ABOUT SRE

The Scientific Research and Essays (SRE) is published weekly (one volume per year) by Academic Journals.

Scientific Research and Essays (SRE) is an open access journal with the objective of publishing quality research articles in science, medicine, agriculture and engineering such as Nanotechnology, Climate Change and Global Warming, Air Pollution Management and Electronics etc. All papers published by SRE are blind peer reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: sre@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Scientific Research and Essays will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Dr. NJ Tonukari
Editor-in-Chief
Scientific Research and Essays
Academic Journals
E-mail: sre.research.journal@gmail.com

Dr. M. Sivakumar Ph.D. (Tech).
Associate Professor
School of Chemical & Environmental Engineering
Faculty of Engineering
University of Nottingham
Jalan Broga, 43500 Semenyih
Selangor Darul Ehsan
Malaysia.

Prof. N. Mohamed El Sawi Mahmoud
Department of Biochemistry, Faculty of science,
King AbdulAziz university,
Saudi Arabia.

Prof. Ali Delice
Science and Mathematics Education Department,
Atatürk Faculty of Education,
Marmara University,
Turkey.

Prof. Mira Grdisa
Rudjer Boskovic Institute, Bijenicka cesta 54,
Croatia.

Prof. Emmanuel Hala Kwon-Ndung
Nasarawa State University Keffi Nigeria
PMB 1022 Keffi,
Nasarawa State.
Nigeria.

Dr. Cyrus Azimi
Department of Genetics, Cancer Research Center,
Cancer Institute, Tehran University of Medical Sciences,
Keshavarz Blvd.,
Tehran, Iran.

Dr. Gomez, Nidia Noemi
National University of San Luis,
Faculty of Chemistry, Biochemistry and Pharmacy,
Laboratory of Molecular Biochemistry Ejercito de los
Andes 950 - 5700 San Luis
Argentina.

Prof. M. Nageeb Rashed
Chemistry Department- Faculty of Science, Aswan
South Valley University,
Egypt.

Dr. John W. Gichuki
Kenya Marine & Fisheries Research Institute,
Kenya.

Dr. Wong Leong Sing
Department of Civil Engineering,
College of Engineering,
Universiti Tenaga Nasional,
Km 7, Jalan Kajang-Puchong,
43009 Kajang, Selangor Darul Ehsan,
Malaysia.

Prof. Xianyi Li
College of Mathematics and Computational Science
Shenzhen University
Guangdong, 518060
P.R. China.

Prof. Mevlut Dogan
Kocatepe University, Science Faculty,
Physics Dept. Afyon/ Turkey.
Turkey.

Prof. Kwai-Lin Thong
Microbiology Division,
Institute of Biological Science,
Faculty of Science,University of Malaya,
50603, Kuala Lumpur,
Malaysia.

Prof. Xiaocong He
Faculty of Mechanical and Electrical Engineering,
Kunming University of Science and Technology,
253 Xue Fu Road, Kunming,
P.R. China.

Prof. Sanjay Misra
Department of Computer Engineering
School of Information and Communication Technology
Federal University of Technology, Minna,
Nigeria.

Prof. Burtram C. Fielding Pr.Sci.Nat.
Department of Medical BioSciences
University of the Western Cape
Private Bag X17
Middelheim Road
Bellville, 7535,
South Africa.

Prof. Naqib Ullah Khan
Department of Plant Breeding and Genetics
NWPF Agricultural University Peshawar 25130,
Pakistan
Editorial Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ahmed M. Soliman</td>
<td>20 Mansour Mohamed St., Apt 51, Zamalek, Cairo, Egypt.</td>
</tr>
<tr>
<td>Prof. Juan José Kasper Zubillaga</td>
<td>Av. Universidad 1953 Ed. 13 depto 304, Mexico D.F. 04340, Mexico.</td>
</tr>
<tr>
<td>Prof. Chau Kwok-wing</td>
<td>University of Queensland, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas, Mexico D.F., Mexico.</td>
</tr>
<tr>
<td>Prof. Raj Senani</td>
<td>Netaji Subhas Institute of Technology, Azad Hind Fauj Marg, Sector 3, Dwarka, New Delhi 110075, India.</td>
</tr>
<tr>
<td>Prof. Robin J Law</td>
<td>Cefas Burnham Laboratory, Remembrance Avenue Burnham on Crouch, Essex CMO 8HA, UK.</td>
</tr>
<tr>
<td>Prof. V. Sundarapandian</td>
<td>Indian Institute of Information Technology and Management-Kerala Park Centre, Technopark Campus, Kariavattom P.O., Thiruvananthapuram-695 581, Kerala, India.</td>
</tr>
<tr>
<td>Prof. Tzung-Pei Hong</td>
<td>Department of Electrical Engineering, and at the Department of Computer Science and Information Engineering National University of Kaohsiung.</td>
</tr>
<tr>
<td>Prof. Zulfikar Ahmed</td>
<td>Department of Earth Sciences, box 5070, Kfupm, fahran - 31261, Saudi Arabia.</td>
</tr>
<tr>
<td>Prof. Khalifa Saif Al-Jabri</td>
<td>Department of Civil and Architectural Engineering College of Engineering, Sultan Qaboos University P.O. Box 33, Al-Khod 123, Muscat.</td>
</tr>
<tr>
<td>Prof. V. Sundarapandian</td>
<td>Indian Institute of Information Technology & Management - Kerala Park Centre, Technopark, Kariavattom P.O. Thiruvananthapuram-695 581, Kerala, India.</td>
</tr>
<tr>
<td>Prof. Thangavelu Perianan</td>
<td>Department of Mathematics, Aditanar College, Tiruchendur-628216 India.</td>
</tr>
<tr>
<td>Prof. Yan-ze Peng</td>
<td>Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.</td>
</tr>
<tr>
<td>Prof. Konstantinos D. Karamanos</td>
<td>Universite Libre de Bruxelles, CP 231 Centre of Nonlinear Phenomena And Complex systems, CENOLI Boulevard de Triomphe B-1050, Brussels, Belgium.</td>
</tr>
<tr>
<td>Prof. Xianyi Li</td>
<td>School of Mathematics and Physics, Nanhua University, Hengyang City, Hunan Province, P. R. China.</td>
</tr>
<tr>
<td>Dr. K.W. Chau</td>
<td>Hong Kong Polytechnic University Department of Civil & Structural Engineering, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China.</td>
</tr>
<tr>
<td>Dr. Amadou Gaye</td>
<td>LPAO-SF / ESP Po Box 5085 Dakar-Fann SENEGAL University Cheikh Anta Diop Dakar SENEGAL.</td>
</tr>
<tr>
<td>Prof. Masno Ginting</td>
<td>P2F-LIPI, Puspiptek-Serpong, 15310 Indonesian Institute of Sciences, Banten-Indonesia.</td>
</tr>
<tr>
<td>Dr. Ezekiel Olukayode Idowu</td>
<td>Department of Agricultural Economics, Obafemi Awolowo University, Ife-Ife, Nigeria.</td>
</tr>
</tbody>
</table>
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Scientific Research and Essays is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2012, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the SRE, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Articles

Variational cartographic projections for the Slovak Republic territory
Margita Vajsáblová and Daniel Szatmári

Experimental study of anaerobic digestion of dog waste
Okoroigwe, E. C., Ibeto, C. N. and Ezema, C. G.

A Novel SPICE compatible behavioral model for molecular electronics having hysteresis effects
Davoud Bahrepour and Mohammad Javad Sharifi

Application of statistical techniques to evaluate the reliability of ultrasonic and rebound hammer measurements of compressive strength in the concrete of bridges

Comparative osteometric differences in humerus of bari Goat and Dumbi Sheep
Ghulam Murtaza Lochi, Muhammad Ghiasuddin Shah, Illahi Bux Kalhoro, Jameel Ahmed Gandahi, Muhammad Shoaib Khan, Abdul Haseeb, Sheeraz Mustafa Khushk, Ameet Oad and Mansoor Ibrahim Ansari

Capacity enhancement of multicarrier code division multiple access (MCCDMA) using orthogonal complete complementary codes and adaptive constellations
G. Senthilkumar and R. Amutha

Sorption mechanism of some heavy metal ions from aqueous waste solution by polyacrylamide ferric antimonate
I. M. El-Naggar, E. A. Mowafy, Y. F. El-Aryan and M. G. Abd El-Wahed
Variational cartographic projections for the Slovak Republic territory

Margita Vajsábolvá and Daniel Szatmári

Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Bratislava, Slovak Republic.

Received 3 January, 2014; Accepted 5 March, 2014

Disadvantages of currently used Křovák’s projection in Slovak Republic such as large scale distortion became evident after dividing of Czechoslovakia. The new proposal of the cartographic projection for the Slovak Republic (Lambert’s conformal conic projection in normal position) was created in 2010. The aim of this paper is to define an optimal oblique position of map projections for the Slovak Republic territory and to design two cartographic projections in different positions (normal, oblique) using variational criteria modified for conformal projections for the Slovak Republic. Used calculus, the achieved scale distortions and their comparison with scale distortions of currently used map projections will be demonstrated.

Key words: Conformal cartographic projection, variational criteria, scale distortion, variational cartographic projection.

INTRODUCTION

The currently used cartographic projection in the Slovak Republic (and also in the Czech Republic) is the Křovák’s projection which is an oblique case of a conformal conic projection based on two preserved parallels and was designed in 1922 by Josef Křovák strictly for Czechoslovakia. The Bessel’s reference ellipsoid is transformed to a sphere using Gauss’ conformal projection. Then, the sphere is transformed to a secant cone in oblique position. The coordinates are positive to the south and west (Srnka, 1986). Disadvantages of this projection such as large scale distortion became evident after dividing of Czechoslovakia. In 2010 a new projection, Lambert’s projection with parameters for Slovakia was designed at the request of the Geodesy, Cartography and Cadastre Authority of the Slovak Republic by Margita Vajsábolvá. This new conformal projection uses a normal cone, secant to the reference ellipsoid GRS 1980 and was designed for the Slovak Republic territory (Vajsábolvá, 2011). The reference ellipsoid is transformed directly on a secant cone in normal position. The coordinates are positive to the north and east.

One of the basic problems in cartography is the problem of optimal map projections, especially in the area...
of the creation of large-scale maps and partially medium-scale maps, that is, those projections of a given domain on a reference surface onto the plane under which the distortion is minimal. The most important factors of selection of map projection are shape, size and position of projected territory, also purpose and scaling factor of the map. The aim of this paper is to design two map projections in different positions (normal, oblique) using variational criteria modified for conformal projections for the Slovak Republic. Examples of using these criteria to derive and optimize map projections for other territories (Canada, Czech Republic) and their valuation and comparison are described in Frankich (1982), Bořík (1999) and Hojovec et al. (1975).

The optimal oblique position of cartographic projection for the Slovak Republic territory is defined in this paper and the aim is to design two cartographic projections in different positions (normal, oblique) using variational criteria modified for conformal projections for the Slovak Republic. Used calculus, the achieved scale distortions and their comparison with scale distortions of currently used map projections will be demonstrated.

Valuation of cartographic projections

The type of criteria for deciding the merits of map projections are as follow (Hojovec et al., 1987):

a) Extremal and minimaximal,
b) Variational (additive, integral) criteria.

In **extremal criteria** we evaluate conformal projection by:

i. Maximal value of scale distortion: \(|m - 1|_{\text{max}} \)

ii. Maximal value of area distortion: \(|m_{\phi} - 1|_{\text{max}} \)

The equivalent projections are evaluated by maximal value of angle distortion: \(|\Delta\omega|_{\text{max}} \).

Chebyshev’s theorem for conformal projection, in which natural logarithm of scale distortion is the least different from zero, if scale distortion of closed boundary curve is constant (Chebyshev, 1962). These projections are called minimaximal type projections.

Meshcheryakov’s theorem for Euler’s type projections (orthogonal equivalent): the best of Euler’s projection by minimaximal criterion is the projection in which image of the central meridian is a line and the scale distortion in every points holds, that scale distortion of meridian and parallel are equal to 1 (Meshcheryakov, 1968).

