ABOUT AJPP

The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals.

African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, pharmaceuticals, pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: ajpp@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The African Journal of Pharmacy and Pharmacology will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Sharmilah Pamela Seetulsingh- Goorah
Associate Professor,
Department of Health Sciences
Faculty of Science,
University of Mauritius,
Reduit,
Mauritius

Himanshu Gupta
University of Colorado- Anschutz Medical Campus,
Department of Pharmaceutical Sciences, School of Pharmacy Aurora, CO 80045,
USA

Dr. Shreesh Kumar Ojha
Molecular Cardiovascular Research Program
College of Medicine
Arizona Health Sciences Center
University of Arizona
Tucson 85719, Arizona,
USA

Dr. Victor Valenti Engracia
Department of Speech-Language and Hearing Therapy Faculty of Philosophy and Sciences, UNESP
Marilia-SP, Brazil

Prof. Sutiak Vaclav
Rovniková 7, 040 20 Košice,
The Slovak Republic,
The Central Europe,
European Union
Slovak Republic
Slovakia

Dr. B. RAVISHANKAR
Director and Professor of Experimental Medicine
SDM Centre for Ayurveda and Allied Sciences,
SDM College of Ayurveda Campus,
Kuthpady, Udupi- 574118
Karnataka (INDIA)

Dr. Manal Moustafa Zaki
Department of Veterinary Hygiene and Management
Faculty of Veterinary Medicine, Cairo University
Giza, 11221 Egypt

Prof. George G. Nomikos
Scientific Medical Director
Clinical Science
Neuroscience
TAKEDA GLOBAL RESEARCH & DEVELOPMENT CENTER, INC. 675 North Field Drive Lake Forest, IL 60045
USA

Prof. Mahmoud Mohamed El-Mas
Department of Pharmacology,

Dr. Caroline Wagner
Universidade Federal do Pampa
Avenida Pedro Anunciação, s/n
Vila Batista, Caçapava do Sul, RS - Brazil
Editorial Board

Prof. Fen Jicai
School of Life Science, Xinjiang University, China.

Dr. Ana Laura Nicoletti Carvalho
Av. Dr. Arnaldo, 455, Sáo Paulo, SP. Brazil.

Dr. Ming-hui Zhao
Professor of Medicine
Director of Renal Division, Department of Medicine
Peking University First Hospital
Beijing 100034 PR. China.

Prof. Ji Junjun
Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, China.

Prof. Yan Zhang
Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Canada.

Dr. Naoufel Madani
Medical Intensive Care Unit
University hospital Ibn Sina, Univesity Mohamed V Souissi, Rabat, Morocco.

Dr. Dong Hui
Department of Gynaecology and Obstetrics, the 1st hospital, NanFang University, China.

Prof. Ma Hui
School of Medicine, Lanzhou University, China.

Prof. Gu Huijun
School of Medicine, Taizhou university, China.

Dr. Chan Kim Wei
Research Officer
Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra, Malaysia.

Dr. Fen Cun
Professor, Department of Pharmacology, Xinjiang University, China.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu, India.

Prof. Ehab S. El Desoky
Professor of Pharmacology, Faculty of Medicine
Assiut University, Assiut, Egypt.

Dr. Yakisich, J. Sebastian
Assistant Professor, Department of Clinical Neuroscience
PR. China.

Prof. Dr. Andrei N. Tchernitchin
Head, Laboratory of Experimental Endocrinology and Environmental Pathology LEEPA
University of Chile Medical School, Chile.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu, India.

Dr. Yasar Tatar
Marmara University, Turkey.

Dr. Nafisa Hassan Ali
Assistant Professor, Dow Institute of Medical Technology
Dow University of Health Sciences, Chand bbi Road, Karachi, Pakistan.

Dr. Krishnan Namboori P. K.
Computational Chemistry Group, Computational Engineering and Networking,
Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-641 112 India.

Prof. Osman Ghani
University of Sargodha, Pakistan.

Dr. Liu Xiaoji
School of Medicine, Shihezi University, China.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author's full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types

Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process

All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJPP to publish manuscripts within weeks after submission.

Regular articles

All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b; Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $600 handling fee. Publication of an article in the African Journal of Pharmacy and Pharmacology is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2013, Academic Journals.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJPP, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Articles

Polymeric microparticles containing protein prepared using a controllable combination of diffusion and emulsification steps as part of the salting out procedure
González Álvarez Erika, Castro Ríos Rocío, Luna Olvera Hugo Alberto, González Horta Azucena, Galindo Rodríguez Sergio Arturo and Chávez Montes Abelardo

Screening of antibacterial activity of 20 Chinese herbal medicines in Yunnan
Screening of antibacterial activity of 20 Chinese herbal medicines in Yunnan

Activity exerted by a benzamide derivative on injury by ischemia/reperfusion in an isolated heart model
Rosas-Nexticapa Marcela, Figueroa-Valverde Lauro, Díaz-Cedillo Francisco, García-Cervera Elodia, Pool-Gómez Eduardo, Sarabia-Alcocer Bety and López-Ramos Maria

A pilot study on the novel effect of Neu-P11 on reducing the intraocular pressure in normotensive rabbits
Shou-min Xi, Ping-yuan Gong, Shi-peng Li, Wei-dong Yin and Moshe Laudon

Inhibitory effect of betulinic acid and 3β-acetoxybetulinic acid on rat platelet aggregation
Polymeric microparticles containing protein prepared using a controllable combination of diffusion and emulsification steps as part of the salting out procedure

González Álvarez Erika¹,², Castro Ríos Rocio³, Luna Olvera Hugo Alberto², González Horta Azucena¹, Galindo Rodríguez Sergio Arturo¹ and Chávez Montes Abelardo¹*

¹Department of Chemistry, Universidad Autónoma de Nuevo León, México.
²Institute of Biotechnology, College of Biological Sciences, Universidad Autónoma de Nuevo León, México.
³Department of Analytical Chemistry, College of Medicine, Universidad Autónoma de Nuevo León, México.

The key to success of proteins as biopharmaceuticals is to have in place an efficient drug delivery system that allows in gaining access to their target sites. A novel procedure of preparing ovoalbumin-loaded Eudragit® S100 microparticles, based on combining salting out and double emulsion-evaporation steps was developed. The ratio of a water miscible solvent (acetone and isopropanol) to a non-water-miscible solvent (chloroform) and salt addition to aqueous phase external were shown to be the primary determinants of size, polydispersity index (PI) and encapsulation efficiency (EE). Once optimized, using an organic phase of 3:0.5:1.5 (acetone:isopropanol:chloroform, v/v/v), further control was exerted using modification of acetone diffusion by alterations in MgCl₂ concentration. Diffusion control, using 75% w/w MgCl₂ solution, produced microparticles with a mean size of 26.3 µm, a good PI of 0.36 and 56.5 ± 0.5% EE. Electron microscopy showed the particles to be smooth and spherical. Ovoalbumin release studies using different buffers demonstrated immediate release in the buffer at alkaline pH. Calorimetry studies suggested that ovoalbumin existed in the microparticle as a molecular dispersion. Thus, Eudragit® S100 microparticles have great potential as oral carriers for delivery of proteins to the intestines.

Key words: Double emulsion/solvent evaporation, emulsification-diffusion, microparticles, protein encapsulation.

INTRODUCTION

Proteins and peptides exhibit the widest structural and functional variation and are integral to the regulation and maintenance of all biological processes. The greater biochemical and structural complexity of proteins compared with conventional drug-based pharmaceuticals makes formulation design for delivery of therapeutic proteins a very challenging and difficult task.

During the last two decades, parenteral drug delivery
systems based on polymeric microparticles (MP) have extensively been investigated (Liechty et al., 2010). Although the microencapsulation of peptides has led to several commercially available products (Hougaard et al., 2013), the encapsulation of proteins still presents considerably difficulties (Aamir and Ahmad, 2010; Wieber et al., 2010).

Polymeric drug-loaded MP are colloidal systems, typically 1 to 1000 µm in diameter, with a therapeutic payload entrapped, adsorbed or chemically coupled to an orbicular polymer matrix (Licciardi et al., 2012). Since the microencapsulation procedure offers a large number of possibilities for modifications, the success of this technology strongly depends on the adaptation of process variables, including polymer composition and concentration, rates of solvent diffusion, drug loading, phase ratio of emulsion system, emulsion stability, homogenization techniques and temperature (Chaisri et al., 2009; Sartori et al., 2013; Ogawa et al., 1988).

The multiple emulsion evaporation method differs fundamentally from diffusion in that the main phases stay immiscible at all times, being removed later by evaporation. This, biphasic emulsion systems (W/O/W) have been described and used to incorporate water-soluble drugs, such as proteins (Joshi et al., 2013; Xia et al., 2013) and propranolol HCl (Ubricht et al., 2004). However, several difficulties are still encountered when using this technique, such as poor encapsulation efficiency of the drug and high polydispersity index (PI) (Win and Fend, 2005). PI is a unit-less expression for the tightness of the particle size distribution. Theoretically, PI is zero for a monodisperse colloidal suspension, however standard latex particles with a polydispersity index of about 0.05 are practically monodisperse. The values greater than 0.5 indicate a very broad size distribution (Jain et al., 2004). In many respects, the salting out-diffusion procedure, as first introduced by Allemann et al. (1992) and modified by Konan et al. (2002), draws on aspects of the method described earlier. The addition of sufficient electrolyte is used for separating an aqueous phase from an organic phase (usually acetone), the two being fully miscible before any intervention or for at least to minimize such drug partitioning between the two miscible phases. Controlled dilution of the electrolyte content thereafter gives rise to particle formation, as acetone diffuses from the organic droplets.

The aim of the present study was to evaluate the influence of certain physicochemical properties of the aqueous and organic phases used during protein loaded-MP preparation, and their effect on the characteristics of polymeric microparticles produced by the combination of double emulsion solvent diffusion-evaporation and salting out methods, to obtain particles with a size > 20 µm to allow the encapsulation of biological interest proteins. In line with our laboratory internal focus, the release profiles were performed at different conditions, slightly acidic, neutral and alkaline pH as these are characteristic media for the release of insecticidal proteins.

MATERIALS AND METHODS

Chemicals

Microparticles were prepared from Eudragit® S100 (Helm) and stabilized using poly (vinyl alcohol) (PVA, Mowiol 4-88, Clarifiant®). Ovoalbumin (OA, lyophilized powder, ≥ 98% agarose gel electrophoresis, Sigma-Aldrich, St. Louis, MO). Magnesium chloride (Merck, Naucalpan de Juarez, Estado de México) was used as the salting out agent. All others reagents, such as acetone, isopropanol and chloroform were of appropriate laboratory grade (analytical grade, M TEDIA high purity solvents) and used without further purification.

Microparticles preparation and purification

Ovoalbumin (OA) was identified through the determination of ultra violet (UV) absorption maximum (Genesys 10UV scanning, Thermo scientific, Madison Wisconsin). Bradford based method was used for determination of OA, using protein estimation. The ovoalbumin-Eudragit® S100 microparticles (OA-MP) were prepared using controllable combination of diffusion and emulsification steps as part of the salting out procedure. Briefly, the inner aqueous phase (IAP) with 0.3 ml aqueous solution of OA (0.33%, w/v) was added to a 100 mg of Eudragit® S100 previously dissolved in 5 ml of an organic phase (OP), comprising different volume ratios of acetone (AC), chloroform (CH), and isopropanol (ISP) (Deepti et al., 2004: Liu et al., 2010). The IAP was then emulsified with the OP by mechanical stirring (EUROSTAR power-b, IKA® WERKE), for an optimized time period. The primary emulsion (W/O) was then immediately emulsified with 13 ml external aqueous phase (EAP) of PVA (optimized percentage (w/w) in MgCl2 aqueous solution) by mechanical stirring (EUROSTAR power-b, IKA® WERKE) to an optimized speed, on an ice bath. Later, the organic solvent was evaporated under reduced pressure, in order to obtain an aqueous suspension of OA-MP. OA-MP were then separated from the bulk aqueous phase by centrifugation at 1.630 g (rotor F1202, Beckman Coulter Allegra 64R Centrifuge, Fullerton, California) for 10 min at 4°C. After subsequent washing and centrifuged with cold distilled water, the pellet was lyophilized (LYPH-LOCK6, Labconco, Kansas City, USA). Optimization encapsulation efficiency was determined along with the measurement of particle size, PI and particle shape of different formulations.

