ABOUT JECE

The Journal of Environmental Chemistry and Ecotoxicology (JECE) is published bi-monthly (one volume per year) by Academic Journals.

Journal of Environmental Chemistry and Ecotoxicology (JECE) is an open access journal that provides rapid publication (bi-monthly) of articles in all areas of the subject such as ocean acidification, pesticides use and regulation, arsenic induced genotoxicity by curcumin, heavy metals and its environmental effect etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JECE are peer-reviewed.

Contact Us

Editorial Office: jece@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JECE
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Peter Massanyi
Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology
Tr. A. Hlinku 2, SK-949 76 Nitra, Slovak Republic
Slovak Republic.

Prof. Name Mostafa El-Sheekh
Faculty of Science, Tanta University,
Tanta 31527, Egypt
Egypt.

Prof. Minghua Zhou
Nankai University
No. 94, Road Weijin,
Nankai District,
Tianjin 300071, China
China.

Prof. Muhammad Abdul Rauf
United Arab Emirates University
United Arab Emirates.

Prof. Shao Hongbo
Qingdao University of Science Technology
Zhengzhou Road 53, Qingdao266042, China
China.

Prof. Ghasem D. Najafpour
Oshirvani University of Technology
Babol, Iran
Iran.

Prof. Toyin Ayodele Arowolo
Department of Environmental Management & Toxicology
College of Environmental Resources Management
University of Agriculture
P.M.B. 2240
Abeokuta 110001
Ogun State
Nigeria.

Dr. Vikrant John Vedamanikam
University Malaysia Terengganu,
Mengabang Telipot,
21030 Kuala Terengganu,
Terengganu,
Malaysia.

Dr. Xue Song Wang
Department of Chemical Engineering, Huaihai Institute of Technology, PR. China
CangWu Road 59#, Lianyungang, Jiangsu, PR. China
China.

Dr. Mohamed Nageeb Rashed
Aswan Faculty of Science, South Valley University,
Aswan,
Egypt.

Prof. Hamayun Khan
Department of Chemistry
Islamia College University
Peshawar-25120,
Pakistan.
Editorial Board

Dr. Mohammad Al-Hwaiti
Al-Hussein Bin Talal University
Environmental Engineering Department
O. Box (20) Ma’an-Jordan
Jordan.

Dr. Ghausia Begum
Indian Institute of Chemical Technology,
Hyderabad 500 007, A.P; India
Prof. Gang Yang
Key Laboratory of Forest Plant Ecology, Ministry of Education,
Northeast Forestry University
26 Hexing Road, Harbin
China.

Prof. Ajai Kumar Srivastav
DDU Gorakhpur University
Department of Zoology, DDU Gorakhpur University,
Gorakhpur,
INDIA.

Dr. Anindita Bhattacharyya
Indian Statistical Institute
203, B. T. Road, Kolkata 700108, West Bengal,
India.

Nathaniel C. Añasco
University of the Philippines Visayas
Miagao, Iloilo 5023 Philippines
Philippines.

Prof. El-Refaie Kenawy
King Saud University,
Faculty of Science,
Department of Chemistry,
Petrochemicals Research Chair,
B.O.Box 2455 Riyadh 11451, Saudi Arabia
Saudi Arabia.

Dr. Onome Davies
Rivers State University of Science & Technology, Port Harcourt, Rivers State
Dept. of Fisheries & Aquatic Environment, P.M.B. 5080,
Port Harcourt,
Nigeria.

Dr. K. Senthil Kumar
TÜV SÜD South Asia Pvt. Ltd.,
No: A-151, 2nd C Main, 2nd Stage, Peenya Industrial Estate,
Bangalore 560058, Karnataka State, INDIA
India.

Dr. Dr. Omotayo Sarafadeen Amuda
Ladoke Akintola University of Technology
Ilorin Road, Ogbomoso,
Nigeria.

