ENR-
BSA conjugates was obtained.

Heterologous icELISA Standard curve

Checkerboard titrations were performed, taking into
account the optimal dilutions. The optimal reagent
concentrations were determined when the maximum
absorbances (Amax) were between 1.5 and 2.0, and the
dose-response curve of inhibition ratio versus the ENR
concentration pursued the lowest IC50 values. From the
checkerboard assays, a representative standard
inhibition curve was obtained (Figure 4). As can be seen,
the optimum concentration of coating antigen was 1.0
μg/mL and pAb was 1:10,000 dilutions. This assay
allowed the detection of ENR (20–80% inhibition of color
development) from 0.02 to 86.3 ng/mL, with an IC50 value

![Figure 2. The synthesis procedure for ENR-OVA coating antigen through mixed-anhydride technique.](image)
Figure 3. UV-vis spectrum for artificial antigen of ENR-BSA, BSA and ENR.

Figure 4. Optimized standard heterologous icELISA inhibition curve for ENR. Data were obtained by averaging three independent curves, each run in triplicate. ENR-OVA (1 μg/mL) as coating antigen was prepared in CBS (pH 9.6), purified anti-serum produced by ENR-BSA as immunogen was diluted 1:10 000 in PBS (pH 7.4), ENR was prepared in PBS, containing 10% methanol; GaRlgG-HRP was diluted 1:1000 in incubation buffer.
Chemical effects

To study the influence of NaOH on the assay characteristics, competitive curves were prepared using standards in PBS which contained 2, 5, 10, 20, and 30% of NaOH. Figure 5 presents the effects of NaOH in assay solution on the ELISA. This result indicate that higher NaOH concentrations may change the ionization state of the antibody binding site, disrupt the ionic interactions, and resist the entrance of the standards. Accordingly, 5% NaOH in assay buffer provides the best conditions for the binding of antibody and coating antigen that was selected for the immunoassays.

Methanol that may interfere with antigen-antibody binding and increase the solubility of analytes, was tested for its effects on the ELISA. Figure 6 shows the normalized dose-response curves at various solvent concentrations. The results show that the IC_{50} values of the immunoassay were varying obviously when increasing the amounts of methanol. It indicated that a reproducible inhibition curve could be observed, only when the concentration of the solvent was not higher than 30%. Therefore, to accurately determine the concentration of ENR, methanol contents in the assay buffer should be minimized.

Specificity

Specificity is a phenomenon inherent to all immunoassays, which was evaluated by determination of the cross-reactivity based on the IC_{50} values of individual chemicals. In this work, the study was undertaken by adding various competitors of functional related analogues. The cross-reactivity rate for each compound is presented in Table 1. Of all the cross-reacting analogues, this assay exhibited a high cross-reactivity to ciprofloxacin (56%), but negligible cross-reactivity to other chemicals.

Correlations between concentrations spiked and determined in poultry samples

The accuracy of the analysis was studied by comparative detection of fortified ENR in poultry muscle samples, and the measurement correlations between the fortified and analyzed concentrations are shown in Figure 7. We can find that the data spots were nearly distributed on both
Figure 6. Effects of methanol on the icELISA inhibition curve.

Table 1. Cross-reactivities of FQs analogues in the ENR immunoassay.

<table>
<thead>
<tr>
<th>Analogue</th>
<th>IC₅₀ (ng/mL)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrofloxacin</td>
<td>0.8</td>
<td>100</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>1.43</td>
<td>56</td>
</tr>
<tr>
<td>Pefloxacin</td>
<td>>1600</td>
<td><0.05</td>
</tr>
<tr>
<td>Danofloxacin</td>
<td>>1600</td>
<td><0.05</td>
</tr>
<tr>
<td>Sarafloxacin</td>
<td>>1600</td>
<td><0.05</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>>1600</td>
<td><0.05</td>
</tr>
<tr>
<td>Lomefloxacin</td>
<td>>8000</td>
<td><0.01</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>>8000</td>
<td><0.01</td>
</tr>
<tr>
<td>Enoxacin</td>
<td>>8000</td>
<td><0.01</td>
</tr>
<tr>
<td>Flumequin</td>
<td>>8000</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Conclusions

We have prepared a high-quality polyclonal antibody with high specificity for ENR. The feasibility to apply this antibody in a competitive ELISA has been explored, and the results show that this heterologous icELISA has been shown to be capable of detecting ENR residue in muscle, and it can also be potentially applied in other matrices.

ACKNOWLEDGMENT

This research was supported by the National Natural Science Foundation of China (Grant No. U1204310).
Abbreviations:

- ENR, Enrofloxacin; icELISA, indirect competitive enzyme linked immuno sorbent assay; pAb, polyclonal antibody; BSA, bovine serum albumin; OVA, ovalbumin; FCA, Freund’s complete adjuvant; FIA, Freund’s incomplete adjuvant; GaRigG-HRP, the peroxidase-conjugated rabbit anti-mouse IgG; A\text{max}, maximum absorbance; IC\text{50}, half-maximum inhibition concentration; LOD, limit of detection; CR, cross-reactivity; EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide; NHS, N-hydroxysuccinimide; FQs, fluoroquinolones; PBS, phosphate buffer saline; TMB, 3,3',5,5'-tetramethylbenzidine; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography–mass spectrometry; pAb, polyclonal antibody.

REFERENCES

UPCOMING CONFERENCES

3rd Biotechnology World Congress, Dubai, UAE, 10 Feb 2014

7th Annual World Congress of Industrial Biotechnology (IBIO-2014), Dalian, China, 25 Apr 2014
Conferences and Advert

January 2014
National Conference on Frontiers in Biotechnology and Bioinformatics (NCFIBB2014), Navi Mumbai, India, 28 Jan 2014

February 2014
3rd Biotechnology World Congress, Dubai, UAE, 10 Feb 2014

International Biotechnology, Chemical Engineering and Life Science Conference (IBCELC), Honolulu, USA, 14 Feb 2014

April 2014
XI International Symposium on Plant Biotechnology, Jardines del Rey archipelago, Cuba, 9 Apr 2014

5th International Conference on Biotechnology and Food Science (ICBFS 2014), Erzurum, Turkey, 24 Apr 2014

7th Annual World Congress of Industrial Biotechnology (IBIO-2014), Dalian, China, 25 Apr 2014