First, EAP volume and MgCl2 6H2O concentration was modified in order to determine the effect on size. Further, variations in the organic phase composition where the ratio volume of AC:ISP:CH was 1:0.5:3.5; 2:0.5:2.5 and 3:0.5:1.5, in one-part incremental steps, were used. Further, stirring speed was needed to be optimized in order to obtain a sufficiently high yield of microparticles, with a desired size distribution and acceptable encapsulation efficiency. The stirring speeds used were 100, 300 and 500 rpm. The microparticles were produced at different PVA concentrations of 1.2 and 3% (w/w) in order to determine the effect of PVA concentration on size and encapsulation efficiency.

Particle size measurement

The size and shape of OA-MP were estimated using optical microscopy (Micromaster® Fisher Scientific, with the software:
Table 1. Mathematical equations for the models used to describe release characteristics of OA from MP

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero order kinetics</td>
<td>(Q_t = Q_0 + K_0t)</td>
</tr>
<tr>
<td>First order kinetics</td>
<td>(Q_t = \log Q_0 + K_0t)</td>
</tr>
<tr>
<td>Higuchi</td>
<td>(Q_t = Q_0 + K_{H0}(t)^{1/2})</td>
</tr>
<tr>
<td>Korsmeyer-Peppas</td>
<td>(Q_t = K_{MP}t^{1/2})</td>
</tr>
</tbody>
</table>

Table 2. Initial conditions of polymeric microparticles formulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume ratio of ACT:ISP:CH(mL)</td>
<td>2.0: 0.5: 3.5</td>
</tr>
<tr>
<td>Concentration of PVA in EAP % w/w</td>
<td>3.0</td>
</tr>
<tr>
<td>Concentration of MgCl2 in EAP % w/w</td>
<td>15-75</td>
</tr>
<tr>
<td>Volume of EAP(mL)</td>
<td>10</td>
</tr>
</tbody>
</table>

Westover Digital MCD Model 2300). Formulation and dried microparticles re-dispersed in water were spread into glass slides. Measurements of 100 consecutive particles were observed to microscope, were carried out at 25°C, each sizing determination done in triplicate and an average particle size (intensity average) expressed as the mean diameter ± standard deviation (SD). The PI was calculated by dividing standard deviation with average particle size (Jain et al., 2004). For external morphology, the OA-MP was coated with gold, using sputter coater, and the sample was randomly analyzed using a scanning electron microscope (SEM) (LEO-435VP, Cambridge, UK). The effect on particle size before and after drying was evaluated only by the optimized formulation.

Estimation of encapsulation efficiency

OA- MP were dissolved in AC and centrifuged to remove the supernatant because the acetone led to the OA precipitation. Then, the pellet was suspended in carbonate buffer 50 mM at pH 10.3 and analyzed using UV absorption spectroscopy at 583 nm, using appropriate calibration and blanking procedures with the Bradford method. Measurements were done in triplicate; the encapsulation efficiency was calculated using the ratio of the mass of protein determined analytically to the theoretical protein loading. Encapsulation efficiency was calculated as:

\[
\text{Encapsulation efficiency (\%)} = \frac{\text{Actual protein loaded (mg)}}{\text{Theoretical protein loading (mg)}}
\]

"In-vitro" release

The in vitro release profile of OA-MP was determined. Aliquots of 0.5 ml of the formulations were suspended separately in volumetric flasks containing dissolution media (pH 5.0, 7.4, or 10.3; acetate, phosphate or carbonate buffer 50 mM, respectively). Volumes were made up to 2 ml with each buffer and the flasks were incubated at 25°C under 100 cycles min⁻¹ shaking. At various time intervals, flasks were removed, one at a time, and the contents were centrifuged at 33,250 g (rotor F1202, Allegra® 64R) for 25 min at 4°C. The supernatants were then used to determine the released OA by the Bradford method (n = 3; mean ± standard deviation). To analyze the in vitro release data, various kinetic models were used to describe the release kinetics. The zero order rate describes the systems where the drug release rate is independent of its concentration (Hadjioannou et al., 1993). The first order describes the release rate is concentration dependent (Bourne, 2002). Higuchi (1963) described the release of drugs from insoluble matrix as a square root of time dependent process based on Fickian diffusion.

Table 1 shows the equations, where \(Q_t \) is the amount of drug released in time, \(Q_0 \) is the initial amount of the drug in table. The following equations were made: cumulative (\%) protein release versus time (Zero order kinetic model); log cumulative of protein (\%) release versus square root of time (Higuchi model) and log cumulative protein (\%) release versus log time (Korsmeyer model) (Korsmeyer et al, 2010). Korsmeyer peppas et al. derived a simple relationship which described drug release from polymeric system (Peppas, 1983). To find out the mechanism of drug release, first 60% drug release data was fitted in Korsmeyer model (Table 1).

Hence, the data of the dissolution profiles were summarized numerically and 95% confidence intervals for the differences between pHSs in the mean dissolution profiles at each dissolution time point were evaluated using statistical package for social sciences (SPSS) Statistics 17.0 program.

Differential scanning calorimetry

The thermal characteristics of OA powder, Eudragit® S100, physical mixture of OA and Eudragit® S100 and OA-MP were determined using a differential scanning calorimeter (DSC-40, NETZSCH). Samples were crimped in a standard aluminum pan and heated from 40 to 330°C, at a heating rate of 10°C per minute, under constant purging of nitrogen at 30 ml min⁻¹.

RESULTS

Particle size measurement and determination of encapsulation efficiency

The effect of formulation variables on size, IP and encapsulation efficiency of OA-MP prepared by controllable combination of diffusion and emulsification steps as part of the salting out procedure was determined. Table 2 shows the initial conditions of OA-MP. EAP used was normal MgCl2 aqueous solution, to prevent the diffusion of any solvent to the aqueous phase. Different amounts of MgCl2 6H2O (15, 35 and 75, w/w) increments were studied (Figure 1), while keeping the organic phase composition constant (AC: ISP: CH, 2.0:0.5:2.5, v/v/v). Therefore, the formulation with 75% w/w MgCl2 6H2O was chosen to evaluate tensio-active concentration effect because it showed a PI of 0.38, indicating a less dispersion in particle size. Figure 2 shows the effect of PVA concentration on the particle size. It was observed that when PVA concentration was reduced, the particle size also decreased. Once determined that the MgCl2 6H2O at 75% (w/w) and 3% (w/w) PVA are required to allow the formation of the MP, the influence of the composition of OP was assessed in the incorporation of the model protein through increases in the proportion of
acetone. The results in Figure 3 show that MP properties, such as PI, can be improved by alterations in this diffusion rate once the solvent ratio in the organic phase has been optimized, as done in Table 3.

Variations in the ratio of solvents in OP were shown to have effect on the observed OA encapsulation efficiency, which was greater than 13 and less than 35%. The results from this part of the work indicated that a ratio of 3:0.5:1.5 (AC:ISP:CH) emulsified in 10 ml 3% (w/w) PVA and 75% (w/w) MgCl₂ 6H₂O of EAP with 300 rpm of mechanical stirring produced MP with a mean particle size of 9.7 ± 3.4 μm, PI of 0.35 and the encapsulation efficiency was 19.3 ± 1.6%. Although this formulation presents low encapsulation efficiency percentage, no presence of aggregates was shown (Table 3 and Figure 3). The volume of EAP was increased from 7 to 13 ml, the encapsulation efficiency and particle size also increased (Table 4). With the decreasing on PVA concentration from 3 to 1% (w/w), the surface tension increased and it was found that the particle size also increased (from 10 to 26 microns), whereas the encapsulation efficiency remained around 56% (Figure 4 and Table 5) with a speed of 300 rpm.

Clearly, some measure of control is needed to improve the particle size distribution, probably due to affording more speed for the mechanical stirring process to produce a narrower size distribution of emulsified droplets, as observed in Table 5.

Morphology of polymeric microparticles

The external morphology and shape of the optimized formulation were studied by scanning electron microscopy (SEM) (Figure 5), which revealed fairly spherical OA-MP with a smooth surface. A student t-test was made to analyze the influence of drying on particle size of an optimized formulation. The drying process has no effect on the morphology and size of OA-MP (n = 3; p < 0.05). It is clear that the shape of OA-MP is obtained and can be assumed to be spherical with smooth surfaces (Figure 5).

In vitro release profile

The *in vitro* release profile of OA-MP was performed to
Table 6. Mathematical Model used to describe the drug release

<table>
<thead>
<tr>
<th>pH buffer</th>
<th>Zero order kinetics</th>
<th>First order kinetics</th>
<th>Higuchi model</th>
<th>Korsmeyer-Peppas model</th>
<th>Type of transport</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regression co-efficient (R²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>0.807</td>
<td>0.715</td>
<td>0.886</td>
<td>0.897</td>
<td>0.703</td>
</tr>
<tr>
<td>7.4</td>
<td>0.720</td>
<td>0.639</td>
<td>0.742</td>
<td>0.987</td>
<td>0.682</td>
</tr>
<tr>
<td>10.3</td>
<td>0.835</td>
<td>0.833</td>
<td>0.841</td>
<td>0.814</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Figure 1. Effect on microparticle size distribution profiles by MgCl₂ 6H₂O in EPA.

Figure 2. Effect on microparticle size distribution profiles by changes in PVA concentration of EPA.

Determine the effect of pH on the release of the protein. Figure 6 shows that the formulation released about 95% of the protein model after 10 min in the dissolution medium having pH of 10.3. In contrast, at pH 5, it showed a gradual release, exhibiting 21% of release at 10 min. The kinetic analysis of the in vitro release data of OA from the prepared Eudragit® S100 MP are presented in Table 6. According to the determination coefficients (R²), the in vitro release data were in favor of Korsmeyer Peppas model (pH 7). Fast kinetic release of OA from MP at alkaline pH was followed by optical microscopy which showed the dissolution of the particles (Figure 7). Finally, we performed a statistical analysis to compare the releases at different values between pH 5.0 and 10.3.

Analysis of variance (ANOVA) showed that there was a significant difference (p-value < 0.05), thus confirming that the release depends on the environment in which the MP are exposed.

Differential scanning calorimeter (DSC) analysis

The DSC technique is one of the most convenient methods for investigating the compatibility of polymer blends; therefore it was used to evaluate thermodynamic compatibility between ovoalbumin and Eudragit® S100 in...
The OA-MP, based on crystalline melting temperature and the glass transition temperature. Figure 8 depicts the obtained DSC thermograms. In the Eudragit® S100; an endothermic peak at 217.9°C was observed as a melting point. The raw material OA showed a sharp endothermic peak at 92.5°C that corresponded to its melting point, indicating its crystalline nature. A physical mixture of the protein with polymer resulted in the decrease in such a fusion peak.

DISCUSSION

Particle size measurement and determination of encapsulation efficiency

The effect of formulation variables on size, IP and encapsulation efficiency of OA-MP prepared by controllable combination of diffusion and emulsification steps as part of the salting out procedure was determined. Maintaining some diffusion control is advantageous as at all concentrations of MgCl₂ 6H₂O, low polydispersity is evident with 75% (w/w) MgCl₂ 6H₂O (Figure 1). With no modulating control over acetone diffusion (15 and 35% w/w MgCl₂ 6H₂O) the polydispersity was found to be excessive (> 0.5) because there were observed particles with sizes > 200 microns (data not shown). Thus, the rate of acetone diffusion is controlled primarily by the concentration of MgCl₂ 6H₂O. On the other hand, the size of the droplets was dependent mainly on the amount of PVA, mechanical energy used to form the emulsion, and the volume of EAP. PVA is a popular stabilizer for the production of polymeric MP (Vandervoort and Ludwig, 2002), whereby its hydrocarbon regions adsorb strongly on the surface of the MP via hydrophobic bonding with Eudragit® S100. AC diffusion from nascent particles has been shown to precipitate PVA and in turn, acts as an effective stabilizing agent around the droplet and restricting aggregation (Murakami et al., 1997). At a concentration of 1% (w/w), particles < 1 micron were obtained (data not...
shown), and a polymer aggregates possibly because the interfacial tension resulted in low globules formation, because the PVA concentration was insufficient to stabilize the globules. The formulation of PVA 3% (w/w) presented a size around 16.2 ± 6.1 microns with no aggregates (with a PI of 0.38), allowing globules stability. This result is based on the fact that the acetone fraction was able to diffuse to EAP which is instrumental in forming a shell around the quasi-MP during the former part of the particle assembly.

In Table 3 and Figure 3, it can be observed that as the AC ratio increases in the organic phase, the particle size decreased probably due to the solvent mixture having a low interface tension with the aqueous phase, allowing more stable globules. As Eudragit® S100 is solubilized by the solvent mixture, the ratio of the three solvents was
critical. Therefore, removing a relatively small volume of AC precipitates the polymer (Eudragit® S100) and a coacervate phase may not actually be formed. This fast precipitation impacts the morphology and size of the capsules produced (Atkin et al., 2004; Murakami et al., 1997). It could be mentioned that the organic phase composition influenced the encapsulation efficiency, but this effect was minimal on the PI. Despite low percentage encapsulation efficiency, formulation with the best PI (OP composed by AC: ISP: CH (3.0:0.5:1.5, v/v/v)) from Table 3 was chosen to evaluate the influence of EAP volume on particle size and encapsulation efficiency.