Dr. Dr. B. Stephen Inbaraj
Fu Jen University
Department of Nutrition & Food Science,
Taipei 242, Taiwan
Environmental Chemistry & Analytical Chemistry
Taiwan.

Dr. Dr. Hala A. Awney
Institute of Graduate Studies and Research,
Alexandria University,
Egypt.

Dr. Dr. Suheil Parvez
Leibniz Institute for Neurobiology
Brennekestr. 6, Magdeburg 39118,
Germany.

Dr. Dr. Mayalagu Rajkumar
Institute of Oceanology, Chinese Academy of Sciences
7 Nanhai Road, Qingdao, 266071
China.

Dr. Dr. Eldon Raj Rene
University of La Coruna
Department of Chemical Engineering, Spain

Dr. Dr. Vyacheslav Khavrus
L. V. Pisarzhevskii Institute of Physical Chemistry of NAS of the Ukraine (permanent position)
Ukraine.

Prof. Prof. Dr. Bechan Sharma
University of Allahabad
Department of Biochemistry,
Allahabad-211002,
India.
Research Articles

Carbamate pesticide residues analysis of potato tuber samples using high-performance liquid chromatography (HPLC)

Mohamed Ahmed Ibrahim Ahmed, Nasr Sobhy Khalil and Tarek Abd Elaliem Abd El Rahman
Carbamate pesticide residues analysis of potato tuber samples using high-performance liquid chromatography (HPLC)

Mohamed Ahmed Ibrahim Ahmed1*, Nasr Sobhy Khalil2 and Tarek Abd Elaliem Abd El Rahman2

1Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt.
2Central Agricultural Pesticides Laboratory, Agricultural Research Center ARC, Dokki, Giza, Egypt.

Received 25 November, 2013; Accepted 23 January, 2014

Monitoring of pesticides is conducted globally to assess the environmental load of their residues. However, carbamate pesticides are among the most common used pesticides in potato protection in Egypt. Here, nine potato tuber samples were randomly collected from Assiut, Elminia, Kalubia, Cairo, and Giza cities in Egypt to detect the contamination of some carbamate residues using quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Three methods were used in this study, viz., washed, washed with salted, and peeled. The results indicated that concentrations of kresoxim and thiodicarb residues were higher in all potato samples than other pesticides studied. However, the highest significant value was found in Assiut city (Alzahraa market) for both pesticides (0.18 and 0.038 mg/kg, respectively). Furthermore, peeled method was found to be the most effective method in reducing the carbamate pesticide residues. Thus, further investigation should be done to figure out the potential methods of reducing carbamate pesticide residues in vegetables and strict regulation should be applied in using pesticides.

Key words: Carbamate, quick, easy, cheap, effective, rugged, and safe (QuEChERS), pesticide residues, high-performance liquid chromatography (HPLC), Potato tuber.

INTRODUCTION

Vegetables are considered the most important ingredients of the human diet for health maintenance and disease prevention in developing countries. For example, the total Indian meal constitutes about 150 to 250 g of vegetables per person per day (Mukherjee and Gopal, 2003). Moreover, Solanum tuberosum (potato) is the largest horticultural export crop of Egypt and it is documented that in the year 2000, total value of Egyptian potato exports was $US 7.7 million (Kabeil et al., 2008). In order to meet the huge demand, pesticides are widely applied to reduce heavy pest infestation, improve quality, increase yield, and extend the storage life of crops (Fernández-Alba and García-Reyes, 2008). However, the results of using heavy application of pesticides on vegetables have resulted in pesticide residues above their respective Maximum Residue Limits (MRLs) which
may pose health hazards to consumers (Agnihotri, 1999; Kalara, 2003; Taneja, 2005; Mukherjee and Gopal, 2003). The MRLs, limits the amount of residues that can be legally present in foods. Unfortunately, not all farmers follow the legal practice and due to the tremendous number of pesticides and crops in production, a number of analytical methods was designed to determine multiple pesticide residues (Food and Drug Administration, 1999; Luke et al., 1975). Thus, analysis of pesticide residue in foods, especially vegetable, becomes an essential requirement for consumers, producers, and food quality control authorities (Ashutosh et al., 2011).