The most popularized variational type criteria for valuation of map projections are the following:

i. The Airy’s criterion (1861), where \(h^2 \) is mean quadratic scale distortion defined by extremal scale factors \(m_a, m_{\phi} \):

\[
h^2 = \frac{1}{2} \left[(m_a - 1)^2 + (m_{\phi} - 1)^2 \right],
\]

ii. The Jordan’s criterion, which characterizing scale distortion in a point by \(h^2 \) for all the azimuths \(A \):

\[
h^2 = \frac{1}{2\pi} \int_0^{2\pi} (m_A - 1)^2 dA
\]

in some case for several value of the azimuth \(A \):

\[
h^2 = \frac{1}{\mu} \sum (m_A - 1)^2,
\]

where \(m_A \) is factor of scale distortion appertaining to direction with azimuth \(A \), \(\mu \) is number of these directions.

iii. The Kavraiskii’s criteria are modification of previous criteria by using the logarithmic values (Kavraiskii, 1959):

- the Airy-Kavraiskii criterion:

\[
h^2 = \frac{1}{2} \left[\ln^2 m_a + \ln^2 m_{\phi} \right],
\]

- the Jordan-Kavraiskii criterion:

\[
h^2 = \frac{1}{2\pi} \int_0^{2\pi} \ln^2 m_A dA,
\]

\[
h^2 = \frac{1}{\mu} \sum \ln^2 m_A.
\]

Characteristic value of cartographic projection of domain \(\Delta \) of reference surfaces is value of integral \(I \):

\[
I = \frac{1}{\Delta} \iiint h^2 \cos U \, dU \, dV,
\]

or for \(n \) choices points:

\[
I = \frac{1}{n} \sum h^2.
\]

Mentioned criteria are possible to use in deriving of cartographic projection too, thereby we obtain variational type of projection (Urmaev, 1947).

The conformal projections are frequently applied in coordinate systems, because in this type of projection holds, that scale distortion is independent to azimuth, we
Variational cartographic projections

We are concerned with creation of conformal map projections of territory with minimal scale distortion by variational Criterion (7), where we apply the Airy-Kavraiskii Criterion modified for conformal projection \(m_a = m_b = m\):

\[
h^2 = \ln^2 m. \tag{9}\]

Projected territory is situated on reference sphere between parallels with geographic latitude \(U_S\), \(U_N\) and between meridians with geographic longitude \(V_W\) and \(V_E\), where we use their relative value from central meridian \(V_0\):

\[
V_0 = \frac{V_W + V_E}{2}. \tag{10}\]

In consideration of symmetry of spherical trapezium and after substitution of (9) to variational Criterion (7) we obtain:

\[
I = \frac{1}{\Delta} \int_{U_S}^{U_N} \int_{V_0}^{V_1} \ln m \cos U \, dU \, dV, \tag{11}\]

where \(V_1\) is maximum of relative geographic longitude. We need to find function \(\ln m\) from condition that value of \(I\) is minimal.

In conformal projection it holds (Hojevec et al. 1975):

\[
\frac{\partial^2 u}{\partial Q^2} + \frac{\partial^2 u}{\partial V^2} = 0, \tag{12}\]

where:

\[
u = \ln m \cos U \tag{13}\]

and \(Q\) is isometric latitude calculated by:

\[
Q = \ln \tan \left(\frac{U}{2} + 45^\circ\right). \tag{14}\]

Solution of Equation (12) has a shape (Hojevec et al., 1975):

\[
u = \sum_{j=0}^{n} \left(a_j \psi_j + b_j \tau_j \right), \tag{15}\]

where \(\psi_j\) and \(\tau_j\) were determined by:

\[
\psi_j + i\tau_j = (Q + iV)^j. \tag{16}\]

Two complex variables are equal than its imaginary and real components are equal, for \(\psi_j\) and \(\tau_j\) we obtain \((j = 0\) to \(j = 4\)):

\[
\begin{align*}
\psi_0 &= 1, \\
\psi_1 &= Q, \\
\psi_2 &= Q^2, \\
\psi_3 &= Q^3, \\
\psi_4 &= Q^4, \\
\tau_0 &= 0, \\
\tau_1 &= V, \\
\tau_2 &= 2QV, \\
\tau_3 &= 3Q^2V, \\
\tau_4 &= 4Q^3V.
\end{align*}\tag{17}\]

Equation (15) is simplified for symmetric:

\[
u = \sum_{j=0}^{n} a_j \psi_j, \tag{18}\]

After substitution Equations (13) and (18) to Airy-Kavraiskii criterion (11) we have:

\[
I = \frac{1}{\Delta} \int_{U_S}^{U_N} \left(\sum_{j=0}^{s} a_j \psi_j \right)^2 \cos U \, dU \, dV. \tag{19}\]

By minimalisation of (19) we obtain system of five equations for \(j = 0\) to 4, where \(j\) is:

\[
\begin{align*}
a_0 P_{j0} + a_1 P_{j1} + a_2 P_{j2} + a_3 P_{j3} + a_4 P_{j4} &= F_j, \tag{20}\end{align*}\]

where functions \(P\) and \(F\) hold (Hojevec et al. 1975):

\[
\begin{align*}
P_j &= \int_{U_S}^{U_N} \int_{V_0}^{V_1} \psi_j \cos U \, dU \, dV, \\
F_j &= \int_{U_S}^{U_N} \int_{V_0}^{V_1} \psi_j \cos U \ln \cos U \, dU \, dV.
\end{align*}\tag{21}\]

The coefficients \(a_j\) are calculated for domain defined by marginal parallels \(U_S, U_N\) and meridians \(0\°, V_1\). The factor of scale distortion is calculated by:

\[
\ln m = \sum_{j=0}^{4} a_j \psi_j - \ln \cos U. \tag{22}\]

Proposal of two variational cartographic projections for the Slovak Republic

The geographic coordinates \(\varphi, \lambda\) of the boundary points of the Slovak Republic on reference ellipsoid GRS 1980,
Figure 1. Test points for calculating the factor of scale distortion.

Figure 2. Curves of constant scale distortion – normal case of variational cartographic projection.

we have transformed on the spherical coordinates U, V by Gauss’ conformal projection:

$$
\tan \left(\frac{U + 45^\circ}{2} \right) = k \left[\tan \left(\frac{U + 45^\circ}{2} \right) \sqrt{\frac{1 - e \sin \varphi}{1 + e \sin \varphi}} \right], \quad V = \alpha \cdot \lambda.
$$

(23)

with parameters: $\alpha = 1.000\,640\,596\,750\,5$ and $k = 1.003\,315\,995\,637\,3$.

Preserved parallel has geographic latitude $\varphi_0 = 48^\circ\,40'\,21.2520''$ and radius of the sphere is $R = 6\,380\,840.721\,3\,m$.

The Slovak Republic is situated on this sphere between parallels with geographic latitude $U_S = 47^\circ\,41'\,27.0720''$, $U_N = 49^\circ\,34'\,15.7881''$ and between meridians with geographic longitude $V_W = 16^\circ\,50'\,32.3600''$ and $V_E = 22^\circ\,34'\,50.6852''$, where we have used their relative values from central meridian V_0 calculated as the arithmetic mean (10).

Values of evaluated coefficients a_i for the first domain defined by marginal parallels U_S, U_N and meridians $0^\circ, V_1$ and with using Equations (11) to (21) are:

$$
a_0 = +17.334734, \quad a_1 = -70.610239, \quad a_2 = +107.550822, \quad a_3 = -73.595801, \quad a_4 = +18.886817. $$

All of the calculus has been realized by system Wolfram Mathematica 8. We have calculated the factor of scale distortion for 5424 points (Figure 1) by Equation (22), the curves of constant scale distortion have been visualized in Surfer 9 (Figure 2).

The second variational projection is proposed in oblique position, therefore on domain defined on reference sphere between two cartographic parallels with
cartographic latitude \(S_S, S_N \) and two cartographic meridians with cartographic longitude \(D_W, D_E \). We have defined the values of this cartographic coordinates by consecutive steps:

1\(^{\text{st}}\) We have chosen three points \(A, B, C \) on the south boundary of the Slovak Republic with geographic coordinates:

\[
A \left[U_1 = 48° 19' 49.9601" , \ V_1 = 22° 05' 58.6244" \right], \\
B \left[U_2 = 48° 17' 28.5876" , \ V_2 = 21° 49' 51.4052" \right], \\
C \left[U_3 = 47° 42' 47.2572" , \ V_3 = 18° 30' 50.1205" \right].
\]

2\(^{\text{nd}}\) We have approximated the cartographic parallel circle through the points \(A, B, C \) and have calculated the geographic coordinates \(U_K \) and \(V_K \) of cartographic pole \(K \):

by equation:

\[
\tan V_i = \frac{(\cos U_i \cos V_i - \cos U_i \cos V_j)(\sin U_i - \sin U_j) - \ldots}{(\cos U_i \sin V_j - \cos U_i \sin V_i)(\sin U_i - \sin U_j) - \ldots} \\
\tan U_i = \frac{\cos U_i \cos(V_i - V_j) - \cos U_i \cos(V_i - V_j)}{\sin U_i - \sin U_j}.
\]

from that \(U_K = -5° 53' 41.1964" \) and \(V_K = 32° 08' 18.5219" \).

3\(^{\text{rd}}\) Then we have transfromed geographic coordinates \(U, V \) of the points of Slovakia boundary on cartographic coordinates \(S, D \). Extremal values of cartographic latitudes \(S_S, S_N \) and cartographic longitudes \(D_W, D_E \) are the coordinates of marginal parallels and marginal meridians of boundary trapezium. The Slovak Republic is situated on the sphere between parallels with

\[
cartographic \text{ latitude} \quad S_S = 35° 05' 05.7509" , \quad S_N = 33° 23' 42.1307" \quad \text{and between meridians with cartographic longitude} \quad D_W = 12° 13' 59.6088", \quad D_E = 7° 34' 55.6498" \quad \text{where we have used their relative values from central meridian} \quad D_0 \quad \text{calculated as the arithmetic mean:}
\]

\[
D_0 = \frac{D_w + D_E}{2}, \quad (25)
\]

from where the maximal value of relative cartographic longitude is \(D_1 \). The interval of latitudes is \(1° 52' 48.7161" \) in normal position, \(1° 41' 23.6202" \) in oblique position.

The coefficients \(a_i \) have been evaluated for the second domain defined by marginal parallels \(S_S, S_N \) and meridians \(0°, D_1 \) by Equations (11) to (21) where the following substitutions have been used:

\[
U = S, \quad V = D, \quad U_S = S_S, \quad U_N = S_N, \quad V_i = D_i. \quad (26)
\]

Results of coefficients \(a_i \):

\[
a_0 = +6.800198, \quad a_1 = -42.196398, \quad a_2 = +98.029304, \\
a_3 = -102.608260, \quad a_4 = +40.284538.
\]

All the calculus have been realized by system Wolfram Mathematica 8. We have calculated the factor of scale distortion for 5424 points (Figure 1) by Equation (22) where \(U = S \), the curves of constant scale distortion have been visualized in Surfer 9 (Figure 3).

We have compared these variational cartographic projections with the currently used projection defined by the law – Křovák’s projection (Srňa, 1986). The Křovák’s projection is an oblique case of conformal conic projection based on two preserved parallels designed in

\[
\text{Figure 3. Curves of constant scale distortion – oblique case of variational cartographic projection.}
\]
Table 1. Extremal scale distortions in cartographic projections.

<table>
<thead>
<tr>
<th>Cartographic projection</th>
<th>Scale distortion [cm/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variational – normal</td>
<td>From -4.6 to +9.7</td>
</tr>
<tr>
<td>Variational – oblique</td>
<td>From -3.8 to +7.2</td>
</tr>
<tr>
<td>Křovák</td>
<td>From -10.0 to +11.0</td>
</tr>
<tr>
<td>Lambert</td>
<td>From -6.7 to +6.7</td>
</tr>
</tbody>
</table>

Table 2. Scale distortions and their quadratic values in cartographic projections by additive criterion.

<table>
<thead>
<tr>
<th>Cartographic projection</th>
<th>Additive criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm²/km²</td>
</tr>
<tr>
<td>Variational – normal</td>
<td>8.667</td>
</tr>
<tr>
<td>Variational – oblique</td>
<td>6.076</td>
</tr>
<tr>
<td>Křovák</td>
<td>51.125</td>
</tr>
<tr>
<td>Lambert</td>
<td>25.489</td>
</tr>
</tbody>
</table>

Table 3. Scale distortions and their quadratic values in cartographic projections by integral criterion.