With the decrease on volume of EAP, the EE and particle size also increased. Less effective stirring (300 rpm) and accumulation of internal phase globules generated an emulsion with larger globules and increased the particle size (Zolfaghanan and Mohammadpour, 2009). Furthermore, it was observed that the effect on particle size by EAP volume would not yield to obtain particles > 20 microns (Table 4). However, a formulation was obtained with a PI and acceptable encapsulation efficiency percent at a volume of 13 mL of EAP (0.35 and 57.5 ± 8.9, respectively). Due system behaved as an emulsion, in order to increase particle size it was decided to decrease the concentration of PVA.

Table 5 shows that preparation at a high speed (500 rpm) had submicron-sized particles and polymer aggregates (data not shown), possibly because tosnoactive concentration was not enough to prevent coalescence among yielded globules, giving origin to a polymer film. On the otherhand, low speed stirring (100 rpm) yielded higher polymer aggregates and less particle production because the energy provided during emulsification was not enough to promote the formation of a disperse system (Makame et al., 2005). This can be sustained by the polydispersity values, which showed t-value of ≥ 0.4, indicating heterogeneity in particle size or the presence of polymer aggregates. The PI and encapsulation efficiency were acceptable for the formulation produced at a speed of 300 rpm. A lack of diffusion control gives rise to a bimodal distribution with particle sizes around 15 µm (Boury et al, 1995; Shakesheff et al., 1997).

Manu Sharma et al. (2011) encapsulated papain in Eudragit® S100 (and other polymers) microparticles using a W/O/W emulsion solvent evaporation and observed an encapsulation efficiency of 82.35%. In the present experiment, the best encapsulation efficiency of OA was 56.5%. The higher drug loading observed in the study of Manu Sharma et al. (2011) appears to be due to the use of a higher polymer: protein ratio compared with the present study (100: 3.5 against 100:10, respectively).

In vitro release profile and mechanism of drug release

The release may be due to dissolution and diffusion, because the polymer (Eudragit® S100) is pH-dependent (dissolves at pH > 7.0). It could be demonstrated that the alkaline medium promotes the almost immediate release of OA. Furthermore the isoelectric point for OA (4.7) contributes too, because as the polymer, OA exists in anionic form at the alkaline pH (West et al., 1974; Palmieri et al., 2000; Bykov et al., 2000). To investigate the kinetics and mechanism of drug release, the release data were fitted to zero order, first order, Higuchi and Korsmeyer-Peppas models. The ‘n’ value that can be obtained from the slope of a plot of log Mt/M∞ versus log time (Korsmeyer-Peppas model) is indicative of drug release mechanism. If n is 0.45 or less, the release mechanism follows Fickian diffusion, higher values (0.43 < n < 0.85) for mass transfer follow a non-Fickian model (anomalous transport), where release is controlled by a combination of diffusion and polymer relaxation. When n reaches a value of 0.85 or above, the mechanism of drug release is regarded as case-II transport or super case-II transport which means the drug release rate does not change over time and involves polymer relaxation and chain disentanglement (Cox et al., 1999; Harland et al., 1988).

The values of n were > 0.43 and < 0.85, indicating non-Fickian (anomalous) transport for the investigated formulation in these pH. Thus, it was proposed that these formulations delivered their active ingredient by coupled diffusion and relaxation. Whereas the kinetic release of OA from MP at alkaline pH was not fitted to mathematical models used and fast release was supported by optical microscopy showing the dissolution of the particles at less than 10 min of exposure (Figure 7).

DSC analysis

OA crystals still exist in physical mixture (Bharate et al., 2010; Pignatello et al., 2001). This type of interaction was previously observed in the physical mixture of piroxicam with Eudragit® S100 and diflunisal with Eudragit RL 100 (Pignatello et al., 2001; Maghsoodi et al., 2010). However, for microparticles, the intensity of melting peak of OA decreases considerably. The reduction of the protein endothermic peak in the microparticles suggested that OA might be imbedded into Eudragit® S100 and existed in an amorphous state in the microparticles, indicating a thermodynamic compatibility between OA and Eudragit® S100 (Hu et al., 2011). In this way, the intermolecular interaction between protein molecules is favored.

Conclusion

Ovoalbumin was successfully encapsulated in enteric microparticles by controllable combination of diffusion and emulsification steps as part of the salting out procedure, optimizing the various formulation parameters...
in order to attain maximum encapsulation efficiency and a spherical shape, with an almost monodispersed particle size distribution and an optimum in vitro release profile. The release profiles for the formulations allowed pH-dependent release of ovalbumin in alkaline pH.

Eudragit® S100 particles disintegrated and showed complete release of ovalbumin in the pH environment of the ileum intestine within five minutes. Thus, Eudragit® S100 particles have great potential as oral carriers for delivery of proteins to the small and large intestines to facilitate their digestion.

Abbreviations

REFERENCES

Screening of antibacterial activity of 20 Chinese herbal medicines in Yunnan

Ding Yan-Jiao¹², Zuo Guo-Ying¹*, Hao Xiao-Yan², Wang Gen-Chun¹ and Han Jun³

¹Research Center for Natural Medicines, Kunming General Hospital, PLA, Kunming 650032, China.
²College of Pharmacy, Guiyang Medical College, Guiyang 550004, China.
³Yunnan Traditional Chinese Medical College, Kunming 650500, China.

Accepted 17 June, 2013

The 80% ethanol extracts from 20 Chinese herbal medicines collected in Yunnan Province, China, were screened for antibacterial activity against Staphylococcus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (EC) and Pseudomonas aeruginosa (PA), including antifungal activity against Candida albicans (CA) by the agar hole diffusion test. The extracts were prepared through macerating at room temperature and hot refluxing procedures. 19 of the 20 extracts showed effects with different potency and their inhibition zone diameters (IZD) ranged from 9 to 27 mm. The extracts from Psychotria henryi Levl and Marsdenia tinctoria R. Br. (maceration and reflux extraction) were the most active against both SA and MRSA, with mean IZDs = 19.7 to 22.0 mm. The anti-SA and MRSA active extracts were further determined for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) by serial dilution with a standard broth microdilution method. 12 extracts showed effects on both SA and MRSA strains with MICs/MBCs ranges among 32 to ≥1024 / 64 to ≥1024 mg/L, respectively. P. henryi, M. tinctoria and Sapium baccatum Roxb also showed inhibition against EC, PA and CA strains, and displayed a broad spectrum of antimicrobial activities.

Key words: Chinese herbal, methicillin-resistant Staphylococcus aureus (MRSA), minimum inhibitory concentrations (MIC).

INTRODUCTION

Since methicillin-resistant Staphylococcus aureus (MRSA) occurred in early 1961 (Jevons, 1961), it has become a troublesome pathogen responsible for serious infections owing to its resistance to a large group of antibacterial agents, resulting in high morbidity and mortality. It is resistant not only to β-lactam antibiotics, but also to other antibacterial groups, such as fluoroquinolones, tetracyclines, macrolides, lincosamides and aminoglycosides. Some strains that are partially or fully resistant to vancomycin have been found (Pantosti and Venditti, 2009). The search for novel drugs to combat MRSA infection is urgently needed.

Traditional Chinese medicine (TCM) has accounted for a wealth of health needs over thousands of years in China (The Compiler Group, 2009). A great number of plant species have been used as healing herbs in TCM for the treatment of infectious diseases, such as skin ulcers, cold, diarrhea, pneumonitis and tuberculosis, etc (Jiangsu New Medical College, 1977; Sima et al., 2012; Jinous and Fereshteh, 2012; Muhammad et al., 2012). There is increasing interest in researching Chinese herbal drugs for application as antibacterial agents (Zuo et al.,...
Table 1. The antibacterial agent-susceptibility testing results of MRSA strains.

<table>
<thead>
<tr>
<th>MRSA Strain</th>
<th>Resistant (R)</th>
<th>Intermediate (I)</th>
<th>Susceptible (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA092</td>
<td>PEN, OXS, AMP, AZM, CFZ, CAT, FUR, LEV</td>
<td>None</td>
<td>VAN, GAT, PIP/T, FOS, LNZ</td>
</tr>
<tr>
<td>MRSA098</td>
<td>PEN, OXS, CFP/SU, LEV, CLI, AZM</td>
<td>GM</td>
<td>VAN, FOS, LNZ</td>
</tr>
<tr>
<td>MRSA111</td>
<td>PEN, OXS, FUR, LEV, ERY, PIP/T, CTX V</td>
<td>None</td>
<td>VAN, LNZ</td>
</tr>
</tbody>
</table>

For the sake of finding more anti-MRSA plants, we herein report the screening of 20 southern Yunnan medicinal plants for in vitro inhibition against clinical MRSA isolates, including their effects on pathogens of Escherichia coli, Pseudomonas aeruginosa and Candida albicans.

MATERIALS AND METHODS

Bacterial strains

Strains of S. aureus (SA, ATCC25923), E. coli (EC, ATCC25922), P. aeruginosa (PA, ATCC27853), C. albicans (CA, ATCCY0109) and antibiotic susceptibility disks were provided by the National Institute of Control of Pharmaceutical and Biological products (NICPBP, Beijing, China). MRSA strains were clinical isolates from critically ill patients in Kunming General Hospital (KGH) (Table 1). Pathogen purification and identification (including colonial morphology, gram staining and coagulase testing) were conducted in our clinical microbiology laboratory and further confirmed by standard cefotixin disk diffusion test following Clinical and Laboratory Standards Institute (CLSI, 2007) standard procedures. The tested MRSA strains were multi-drug resistant to β-lactams, aminoglycosides, fluoroquinolones and macrolides, and they were susceptible to vancomycin (Table 2).

Plants

The selected plants were collected in Xishuangbanna of Yunnan Province in August, 2011. They were identified at the Botany Department, Kunming Institute of Botany (KIB), the Chinese Academy of Sciences. The voucher specimens were preserved at the herbarium of KIB (Table 2).

Media used

Standard Mueller-Hinton agar and broth (MH-A and MH-B), and Sabouraud agar and broth (S-A and S-B) (Tianhe Microbial Agents Co., Hangzhou, China) were used as the bacterial and fungal culture media, respectively.

Extract preparation

Two types of 80% ethanol extracts were prepared from the 20 Southern Yunnan plants by the macerating extraction at room temperature (25°C) and the hot reflux extraction (85°C), respectively as the follows: An amount (50 g, each) of powdered air-dried aerial parts of the plant material was macerated with 80% ethanol (150 ml) for one week, filtered and the residue was further macerated twice with the same amount of solvent overnight and filtered after sonication for 30 min. The filtrates were combined and the solvent was evaporated at 40°C under reduced pressure to afford each of the plant extracts. Another amount (50 g, each) of the same plant material was refluxed with 80% ethanol for two hours, filtered and the residue was further refluxed twice with the same amount of solvent and filtered. The filtrates were combined and the solvent was evaporated at 40°C in vacuum to afford each of the plant extracts (Table 3).

Susceptibility test

The ethanol extracts of the 20 plants were initially subjected to susceptibility test according to the agar diffusion method on MH-A (for the bacteria) or S-A (for C. albicans) plates (Zuo et al., 2008). Briefly, crude extracts were prepared at concentrations of 50 mg/ml in dimethylsulfoxide (DMSO). The microbial suspension was firstly plated onto the agar plates with inoculums of 1.5 x 10^5 CFU/ml for the bacteria and 5 x 10^5 CFU/ml for C. albicans. Then, holes of 6.0 mm diameter each in the agar plates were punched with a sterilized hole-puncher. The samples were pipetted into the holes with no overflowing. The plates were incubated at 35°C for 24 h and measured and the inhibition zone diameters (IZDs) recorded. For every experiment, a sterility check (DMSO and medium), negative control (DMSO, medium and inoculums) and positive antibacterial control (vancomycin) were included (Table 3). All experiments were performed in triplicate.