In 2002, the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method for pesticide residue analysis was introduced by Anastassiades et al. (2002), which provides high quality results in a fast, easy, an inexpensive approach. Follow-up studies have further validated the method for more than 229 pesticides (Lehotay et al., 2005). The most common technique in modern multi-residue target pesticide analysis is the High Performance Liquid Chromatography (HPLC). In this study, we analyze the carbamate pesticide residues in potato tuber samples from different markets in different cities in Egypt.

MATERIALS AND METHODS

Samples

A total of 9 samples were collected randomly from nine local markets in five cities in Egypt (Table 1).

Sample preparation

Not less than 3 g of potato tubers were taken for each sample in polyethylene bags labeled by the name of the market and city, and then transferred immediately to the laboratory. Samples were completely homogenized then divided into three portions consisting of 1 kg each. Samples homogenization was done following the guidelines of Codex Guide vol.2-section 4, Anonymous (1993) as follows:

1. 1 kg sample of potato tuber was completely homogenized, three replicates of 100 g each were taken, two for extraction and the third was kept in a deep freezer at -20°C. Extraction was carried out as soon as possible.

2. The samples were comminuted, and 10 g of each sample was then placed into 50 ml polyethylene tube. Samples were extracted and cleaned up immediately after sampling using QuEChERS methodology (Anastassiades et al., 2002). 15 ml of acetonitrile was added into each tube. The samples were well shaken using a vortex mixer at maximum speed. Afterwards, 6 g of anhydrous magnesium sulfate and 1.5 g of sodium chloride were added, then extracted by shaking vigorously on vortex for 5 minutes and centrifuged for 10 minutes at 4,000 rpm. An aliquot of 4 ml was transferred from the supernatant to a new clean 15 ml centrifuge tube containing 100 mg PSA and 600 mg anhydrous magnesium sulfate. The samples were again vortexed for 3 minutes and then centrifuged for 10 minutes at 4,000 rpm. Sodium Chloride saturated solution (35%) was used for washed and slanted method. Peeled method was done by the use of a sharp knife; the samples were taken through the whole samples preparation mentioned above. In general, each sample was conducted in three replicates.

Pesticides detected

Seventeen carbamate pesticides were studied for identification and quantification, the detected residues include: Kresoxim-ethyl, Furathiocarb, Mexacrbate, Fenoxycarb, Vernelate, Aldicarb, Thiodicarb, Methomyl, Propoxur, Bendiocarb, Carbofurn, Ethofumesate, Chlorufum, Methiocarb, Pirimicarb, Carbaryl, and promocarb. The average recovery percentage of pesticides for 3 spiked levels (0.05, 0.01, and 0.001mg/kg) in Potato tuber samples were conducted (Table 2).

HPLC

An Agilent technology 1260 HPLC UV-DAD (Diode Array Detector) system was used. It contained a binary pump, a degasser, column...
thermostat and an autosampler. A reverse-phase Agilent Zorbax SB-C18 analytical column of 250 × 4.6 mm internal diameter (ID) and 5 μm particle size. Deionized water containing 0.1% formic acid (mobile phase component A) and acetonitrile (component B) were employed for the gradient program, which started with 20% B for 3 m and was linearly increased to 100% B in 27 m (held for 3 m). The column was then re-equilibrated for 12 m back to 20% B. Thus, the total run time took 45 m. The flow rate was constant at 0.6 ml/m, and injection volume was 10 μl.

All organic solvents were of HPLC grade and supplied by Merck, USA. Primary and secondary amine (PSA, 40 lm Bondesil) was purchased from Supelco (Supelco, Bellefonte, PA, USA). Anhydrous magnesium sulfate was of analytical grade, purchased from Merck, USA, and was activated by heating at 250°C for 4 h in the oven before use and kept in desiccators. A stock standard solution (100 lg/ml) was prepared with methanol and stored at -20°C. The standard working solutions were prepared from stock solution by serial dilution with methanol at 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 lg/ml and were stored at 4°C before use.