<table>
<thead>
<tr>
<th>Cartographic projection</th>
<th>Integral criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm²/km²</td>
</tr>
<tr>
<td>Variational – normal</td>
<td>8.709</td>
</tr>
<tr>
<td>Variational – oblique</td>
<td>6.131</td>
</tr>
<tr>
<td>Křovák</td>
<td>48.375</td>
</tr>
<tr>
<td>Lambert</td>
<td>26.211</td>
</tr>
</tbody>
</table>

1922 by Josef Křovák. Used in the Czech Republic and Slovakia. In 2010 a new projection, Lambert’s projection with parameters for Slovakia (Vajsálová, 2011) was designed at the request of the Geodesy, Cartography and Cadastre Authority of the Slovak Republic. This new conformal projection uses a normal cone, secant to the reference ellipsoid and was designed for the Slovak Republic territory by Margita Vajsálová. The results are demonstrated in Tables 1 to 3. The valuation of scale distortions and their quadratic values in the mentioned cartographic projections by additive criterion has been calculated by Equation (8) for \(n = 5424 \) points (Table 2) and by integral criterion by Equation (7), where region \(\Delta \) is limited by boundaries of the Slovak Republic (Table 3).

Conclusions

Disadvantages of currently used Křovák’s projection such as large scale distortion became evident after dissolution of Czechoslovakia. The maximal scale distortion of this projection is about 4.3 cm/km larger than scale distortion of Lambert’s projection with parameters for the Slovak Republic also about 3.8 cm/km larger than scale distortion of oblique variational projection. Valuation of these map projections by variational criteria (additive or integral) demonstrated in the Tables 2 and 3 also confirms their suitability.

The most suitable cartographic projection of territory of the Slovak Republic by extremal criteria is the Lambert’s projection with parameters for the Slovak Republic. The most suitable map projection by variational criteria is the above described variational projection in oblique position.

Conflict of Interests

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENT

This article is one of the outputs of the 1/1063/11 project
supported by the VEGA Grant Agency.

REFERENCES

Experimental study of anaerobic digestion of dog waste

Okoroigwe, E. C.*, Ibeto, C. N. and Ezema, C. G.

National Centre for Energy Research and Development, University of Nigeria, Nsukka, Enugu State, Nigeria.

Received 07 October, 2013; Accepted 10 March, 2014

Bioconversion of dog waste (dung) to energy as one of the ways for proper disposal of the waste was carried out through anaerobic digestion for biogas production. The 59-day experiment was performed within the slurry temperature range of 28 and 44°C using a 50 L metallic biodigester. Prior to charging the digesters, physico-chemical properties and microbial content of the waste were determined using standard methods. The results show that a cumulative gas production of 200 L was generated by 7 kg of the waste at the end of the test period while the microbial load decreased from 8.2 × 10^14 at the beginning of the test to 4.2 × 10^8 at the end of the retention time. Five microorganisms were identified at the beginning of the charging period, four were identified at the 20th day when the gas began to burn due to methane production while only one microorganism was identified at end of the test. Even though it has longer retention period than most common animal wastes used for biogas production, its gas production rate is low. However, pathogen reduction through anaerobic digestion justifies its conversion to energy by this method.

Key words: Dog Waste, biogas, anaerobic digestion, renewable energy, biodigesters, microbial count.

INTRODUCTION

Proper waste management is an issue in developing countries. Diseases and sicknesses are associated with improper waste handling and disposal. One of the ways of preserving the environment which is being affected by global warming due to heavy consumption of fossil fuels is by use of alternative renewable energy fuels. By this, ground water contamination, diseases and sicknesses as well as air pollution are abated.

Biomass technology has become one of the sources of renewable energy fuels for the present and future energy use that will help reduce the level of environmental pollution resulting from use of fossil fuels and improper waste disposal. It is widely used as source of biomass energy for cooking, heating and electricity generation for lighting and running of internal combustion (IC) engines.

Biomass is accumulation of solar energy on earth in the form of plant and animal materials. Dog waste (excreta) is easily found littering the environment in developing countries due to poor handling and ignorance of its usefulness in energy production. Dog rearing is common among individuals and organizations as pet and for security purposes.

Bacteria and pathogens are associated with dog wastes (Beck, 1979) which are harmful to human health (Unruh et al., 1973). Of greatest concern here are parasitic worms, round worms, hookworms and tape worms (Prociv and Croese, 1990). Composting is discouraged as a method of disposal of
dog waste due to its pathogen content. It contains bacteria and pathogens that are harmful to humans. Like other animal manures, dog manure has high nitrogen content which increases its carbon to nitrogen ratio hence affecting the decomposition process (Taylor, 2004). Rather than allowing dog dung waste away, its energy potential is being explored. Animal waste is being screened to see how it might be reused in a bid to making the environment clean. Usually, if dog waste is not tossed out, it is left where it falls and dissolves into the ground where it flows untreated into the water table. Another common method of its disposal is by scooping into compost bin alongside the yard waste which can be regarded as poor method of disposal due to its susceptibility to human disease.

In this work it is proposed that one of the ways to get rid of the menace of dog dung is by anaerobic digestion for medium energy fuel production. Anaerobic digestion is the microbial decomposition of biomass in the absence of oxygen. The major product of this bacterial activity is the release of biogas, a combustible gas that is rich in methane and contains carbon dioxide, water and hydrogen sulphide in trace quantity. Anaerobic digestion of different animal wastes has been carried out by many scholars. Abubakar and Ismail (2012) have carried out an investigation on biogas production potential of cow dung using a laboratory scale 10 L bioreactor. It was found that cow dung stands a promising feedstock for biogas production even at a laboratory scale. Three wastes types comprising cow dung, cowpea and cassava peels have also been subjected to anaerobic digestion (AD) investigation by Ukpai and Nnabuchi (2012). In their work cowpea produced highest percentage of methane followed by cow dung while the cassava peels produced the least. On cumulative scale, cow dung produced the highest cumulative biogas yield of 124.3 L/total mass of slurry. At domestic level, 11 m³ biodigester has been operated at National centre for Energy Research and Development, University of Nigeria Nsukka using cow dung as feedstock (Eze et al., 2011). At full capacity, the biogas generated from cow dung using this digester is capable of producing energy required for up to 6 h of household continuous cooking. In Nepal, Singh et al. (2008) have demonstrated the use of poultry waste in biogas production. It was found that poultry droppings could provide additional energy required for the farm operation if anaerobic digestion is incorporated in the management of the wastes. Biogas generation from animal wastes is not limited to domestic or farm animals. Atanu et al. (2010) carried out laboratory experiment on biogas generation from AD of elephant droppings. It was found that this waste can produce biogas containing 48 to 60% methane even though biogas generation did not start until after 12 days of fermentation.

A survey of scholarly articles show several works done on biogas generation using plant, animal and industrial wastes with little or no information on use of dog wastes for energy production. In the review of current advances in biogas production, provided by Demirel et al. (2010), dog waste is not mentioned as one of the wastes that could generate energy. Among all the animal wastes used so far for biogas production at both laboratory and field experiments, AD of dog waste is scarcely reported. This may be partly because of the quantity of the waste or partly because of its susceptibility to pathogens. Therefore it becomes important that biogas production potential of this waste be investigated with a view to advising for its proper disposal. Anaerobic digestion of animal wastes has been found to have a long time benefit. In some cases Anaerobic digestion processes have often been applied for biological stabilization of solid and liquid wastes (Demirel et al., 2010). Similarly, it has been found that the slurry (effluent) can be used in crop production as biofertilizer which has better nutrient quality than the raw waste (Okoroigwe, 2007; Okoroigwe et al., 2008). The aim of this investigation is to determine the biogas production potential of dog waste. The work will understudy the bacterial count of the digested effluent with a view to advising for its proper disposal.

MATERIALS AND METHODS

In this study, the dog waste (dung) used was collected from the dog unit of University of Nigeria, Nsukka security post and Department of Veterinary Medicine while the anaerobic digestion experiment was carried out at the National Centre for Energy Research and Development, (NCERD), University of Nigeria Nsukka security post and Department of Veterinary Medicine while the anaerobic digestion experiment was carried out at the National Centre for Energy Research and Development, University of Nigeria Nsukka. Prior to biodigestion process, proximate analysis of the waste was carried out using standard methods to determine the moisture and ash content. Physicochemical properties such as pH, temperature, crude fibre, protein, fat etc were also determined prior and during the biodigestion period. The action of microorganisms in the decomposition process of the substrate is very important to determine the progress of biogas production. Hence, the microbial load of the substrate was determined at three different periods during the biodigestion process. This was determined using the surface viable count method outlined by Okore (2004). After determination of preliminary parameters of the substrate, the AD proceeded with the charging of the 50 L biodigester (Figure 1) with

Figure 1. Biodigester prototype used in the experiment.
7 kg of dog dung mixed in 21 kg of water. The set up was made airtight to ensure anaerobic condition and kept in an open space at the biomass digestion ground of NCERD. This was to ensure that the set up was operated at the normal prevailing environmental conditions of temperature and pressure. The 59 day experiment lasted from December 2008 to January 2009.

Biogas generated was measured daily at specific time of the day to ensure 24 h gas production period. The volume of gas in liters was measured by downward displacement of water in a trough calibrated in 0.5 L scale. The gas production rate was calculated according to the relation:

\[S_g = \frac{V_g}{R_t} \]

Where, \(S_g \) = gas production (Lday\(^{-1}\)); \(V_g \) = cumulative gas production (L), and \(R_t \) = retention time (days)

RESULTS AND DISCUSSION

Physico-chemical parameters

The physical and chemical parameters of the sample as determined through the analysis above are presented in Table 1.

C/N ratio

Among factors that affect biogas yield from AD of wastes are pH, Hydraulic Retention Time and C/N ratio (Oparaku et al., 2013; Yadvika et al., 2004). According to Wang et al. (2012), C/N ratio is an important indicator for controlling biological treatment systems. High C/N ratio indicates rapid nitrogen consumption by methanogens and leads to lower gas production while low C/N ratio results in ammonia accumulation and an increase in pH values, which is toxic to methanogenic bacteria (Zhang et al., 2013). Usually, during anaerobic digestion, microorganisms utilize carbon 25 to 30 times faster than nitrogen (Yadvika et al., 2004). To meet this requirement, microbes need a 20 to 30:1 ratio of C to N. The characterization result of the dog waste sample shows that it contains a CN ratio of 17. This is small compared to the recommended ratio above. This could be responsible for the low gas ratio within the first 20 days of digestion (Figure 2). This is also responsible for the acidic nature of the slurry during the initial days (Figure 3).

Flammability/methane content

Flammability (evidence of methane content) started at the 20\(^{th}\) day which presumes that ammonia production due to low CN ratio might be predominant at early digestion days. This delay period was also obtained by Ofoefule and Uzodimma (2009) in the blend of cassava peels waste with pig dung in anaerobic digestion process. The explanation is also based on large ammonia production from cassava peels digestion.

Effect of volatile solids and total solids (VS and TS)

The result also shows that the waste has a volatile solid concentration of 20.5% and total solid concentration of 25.2% in the dung (Table 1). This shows the amount of the dung convertible to gaseous element and providing nutrients to the microorganisms for their function. The low VS contributed, along other parameters, to the low gas yield recorded in the first 20 days since the microbes could not breakdown the substrate as easily as possible. Gas yield increased from the 25\(^{th}\) day when there was a balance between the TS consumption and VS conversion to gas. The 25.2% TS and 74.2% moisture content of the dog waste are close to 20 and 80% respectively for human excreta due to the nature of diet dogs feed on.

Biogas yield

The biogas yield profile of the substrate (Figure 2) is typical of biogas production profile from anaerobic digestion of animal wastes. The profile is characterized by fluctuation in biogas production over time due to many factors which include complex microbial activities. The processes of AD are complex chemical reactions between the microorganisms and the substrates which are affected by a number of factors as indicated above and the prevailing climatic and environmental factors. Temperature affects the reaction resulting in changes in biogas yield. The result of the daily gas yield of the dog waste is shown in Figure 2 while the cumulative biogas

<table>
<thead>
<tr>
<th>Parameter</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>74.8</td>
</tr>
<tr>
<td>Ash</td>
<td>1.50</td>
</tr>
<tr>
<td>Protein</td>
<td>2.19</td>
</tr>
<tr>
<td>Fat</td>
<td>0.15</td>
</tr>
<tr>
<td>Fibre</td>
<td>0.55</td>
</tr>
<tr>
<td>Total solids</td>
<td>25.2</td>
</tr>
<tr>
<td>Volatile solids</td>
<td>20.5</td>
</tr>
<tr>
<td>Potassium</td>
<td>1.50</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.06</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.32</td>
</tr>
<tr>
<td>Phosphorus (mg/100 g)</td>
<td>0.48</td>
</tr>
<tr>
<td>Carbon</td>
<td>2.98</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.175</td>
</tr>
<tr>
<td>C:N ratio</td>
<td>17.0</td>
</tr>
<tr>
<td>Onset of flammability</td>
<td>20(^{th}) day</td>
</tr>
</tbody>
</table>

Table 1. Result of proximate analysis.
production over the entire biodigestion period is shown in Figure 3. The gas production rate is calculated as 0.07 L/day using Equation (1). On unit mass of substrate, the gas production specific volume yield (SVY) is 28.57 L/kg, or 0.029 m3/kg. This value is similar to 0.028 m3/kg reported by Ilaboya et al. (2010) for Cattle dung, Pig dung and Poultry droppings respectively. Since human waste has been used for biogas production, dog waste can be used also. An advantage of using dog dung for biogas production is on its long retention time as gas production have similar physico-chemical properties. The dog’s biogas SVY is less that 0.3, 0.5 and 0.5 m3/kg reported by Balasubramaniyam et al. (2008) for human excreta. This could be because both animal wastes type
continued up to 59th day. The quantity of dog waste product is a limitation in using this for large biogas production.