The samples of IZDs > 12 mm against standard S. aureus (SA) were subjected to assay of their IZDs against MRSA (Table 4). The subsequent samples with IZDs > 12 mm against one of the MRSA strain (MRSA111) were further subjected to assay of their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for MRSA by standardized broth microdilution techniques (Zuo et al., 2008). Briefly, the starting inoculums were 5 x 10^5 CFU/ml. The 96-well plates were incubated at 35°C for 24 h according to CLSI guidelines (CLSI, 2006, 2007). All experiments were performed in duplicate, with concentrations ranging up to 2048 mg/L. For the MBC assays, 0.1 ml aliquots from drug dilution wells with no visual growth inhibition were plated onto MH-A. The lowest drug concentration that yielded three or fewer microorganism colonies was recorded as the MBC (NCCLS, 1999). Vancomycin (El Lilly Japan K.K., Seishin Laboratories) was also used as a positive control anti-MRSA agent (Table 5).
Yun-Jiao et al. 2861

Table 2. Species of the 20 medicinal plants.

<table>
<thead>
<tr>
<th>No</th>
<th>Species</th>
<th>Family</th>
<th>Specimen number</th>
<th>Folk use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aphanamixis grandifolia Bl.</td>
<td>Meliaceae</td>
<td>HITBC7568</td>
<td>Rheumatism and analgesia</td>
</tr>
<tr>
<td>2</td>
<td>Blumea densiflora DC.</td>
<td>Composite</td>
<td>KUN3413</td>
<td>Rheumatism and analgesia</td>
</tr>
<tr>
<td>3</td>
<td>Cinnamomum bejolghota (Buch.-Ham.) Sweet</td>
<td>Lauraceae</td>
<td>KUN48</td>
<td>Ulcer, dysmenorrheal, rheumatism and ostalgia, injuries from falls</td>
</tr>
<tr>
<td>4</td>
<td>Citrus medica L.</td>
<td>Rutaceae</td>
<td>HITBC5184</td>
<td>Dyspepsia, cough</td>
</tr>
<tr>
<td>5</td>
<td>Croton tiglium L.</td>
<td>Euphorbiaceae</td>
<td>KUN51</td>
<td>Expelling phlegm, anthelminthic</td>
</tr>
<tr>
<td>6</td>
<td>Duranta repens L.</td>
<td>Verbenaceae</td>
<td>KUN662</td>
<td>Malaria, subduing swelling and detoxicating</td>
</tr>
<tr>
<td>7</td>
<td>Fructus piperis Nigri</td>
<td>Piperaceae</td>
<td>KUN5478</td>
<td>Dissolving phlegm and detoxicating, dyspepsia, diarrhea, epigastralgia</td>
</tr>
<tr>
<td>8</td>
<td>Hedyotis capitellata Wall. ex G. Don</td>
<td>Rubiaceae</td>
<td>KUN1217</td>
<td>Cold and rheumatism, malaria, fractures</td>
</tr>
<tr>
<td>9</td>
<td>Heracleum candidans Wall. ex DC</td>
<td>Umbelliferae</td>
<td>KUN12451</td>
<td>Asthma, cough and cold, chronic bronchitis, stomach ache, rheumatalgia, injury from fall</td>
</tr>
<tr>
<td>10</td>
<td>Illicium simonsii Maxim.</td>
<td>Magnoliaceae</td>
<td>IBSC125</td>
<td>Ulcer, anthelminthic</td>
</tr>
<tr>
<td>11</td>
<td>Lignum santali Albi</td>
<td>Santalaceae</td>
<td>HITBC5636</td>
<td>Pneumonitis, cough and asthma, nausea and vomiting, ecchymoma, paralysis</td>
</tr>
<tr>
<td>12</td>
<td>Marsdenia tintoria R. Br.</td>
<td>Asclepiadaceae</td>
<td>KUN722</td>
<td>Epigastralgia, hepatomegaly, rheumatism and osteodynia</td>
</tr>
<tr>
<td>13</td>
<td>Millettia pachycarpa Benth.</td>
<td>Leguminosae</td>
<td>YFS1005</td>
<td>Injury from fall, fracture, acute gas troenteritis</td>
</tr>
<tr>
<td>14</td>
<td>Nerium indicum Mill.</td>
<td>Apocynaceae</td>
<td>HITBC383</td>
<td>Cardiotonic and dieresis, expelling phlegm, analgesia, removing blood stasis, epilepsy</td>
</tr>
<tr>
<td>15</td>
<td>Psychotria henryi Levl</td>
<td>Rubiaceae</td>
<td>KUN6642</td>
<td>Strengthening spleen and dehumidify, regulating vital energy and analgesia</td>
</tr>
<tr>
<td>16</td>
<td>Radix curcumae Wenyujin</td>
<td>Zingiberaceae</td>
<td>KUN753</td>
<td>Menoxenia, jaundice, hemuresis, epilepsy</td>
</tr>
<tr>
<td>17</td>
<td>Rumulus uncariae Macrophyllae cum Uncis</td>
<td>Rubiaceae</td>
<td>KUN14506</td>
<td>Headache, serious dysentery, convulsion and hypertension</td>
</tr>
<tr>
<td>18</td>
<td>Sapium baccatum Roxb.</td>
<td>Euphorbiaceae</td>
<td>KUN270</td>
<td>Menoxenia, dyspepsia, pa-leng</td>
</tr>
<tr>
<td>19</td>
<td>Scutellaria discolor Wall. ex Benth.</td>
<td>Lamiaceae</td>
<td>KUN688</td>
<td>Tymanitis, diminish inflammation, rheum, fever, tuberculosis, injury from fall</td>
</tr>
<tr>
<td>20</td>
<td>Toona ciliata Roem.var.pubescens* (Franch.) Hand.-Mazz.</td>
<td>Meliaceae</td>
<td>PE53414</td>
<td>Tinea, chronic diarrhea, chronic dysentery, uterine bleeding</td>
</tr>
</tbody>
</table>

RESULTS

The antibacterial agent susceptibility spectrum of the tested three MRSA strains is listed in Table 1. They were used for anti-MRSA evaluation. The 20 Yunnan medicinal plants are shown in Table 2, together with their plant families, specimen numbers and folk uses. The initial antimicrobial screening results (IZDs) of 50 mg/ml ethanol extracts of the 20 plant extracts against standard SA, that is, methicillin-susceptible *Staphylococcus aureus* (MSSA, ATCC25923) and other standard strains of EC, PA and CA are shown in Table 3. 19 of the 20 extracts showed effects with different potency and their IZDs ranged from 9 to 27 mm.
Table 3. Antimicrobial activities of 20 plant ethanol extracts (IZD unit: mm).

<table>
<thead>
<tr>
<th>Species</th>
<th>Extraction yield (%)</th>
<th>SA</th>
<th>EC</th>
<th>PA</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. grandifolia (macerating)</td>
<td>6.68</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A. grandifolia (reflux)</td>
<td>6.53</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B. densiflora (macerating)</td>
<td>5.51</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B. densiflora DC. (reflux)</td>
<td>3.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. bejolghota (macerating)</td>
<td>6.20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>C. bejolghota (reflux)</td>
<td>7.68</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>C. medica (macerating)</td>
<td>9.95</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. medica (reflux)</td>
<td>41.42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. tigillum (macerating)</td>
<td>4.31</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. tigillum (reflux)</td>
<td>9.18</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>D. repens (macerating)</td>
<td>7.00</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. repens (reflux)</td>
<td>15.51</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>DMSO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F. piperis (reflux)</td>
<td>21.90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F. piperis (macerating)</td>
<td>7.39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H. candidans (macerating)</td>
<td>5.94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H. candidans (reflux)</td>
<td>21.45</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>H. capitellata (macerating)</td>
<td>3.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H. capitellata (reflux)</td>
<td>8.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I. simonsii (macerating)</td>
<td>5.76</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I. simonsii (reflux)</td>
<td>10.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>L. santali (macerating)</td>
<td>9.53</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L. santali (reflux)</td>
<td>16.91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>M. pachycarpa (macerating)</td>
<td>22.17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. pachycarpa (reflux)</td>
<td>40.97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. tinctoria (macerating)</td>
<td>7.94</td>
<td>22</td>
<td>9</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>M. tinctoria (reflux)</td>
<td>14.47</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>N. indicum (macerating)</td>
<td>8.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>N. indicum (reflux)</td>
<td>29.29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. henryi (macerating)</td>
<td>7.23</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>P. henryi (reflux)</td>
<td>4.88</td>
<td>27</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R. curcumae (macerating)</td>
<td>1.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R. curcumae (reflux)</td>
<td>9.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>R. uncariae (macerating)</td>
<td>7.82</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R. uncariae (reflux)</td>
<td>23.33</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. baccatum (macerating)</td>
<td>4.62</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>S. baccatum (reflux)</td>
<td>16.95</td>
<td>16</td>
<td>10</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>S. discolor (macerating)</td>
<td>16.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. discolor (reflux)</td>
<td>9.03</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T. ciliata Roem. var. pubes (reflux)</td>
<td>18.92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T. ciliata Roem. var. pubescens (Franch.) Hand.-Mazz. (macerating)</td>
<td>3.99</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SA: Staphylococcus aureus (ATCC25923); EC: Escherichia coli (ATCC25922); PA: Pseudomonas aeruginosa (ATCC27853); CA: Candida albicans (ATCCY0109).

The anti-MRSA activities of the selected 17 extracts which were active with IZDs ≥ 10 mm against MSSA were shown in Table 4. The extracts from Psychotria henryi Levl and Marsdenia tinctoria R. Br. (maceration and reflux extraction) were the most active against both SA and MRSA, with mean IZDs = 19.7 to 22.0 mm (Table 4).
The anti-SA and MRSA active extracts were further determined for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) by serial dilution with a standard broth microdilution method. 12 extracts showed effects on both SA and MRSA strains with MICs/MBCs ranges between among 32 to ≥ 1024 / 64 to ≥ 1024 mg/L, respectively. *P. henryi, M. tinctoria* and *Sapium baccatum* Roxb also showed inhibition against EC, PA and CA strains, and displayed a broad spectrum of antimicrobial activities.

DISCUSSION

The screening results revealed that most of the plant extracts were much more active against Gram positive pathogen (SA) than those of Gram negative pathogens (EC and PA), which is a common phenomenon of plant antimicrobial property (Tegos et al., 2002). None of the plants showed strong inhibition against PA (Table 3). The 4 plant extracts from *D. repens* (reflux extraction), *M. tinctoria* (macerating extraction), *S. baccatum* (reflux extraction) and *P. henryi* (reflux extraction) showed IZDs of 9 to 12 mm against standard EC. There were 15 plant extracts active against standard CA and the IZDs were in the ranges of 10 to 20 mm. Some plants showed a wide spectrum of antimicrobial activity and were in agreement with their folk uses (Table 3). However, several extracts showed no antimicrobial activity at 50 mg/ml which were not consistent with their folk uses for infectious diseases. It might be due to the antimicrobial potency which was much lower in this study and the different criterion for the antimicrobial judgment. We also noted the inconsistent values between IZD and MIC of an extract; this might be due to the different diffusion capacity of the active constituents in the culture media of agar and broth.

It was found that different extraction methods produced different yields of active extracts. Meanwhile, the higher temperature of extraction may cause the active ingredient change, hence the antimicrobial activity decreases (Tables 3 to 5).

In this study, the 80% ethanol extracts of 20 plant materials were screened for their antimicrobial activities for the first time. We found that *P. henryi* was active against not only Gram-positive bacteria but also Gram-negative bacteria. The chemical composition and pharmacological effects of *P. henryi* has not been reported yet, but there were reports (Muhammad et al., 2003; Kerber et al., 2001) about the same genus, that is, *P. sychotria brachyceras* and *P. sychotria klugi* which contained indole alkaloids. So, it is worthy to further investigate the anti-MRSA components. Our study suggested that *M. tinctoria* showed promising activity against MSSA and MRSA. The plant contained steroidal components such as...

Table 4. The testing results of the 17 extracts with IZD ≥ 10mm against SA and MRSA strains (unit: mm).