RESULTS AND DISCUSSION

The carbamate pesticide residues analysis found in Potato tuber samples results are shown in Table 3. The highest total carbamate pesticides residue found in Assiut city whereas was not detectable (ND) at the rest of the cities (Figure 1). However, Alzahraa market was considered the highest carbamate pesticides residue found (Figure 1). Two carbamate pesticides, Kresoxim and Thiodicarb were found in Alzahraa market and the values were 0.18 and 0.038 mg/kg respectively, which is higher than the MRL. Peeled method was considered the best method in reducing the two carbamate pesticides by 96% and not detectable respectively (Figure 2). Furthermore, Abo-Teg market was found to have the second highest carbamate pesticide residue (Figure 1), one carbamate was found, Kresoxim, and the value was 0.02 mg/kg.

However, after using three different methods to reduce the Kresoxim, peeled method was the best method in reducing the pesticide (Figure 3). Niela Khatoon market had the lowest carbamate pesticide residue found in Assiut city (Figure 1), Thiodicarb value was 0.008 mg/kg and washed with salted water, and peeled methods were the best methods in reducing the residue of the pesticide. In total, the pesticide residues that are found in vegetables become a global phenomenon. A similar study reported that, the residue of carbamate pesticides in Potato tuber samples in Egypt and abroad, agrees with this study (Abd El Rahman, 2005; Mansour et al., 2009; Wang et al., 2008; Quinetro et al., 2008).

However, the highest value of the carbamate pesticide residue was found in the samples regardless of the heavy use of the pesticides and the persistence of these

Table 3. Carbamate pesticides residue analysis in potato tuber samples.

<table>
<thead>
<tr>
<th>Market</th>
<th>Pesticide found</th>
<th>MRL (mg/kg)</th>
<th>Unwashed</th>
<th>Washed</th>
<th>Washed and salted</th>
<th>Peeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzahraa</td>
<td>Kresoxim</td>
<td>0.05</td>
<td>0.18</td>
<td>0.04</td>
<td>0.01</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Thiodicarb</td>
<td>0.02</td>
<td>0.038</td>
<td>0.012</td>
<td>0.008</td>
<td>ND</td>
</tr>
<tr>
<td>Abo-Teg</td>
<td>Kresoxim</td>
<td>0.05</td>
<td>0.02</td>
<td>0.007</td>
<td>0.002</td>
<td>ND</td>
</tr>
<tr>
<td>Niela Khatoon</td>
<td>Thiodicarb</td>
<td>0.02</td>
<td>0.008</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Figure 1. Total carbamate pesticides residue found in random markets.
Figure 2. Reduction percentage of two carbamate pesticides residue found after the three methods were used in Alzahraa, Assiut city.

Figure 3. Reduction percentage of one carbamate pesticide residue found after used the three methods in Abo-Teg, Assiut city.

pesticides which indicated that not all farmers follow the legal practices and due to tremendous number of pesticides and crops in production, not all farmers send the production to analyze the residues using appropriate analytical methods which had been designed to determine multiple pesticide residues.

However, the results show no product can be consumed right after it is purchased from the market and should be processed using suitable method to clean up from the pesticide residues. Furthermore, a periodical monitoring of carbamate pesticides residue in vegetables and other foods are the recent need for the consumers as well as authorities of food quality control not only in Egypt but all over the world.

ACKNOWLEDGMENTS

We thank the Central Agricultural Pesticides Laboratory in Dokki, Egypt for technical support, academic advice, and instruction materials.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Agnihotri NP (1999). Pesticide safety evaluation and monitoring. Published all India coordinated research project of pesticide residues division of agricultural chemical. New Delhi: Indian Agricultural Research Institute, pp. 119-146.

Standards Program.