For the 59-day testing of the wastes, a total of 200 L of gas were collected.

Temperature effect

Figure 4 shows the temperature variation during the test period. The slurry temperature was between 28 and 44°C which is the mesophillic temperature regime. There was no external influence of the slurry temperature as this was only affected by the activities of microorganisms. The external temperature (ambient) was only influenced by natural weather condition. The period was during the harmatan wind characterized by dryness and cold wind across Sahara. The highest ambient temperature was 38°C while the lowest was 24°C. This condition is favourable for biogas production during AD of animal wastes unlike adverse cold witnessed during winter in temperate climate when the temperature assumes negative values.

pH variation

The pH of the slurry ranged from 6.36 to 7.78 as shown in Figure 5. The microorganisms that are involved in biodigestion processes are usually affected by the acidity of the medium. The activities of these acitogens and methanogens result in the variation of pH of the medium and subsequently affect biogas production. Optimum biogas production is usually obtained within the pH range of 6.5 to 7.5. Maximum gas production was obtained between the 25th and the 35th day (Figure 2) when the pH was near neutral (Figure 5).

Microbial load

Table 2 presents the type and number of microorganisms in the waste at major times of the analysis. It shows that the waste had higher microorganism content at the beginning which was a combination of aerobic and anaerobic organisms. At flaming period the organisms (Butyrivibrio sp.) were no longer present which was responsible for the decrease in the microbial count (TVC) of the identified organisms. These were responsible for aerobic activities that utilized initial oxygen trapped in the system at commencement of fermentation. When methane began to build up Clostridium sp., Ruminococcus sp., Acetivibrio sp. and Eubacterium-cellulosolvens were predominant. It could be affirmed that methane production could be hindered as long as Butrivibrio sp. remains in the system. Identification of the quantity of each microorganism can explain better the role of each organism in production of flammable gas.
This further reveals the total disappearance of all the organisms at the end of the production stage leaving only the *Clostridium* sp. This conforms to the conclusion of Ofoefule et al. (2010) that AD does not completely eliminate microorganism in animal wastes. This probably implies that these bacteria were not involved in gas production or that the environment might not be conducive for their activity even though they accounted for 420 million of the identified organisms (Table 2). Decrease in microbial load over the period of biodigestion is a common phenomenon in microbial reactions. This has been observed by McGarvey et al. (2007) and Ofoefule et al. (2010).

Conclusion

Different biomass materials have different biogas generation potential. Whereas many have been tested to have high biogas viability, dog waste has low biogas production potential. From the results obtained, it can be seen that dog waste has biogas generation potentials even though the production rate is very slow and with high retention time. Although gas yield was low, it can be used as inoculum for increasing the retention time of other biomass since it has high retention time. It is not however advisable to depend on dog waste alone for biogas production mainly due to the quantity of biomass is usually small and its biogas has long time to flame. Anaerobic digestion is a better option to composting in terms of pathogen handling and control.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

A Novel SPICE compatible behavioral model for molecular electronics having hysteresis effects

Davoud Bahrepour* and Mohammad Javad Sharifi2

1Mashhad Branch, Islamic Azad University, Mashhad, Iran.
2Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran.

Received 2 April, 2012; Accepted 4 April, 2013

Although molecular electronics is in its infancy, there are many significant advances in understanding and implementing computational functions based on molecular electronic devices. In order to evaluate a molecular electronic circuit, a model is needed. In existing literature, only a few models have been introduced for molecular electronics, all of which do not support the hysteresis phenomenon. To the best of the authors' knowledge, for the first time, this paper introduces a behavioral model in SPICE which is able to imitate hysteresis behavior in a desired molecular circuit. The proposed model is then modified in order to guarantee continuous behavior in its I/V curves. Some molecular electronic I/V curves from the literature are selected and by utilizing the proposed model, its correct operation are investigated.

Key words: Molecular electronics, behavioral model, hysteresis phenomenon, SPICE.

INTRODUCTION

During the last decades, the feature size of MOS-based circuits has dramatically decreased. The ever decreasing feature size will face serious challenges and alternative technologies should therefore be selected. Due to their performance and density, molecular electronics is a promising candidate for nanoelectronic applications. Molecular electronics has also been proposed as a pathway for high-density nanoelectronic devices (Seminario, 2005). Many efforts have been made by researchers to introduce and describe different structures and technologies based on molecular devices (Strukov and Likharev, 2005; Martin, 2009; Yuqing et al., 2011; Gimenez et al., 2009; Liu et al., 2011). Before manufacturing process of molecular electronic circuits, a model is needed in order to simulate the behavior of the circuit in a reasonable amount of time and with acceptable accuracy. In this paper, a behavioral model for modeling the hysteresis phenomenon in molecular based circuits is proposed. The model is then implemented in SPICE and the correct operation of the model is investigated. Finally for achieving the most accuracy a modification in the proposed behavioral model is made.

MATERIALS AND METHODS

A brief survey of molecular electronics models

In general, there are two major categories for simulating electronic circuits: the physics-based models and the nonphysic-based models or behavioral models. Physics-based molecular device modeling is very difficult due to the unknown underlying physics
and also the variety of applied materials. However, circuit designers need a model of these devices to evaluate their design performance. The behavioral models introduced for emerging devices have solved this problem and have helped circuit designers to easily design and verify the output of their circuits. In this regard, many efforts have been made (Yan et al., 1995; Yu et al., 1999; Bhattacharya and Mazumder, 2001; Sharifi and Bahrepor, 2009; Sharifi and Banadaki, 2010). For molecular devices three models have been proposed so far.

(i) Ziegler et al. (2002) proposed a circuit model for molecular devices called the universal device model (UDM) (Ziegler et al., 2002). This model is characterized in more detail in Stan et al. (2003), and Rose et al. (2004, 2007). The UDM concept uses empirical equations that describe each fundamental quantum and classical effect that may be relevant to an electronic device (Stan et al., 2003). As shown in Figure 1 the common sub-features used in the UDM are: resistive behavior (linear I-V curve), diode-like behavior (exponential I-V curve), coulomb-blockade behavior (step I-V curve), and tunneling behavior (peak I-V curve) for a DC characteristic. The UDM accepts a set of current and voltage data points, which are obtained theoretically or experimentally, and then it produces the appropriate coefficient for the mentioned UDM features. The current equation of a device is achieved by the use of the respective weight of each feature as:

\[I_{UDM}(V) = a_{R}I_{R}(V) + a_{D}I_{D}(V) + a_{T}I_{T}(V) + a_{CB}I_{CB}(V) \] (i)

(ii) Ziegler et al. (2003) proposed a device model for a crossbar technology which is a main technology in molecular electronics (Ziegler and Stan, 2003). The crossbar technology sandwiches bistable molecules, for example, rotaxanes, between wires at each junction. Figure 2 shows the equivalent circuit of a typical crossbar technology. As shown in Figure 3, the presented model utilizes two diodes for representing the on-state and off-state of a crossbar junction, in parallel with a parasitic junction capacitance. If the applied voltage \(V_{D} \) is greater than the on-state threshold \(V_{\text{threshold,ON}} \), the model switches to the on-state and if the applied voltage \(V_{D} \) is lower than the off-state threshold \(V_{\text{threshold,OFF}} \), the model switches to the off-state. In this model, the junction capacitance, current-voltage characteristics and switching threshold values should be selected in an appropriate manner in order to obtain a proper mimic of crossbar structure based devices (Ziegler and Stan, 2003).

(iii) Ci Lei et al. (2007) introduced a device model (Lei et al., 2007, 2008) in which the electron transport properties of a molecular system were studied by viewing it as a one electron elastic scattering problem. The Breit-Wigner resonance formula was used to model a general crossbar structure. In this model, the transmitted current \(I \) through the metal-molecule-metal junction is proportional to the transmission probability \(T(E) \) for a range of energy levels around the Fermi energy of the source lead and it is computed using Landauer’s formula as Equation (2).

\[I(V) = \frac{2e}{h} \int_{-\infty}^{\infty} dE T(E) \left(\frac{1}{\exp[(V - \mu_s)/kT] + 1} - \frac{1}{\exp[(V - \mu_d)/kT] + 1} \right) \] (ii)

where \(\mu_s \) and \(\mu_d \) are the electro-chemical potentials of the source and drain respectively. In addition the transmission probability \(T(E) \) used in the Landauer formula is approximated by the Breit-Wigner formula as follows.

\[T(E) = \frac{4G_1G_2}{(E - \varepsilon_0)^2 + (G_1 + G_2)^2} \] (iii)
Figure 4. A generic I-V curve for a typical molecular hysteresis switch. Figure source: Rose and Stan (2007).

Figure 5. Block diagram for the proposed behavioral model. The differentiator sub-circuit selects one of the resistors/UDM modules. And the selected resistors/UDM modules generate appropriate current.

The hysteresis phenomenon

Hysteresis is a non classical behavior and refers to a device’s ability to switch between stable behaviors. Hysteresis not only depends on the current environment but also depends on its past environment. To predict the future behavior of a hysteresis progress, either its internal state or its history must be known (Mielke and Roubicek, 2003). If a given input alternately increases and decreases, then the output tends to form a loop.

Although hysteresis curves have different shapes, many molecular switching devices have an I-V characteristic such as that presented in Figure 4 (Rose and Stan, 2007). This curve illustrates that, in general, molecular electronic I-V curves have hysteresis in the first and third quadrant. Also in each quadrant there are two different paths called reverse and forward paths which signifies positive or negative voltage slope, respectively.

Introducing a behavioral model for hysteresis

Circuit designers need a complete and easy to use model for describing the behavior of a molecular electronic device used in a computational or memory circuit. Although the models mentioned before are applicable, they do not support hysteresis phenomenon. This paper bridges the existing gap by introducing a behavioral model which comprised of a differentiator sub-circuit for identifying the positive/negative slopes of a molecular device voltage and two resistor/UDM modules. As seen from Figure 5, the sign of the
Figure 6. The proposed circuit model for imitating hysteresis behavior. This model consists of a differentiator sub-circuit, two switches and two resistor/UDM modules.

Voltage slope is achieved using a differentiator sub-circuit which selects one of the resistor/UDM modules for producing the appropriate device current. The positive slope signifies increasing voltage that in the hysteresis curve means forward path and the negative slope indicates decreasing voltage that in the hysteresis curve means reverse path. The proposed circuit for the LHM and GHM is presented in Figure 6. As shown, this model utilizes simple circuit elements in order to generate hysteresis behavior in molecular electronics circuit.