<table>
<thead>
<tr>
<th>Species</th>
<th>SA</th>
<th>MRSA92</th>
<th>MRSA98</th>
<th>MRSA111</th>
<th>Mean ± SEM (MRSA, n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. henryi (reflux extraction)</td>
<td>27</td>
<td>25</td>
<td>24</td>
<td>17</td>
<td>22.0±2.5</td>
</tr>
<tr>
<td>M. tinctoria (macerating extraction)</td>
<td>22</td>
<td>20</td>
<td>23</td>
<td>21</td>
<td>21.3±0.9</td>
</tr>
<tr>
<td>M. tinctoria (reflux extraction)</td>
<td>22</td>
<td>21</td>
<td>19</td>
<td>22</td>
<td>20.7±0.9</td>
</tr>
<tr>
<td>P. henryi (macerating extraction)</td>
<td>23</td>
<td>21</td>
<td>17</td>
<td>21</td>
<td>19.7±1.3</td>
</tr>
<tr>
<td>S. baccatum (macerating extraction)</td>
<td>20</td>
<td>19</td>
<td>16</td>
<td>18</td>
<td>17.7±0.9</td>
</tr>
<tr>
<td>S. baccatum (reflux extraction)</td>
<td>16</td>
<td>16</td>
<td>24</td>
<td>14</td>
<td>18.0±3.1</td>
</tr>
<tr>
<td>I. simonsii (macerating extraction)</td>
<td>15</td>
<td>17</td>
<td>22</td>
<td>14</td>
<td>17.7±2.3</td>
</tr>
<tr>
<td>R. uncariae (reflux extraction)</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>14</td>
<td>17.0±1.5</td>
</tr>
<tr>
<td>C. bejolghota (reflux extraction)</td>
<td>16</td>
<td>19</td>
<td>15</td>
<td>15</td>
<td>16.3±1.3</td>
</tr>
<tr>
<td>I. simonsii (reflux extraction)</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>15.7±0.3</td>
</tr>
<tr>
<td>S. discolor (reflux extraction)</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>12</td>
<td>14.7±1.5</td>
</tr>
<tr>
<td>C. tiglum (reflux extraction)</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>0</td>
<td>11.0±5.5</td>
</tr>
<tr>
<td>D. repens (macerating extraction)</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>11.0±1.0</td>
</tr>
<tr>
<td>D. repens (reflux extraction)</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>0</td>
<td>9.7±4.8</td>
</tr>
<tr>
<td>C. tiglum (macerating extraction)</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>4.0±4.0</td>
</tr>
<tr>
<td>R. Uncariae (macerating extraction)</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>3.3±3.3</td>
</tr>
<tr>
<td>T. ciliata (macerating extraction)</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>DMSO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0±0.0</td>
</tr>
</tbody>
</table>

SA: *Staphylococcus aureus* (ATCC25923); MRSA: methicillin-resistant *Staphylococcus aureus*.
Table 5. MICs and MBCs of the 12 extracts with IZD ≥ 10 mm against SA, MRSA and PA strains (unit: mg/L).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Parameter</th>
<th>PA</th>
<th>ATCC 25923</th>
<th>MRSA 092</th>
<th>MRSA 098</th>
<th>MRSA 111</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. henryi</td>
<td>MIC</td>
<td>1024</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>n.a.</td>
<td>64</td>
<td>128</td>
<td>512</td>
<td>64</td>
</tr>
<tr>
<td>S. baccatum</td>
<td>MIC</td>
<td>n.a.</td>
<td>32</td>
<td>512</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>n.a.</td>
<td>128</td>
<td>1024</td>
<td>512</td>
<td>128</td>
</tr>
<tr>
<td>R. Uncariae</td>
<td>MIC</td>
<td>n.a.</td>
<td>64</td>
<td>64</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>n.a.</td>
<td>256</td>
<td>256</td>
<td>1024</td>
<td>2048</td>
</tr>
<tr>
<td>S. baccatum</td>
<td>MIC</td>
<td>2048</td>
<td>64</td>
<td>512</td>
<td>256</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>n.a.</td>
<td>128</td>
<td>1024</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>P. henryi</td>
<td>MIC</td>
<td>2048</td>
<td>128</td>
<td>128</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>n.a.</td>
<td>1024</td>
<td>1024</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>M. tinctoria</td>
<td>MIC</td>
<td>1024</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>1024</td>
<td>512</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>M. tinctoria</td>
<td>MIC</td>
<td>n.a.</td>
<td>256</td>
<td>256</td>
<td>1024</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>2048</td>
<td>512</td>
</tr>
<tr>
<td>I. simonsii</td>
<td>MIC</td>
<td>n.a.</td>
<td>512</td>
<td>256</td>
<td>256</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>1024</td>
<td>1024</td>
<td>512</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>I. simonsii</td>
<td>MIC</td>
<td>n.a.</td>
<td>1024</td>
<td>256</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>2048</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>D. repens L.</td>
<td>MIC</td>
<td>n.a.</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>C. bejolghota</td>
<td>MIC</td>
<td>n.a.</td>
<td>1024</td>
<td>1024</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>S. discolor</td>
<td>MIC</td>
<td>n.a.</td>
<td>1024</td>
<td>512</td>
<td>256</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>MIC</td>
<td>0.244</td>
<td>0.244</td>
<td>0.488</td>
<td>0.244</td>
<td>0.488</td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>0.488</td>
<td>0.488</td>
<td>0.976</td>
<td>0.976</td>
<td>0.976</td>
</tr>
</tbody>
</table>

SA: *Staphylococcus aureus* (ATCC25923); MRSA: methicillin-resistant *Staphylococcus aureus*; PA: *Pseudomonas aeruginosa* (ATCC27853); n.a.: not active at the concentration up to 2048 mg/L.

tincortalactone and marsdenone (Chowdhury et al., 1993) and showed antifertility activity (Chowdhury et al., 1994). But its anti-MRSA effect has not been noted previously. Further research for the corresponding active components from these plants and their systematic anti-MRSA properties are been carried out.

REFERENCES

Full Length Research Paper

Activity exerted by a benzamide derivative on injury by ischemia/reperfusion in an isolated heart model

Rosas-Nexticapa Marcela¹, Figueroa-Valverde Lauro²*, Díaz-Cedillo Francisco³, García-Cervera Elodia², Pool-Gómez Eduardo², Sarabia-Alcocer Bety² and López-Ramos Maria²

¹Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México.
²Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P.24039 Campeche Cam., México.

Accepted 30 August, 2013

Several studies indicate that some benzamide-derivatives have activity at cardiovascular level; nevertheless, there is scarce information about the effects exerted by the benzamide derivatives on cardiac injury caused by ischemia/reperfusion (I/R). In this experimental study, a new benzamide-derivative was synthetized with the objective of evaluating its activity on I/R in an I/R model of rat heart using the Langendorff technique. In addition, molecular mechanism involved in the effect induced by the benzamide derivative on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in the absence or presence of following compounds; nifedipine, indomethacin, propranolol and metoprolol. The results showed that the benzamide-derivative reduces infarcts size compared with control. Other results showed that the benzamide derivative significantly increase the perfusion pressure and coronary resistance in isolated heart. Other data indicate that the benzamide-derivative increase left ventricular pressure in a dose-dependent manner (0.001 to 100 nM); however, this phenomenon was significantly inhibited by propranolol and metoprolol at a dose of 1 nM (p=0.05). In conclusion, these data suggest that cardioprotective activity of the benzamide-derivative is by stimulating catecholamine production and consequently induce changes in the left ventricular pressure levels. This phenomenon results in decrease of myocardial necrosis after ischemia and reperfusion.

Key words: Heart, benzamide derivative, ischemia, propranolol, metoprolol.

INTRODUCTION

Myocardial infarction is a major cause of death and disability worldwide (Yusuf et al., 2005; Thygesen et al., 2007); this cardiovascular disease is due to cell death of cardiac myocytes caused by ischaemia, which is the result of a perfusion imbalance between supply and demand. In addition, acute myocardial infarction can produce alterations in the topography of both the infarcted and noninfarcted regions of the ventricle (Pfeffer, 1995). There are some reports which indicate that the most effective method of limiting necrosis is the restoration of blood flow; however, the effects of reperfusion itself may also be associated with tissue injury (Klone et al., 1989). In this sense, there are studies which show that some drugs reduce myocardial necrosis in rabbits after ischemia and reperfusion (Hale et al., 1996). For example, a study showed that rosiglitazone reduced myocardial infarction and improved contractile dysfunction caused by ischemia/reperfusion injury; nevertheless, the
The cardioprotective effect of rosiglitazone was most likely due to inhibition of the inflammatory response (Yue et al., 2001). Other data indicate that methylene blue can decrease injury by ischemia/reperfusion by reduction of molecular oxygen (Salaris et al., 1991). Also, other report showed that injury by ischemia/reperfusion is reduced with Levosidam via K_{ATP} Channels (Toit et al., 1999).

On the other hand, a report indicate that some benzamide derivatives also can exert effect on injury by ischemia/reperfusion; for example, a study showed that the compound N-(3,5-Bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide decreases ischemia-reperfusion injury by inhibition of nuclear translocation of factor-kappa B (Onai et al., 2004). In addition, there are data indicate that 3-aminobenzamide exert significant protective effects in myocardial reperfusion injury via activation of poly (ADP-ribose) synthetase which plays a role in the pathophysiology of acute myocardial infarction (Zingarelli et al., 1997). All these data show that several benzamide derivatives exert effects on the cardiovascular system; nevertheless, they do not show clearly the cellular site and actual molecular mechanisms of these compounds; therefore, data are needed for characterizing the activity induced by benzamide derivatives on ischemia-reperfusion injury. To test this aspect, the present experimental study was designed to investigate the effects induced by a benzamide derivative in a myocardial ischaemia/reperfusion model using Langendorff technique. In addition, it was thought desirable to evaluate the molecular mechanism involved in the activity of the benzamide derivative on left ventricular pressure, using some pharmacological tools for blocking various biological systems such as nifedipine [calcium channel antagonist] (Henry, 1980), indomethacin [prostaglandin synthesis blocker] (Owen et al., 1975), propranolol [β₁ receptor blocker] (Sklar et al., 1982), metoprolol [selective β₁ receptor antagonist] (Bengtsson et al., 1975).

MATERIALS AND METHODS

Chemical synthesis

Compound 1 (1-[2-Amino-ethyaminono]-phenyl-methyl)-naphthalen-2-ol was prepared according to a previously reported method (Figueroa-Valverde et al., 2013). The other compounds evaluated in this study were purchased from Sigma-Aldrich Co., Ltd. The melting point for the danazol derivative was determined on an Electrothermal (900 model). Infrared spectra (IR) were recorded using KBr pellets on a Perkin Elmer Lambda 40 spectrometer. 1H and 13C NMR (nuclear magnetic resonance) spectra were recorded on a Varian VXR-300/5 FT NMR spectrometer at 300 and 75.4 MHz in CDCl₃ (deuterated chloroform) using tetramethylsilane (TMS) as internal standard. Electron impact mass spectroscopy (EIMS) spectra were obtained with a Finnigan Trace Gas Chromatography Polaris Q Spectrometer. Elementary analysis data were acquired from a Perkin Elmer Ser. II CHNS/O 2400 elemental analyzer.

Synthesis of 2,4-dinitro-N-(2-[[1(E)-phenylmethylene]amino]ethyl)benzamide (compound 3)

A solution of compound 1 (100 mg, 0.29 mmol), benzaldehyde (50 mg, 0.29 mmol) and boric acid in 10 ml of methanol was stirred for 24 h at room temperature. The reaction mixture was evaporated to dryness under reduced pressure, the residue was washed 3 times with water. Then, the precipitate was separated and dried at room temperature.

Biological method

All experimental procedures and protocols used in this investigation were reviewed and approved by the Animal Care and Use Committee of University Autonomous of Campeche (No. PI-420/12) and were in accordance with the guide for the care and use of laboratory animals (Bayne, 1996). Male Wistar rats weighing 200 to 250 g were obtained from University Autonomous of Campeche.

Reagents

All drugs were dissolved in methanol and different dilutions were obtained using Krebs-Henseleit solution (≤ 0.01%, v/v).

Experimental design

Briefly, male rat (200 to 250 g) was anesthetized by injecting them with pentobarbital at a dose rate of 50 mg/kg body weight. Then, the chest was opened, and a loose ligature passed through the ascending aorta. The heart was then rapidly removed and immersed in ice cold physiologic saline solution. The heart was trimmed of non-cardiac tissue and retrograde perfused via a non-circulating perfusion system at a constant flow rate. The perfusion medium was the Krebs-Henseleit solution ($pH = 7.4$, 37°C) composed of (mmol): 117.8 NaCl, 6 KCl, 1.75 CaCl₂, 1.2 NaH₂PO₄, 1.2 MgSO₄, 24.2 NaHCO₃, 5 glucose and 5 sodium pyruvate. The solution was actively bubbled with a mixture of O₂/CO₂ (95/5/5%). The coronary flow was adjusted with a variable speed peristaltic pump. An initial perfusion rate of 15 ml/min for 5 min was followed by a 15 min equilibration period at a perfusion rate of 10 ml/min. All experimental measurements were done after this equilibration period.

Perfusion pressure

Evaluation of measurements of perfusion pressure changes induced by drugs administration in this study were assessed using a pressure transducer connected to the chamber where the hearts were mounted and the results entered into a computerized data capture system (Biopac).