RESULTS

By considering the proposed behavioral model for hysteresis phenomenon in previous section, there are two different approaches for implementing the model: i) the linear hysteresis model (LHM) and ii) the general hysteresis model (GHM). The LHM uses two different resistors for generating appropriate current values and hence, it has minimum possible complexity. In Figure 6 the Resistor 1 and Resistor 2 values may be approximated by the average of the forward and reverse slope values appeared in the first and third quadrants of given I/V curves. In fact this model imitates the I/V characteristics of a device in linear format. Figure 7(a) shows I/V curves for the ZnO/aluminum stack (Lüssem, 2006) and a dashed line in Figure 7(b) depicts the simulation outputs using the LHM. This approach has two main drawbacks: i) it eliminates the details of the reverse or forward paths and changes them to two simple lines with different slopes and ii) since the amount of slopes in the first and third quadrant of a specific curve may be different in the forward or reverse paths, this model replaces these amounts by their average values which means less accuracy. In the GHM, the resistors are replaced with proper UDMs; hence, the simulation output is more accurate. This approach helps to save the details of I/V curves with more precision. The solid line in Figure 7(b) shows the simulation output of the I/V curve for the ZnO/aluminum stack using the GHM. As another example, the I-V curve for the ITO/aluminum stack (Lüssem, 2006) is selected (Figure 8(a)). In Figure 8(b) the dashed line and solid line depict the simulation outputs using the proposed LHM and GHM respectively. As depicted in Figures 7(b) and 8(b) there is a very good agreement between the GHM and the original I/V curves. For modeling the ZnO/aluminum and ITO/aluminum stack curves the applied characteristics in the proposed circuit are: \(C_D = 1 \text{ nF} \), \(R_D = 100 \text{ KΩ} \) and \(R_2 = R_3 = 1 \text{ KΩ} \).
DISCUSSION

The proposed behavioral model is easy to use and operates in a short period of time and with very good accuracy. However, the model has a main disadvantage in that it cannot produce a smooth and continuous output when the input signal changes its direction (rising and or falling points). However, for overcoming this disadvantage this model is modified by adding a simple integrator circuit (Figure 9) to points A and B of the proposed circuit model. The effect of this modification is found in Figure 10. Figure 10(a) provides the applied voltage to the device which its I/V curve was previously shown in Figure 7(a); Figure 10(c) and (b) demonstrate the response of the device to the applied voltage with and without utilizing the proposed integrator circuit, respectively. As mentioned before, utilizing two resistors in the LHM instead of the GHM leads to more simplicity. However, in the forward and reverse paths the discontinuous behavior is appeared (Figure 10(b)). As seen in Figure 10(c), exploiting a simple integrator circuit makes these points disappear. As an instance, in the appendix, the SPICE NETLIST of the proposed hysteresis circuit model for Figure 7 is presented.

Figure 7. (a) $I-V$ characteristic of the ZnO/aluminum stack which shows hysteresis behavior. Figure source: Lüssem (2006). (b) The simulation result curves by the use of the LHM (dashed line) and GHM (solid line). For achieving the LHM output the forward and reverse slope values are specified by utilizing two different resistors (166 Ω and 200 Ω respectively).
Figure 8. (a) I-V characteristic of the ITO/aluminum stack which shows hysteresis behavior. Figure source: Lüssem, (2006). (b) The simulation result curves by the use of the LHM (dashed line) and GHM (solid line). For achieving the LHM output the forward and reverse slope values are specified by utilizing two different resistors (250 Ω and 219 Ω respectively).

Figure 9. Applying simple integrator circuit helps to achieve continuous curves in the output.

Conclusions

Since molecular electronics attracts much attention in literature; some effort has been made to model molecular electronic behavior. However, all of the proposed models do not support the hysteresis phenomenon. To the best of the authors’ knowledge, for the first time, this paper proposes a behavioral model for the hysteresis phenomenon in simulating molecular electronic devices. The proposed behavioral model is implemented in SPICE with two different approaches (the LHM and GHM) and the correct operation of each approach is investigated. The proposed model is then modified by adding a simple integrator circuit for solving the discrete points’ problem.
Figure 10. The effect of using integrator circuit in the proposed circuit for modeling the Figure 7 I/V curve. (a) Applied voltage. (b) Current curve without exploiting the integrator circuit. (c) Current curve after modification and with exploitation of the integrator circuit. The applied characteristics are: $C=100$ nF and $R=0.1$ KΩ.

This model helps the circuit designer to evaluate a design with more simplicity and accuracy.

APPENDIX

In this appendix, a SPICE NETLIST for the simulation result of Figure 7 curve is demonstrated. This simulation uses the modified GHM approach.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_R1</td>
<td>0 N11976 1k</td>
</tr>
<tr>
<td>R_R3</td>
<td>0 N09392 100k</td>
</tr>
<tr>
<td>X_S2</td>
<td>N59306 0 N09392 N24506</td>
</tr>
<tr>
<td>SCHEMATIC1_S2</td>
<td>V_V1 N09392 0 +PWL 0 0 250us 2 750us -2 1000us 0</td>
</tr>
<tr>
<td>C_C21</td>
<td>N34624 N34628 1n</td>
</tr>
<tr>
<td>R_R2</td>
<td>0 N34754 20</td>
</tr>
<tr>
<td>C_C1</td>
<td>N09392 N11976 1n</td>
</tr>
<tr>
<td>G_G220</td>
<td>N34754 N24506 TABLE {V(N34754,}</td>
</tr>
</tbody>
</table>
Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Application of statistical techniques to evaluate the reliability of ultrasonic and rebound hammer measurements of compressive strength in the concrete of bridges

C. H. Carvalho¹*, J. B. Severo Junior², M. C. S. S. Macedo³, S. Griza³, C. E. C. de Andrade³, A. A. dos Santos³ and L. S. Barreto³

¹Federal Institute of Sergipe, Graduate Program in Materials Science and Engineering of the Federal University of Sergipe – UFS, Brazil.
²Department of Chemical Engineering, Federal University of Sergipe – UFS, Brazil.
³Department of Materials Science and Engineering, Federal University of Sergipe – UFS, Federal University of Sergipe, Marechal Rondon ave., Jardim Rosa Élze, São Cristovão, Zip Code: 49100-000, Sergipe, Brazil.

Received 22 December, 2013; Accepted 10 March, 2014

In order to assess the uncertainties in the experimental measurements, the use of statistical error analysis is essential for a reliable technical diagnosis on structural safety in reinforced concrete of bridges. Two non-destructive techniques (ultrasound and rebound hammer) were performed, resulting in conflicting technical diagnostics when analyzed without the study of the variability of experimental errors. It was evident that physically the only use of arithmetic average means nothing. The obtained results also demonstrated the lack of correlations between those ones driven by the ultrasound and the impact hammer on the four tested bridges.

Key words: Rebound hammer, ultrasound, compressive strength, nondestructive tests, statistical error analysis.

INTRODUCTION

Nowadays, reinforced concrete is globally the most widely used construction material, and the use of Non-Destructive Testing (NDTs) to measure its properties in situ, without causing damage, and to monitor structural integrity, is employed to determine the useful lifespan of structures (Hamidian et al., 2012). The use of a combination of nondestructive methods can improve the reliability of results, which are then closer to the true values when compared with measurements made using individual tests alone (Shariati et al., 2011; Breysse, 2009, 2012; Sbartai et al., 2012). Such combined methods have a long history of use for investigating damage, cracks, fissures, void spaces, decreased mechanical strength, and other defects related to the deterioration of concrete (Shariati et al., 2011). Some of the available technical guidelines (ABNT, 1995; BS, 1986) suggest that the
compressive strength of concrete can be estimated using curves describing the correlation between the values obtained from Non-Destructive Testing (NDTs) and destructive compressive tests. Although the mechanical strength of concrete shows no direct relationship with surface hardness or ultrasound propagation velocity, empirical models have been developed using regression techniques to describe the correlations between strength and the results obtained using the two techniques (Hamidian et al., 2012; Shariati et al., 2011; Machado et al., 2009; Mature, 2011; Almeida, 1993; Mohammed et al., 2011). This is because the strength of concrete is well correlated to the stiffness and the surface hardness of concrete. The relation between ultrasound, rebound hammer and compressive strength is then indirect relation. The rebound hammer method has been used in other areas such as in saligna eucalyptus wood pieces to assess trends of correlations between compressive strength to normal and parallel to the fibers (Soriano et al., 2011).

Comparison of the results of experimental measurements requires confidence in the reliability of the data obtained, especially when it is proposed to combine techniques that are very different, such as ultrasound and rebound hammer. This, together with interpretation of the measurements, can be achieved by combining experimental procedures with appropriate statistical techniques. Even when experiments are repeated under the same conditions, the results may not be identical or even comparable. The existence of experimental error is systematic or random, may lead to values that vary widely (Taylor, 2012; Box et al., 2005; Severo et al., 2011). In all areas of knowledge, including that of Non-Destructive Testing (NDTs), it is common to find studies in which adequate statistical treatment of the data has not been applied, in many cases leading to erroneous conclusions (Cerqueira et al., 1999; Larenti, 2003). Straightforward statistical techniques that are available for this purpose include the Student’s t-test and Fisher’s F-test (Nguyen et al., 2013). Although simple, these tests can provide reliable interpretation of the extent of any experimental errors (Cerqueira et al., 1999; Larentis et al., 2003).

In the present work, measurements employing ultrasound and rebound hammer, together with statistical tests to evaluate the reliability of the results, were employed to determine the mechanical compressive strength of reinforced concrete at four bridges located in the city of Aracaju (Sergipe State, Brazil).

METHODOLOGY

Measurement procedures

A total of 1360 ultrasound measurements and 680 impact measurements were made at pillars and stringers of the four bridges, at structurally strategic locations with maximum internal loadings. The guidelines used as references in the test procedures were NBR 7584/95 (ABNT, 1995); NM 78:96 (Mercosur, 1996); and ASTM C 805-85, (ASTM, 1993) for surface hardness, and NBR 8802 (ABNT, 1994) and ASTM C 597. (ASTM, 2002) for the propagation of ultrasound in concrete. The equipment used for the impact tests was a SilverSchmidt-type mechanical hammer with impact energy of 2.2 Nm, while the ultrasound tests employed a USLab instrument equipped with a pair of flat 54 KHz transducers. The impact tests were made horizontally and perpendicularly to the surfaces of the concrete, and the ultrasound tests used direct transmission between opposite faces. The use of all equipment followed standardized calibration routines.

Prior to beginning the final tests, possible local interferences were minimized by performing scans to locate reinforcements underlying the locations that were subsequently tested, and by cleaning the sampling regions in order to smooth the surfaces and reduce surface deposits of carbonates. A manual Profoscope metal reinforcement detector was used. Figure 1 illustrates the
The ultrasound and impact measurements were made at the same 10 points of each network. Two measurement methods were used in this case study: (1) Single ultrasound and rebound hammer measurements at each point of the network, as recommended in NBR 7584/95 (ABNT, 1995), totaling a set of 20 measurements in each network of 10 points; (2) Measurements at each of the 10 points of a series of rectangular networks, with 10 replicates in the ultrasound tests and five replicates in the impact tests, totaling a set of around 150 measurements.

Due to the concrete being a heterogeneous material, the reapplication of ultrasound and rebound hammer measurements were made aiming to increase the reliability of outcomes, since only one measurement at each point would be equivalent to consider it homogeneous, which does not correspond to the actual characteristics of the concrete. The maximum number of impacts was established after compatibilizing the rigidity of the structural part of the test with the impact energy of the hammer. The ten measurements with ultrasound at each point were set to reliably assess the experimental operator errors, mainly because of the various influences of concrete.

Data analysis

The data obtained using Method (1) were analyzed considering only the arithmetic average, following the recommended guidelines (ABNT, 1995). In the case of Method (2), the data were statistically analyzed using the Student’s t-test and Fisher’s F-test (Schwaab and Pinto, 2007). The objective of the t-test was to identify the existence of a common measurement interval, hence generating a statistical level of confidence for the measurement. The confidence interval for each measurement was calculated using the following equation (Schwaab and Pinto, 2007):

\[
I_{N-1} = \frac{\bar{X} - \mu}{s} \sqrt{\frac{1}{N}}
\]

where \(N\) is the number of replicates or experiments, \(\bar{X}\) is the sampling mean, \(s\) is the standard deviation, and \(t_{N-1}\) is the value of the \(t\) distribution with \(N-1\) degrees of freedom and a 95% confidence level.

Using the variances of the measurements performed by the two techniques, the behavior of the errors was analyzed by applying the F-test, described by:

\[
F_{xy}^* = \frac{\sigma_x^2}{\sigma_y^2}
\]

where \(F_{xy}^*\) is the calculated value of \(F\), and \(\sigma_x^2\) and \(\sigma_y^2\) are the variances of the sampling groups. The value of \(F_{xy}^*\) obtained was then compared with the limits established using:

\[
\left(\frac{1}{F_{100-p\%}} , v_2, v_1 \right) < F^* < \left(F_{p\%} , v_1, v_2 \right)
\]

where \(v_1\) and \(v_2\) represent the degrees of freedom of the sampling sets analyzed, and \(F_{p\%}\) and \(F_{100-p\%}\) are the tabulated values of \(F\) for a 95% confidence level. Hence, for a 95% level of confidence (\(p = 2.5\%\)), if the value of \(F^*\) (the calculated \(F\) value) was greater than \(F_{0.025}\) or smaller than \(\frac{1}{F_{0.975}}\), and therefore lay outside the tabulated limit, the errors were not equivalent. It should be pointed out that in all these statistical tests, it was assumed that the experimental data showed normal distributions (Almeida, 1993).

RESULTS

Using measurement method (1)

The measurements made using the rebound hammer and ultrasound techniques at one of the bridges are shown in Figure 3(a and b) and 4 (a and b), respectively. For each pillar, the mean value was calculated from single measurements made at each of the ten sampling points in the network. Similar results were obtained for the other three bridges.

Using measurement method (2)

Figures 5 to 7 show the values obtained for the pillars.
and stringers of the bridges tested, using ten ultrasound measurements at each of the ten points of the sampling network, followed by five impact measurements at each sampling point, instead of only a single measurement at each point as recommended in the guidelines (ABNT, 1995; Mercosur, 1996). The five impact measurements at each point disobeyed the ABNT NBR 7584 guideline (subsection 4.3.5), which states: "more than one impact at the same point is not permitted. If this occurs, the second reading should not be considered in calculation of the results". In the present case, the pillars and stringers were highly rigid, and the impact energy delivered by the hammer did not cause phenomena such as resonance and vibration, or any significant dissipation of energy. After each impact at the same point, the mark left on the surface was checked for any significant fractures or fissures, as described in subsection 5.6.5 of NM 78:96 (Mercosur, 1996). No such features were observed. Figure 5(e) is the following legend to Figures 5 to 7, relating to items (c) and (d), and the P-X-Y notation means the value of the pillar F calculated between X and Y, in the respective figures. The red and black bars represent the tabulated values of the F test.

DISCUSSION

Using measurement method (1)

The measurements made using the rebound hammer and ultrasound techniques at one of the bridges are shown in Figure 3(a) and (b), respectively. The rebound hammer measurements exceeded an index value of 47 for all pillars. According to the correlation curve for the

Figure 3. Mean values using data from the method (1) at Bridge 1: (a) Rebound impact; (b) Ultrasound.

Figure 4. Mean values and confidence intervals with application of the Student’s t-test using data from the method (1) at Bridge 1: (a) Rebound impact; (b) Ultrasound.
instrument, this represented a compressive strength that exceeded 50 MPa. This level of resistance is highly satisfactory in terms of the mechanical performance of the structures tested.

In the case of the ultrasound measurements, no correlation curve was available for the relationship between the resistance and ultrasound velocity. Nonetheless, a mean sound wave propagation velocity of between 3800 and 4000 m/s could be classified as excellent, according to the scale proposed by Cánovas (1998), reflecting high strength of the concrete to compression (higher ultrasound velocity corresponds to greater mechanical resistance).

The results obtained from the combined use of the two nondestructive techniques, rigorously following technical guidelines, indicated that the quality of the structures and their mechanical resistance to compression were satisfactory in terms of structural safety. However, considerable care must be taken in using mean values alone during the analysis of results. Although this practice is widely reported in the literature, and is common sense in professional activities, the mean does not necessarily represent the most probable experimental value and may not accurately reflect physical reality. Taken alone, the

Figure 5. Measurements at a pillar of Bridge 1 for the method 2. a) Rebound Impact; b) Ultrasound; Application of the F-test to the impact (c) and ultrasound (d) data; e) Legend to Figures 5 to 7, relating to items (c) and (d), where the P-X-Y notation means the value of the pillar Fcalculated.
mean value has no significance; the associated error must also be taken into consideration (Schwaab and Pinto, 2007). When the same results were analyzed considering the confidence intervals (Figures 4(a) and (b)), there were clear implications for the quality of the concrete of the pillars. The ultrasound results obtained considering only the mean (Figure 3(b)) were indicative of optimum ultrasound velocities (Cánovas, 1998). Meanwhile, observation of the variability of the measurements around the mean (the confidence interval) for pillars 1 and 7 (Figure 4(b)) revealed that in these cases, the quality of the concrete could be classified as being between optimum and satisfactory, according to the scale given by Cánovas (1998). Despite the importance of considering uncertainties in the measurements, in day-to-day practice these are often ignored (Taylor, 2012), which can lead to interpretations that are erroneous.

In addition to the obvious consequences that could occur when results are analyzed using only mean values, the Method 1 has another failing: it considered the sum of the values for the sampling network. For the procedure adopted it would not be possible to use the values sum, the mean and the confidence interval, which demand a homogeneous sample. It could not provide a statistical guarantee that the values obtained throughout the sampling network were the same, especially because is unlikely that concrete could be homogeneous throughout the pillar or stringer.

In order to use the sum of these measurements, they should be repeated at each point in the sampling network, in order to permit subsequent use of statistical procedures (t-tests and F-tests) to evaluate the homogeneity of the means and the errors (this is discussed below for the results obtained using the second measurement protocol). Analysis of the quality of concrete can therefore be compromised either by adopting a surface measurement technique, such as rebound impact tests or even by failing to apply a simple statistical analysis. At the present case rebound impact indicated similar mechanical behavior for all the pillars (Figure 4(a)), while the ultrasound data clearly identified

Figure 6. Measurements at a pillar of Bridge 2 for the method 2. a) Rebound Impact; b) Ultrasound; Application of the F-test to the impact (c) and ultrasound (d) data; Legend is available in the Figure 5(e).
problems in the quality of the concrete in pillars 1 and 7, compared to the other pillars (Figure 4(b)). The limitations of the Method 1 were the motivation to propose a different set of measurements, Method 2, to obtain a statistical guarantee for the results.

Using measurement method (2)

In the case of the rebound hammer measurements, the confidence intervals of the means overlapped (Figures 5(a), 6(a), and 7(a)). Based on the t-test with 95% confidence, it could therefore be concluded that the measurements at the different pillars were equivalent in terms of the mean. Nonetheless, in using the sum of all the values obtained for the sampling network, it was necessary to evaluate the errors using the F-test (Figures 5(c), 6(c), and 7(c)). The values of $F_{\text{calculated}}$ lay within the tabulated limits (Figure 8), indicating that the errors were equivalent, so it was therefore possible to use the sums of all the measurements.

The ultrasound results showed a very different behavior compared to the rebound hammer data, as shown in Figures 5(b), 6(b), and 7(b). The measurements at the different points of the sampling network were clearly not homogeneous. Considering only a single repletion of each measurement was not possible to sum all the ultrasound results to obtain a representative mean. In addition to the means not being equivalent for the ultrasound data, the errors also showed the same behavior. It can be seen from Figures 5(d), 6(d), and 7(d) that the calculated values of F lay outside the tabulated limits, indicating that the variability was different for each point on the pillar. According to the impact data, the concretes were homogeneous, with satisfactory performance in terms of structural safety and quality of the construction. The conclusion of the technical diagnosis would be that the structures were acceptable without interventions. On the other hand, the ultrasound results revealed divergent behavior, highlighting the fact that the structures were not homogeneous throughout their composition. Internal defects that can lead to
unsatisfactory structural conditions include the presence of void spaces, cracks, and corrosion. The analysis of experimental errors substantiate this conclusion.

Analysis of the correlation between the rebound hammer and ultrasound data

The distributions of the points representing the means for the measurements made at the bridges using ultrasound and rebound are shown in Figure 8. In contrast to earlier findings (Almeida, 1993), the distributions obtained here using real field measurements at four bridges indicated that it was not possible to establish a correlation model describing the relation between the rebound hammer and ultrasound techniques. In previous field measurements, Hamidian et al., (2012) obtained correlation coefficients (R^2) of 0.0275 and 0.0115, indicating a lack of correlation between ultrasound and rebound hammer methods. This lack of correlation can largely be explained by the obvious differences between the principles of the techniques and the physical properties measured, together with the errors and uncertainties inherent in any method, whose variability during the course of measurements should not be ignored in order to avoid compromising the reliability of the results.

Conclusions

The use of combined nondestructive techniques in concrete quality evaluation is recommended, as this procedure can increase the reliability of results in the presence of variable experimental errors. Meanwhile, consideration should be given to the fact that experimental errors can vary significantly across the areas tested. The

Figure 8. Scatter plots of the means obtained using ultrasound and rebound hammer measurements at the three bridges: bridge 1 (a); bridge 2 (b) and bridge 3 (c).
results presented here demonstrate that it is not possible to achieve a reliable technical evaluation, whether using ultrasound or rebound, without taking into account the variability of the uncertainties (errors) during the course of the test procedures. Failure to consider these uncertainties, could lead to erroneous conclusions during the evaluation of concrete quality and an inability to predict the safety of structures.

In contrast to other studies, no correlation was observed between the results of measurements of conventional concretes made using rebound and ultrasound. Certain aspects of the NBR 7584 (ABNT, 1995) and NM 78:96 (Mercosur, 1996) guidelines concerning surface hardness may require reappraisal, especially concerning the use of arithmetic means and the drawing of conclusions from tests employing impact hammers to determine the compression resistance of concrete. The present findings suggest that the use of the impact technique should be restricted to the analysis of the surface characteristics of concrete. The method is unable to provide a reliable evaluation of the mechanical properties of structural components as a whole, especially in the absence of statistical tools to determine the levels of uncertainty.

Conflict of Interest
The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS
The authors are grateful for the support provided by the Brazilian agencies: PRONEX/CNPq/FAPTEC, CAPES/PROENGENHARIA/PROCAD and INOVATEC/FINEPE for their financial support.

REFERENCES
Full Length Research Paper

Comparative osteometric differences in humerus of bari Goat and Dumbi Sheep

Ghulam Murtaza Lochi¹*, Muhammad Ghiasuddin Shah¹, Illahi Bux Kalhoro¹, Jameel Ahmed Gandahi¹, Muhammad Shoaib Khan¹, Abdul Haseeb¹, Sheeraz Mustafa Khushk², Ameet Oad³ and Mansoor Ibrahim Ansari⁴

¹Department of Anatomy and Histology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan.
²Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan.
³Department of Surgery and Obstetrics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan.
⁴Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan.

Morphological studies were conducted on the Humerus of 60 clinically healthy animals (30 Bari goat and 30 Dumbi sheep) of both sexes, slaughtered at Tandojam and Tando Allahyar abattoirs. For comparative study, animals were divided in three age groups viz., lambs/kids (6-9 months), yearlings (13-21 months) and adult (21-24 months). The estimated age was determined through dental formula, whereas, the body weight was obtained using spring balance. For collection and preparation of specimen standard procedures were adopted. The weight (Mean ± SEM) of right and left humerus of three age groups of Bari goat and Dumbi sheep is found to be 26.66±0.23, 34.06±0.33, 46.44±0.44, 31.29±0.83, 47.20±1.27, 53.62±0.66, 26.54±0.34g, 34.87±0.40, 46.47±2.64, 31.32±0.83, 47.56±0.60 and 53.57±0.53 g, respectively. Statistical analysis revealed significant difference (p<0.05) between the kid/lamb and yearling groups but no significant difference between adult groups of both species. It is further revealed that the bones of sheep are generally heavier than goat. The mean ± SEM length of right and left humerus from three age groups of goat and sheep calculated as 11.51±0.92, 13.77±0.08, 16.61±0.11, 10.08±0.15, 12.93±0.13 and 14.63±0.12cm, respectively. The statistical analysis revealed a highly significant difference (P<0.01) between kid/lamb and yearling groups, but no statistical difference (p>0.05) in between and among the adult groups of both species. The Bari goat possess relatively longer humerus than those of the Dumbi sheep. Mean values for breadth of proximal end (Bpe), breadth of distal end (Bde) and circumference of right and left humerus from three age groups of Bari goat and Dumbi sheep showed statistical differences between the age groups but no statistical difference was noted among two species and sexes.

Key words: Osteometric, differences, humerus, Bari goat, Dumbi sheep.

INTRODUCTION

Livestock represents an important component of the agricultural sector in Pakistan (Mohammad, 2007). It
accounts 55.1% of the agriculture value added and 11.5% to gross domestic production (GDP) during 2010-12. Livestock has witnessed a marginally higher growth of 4.0% against the growth of 3.97 percent last year (Anonymous, 2011-12).

The domestic goat (*Capra aegagrus hircus*) is a subspecies of wild goat of Southwest Asia and Eastern Europe (Hrist and Kris, 2008). Pakistan is rich in goat genetic resource and it is the third largest goat producing country in the World after China and India (Anonymous, 2010-11).