Inotropic activity

Contractile function was assessed by measuring left ventricular developed pressure (LVdp), using a saline-filled latex balloon (0.01 mm, diameter) inserted into the left ventricle via the left atrium (Figueroa-Valverde et al., 2011a). The latex balloon was bound to cannula which was linked to pressure transducer that was connected with the MP100 data acquisition system.

First stage

Ischemia/Reperfusion model: After of 15 min equilibration time, the hearts were subjected to ischemia for 30 min by turning off the perfusion system (Booth et al., 2005). After this period, the system was restarted and the hearts were reperfused 30 min with Krebs-Henseleit solution. The hearts were randomly divided into 2 major
treatment groups with n = 9: Group I, hearts were subjected to ischemia/reperfusion but received vehicle only (Krebs-Henseleit solution); Group II, hearts were subjected to ischemia/reperfusion and treated with benzamide derivative (0.001 mM) before ischemia period (for 10 min) and during the entire period of reperfusion. At the end of each experiment, the perfusion pump was stopped, and 0.5 ml of fluorescein solution (0.1%) was injected slowly through a side armport connected to the aortic cannula. The dye was passed through the heart for 10 s to ensure its uniform tissue distribution. The presence of fluorescein was used to demarcate the tissue that was not subjected to regional ischemia, as opposed to the risk region. The heart was removed from the perfusion apparatus and cut into two transverse sections at right angles to the vertical axis. The right ventricle, apex, and atrial tissue were discarded. The areas of the normal left ventricle non risk region, area at risk, and infarct region were determined using the technique reported by Boot et al. (2005). Total area at risk was expressed as the percentage of the left ventricle.

Second stage

Effect induced by the benzamide derivative on perfusion pressure: Changes in perfusion pressure as a consequence of increases in time (3 to 18 min) in absence (control) or presence of the benzamide derivative at a concentration of 0.001 mM were determined. The effects were obtained in isolated hearts perfused at a constant flow rate of 10 ml/min.

Evaluation of effects exerted by the benzamide derivative on coronary resistance: The coronary resistance in absence (control) or presence of the benzamide derivative at a concentration of 0.001 mM was evaluated. The effects were obtained in isolated hearts perfused at a constant flow rate of 10 ml/min. Since a constant flow was used, changes in coronary pressure reflected the changes in coronary resistance.

Third stage

Effects of the benzamide derivative on left ventricular pressure through the calcium channel: Intra coronary boluses (50 μl) of the benzamide derivative [0.001 to 100 nM] were administered and the corresponding effect on the left ventricular pressure was evaluated. The dose-response curve (control) was repeated in the presence of nifedipine at a concentration of 1 mM (duration of the pre-incubation with nifedipine was for a period of 10 min).

Effect exerted by the benzamide derivative on left ventricular pressure in the presence of indomethacin: The boluses (50 μl) of the danazol derivative [0.001 to 100 mM] were administered and the corresponding effect on the left ventricular pressure was evaluated. The bolus injection administered was done in the point of cannulation. The dose response curve (control) was repeated in the presence of indomethacin at a concentration of 1 mM (duration of the pre-incubation with indomethacin was for a period of 10 min).

Effects induced by the benzamide derivative on left ventricular pressure through β1-adrenergic receptor: Intracoronary boluses (50 μl) of the benzamide derivative (0.001 to 100 nM) were administered and the corresponding effect on the left ventricular pressure was determined. The dose-response curve (control) was repeated in the presence of propranolol or metoprolol at a concentration of 1 mM (duration of preincubation with propranolol or metoprolol was by a 10 min equilibration period).

Statistical analysis

The obtained values are expressed as average ± standard error (SE), using each heart (n = 9) as its own control. The data obtained were put under analysis of variance (ANOVA) with the Bonferroni correction factor using the SPSS 12.0 program (Hoch et al., 1999). The differences were considered significant when p was equal or smaller than 0.05.

RESULTS

Chemical synthesis

The yield of the reaction product (compound 3, Figure 1) was 70% with melting point of 306 to 308°C. In addition, the spectroscopic analyses show signals for IR (Vmax, cm⁻¹) at 3320, 1638 and 1350. In addition, the chemical shifts of the spectroscopic analyses of 1H NMR and 13C NMR for the benzamide derivative are shown in Tables 1. Finally, the results of mass spectroscopy (MS) (70 eV) was shown as m/z 342.02. Additionally, the elemental analysis data for the benzamide derivative (C₁₅H₁₂N₂O₅) were calculated (C, 56.14; H, 4.12; N, 16.37; O, 23.37) and found (C, 56.10; H, 4.09).

Biological activity

First stage

Effect of benzamide derivative on ischemia/reperfusion injury: The results (Figures 2 and 3) showed that the benzamide derivative reduces infarct size expressed as a percentage of the area at risk compared with vehicle-treated hearts (control).

Second stage

In this study, the activity induced by the benzamide derivative on perfusion pressure and coronary resistance in the isolated rat hearts was evaluated. The results obtained from changes in perfusion pressure as a consequence of increases in the time (3 to 18 min) in absence (control) or in presence of benzamide derivative (Figure 4), showed that benzamide derivative [1 nM] significantly increase the perfusion pressure (p=0.05) in comparison with the control conditions [1 nM]. In addition, another result (Figure 5) showed that coronary resistance, calculated as the ratio of perfusion pressure at coronary flow assayed (10 ml/min) was higher in the presence of the benzamide derivative in comparison with the control conditions (p=0.05) at a concentration of 1 nM.

Third stage

Other results showed that activity exerted by the benzamide derivative [0.001 to 100 nM] increased the left
ventricular pressure and this effect was not inhibited in presence of nifedipine or indomethacin drugs (Figure 6 and 7) at a concentration of 1 nM. Finally, other data obtained (Figure 8) indicate that the benzamide derivative induces an increase in left ventricular pressure in a dose dependent manner [0.001 to 100 nM] and this effect was significantly inhibited by propranolol (p = 0.05) and metoprolol (p = 0.05) at a dose of 1 nM.

DISCUSSION

Chemical synthesis

In this study, a straight forward route for the preparation of (2,4-dinitro-N-(2-[(1E)-phenylmethylene]amino)ethyl)benzamide (compound 3) was reported. The synthesis was achieved by the formation of an imine group (Schiff base) involved in compound 3 (Figure 1). There are several procedures for the synthesis of imines which are described in the literature (Shirayev et al., 2005; Uppiah et al., 2009; Figueroa-Valverde et al., 2012). In this study, the synthesis of the compound 3 was developed by the reaction of N-(2-aminoethyl)-2,4-dinitrobenzamide with benzaldehyde using boric acid as catalyst to form the compound 3. The structure of the benzamide derivative was confirmed using IR and NMR spectroscopy (Tables 1 and 2). The IR spectra contained characteristic vibrations at 33200 for imino group; at 1638 for amide group and at 1350 for nitro groups. The 1H NMR spectrum of the benzamide derivative shows signals at 3.72 to 3.75 ppm for arm bound to both imino and amino groups; at 7.38 to 7.68 ppm for protons involved in the phenyl group which is bound to imino group; at 7.83 ppm for amide group; at
Figure 3. Effect exerted by BD on cardiac ischemia/reperfusion with the control. The results showed that BD significantly reduced infarct size expressed as a percentage of the area at risk compared with the vehicle-treated hearts ($p = 0.05$). Each bar represents the mean ± SE of 9 experiments. BD = benzamide derivative.

Figure 4. Effect induced by BD on perfusion pressure. The results show that BD significantly increase perfusion pressure ($p = 0.05$) through time in comparison with the control conditions. Each bar represents the mean ± SE of 9 experiments. BD = benzamide derivative.
Figure 5. Activity exerted by BD on coronary resistance. The results show that coronary resistance was higher (p = 0.06) in the presence of BD in comparison with the control conditions. Each bar represents the mean ± SE of 9 experiments. BD = benzamide derivative.

Figure 6. Effects induced by BD on LVP through calcium channel activation. Intracoronary boluses (50 µl) of BD [0.001 to 100 nM] were administered and the corresponding effect on the LVP was determined. The results showed that BD increase the LVP in a dependent dose manner and this effect was not inhibited in the presence of nifedipine. Each bar represents the mean ± SE of 9 experiments. BD = benzamide derivative; LVO = left ventricular pressure.
Figure 7. Effects induced by BD on LVP through prostaglandins synthesis. Intracoronary boluses (50 µl) of BD [0.001 to 100 nM] were administered and the corresponding effect on the LVP was determined. The results showed that BD increase the LVP in a dependent dose manner and this effect was not inhibited in the presence of indomethacin. Each bar represents the mean ± S.E. of 9 experiments. BD = benzamide derivative; LVO = left ventricular pressure.

Figure 8. Activity exerted by BD on LVP through of β-adrenergic receptors. BD [0.001 to 100 nM] was administered (intracoronary boluses, 50 µl) and the corresponding effect on the LVP was evaluated in the absence and presence of propranolol or metoprolol. The results showed that activity induced by BD on LVP was significantly inhibited in the presence of propranolol (p = 0.05) or metoprolol (p = 0.05). Each bar represents the mean ± S.E. of 9 experiments. BD = benzamide derivative; LVO = left ventricular pressure. BD = benzamide derivative; LVO = left ventricular pressure.
Table 1. Analysis of spectroscopic data (300 MHz, CDCl$_3$).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1H NMR (ppm)</th>
<th>1C NMR (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.72 (m, 2H)</td>
<td>35.78 (C-16)</td>
<td></td>
</tr>
<tr>
<td>3.75 (m, 2H)</td>
<td>62.59 (C-17)</td>
<td></td>
</tr>
<tr>
<td>7.38-7.66 (m, 5H)</td>
<td>120.91 (C-2)</td>
<td></td>
</tr>
<tr>
<td>7.83 (broad, 1H)</td>
<td>128.04 (C-4)</td>
<td></td>
</tr>
<tr>
<td>8.24 (d, 1H, J = 1.20)</td>
<td>128.18 (C-5)</td>
<td></td>
</tr>
<tr>
<td>8.33-8.81 (d, 3H, J = 8.24)</td>
<td>128.20 (C-21, C-25)</td>
<td>129.28 (C-22, C-24)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130.62 (C-23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>136.66 (C-20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>141.57 (C-6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>143.43 (C-1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>147.50 (C-3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>156.96 (C-19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>163.77 (C-11)</td>
</tr>
</tbody>
</table>

8.24 ppm for methylene group bound to both amino and phenyl groups; at 8.33 to 8.81 ppm for protons involved in phenyl group bound to both nitro groups. The 13C NMR spectra display chemical shifts at 35.78 to 62.59 ppm for arm bound to both imino and amino groups; at 120.91 to 128.18 ppm for protons involved in phenyl group which is bound to both nitro groups; at 128.20 to 136.66 ppm for carbons of phenyl group bound to imino group; at 141.57 to 147.50 ppm for carbons involved in phenyl group bound to nitro groups. Finally, other signals at 156.96 ppm for methylene group bound to both imino and phenyl groups; at 163.77 ppm for amide group were found. In addition, the presence of benzamide derivative was further confirmed from mass spectrum which showed a molecular ion at m/z 342.02.

Biological evaluation

In this study, the activity of benzamide derivative was evaluated in an ischemia-reperfusion model. The results showed that benzamide derivative reduced infarct size expressed as a percentage of the area at risk compared with vehicle-treated hearts (control). This phenomenon can be conditioned by activation of some structure biological (that is, ionic channels or specific receptors) involved in the endothelium of coronary artery (Bouis et al., 2009) or by the influence exerted by benzamide derivative on blood pressure which consequently bring reduction in the infarct size, and decrease the myocardial injury after ischemia-reperfusion similar to other reports for other compounds such as estrogens (Beer et al., 2002). In order to evaluate this hypothesis, the effect exerted by the benzamide derivative on blood vessel capacity and coronary resistance, translated as changes in perfusion pressure was evaluated in an isolated rat heart model. The results show that the benzamide derivative significantly increases the perfusion pressure over time (3 to 18 min) compared to the control conditions. These data suggest that the benzamide derivative exerts effects on perfusion pressure which could subsequently modify vascular tone and coronary resistance of heart. Therefore, in this study, the activity exerted by the benzamide derivative on coronary resistance was evaluated. The results indicate that coronary resistance was increased in the presence of this compound. These data suggest that the benzamide derivative exerts effect on vascular tone through of generation or activation of vasoactive substances such as intracellular calcium happening with other type of compounds as the carbamazepine-alkyne derivative (Figueroa-Valverde et al., 2011a).

In order to characterize the molecular mechanism of this phenomenon and analyzed the reports of some investigations which indicate that some steroid derivatives induces its effect on blood pressure via the calcium channels activation (Figueroa-Valverde et al., 2011b). In addition, a report showed that some positive cardiacotonic agents act by an increase in intracellular Ca$^{2+}$ and subsequently induce an increase in the sensitivity of contractile proteins to Ca$^{2+}$ ions or by combinations of the two mechanisms (Bowman et al., 1999). Therefore, in this study, the activity induced by the benzamide derivative on left ventricular pressure was evaluated in the absence or presence of nifedipine. The results showed that effect exerted by the benzamide derivative was not inhibited in the presence of nifedipine. Furthermore, these data indicate that activity exerted by the benzamide derivative was not via activation calcium channel.

Analyzing experimental data obtained, validating the effect induced by some steroid derivatives on perfusion pressure via prostanglandins synthesis was also considered (Sheillan et al., 1983) and to evaluate the possibility that the activities exerted by the benzamide derivative involve stimulation and secretion of prostaglandins.
In this sense, in this experimental study, the activity exerted by the benzamide derivative on left ventricular pressure in the absence or presence of indomethacin was evaluated. The results showed that effect induced by the benzamide derivative on left ventricular pressure was not blocked by indomethacin. These results indicate that the molecular mechanism involved in the effect exerted by the benzamide derivative was not via prostaglandins.

Moreover, in the search of the molecular mechanism involved in activity induced by the benzamide derivative on left ventricular pressure and analyzing previous reports, which indicate that some substances such as progesterone can stimulate catecholamine (Tollan et al., 1993) which has an important role in the development or maintenance of elevated blood pressure (Lilley et al., 1976); in this study, the effect exerted by the benzamide derivative on left ventricular pressure was evaluated in the absence or presence of propranolol or metoprolol. The results showed that the effect induced by the benzamide derivative was significantly inhibited in the presence of this compound. All these data suggest that the molecular mechanism involved in the activity of benzamide derivative is via adrenergic system. This phenomenon is similar to activity exerted by other drugs on left ventricular pressure (Thiemermann et al., 1997) which may contribute to decrease cell death caused by ischemia/reperfusion in men.

Conclusion

The benzamide derivative is a particularly interesting drug, because the activity induced on injury by ischemia/reperfusion involves a molecular mechanism different in comparison with other drugs. This phenomenon may constitute a novel therapy for ischemia/reperfusion injury.

REFERENCES

myocardial infarction in 27,000 participants from 52 countries: a case-control study. The Lancet 366:1640-1649.

A pilot study on the novel effect of Neu-P11 on reducing the intraocular pressure in normotensive rabbits

Shou-min Xi1*, Ping-yuan Gong1, Shi-peng Li1, Wei-dong Yin2 and Moshe Laudon3

1Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang 471003, China.
2Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
3Drug Discovery, Neurim Pharmaceuticals Ltd., Tel-Aviv, 69710, Israel.

Accepted 18 November, 2013

Melatonin is involved in the regulation of intraocular pressure. To evaluate the effect of a melatonin receptor agonist (Neu-P11) on intraocular pressure, a multiple-dose study was performed in 30 ocular normotensive rabbits by regularly measuring the intraocular pressure within 7 h. The results indicated that topical applications of Neu-P11 and melatonin could both produce dose-dependent reductions in intraocular pressure with maximal reduction being observed at 1 h for Neu-P11 and melatonin in 10⁻⁶ mol/L. Moreover, there were significant differences in the declinations of intraocular pressure between Neu-P11 and melatonin at the doses of over 10⁻⁹ mol/L (p < 0.05) in the treatment group. This study suggests that Neu-P11 is a potential substance for the reducing and treatment of ocular hypertension.

Key words: Intraocular pressure, melatonin, Neu-P11, rabbit.

INTRODUCTION

Variations in intraocular pressure (IOP) are the diurnal rhythmic activities with a low level in the light and a high level in the dark in rabbits (Liu and Dacus, 1991) and reflect a balance between the inflow and outflow of aqueous humors (Civan and Macknight, 2004). Evidence has indicated that the variations of IOP are influenced by melatonin, that can regulate osmotic exchanges between the blood and intraocular fluid (Bucolo et al., 2013; Musumeci et al., 2013). Therefore, substances such as melatonin and its receptor agonists are potential drugs for the treatment of abnormal IOPs (Bucolo et al., 2013).

Melatonin is a neurohormone expressed in the tissues, including pineal gland, retina (Wiechmann 1986; Tosini 2000; Zawilska et al., 2009), ciliary body (Martin et al., 1992), and lens (Abe et al., 1999; Itoh et al., 2007). This neurohormone is involved in the regulations on rhythmic activities such as circadian seasonal rhythms (Alarma-Estrany and Pintor 2007), sleep and cyto-/neuroprotection (Hardeland 2010). So far, clinical studies have shown that melatonin could protect ocular tissues by effectively scavenging free radicals and excessive amounts of nitric oxide (NO) generated in the glaucomatous eyes (Rosenstein et al., 2010; Agorastos and Huber 2011). As the analogues of melatonin, in recent years, much evidence has indicated that melatonin agonists can activate the melatonin receptors and have therapeutic applications in the treatment on sleep disorders (Hardeland et al., 2008) and depression (Guardiola-Lemaitre, 2007; Spadoni et al., 2011). Based on the mechanics of melatonin and melatonin agonists,
we predicted that some melatonin agonists might be more available for regulating the IOPs. Melatonin agonists which might be more available for regulating the IOPs. Neu-P11 is one of the novel melatonin agonists with high affinity to melatonin receptors. A recent study has demonstrated that the agonist can improve the energy metabolism and insulin sensitivity of eyes (She et al., 2009). Moreover, the results from animal studies have revealed that this substance has obvious effects on the treatments of antidepressant and anxiolytic activities in rodent models (Tian et al., 2010). However, its effects on IOP remained unclear although this melatonin agonist could improve the sleep of mice (Oertel et al., 2013) and energy metabolism of animals by increasing superoxide dismutase, catalase and glutathione-reductase activities (Chuffa et al., 2011). In the present study, to evaluate the effect of Neu-P11 on IOP, a multiple-dose study was performed by regularly measuring the IOPs within 7 h in 30 ocular normotensive rabbits.

MATERIALS AND METHODS

Animals

Thirty male New Zealand white rabbits (2.5 to 3.0 kg) were kept in cages individually, with free access to food and water. They were submitted to control in light/12 h and dark/12 h cycles. All the protocols and the statement for the use of animals in ophthalmology and vision research were described complying with the Association for Research in Vision and Ophthalmology (ARVO). This study was in accordance with the European Communities Council Directives (2010/63/EU).

Compounds

The Neu-P11 (C13H16N2O4) and melatonin (C13H16N2O2) used in the study were provided by Neurim Pharmaceuticals Ltd. (Tel-Aviv, Israel), and the Oxibuprocaine/tetracaine anaesthetic was purchased from Cusi laboratories (Spain) (Figure 1).

Preparation for formulations

The stock solutions of melatonin and Neu-P11 were prepared by dissolving in dimethylsulfoxide (DMSO) in 1 mM. Then, the stock solution was diluted with isotonic saline solution (sodium chloride) to different final concentrations (10⁻⁴ to 10⁻⁵ mol/L). All different final concentration solutions contained less than 1% DMSO and were kept at room temperature.

Intraocular pressure measurement

The IOPs, including right eye (Oculus Dexter, OD) and left eye (Oculus Sinister, OS) were measured by using a Tonopen XL contact tonometer supplied with Mentor (USA). Each cornea was anaesthetized by applying 10 μl anesthetic containing 4 mg oxibuprocaine and 1 mg tetracaine. Bilateral IOPs were measured as resting IOP before melatonin or Neu-P11 treatment was cornea unilaterally to the at a fixed volume of 10 μl, while the contralateral eye was received 10 μl physiological saline.

Pharmacological protocols

10 μl melatonin or Neu-P11 was assayed in a wide range of doses from 10⁻⁶ to 10⁻¹⁴ mol/L to generate the dose-effect curves. In the experiments, IOPs were measured during the maximal effect of the agent. Moreover, to study the time-course effect of single dose (10⁻⁵ mol/L) of melatonin or Neu-P11, IOPs were regularly measured crossing 7 h. In the experiments, one single dose was tested for a single animal, and there was a 2 days interval between the dose tests for the same animal.

Statistical analysis

Statistical differences between treatments were calculated with two-way repeated-measures analysis of variance (ANOVA) by using SPSS15.0. Significant statistical difference was referred to as p < 0.05 in the study. Plotting and fitting were carried out with MICROCAL ORIGIN 7.0 (Micro Software, Inc., Northampton, MA, USA). Data was displayed as means ± standard deviations (M ± SD).

RESULTS

Resting intraocular pressure measurement

The resting IOPs of 30 male New Zealand white rabbits were measured as value at 20.65 ± 3.80 mmHg before melatonin and Neu-P11 treatments were performed.

Treatments of melatonin and Neu-P11 on intraocular pressures

Fifteen white rabbits were treated with melatonin and the other 15 were treated with Neu-P11. The fixed volumes (10 μl) of melatonin and Neu-P11 were assayed with across concentrations ranging from 10⁻¹⁴ to 10⁻⁵ mol/L. The results indicated that the two substances could both induce obvious reductions in the levels of IOPs with the increasing doses. Furthermore, the Neu-P11 treatment group, in comparison with the melatonin group, showed a significant decrease in IOP when the concentration exceeded 10⁻⁵ mol/L (p < 0.05) (Figure 2).

Time-course effect of Neu-P11 on intraocular pressures

We selected an optical dose of melatonin or Neu-P11 at 10 μl (10⁻⁵ mol/L) for unilateral eye. In the treatment, 10 μl working solution of Neu-P11 (10⁻⁵ mol/L) solution in saline DMSO was instilled in saccus conjunctivae of the contralateral eye. IOPs were measured at 0, 0.5, 1, 2, 3,
4, 5, 6 and 7 h after the instillation. There was no a significant difference in the variation of IOP between melatonin and Neu-P11 in the vehicle group ($p > 0.05$). Moreover, both melatonin and Neu-P11 treatments reduced IOP rapidly at 0.5 h and maximally at 1 h with 15.46 ± 2.28 and 11.99 ± 2.45 mmHg. On the contrast, the effect of Neu-P11 was more sustained than that of melatonin. The reductions in IOPs were lasting for 3 h in melatonin group and 5 h in Neu-P11 group (Figure 3). Then, the pressures returned back to baseline.

DISCUSSION

The role of melatonin in IOP and the relationship of the variations in IOPs and the presence of melatonin receptors have been reported in previous studies (Rohde et al., 1985; Samples et al., 1988; Pintor et al., 2003; Alarma-Estrany et al., 2008; Musumeci et al., 2013). However, there was no evidence about the regulation of Neu-P11 on IOP. We found that Neu-P11 could reduce IOP in a dose-dependent manner over 5 h and showed a
maximum reduction with single dose at 1 h.

Some previous studies indicated that the topical applications of N-butanoyl-2-(2-methoxy-6H-isindolo[2,1-a]indol-11-yl)ethanamine (IIK7) and 5-Methoxycarbonylamino-N-acetyltryptamine 5-MCA-NAT could produce lower reductions in IOP in New Zealand rabbit normotensive eyes (Pintor et al., 2001; Pintor et al., 2003; Alarma-Estrany et al., 2008). The effects were similar to the Neu-P11 in our study. These findings suggested that Neu-P11 had a hypotensive effect similar to the well-known MT-melatonin receptor agonists. So far, studies have evidenced that melatonin and its analogues can cause concentration-dependent reductions of SNP-released NO and cGMP production via activation of MT2 receptors in human NPCE cells, which play a role in melatonin agonist-induced regulation of aqueous humor secretion and IOP (Dortch-Carnes and Tosini, 2013). Therefore, we believed that Neu-P11 has similar mechanism in the regulation of IOPs as MT-melatonin receptor agonists.

In the present study, we observed that the Neu-P11 had a better hypotensive effect than melatonin. These findings provided further supports on the previous findings that melatonin analogues had an advantage over melatonin in reducing IOP (Pintor et al., 2003; Alarma-Estrany et al., 2008; Musumeci et al., 2013). In the present study, Neu-P11 produced a lasting reduction in IOP in the cornea as compared to melatonin. The result implies that Neu-P11 possibly produced a longer inhibition in the adenyl cyclase, an increasing formation of cyclic adenosine monophosphate (cAMP) and a larger protein kinase A (PKA) activity (Dubocovich et al., 2010). Thus, we deduced that Neu-P11 was a better hypotensive substance than melatonin in the treatment of ocular hypertension. Furthermore, considering the roles of Neu-P11 in energy metabolism and insulin sensitivity, depression and anxiety (She et al., 2009), this substance would have some advantages in treatment on ocular hypertension cases with abnormal energy metabolism, insulin sensitivity and mental condition. However, further evaluator studies are required to assess the veracity of this claim.