Pakistan has about 34 goat breeds (Isani and Baloch, 1996; Khan and Ashfaq 2012). The major objective of goat rising is meat, while milk obtained from goat is consumed by human being and hairs are used domestically for producing rugs by poor or needy families (Khan et al., 2008). Goat population of Pakistan is 63.1 million and breeds are generally categorized as meat, dairy and hairy types (Anonymous, 2011-12). Sindh Province includes Bari, Chhapar, Kamori, Sindh Desi, Buiji, Jattan, Kacchan, Kurri, Kurri, Lohri, Lehri, Pateri, Tapri or Lappi, Tharki or Tharri in Sindh (Anonymous, 2003-04).

There are 30 breeds of sheep in Pakistan (Isani and Baloch, 1996). Sheep population of Pakistan is about 28.4 million heads (Anonymous, 2011-12). Sheep is an important source of food (meat and milk) as well as of other products of high economic value, such as wool and leather (Tariq et al., 2011). Most famous breeds of sheep include Dumbi, Kachhi and Kooka in Sindh province (Anonymous, 2003-04). The total milk production is around 46.4 million tons and out of this, sheep contribute 0.04 million tons (Anonymous, 2010-11). Wool yield per head is 1.4 kg per annum (Shah et al., 2001).

Bari (Barbari) breed is predominantly utilized as meat and milk purpose especially in Sindh and Punjab. The population of Bari goat is 2.3 million heads. This breed of goat is found in Hyderabad, Dadu, Larkana Khairpur, Nawabshah and Jacobabad districts of Sindh. A compact body, pointed horns, head with a long narrow snout, small, straight and erect ears are prominent features of this breed. The body color of goat is usually white and brown or spotted. Body weight of adult male and female is 23 and 20 kg, respectively and the milk yield is 100 L/lactation of 110 days (Shah et al., 2001; Khan et al., 2008).

The skeletal system stands out as one of the body structures has been used for the characterization of different species of animals (Guintard and Lallemand, 2003). The natural morphological development of bones and joints is very important for the diagnosis of skeletal diseases in young animals (Makkaway et al., 1988). The development morphology of animals shows considerable variation with respect to breed, age, sex, nutritional situation and environmental factors among others (Outram and Conwy, 1998). Some researchers depended on limb bone length to estimate the late fetal and prenatal age (Schewers et al., 1980). The study of the appearance of limb ossification centers provide great aids in age estimation during prenatal life and assessment of fetal bone maturation and helps in the detection of some fetal abnormalities (Oishi et al., 1996). Morphologically examination of long bones provides rather significant insights into intra-species as well as interspecies differences.

MATERIALS AND METHODS

The findings of the present study will provide baseline data because osteological characteristics are often used to identify animal species rather in three different stages in a cheap and rapid manner. Further present study will also be helpful in performing orthopedic surgery in small ruminants.

Specimen collection

This experimental study was performed on the 60 clinically healthy animals (30 Bari goat 30 Dumbi sheep) of either sex slaughtered at Tandojam and Tando Allahyar abattoirs sindh Pakistan abattoirs during 2011-12. These animals were divided in three (10 animals in each group) groups according to the age. The estimated age was noted through dental formula (Vatta et al., 2006) and body weight was determined by using spring balance. Physical examination of all animals was conducted for any sign of deformity before the right and left pectoral or forelimbs were harvested.

Preparation of specimen for maceration

The soft tissues attached to the long bones of forelimbs such as muscles, fascia, tendons and ligaments were removed with scalpel and scissors. The long bones such as humerus, radius and ulna and metacarpal from forelimbs of both species were separated. The specimens were then arranged into two macerating buckets, one for goat and the other for sheep. Tap water was added to submerge the specimen. This process was allowed to stay bones for 3 days after which the water was changed. Further, 1 to 1.5 Mol of Potassium Hydroxide (KOH) was added to facilitate total removal of remaining soft tissues from bones. This process is known as maceration. The macerated bones were dried for 2 to 3 days after which they were boiled for 5 to 6 h with detergent until unless to remove bone marrow and fat. The bones were allowed to dry for the second time for 2 to 3 days on sunlight.

Measurement of the bones

Weight of the bones was obtained in grams by using a sensitive electronic balance. Length and other measurements of the long bones was measured by using a measuring tape as revealed by Salami et al. (2011). Diameter of the bone extremities and the mid shaft was measured in millimeters using Vernier calliper (Siddiqui et al., 2008). The result thus obtained was converted to centimeters.

The circumferences of the bones were taken using a thread. The weight, breadth of proximal end (Bpe), breadth of distal end (Bde), depth of olecranon (Do), depth of process anconaeus (Dpa), circumference (Cr), and length of all long bones were measured. All recorded weights, lengths and diameters were expressed as mean ± SEM (Standard Error of Mean) and further statistically analyzed by using Statistical Package for Social Sciences (SPSS) version 17.0. For paired samples t-test at 95 and 99% confidence interval
was used to determine the level of significance between the three age groups of two species.

RESULTS

Present study addresses morphological and osteometric data of long bones of pectoral limb from 30 Bari goat and 30 Dumbi sheep. The studied animals of both species were divided in three age groups namely lambs/kids, yearling and adults. The weight, Breadth of proximal end (Bpe), breadth of distal end (Bde), depth of olecranon (Do), depth of process anconaeus (Dpa), circumference (Crr), and length of all long bones were measured. All recorded weights, lengths and diameters were expressed as mean ± SEM (Standard Error of Mean) and further statistically analyzed by using Statistical Package for Social Sciences (SPSS) version 17.0. For paired samples t-test at 95 and 99% confidence interval was used to determine the level of significance between the three age groups of two species.

Morphometry of long bones

The right and left humerus of Bari goat and Dumbi sheep were observed in study. Bones were collected randomly from both sexes.

Weight

The humerus is one of the long bones situated in proximal end of forelimb at an angle downward and backward; forms shoulder joint proximally with the scapula and elbow joint distally with the radius and ulna (Plate 1). The weight (Mean ± SEM) of right humerus of three age groups of Bari goat and Dumbi sheep is shown in Figure 1, as 26.66±0.23, 34.06±0.33, 46.44±0.44, 31.29±0.83, 47.20±1.27, and 53.62±0.66 g, respectively. Statistical analysis revealed significant difference (p<0.05) between the kid/lamb and yearling groups but no significant difference between adult groups of both species. It is further revealed that the bones of sheep are statistically heavier than goat.

The differences calculated in the mean weight of left humerus (Figure 2) of three age groups of Bari goat and Dumbi sheep were, kids 26.54±0.34 g, yearling 34.87±0.40 g and adults 46.47±2.64 g and lambs 31.32±0.83 g, yearling 47.56±0.60 g and adult 53.57±0.53 g, respectively.
Statistically significant difference (P<0.05) was observed in between kid/lamb and yearling groups. However, no statistical difference was calculated between adults groups of both species.

Breadth of proximal end (Bpe)

Mean values for breadth of proximal end (Bpe) of right humerus of kid, yearling and adult are 2.55±0.06, 3.48±0.05 and 3.74±0.10 cm, respectively and that of sheep are 2.74±0.12, 3.38±0.06 and 3.88±0.05 cm, respectively. The statistical analysis proved that there is no significant difference in between yearling and adult groups of two species. However, a significant difference (P<0.05) is noted among kid/lamb group (Table 1).

Whereas, the Bpe measurements (Mean±SEM) of left humerus of goat and sheep are measured as 2.51±0.09, 3.40±0.06, 3.71±0.06 and 2.78±0.12, 3.73±0.09 and 3.86±0.06 cm, respectively (Table 1). Statistically no significant difference is found in between the adult group, but significant difference (P<0.05) revealed among kid/lamb and yearling age groups of two species.

Breadth of distal end (Bde)

The breadth (mean ± SEM) of distal end of right humerus in three age groups of both species were found to be 2.39±0.07, 2.70±0.04, 2.82±0.06 cm and 2.52±0.11, 2.83±0.08 and 2.89±0.12 cm, respectively. Statistical observation shows that there was no significant
Table 1. Osteometric values (Mean ± SEM) of right and left humerus of Bari goat and Dumbi Sheep.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Right Humerus</th>
<th>Left Humerus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bari Goat</td>
<td>Dumbi Sheep</td>
</tr>
<tr>
<td>Weight (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kid</td>
<td>26.66±0.23a</td>
<td>31.29±0.83b</td>
</tr>
<tr>
<td>Yearling</td>
<td>34.06±0.33a</td>
<td>47.20±1.27b</td>
</tr>
<tr>
<td>Adult</td>
<td>46.44±0.44a</td>
<td>53.62±0.66b</td>
</tr>
<tr>
<td>Bpe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kid</td>
<td>2.55±0.06a</td>
<td>2.74±0.12b</td>
</tr>
<tr>
<td>Yearling</td>
<td>3.48±0.05a</td>
<td>3.38±0.06a</td>
</tr>
<tr>
<td>Adult</td>
<td>3.74±0.10a</td>
<td>3.88±0.05a</td>
</tr>
<tr>
<td>Bde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kid</td>
<td>2.39±0.07a</td>
<td>2.52±0.11b</td>
</tr>
<tr>
<td>Yearling</td>
<td>2.70±0.04a</td>
<td>2.83±0.08a</td>
</tr>
<tr>
<td>Adult</td>
<td>2.82±0.06a</td>
<td>2.89±0.12a</td>
</tr>
<tr>
<td>Circumference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kid</td>
<td>3.63±0.09a</td>
<td>3.76±0.07a</td>
</tr>
<tr>
<td>Yearling</td>
<td>4.58±0.03a</td>
<td>4.88±0.03a</td>
</tr>
<tr>
<td>Adult</td>
<td>5.36±0.10a</td>
<td>6.22±0.14b</td>
</tr>
</tbody>
</table>

Means with different superscripts in the same row differ (P<0.05); Bpe=Breadth of proximal extremity; Bde=Breadth of distal extremity.

difference in between yearling and adult age groups, but a highly significant difference (P<0.01) is calculated among kid/lamb and adult groups (Table 1).

Whereas, the values for left humerus of kid, yearling and adult is found to be 2.55±0.05, 2.70±0.06 and 2.84±0.04 cm respectively and in sheep 2.74±0.12, 3.38±0.06 and 3.37±0.09 cm, respectively. Statistical analysis showed no significant difference present in between kid/lamb and adult groups, but a highly significant difference (P<0.01) is found among yearling groups of two species as indicated in the Table 1.

Length

From the present study, it is observed that the mean ± SEM length of right humerus from three age groups of goat are 11.51±0.92, 13.77±0.08, 16.61±0.11 cm, respectively, whereas, that of sheep are 10.08±0.15, 12.98±0.14 and 14.20±0.20 cm, respectively. Statistical analysis revealed significant difference (P<0.05) between kid/lamb group and highly significant difference (P<0.01) between yearling, but no statistical difference in adults group of both species. The Bari goat possess relatively longer humerus than those of the Dumbi sheep (Figure 3).

The values regarding mean ± SEM length of left humerus of both goat and sheep are to be 11.51±0.23, 13.76±0.04 and 16.06±0.17 cm, and 10.75±0.15, 12.98±0.14 and 14.20±0.20 cm, respectively. Statistical analysis revealed significant difference (P<0.05) in kid/lamb and yearling groups whereas no statistical difference was found in adult groups of Bari goat and Dumbi sheep as depicted in the Figure 4.

Circumference

The data regarding circumference at mid shaft of right humerus is presented in Table 1. The mean ±SEM values for three groups in Bari goat found to be 3.56±0.09, 4.58±0.03 and 5.36±0.10 cm, respectively. Whereas, in sheep it is calculated to be 3.76±0.07, 4.88±0.03 and 6.22±0.14 cm, respectively. The statistical analysis revealed no significant difference (P>0.05) in between the kid/lamb and yearling groups. However, a significant difference was observed among the adult groups of goat and sheep.

The values (mean ±SEM) for circumference at mid shaft of left humerus is calculated to be 3.65±0.13, 4.61±0.12 and 5.37±0.16 cm, and 3.75±0.15, 4.88±0.04 and 6.26±0.10 cm in three age groups of studied goat and sheep. Statistical analysis revealed same trend of results as for right humerus among both species.
Comparative differences in humerus

Like other ruminants, the humerus of goat and sheep also possesses one shaft and two extremities (proximal and distal). The shaft is twisted cylindrical and presents four surfaces and makes “S” shape in goat and highly curved “S” shape in sheep. Head is small and rounded; fossa in front of head is deep and prominent in goat, whereas, the head is large with shallow fossa in case of sheep. Tricepetal line is more prominent in sheep but less so in goat. Deltoid tuberosity is less prominent and smooth in goat but more prominent and rough in sheep. The distal epiphysis is thin in Bari goat but thick in Dumbi Sheep (Plate 2).