ACKNOWLEDGEMENTS

This work was supported by the Foundation of Henan Province’s Natural Science Research Project (2009A310003). Also, we thank those who offered conveniences in completing this study: Wu-Biao Yang and
Ling-Jun Ma, He-Bin Li, Xue-Zhen Ding, Fei-Biao Wei, Le Yu.

REFERENCES

Inhibitory effect of betulinic acid and 3β-acetoxybetulinic acid on rat platelet aggregation

Habila A. J*, Habila J. D1, Shode F. O2, Opoku A. R3, Atawodi S. E1 and Umar I. A1

1Department of Biochemistry, Ahmadu Bello University Zaria-Nigeria.
2School of Chemistry, University of Zululand, South Africa.
3Department of Biochemistry and Microbiology, University of Zululand, South Africa.

Accepted 21 November, 2013

Platelet aggregation is one of the major causes of cardiovascular diseases. Our search for bioactive molecules from nature, led to the isolation of betulinic acid (BA) and structural modification of BA to 3β-acetoxybetulinic acid (BAA). Both inhibited blood platelet aggregation induced by thrombin, adenosine diphosphate (ADP) and epinephrine. BAA showed an enhance inhibition of platelet aggregation, in the thrombin-induced platelet aggregation (54.5±0.01 at 1 mg/ml, 63.5±0.17 at 3 mg/ml and 73.5±0.15 at 10 mg/ml; IC50 0.81 mg/ml) which was observed to be significantly (p<0.05) similar to that of the standard aspirin (65.4±0.07 at 1 mg/ml, 72.1±0.03 at 3 mg/ml and 76.5±1.22 at 10 mg/ml; IC50 0.33 mg/ml). The results clearly shows that functional group modification of BA to give BAA led to enhanced activity, hence BAA provides a better option as lead in the search for anti-platelet aggregation agents from nature.

Key words: Anti-platelet aggregation, aggregation inducer, Betulinic acid, acetoxybetulinic acid, Melaleuca bracteata.

INTRODUCTION

Platelets are cells in the blood that help in the formation of clot. They play an important role in the hemostasis and in pathophysiological processes such as thrombosis (Shattil et al., 1998; Stouffer and Smyth, 2003). Intravascular thrombosis is central to the development of a wide variety of cardiovascular diseases (Grenache et al., 2003; Huo and Ley, 2004). Platelet over aggregation is usually the main cause of internal blood clot formation and if not checked, can be fatal leading to atherothrombotic diseases such as strokes and heart attack (Valko et al., 2005). Thrombin, adenosine diphosphate (ADP), epinephrine, arachidonic acid, collagen and other risk factors such as free radicals, inflammation, stress and hypercholesterolemia significantly contribute to platelet dysfunction (Ambrosio et al., 1997; Davi and Patrono, 2007; Bakdash and Williams, 2008; Verhamme and Hoylaaert, 2009). The activation of platelet by thrombin is mediated through two protease activating receptors PAR-1 and PAR-4, in the activation of platelets; these receptors work cooperatively (Fabre and Gurney, 2010). ADP acts through G-protein coupled receptors P2Y1 and P2Y12, they activates phospholipase C and thus resulting in the elevation of intracellular calcium concentration (Davi and Patrono, 2007). Epinephrine is a weak platelet agonist and exerts its effect on human platelets through α2-adrenergic receptors (A2AR) and potentiates the aggregation potency of other inducers (Choi, 2002).

Antiplatelet drugs help stop blood clot formation and this significantly contributes to the management of pathogenesis of cardiovascular diseases. Among the many drugs used in the management of the condition is aspirin,
but these drugs are not without side effect, fuelling the search for more effective drugs from natural origin that will help in overcoming the challenges of toxicity and other undesirable side-effects.

The triterpene betulinic acid (BA) is one of the major components of *Melaleuca bracteata*, a plant native to Australia. The essential oil from the leaves of the plant has antiseptic, germicidal and insecticidal properties (Cribb and Cribb, 1981; Yatagai, 1997). The leaves and their volatile oils are locally used in West Africa in the treatment of skin infection (Oliver, 1960; Irvine, 1961; Howes, 1974; Goldstein et al., 1990; Belousova and Denisova 1992). BA possesses diverse biological functions, which includes, but not limited to anticancer (Amico et al., 2006; Huang et al., 2007), HIV-1 maturation inhibition (Fukoja et al., 1994) and antibacterial (Chandramu et al., 2003). The present study reports our findings on blood platelet aggregation (BPA) inhibition of BA and the effect of change in the functionality of BA on BPA.

MATERIALS AND METHODS

Plant

Melaleuca bracteata was supplied by Prof. F. O. Shode of the School of Chemistry, University of KwaZulu-Natal, Durban, South Africa. The plant was identified and a voucher specimen (Glow 001) was prepared and deposited in the Herbarium, School of Biological Sciences, University of KwaZulu-Natal, Durban, South Africa.

Extraction and isolation of BA from *M. bracteata*

The pulverized plant material (2.5 kg) was extracted by cold maceration in dichloromethane (5 L×2) for 48 h, filtered and concentrated under reduced pressure at 40°C using rotary evaporator and allowed to dry under room temperature. The dried residue was defatted with n-hexane to yield a solid mass (9.8 g). The solid mass (5 g) was subjected to column chromatography using ethyl acetate:hexane (8:2) as solvent of elution to give a white amorphous powder which was identified as betulinic acid (BA). The structure was confirmed by nuclear magnetic resonance (NMR) spectra (Figure 1) and comparison with literature values (Mahato and Kundu, 1994).

![Figure 1. C-NMR, DEPT 90 and DEPT 135 spectrum of BA.](image-url)
Preparation of 3β-acetoxy betulinic acid (BAA)

BA (2 g) in a round bottom flask was added acetic anhydride (5 ml) and pyridine (5 ml), the mixture was then refluxed for 2 h. Then stirred at room temperature for 24 h, after which water (10 ml) was added and stirring continued for another 30 min. The mixture was then filtered under suction and washed thoroughly with 10% hydrochloric acid to give a white powder. NMR analysis and comparison with literature (Mahato and Kundu, 1994) confirmed the structure of BAA (Figure 2).

Animals

Ethical clearance for the use of animals in this study was obtained from the research animal ethics committee of the University of Zululand, South Africa. Adult rats (Sprague-Dawley) of either sex were collected from the animal house in the Department of Biochemistry and Microbiology, University of Zululand, South Africa. The animals were maintained under standard conditions and had free access to standard pellet feed and drinking water, for a minimum of 7 days before use.

Preparation of blood platelets

The blood platelet was prepared according to the method described by Tomita et al. (1983). Briefly, blood was surgically collected from the heart immediately after the rat has been rendered unconscious. The blood was transferred into a centrifuge tube and mixed (5:1 v/v) with an anticoagulant, acid-dextrose-anticoagulant (0.085 M trisodium citrate, 0.065 M citric acid, 2% dextrose). The platelets were obtained by series of centrifugation at 1200 rpm for 15 min and at 2200 rpm for 3 min consecutively, the supernatant was collected and discarded and the sediment (platelets) was re-suspended in 5 ml washing buffer (pH 6.5). This was centrifuged again at 300 rpm for 15 min after which the supernatant was discarded and the platelets were finally suspended in a (pH 7.4; containing 0.14 M NaCl, 15 mM Tris-HCl, 5 mM glucose buffer). The platelet was diluted in the re-suspending buffer (1:10), and the resulting solution was mixed with calcium chloride (0.4 ml; 10 µl CaCl).
Figure 3. Structure of isolated and modified compounds: (A) Betulinic acid; (B) 3-β acetoxy betulinic acid.

Figure 4. Percentage inhibitory activity of test compounds on thrombin-induced platelet aggregation.

RESULTS

The results of the NMR analysis, 13C, DEPT-90 and DEPT-135 for both BA and BAA are shown in Figures 1 and 2, respectively, were in agreement with those reported by Mahato and Kundu (1994). The results presented in Table 1 showed the inhibitory concentration providing 50% inhibition (IC$_{50}$) of the test compounds and standard, on platelet aggregation for all the three agonist used (thrombin, ADP and epinephrine). While the results of the percentage inhibition of platelet aggregation of the various concentration of the test compounds on each of the agonist are shown in Figures 3, 4 and 5.

DISCUSSION

Platelet aggregation is one of the major causes of
artherothrombotic dysfunction, and the commonly used drugs for the treatment of these disorders are becoming undesirable, because of their associated side-effects. This has fuelled the search for new class of effective anti-platelet agents from nature. In this study, the effect of functional group modification of BA to BAA led to enhanced anti-platelet aggregation activity against thrombin, ADP and epinephrine induced rat platelet aggregation.

The spectral data defined BA and BAA as triterpenoids, triterpenes and their various derivatives have been shown to inhibit platelet aggregation induced by thrombin, ADP and epinephrine (Jin et al., 2004; Yang et al., 2009; Sankaranarayanan et al., 2010; Habila et al., 2011; Mosa et al., 2011). The results of our investigation showed that anti-platelet aggregation inhibitions of BA and BAA against thrombin, ADP and epinephrine-induced platelet aggregation (Figures 3 to 5) showed a dose dependent increase in percentage inhibition, with increase in concentration. BA and BAA were more potent in the thrombin-induced platelet aggregation with IC\textsubscript{50} of 1.99 and 0.81 mg/ml, respectively, which were comparable to that of aspirin (0.33 mg/ml). BAA showed more enhance

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
Agonist/Compound & BA & BAA & Aspirin \\
\hline
Thrombin & 1.99 & 0.81 & 0.33 \\
ADP & 4.20 & 1.39 & - \\
Epinephrine & 4.63 & 1.81 & - \\
\hline
\end{tabular}
\caption{IC\textsubscript{50} values (mg/ml) of the isolated and modified compound on rat platelet aggregation.}
\end{table}
activity in all the three agonist used (IC50: thrombin, 0.81 mg/ml; ADP, 1.39 mg/ml; epinephrine, 1.81 mg/ml), as compared to BA (IC50: thrombin, 1.99 mg/ml; ADP, 4.20 mg/ml; epinephrine, 4.63 mg/ml) the parent nucleus. The observed activity was attributed to the modification of the 3β-hydroxy (-OH) of BA to 3β-acetyl (OCOC3H5) functional group. The overall result of the anti-platelet aggregation studies reveals that both compounds, BA and BAA inhibit platelet aggregation at a significant difference (p<0.05) between the different concentrations used in all the three agonist. Our findings are in agreement with Tzakos et al. (2012) who reported the potency of betulinic acid to inhibit human platelet aggregation. The results of this study showed that the isolated (BA) and modified (BAA) compounds are good candidates in the search for anti-platelet aggregation agents from nature.

Conclusion

The results showed that structural modification of the isolated compound (BA) to mimic the functionality of aspirin, led to enhanced platelet aggregation inhibition, induced by thrombin, ADP and epinephrine. The findings suggest that BA and BAA may be considered as lead candidates, in the search for anti-platelet aggregation agents from nature that may offer a better alternative to aspirin.

REFERENCES

UPCOMING CONFERENCES

International Conference on Pharmacy and Pharmacology, Bangkok, Thailand, 24 Dec 2013

CAPE TOWN SOUTH AFRICA, WCP 2014 17TH WORLD CONGRESS OF BASIC CLINICAL PHARMACOLOGY
Conferences and Advert

December 2013
ICPP 2013 : International Conference on Pharmacy and Pharmacology
Bangkok, Thailand December 24-25, 2013

July 2014
Cape Town South Africa, WCP 2014 17TH World Congress Of Basic Clinical Pharmacology
Related Journals Published by Academic Journals

- Journal of Infectious Diseases and Immunity
- Journal of Diabetes and Endocrinology
- Journal of Medicinal Plants Research
- Journal of Cell Biology and Genetics
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Veterinary Medicine and Animal Health
- Journal of Toxicology and Environmental Health Sciences
- Clinical Reviews and Opinions
- International Journal of Nutrition and Metabolism
- Journal of AIDS and HIV Research
- Journal of Cancer Research and Experimental Oncology
- Journal of Clinical Immunology and Immunopathology Research
- Journal of Clinical Medicine and Research
- Journal of Clinical Pathology and Forensic Medicine
- Journal of Medical Genetics and Genomics
- Journal of Medical Laboratory and Diagnosis
- Journal of Metabolomics and Systems Biology
- Journal of Neuroscience and Behavioral Health
- Journal of Physiology and Pathophysiology
- Journal of Public Health and Epidemiology
- Medical Case Studies
- Medical Practice and Reviews