The radial and olecranon fossae of the humerus of Bari goat are shallow, but deep in Dumbi sheep. At lateral aspect pit of lateral condyle is deep but the cavity of lateral condyle is broad and shallow (Plate 3). The epicondyloid crest of humerus is quite prominent in goat, but inconsistent in sheep (Plate 3).

DISCUSSION

The values of absolute weight, breadth of proximal end, breadth of distal end, circumference and length of right and left humerus of both goat and sheep have been presented in the Figures 1 to 3 and Table 1. While comparing humerus at different variables revealed that the bones of Dumbi sheep are heavier, broader but shorter than those of Bari goat. Okpe and Adamu (2002) indicated that the bones of the Yankassa sheep were heavier and longer, with greater diameter than those of the Red Sokoto goat of the same age. Although the differences he found were not statistically significant (p>0.05). The humerus of adult Black Bengal goat was found to be 12.06 ± 0.27 cm in length. The diameter of shaft at the level of nutrient foramen was 4.24 ± 0.05 cm. The breadth of humerus was 1.66 ± 0.06 cm. The deltoid tuberosity was less prominent and there was shallow radial and olecranon fossa (Siddiqui et al., 2008). Whereas, Hassan et al. (2007) measured the length (16.12 ±0.41), breadth of the proximal end (4.41 ±0.17), breadth of the distal end (3.49 ±0.21) and breadth of diaphysis (1.77 ±0.09) of humerus in adult female Morkaraman sheep, a local Turkish breed. Findings of present study are in agreement with Okpe and Adamu (2002) but partial agreement with those of Siddiqui et al.
(2008) and Hassan et al. (2007). The variation could be attributed to breed difference.

CONCLUSIONS AND SUGGESTIONS

On the basis of these findings and osteometric differences in humerus of both goat and sheep it is quite apparent to explanation that: The humerus of Dumbi sheep observed to be massive in terms of weight, circumference and breadth of proximal and distal ends than that of Bari goat, when compared among three different age periods. Comparative analysis revealed major differences in the morphology of humerus bones...
that could be used as a breakthrough in identification of a particular species. The study suggests:

1. Further studies are suggested to study other age groups like lambs below 06 months and old age group (Above 36-months) in Dumbi sheep and Bari goat.
2. These studies are also suggested in large breeds like Kamori, Beetal etc.
3. Comparative study of the long bones of hind limb so that a clear depiction of gross anatomical and morphometric studies of these bones can be observed.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Capacity enhancement of multicarrier code division multiple access (MCCDMA) using orthogonal complete complementary codes and adaptive constellations

G. Senthilkumar\(^1\)* and R. Amutha\(^2\)

\(^1\)Department of Electronics and Communication Engineering, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kanchipuram, India.
\(^2\)Department of Electronics and Communication Engineering, SSN College of Engineering, Chennai, India.

The multi-carrier code division multiple access (MCCDMA) is a strong candidate for the future wireless mobile communication systems put forth by service quality and system capacity. In order to exploit the maximum possible channel diversity and desirable correlation properties, the modification of MCCDMA system is addressed here to pave the way to remove the multiple access interference (MAI) effect and to increase the spectral efficiency (SE) due to the possible integration of space-time block coding (STBC) and multi input multi output (MIMO) techniques with two-dimensional orthogonal complete complementary (OCC) codes. The impact on modifications in the MCCDMA system is studied. Due to frequency selective fading and multipath effects, MCCDMA suffers from MAI due to loss of orthogonality among the users. In this paper, the constellation movement scheme is proposed to break the interference limitation in order to increase the SE and system capacity. In this scheme, the constellation of one of the users is moved adaptively relative to the other by an optimal angle based on quantized estimation to counteract MAI, caused by multipath effects without varying the transmit power in order to satisfy minimum distance threshold at the detectors. The simulation result shows that this modified MCCDMA system and proposed constellation movement scheme achieves significant performance improvement in terms of bit error rate (BER) and SE compared to conventional MCCDMA systems using unitary spreading codes. It also shows that the proposed scheme combats MAI against frequency selective fading and multipath effects and achieves a significant improvement in user capacity as the number of users increased.

Key words: Multicarrier code division multiple access (MCCDMA), multiple access interference (MAI), orthogonal complete complementary (OCC) codes, channel states, adaptive constellations.

INTRODUCTION

With the ever increasing demands on bandwidth efficiency and system capacity, the multicarrier code division multiple access (MCCDMA) has become strong technology for the current and next generation (5G)
wideband cellular mobile wireless communication systems where multimedia applications and flexible and high data rate services are standard. Among its many advantages, it is worth mentioning the high spectral efficiency (SE) deriving from the performance of orthogonal frequency division multiplexing (OFDM) in a Rayleigh fading environment (Varzakas, 2007) and the capability of collecting the received signal energy scattered in the frequency domain, which results into a remarkable frequency diversity gain (Hara and Prasad, 1999) to mitigate fading effect. In a MCCDMA system, the user's data are spread in the frequency domain using orthogonal spreading codes (Fazel and Kaiser, 2008).

After passing through a frequency selective channel, however, the received codes are no longer orthogonal due to non-ideal correlation properties of spreading codes and multiple access interference (MAI) will arise. Interference mitigation is traditionally accomplished at the receiver side by resorting to well-known multiuser detection schemes (Verdu, 1998). Due to heavy processing load as number of users' increases, these schemes may be unfamiliar. The problem of optimum Multiuser Detection (MUD) with less complexity in CDMA communication systems was considered in Abdulkadim and Hamidreza (2013) based on sign detector and longer code lengths. This improves the processing gain but there is no effect on system capacity. The code scheme based on the complementary code was proposed in Chen et al. (2006) to design a MAI-free CDMA system in a flat fading channel. These codes are derived from the sets of auto complementary codes, any two of which are cross complementary codes (Li and Huang, 2009). This can be constructed by using a \(N \)-dimensional orthogonal matrix. Though this scheme achieves optimum spectrum efficiency using offset stacked spreading modulation than conventional CDMA system, the number of user supported is less. Interference suppression against MAI effect with respect to the number of users is achieved by inter-group complementary (IGC) codes (Jing et al., 2008). This increases complexity of the implementation due to user groupings. As an effective method to increase the diversity gain and combat the effects of fading, transmit diversity has been studied extensively in the past. The space-time block coding (STBC) (Alamouti, 1998) provides full diversity gain as well as full rate and does not sacrifice bandwidth efficiency. Space-time (S-T) coding based multi input multi output (MIMO) systems (El-Hajjar and Lajos, 2010) have emerged as an extremely important enabling technology for 4G wireless to offer substantially improved detection efficiency and system throughput by exploiting its unique spatial diversity gain and spatial multiplexing capability without consuming extra spectrum. In order to exploit the maximum possible channel diversity and desirable correlation properties, the advantages offered by STBC and MIMO schemes are utilized in this paper for the modification of MCCDMA system employing two-dimensional orthogonal complete complementary (OCC) codes to remove the MAI effect and to increase the SE. The development issues are addressed here. The impact on the performance of this modified MCCDMA system is studied in terms of bit error rate (BER) and SE for further improvement.

From the above study, this modified MCCDMA system fails to remove MAI completely in a multipath environment. It is observed that the overlapping of received symbols results at particular channel conditions due to the fact that received signals from multipath add destructively causing multi-user interference which results in high error rates. With increasing MAI, the transmission quality for all users worsens and the number of subscribers able to be facilitated (user capacity) is limited by a specified BER threshold. To overcome such propagation effects, channel estimation and compensation applied for it to reduce BER as the channel parameters varies randomly (Mario et al., 2007). Adaptive loading algorithms for OFDM system with imperfect channel state information (CSI) were proposed in Ye et al. (2006). The network coding approach was used to mitigate these random constellations for two way relay networks (Koike-Akino et al., 2009). In this approach, the performance of end to end throughput was achieved but requires complex optimization procedure. In Musavian et al. (2011), variable rate and the constellation size were adapted according to the channel conditions for reducing the error rates. Adaptive modulation scheme was proposed, which vary various transmission parameters based on different modulation schemes according to existing channel conditions to minimize the error rates (Kugalur and Veerappa, 2013). All these schemes failed to recover the faded overlapped symbols due to MAI caused by multipath effects at poor channel conditions and also it require complex perfect CSI at the transmitter. The perfect CSI at the transmitter is not easily feasible, as it would require additional processing for feedback. These factors severely limit the performance of the system. To solve these discussed problems, the MCCDMA system is modified in the architecture and effective constellation movement scheme is proposed.

The contributions of this paper are as follows:

1) Modification of MCCDMA system is presented which exploits the diversity gain and ideal correlation properties for mitigating MAI in order to increase the user capacity while considering the development issues on integration of MIMO and STBC in two-dimensional to support the group of OCC codes (in system model section).

2) The constellation movement scheme is proposed for the users which move the angle of constellation of one of the users adaptively with respect to the other based on simple quantized estimation in order to satisfy minimum distance threshold at the detectors.

3) Procedure for simple quantized estimation alternate to complex estimation of perfect CSI is developed. The procedure is illustrated for obtaining the quantized details.
of channel states to recover faded symbols.
4) The procedure to compute the optimal angle for movement is explained for the M-QAM signal set.
5) The threshold of minimum distance and condition to avoid overlapping are developed.
6) The modified MCCDMA system and proposed constellation movement scheme are evaluated for the performance improvement in terms of BER and SE
7) Simulation results are discussed to demonstrate the capability of the modified MCCDMA and proposed scheme to outperform the conventional MCCDMA system with unitary spreading codes.

METHODOLOGY

System model

Figure 1 illustrates a simplified transceiver structure of modified MCCDMA system model. The modification of MCCDMA system is addressed here in addition to the system description to counteract the loss of orthogonality in frequency selective fading and multipath environment for increasing the interference mitigation efficiency. Modification exploits ideal correlation properties of spreading code, the diversity gain and chip based modulation to minimize the correlation among the users, reduce the error rate and increase the SE, respectively.

Orthogonal complete complementary (OCC) codes

For minimum correlation among the users, the OCC code is employed based on ideal correlation properties which spread user data in time and frequency domains. The OCC codes are kind of ideal orthogonal code and defined by three parameters, set size (K), flock size (M) and element code length (N). The processing gain of OCC code is $N \times M = N \times N$ since each symbol bit will be spread by the whole set of CC code sequences instead of a single sequence. The system robustness against the adverse effects of the channel and the division among users depends on the orthogonality of the spreading codes. The orthogonality of this code is based on its correlation functions. The auto correlation function (ACF) of the OCC codes is zero for any shifts except zero shift which help to remove the delayed version of received signals due to multipath propagation and its cross correlation function (CCF) is zero for any possible number of shifts which allow the receiver to remove undesired other user’s signals. The correlation function of the OCC code is based on a group of M element codes as its spreading code instead of a single code.

STBC encoding

For diversity gain, STBC encoding integrates STBC in two-dimensional with OCC encoding with M subcarriers modulation using OFDM architecture. The signal spectrum is modulated by an OCC code set, which is unique for each user. The flock of M element codes, $(c_{o1}, c_{o2}, ..., c_{oK})$ are allocated to K users. Each element code $c_{o,m}$ consists of N chips where $k \in (1,K)$ and $m \in (1,M)$. The information symbols which are typically coming from the outputs of data source are first space-time block-encoded into P parallel independent symbol streams. Based on the Alamouti STBC algorithm, an encoded signal block for the m^{th} element code of the k^{th} user in this MCCDMA system can be written as:

$$s_{1,k,m} = (b_{1,o} c_{o,k,m} + b_{1,e} c_{e,k,m}), \quad (1)$$

$$s_{2,k,m} = (b_{1,e} c_{o,k,m} - b_{1,o} c_{e,k,m}), \quad (2)$$

The P parallel symbol streams are fed into OCC encoding module that consists of M OCC encoding branches, each of which has P OCC slices. There are in total up to M replicas of P parallel symbol streams encoded by different OCC code sets to implement diversity order of P and parallel transmission order of M. Therefore, the family size of the OCC must be at least MP.

OCC encoding

For SE, OCC encoding configures chip based spreading modulation and QAM modulation based on group of OCC codes. This MCCDMA combines its OCC spread-coded bits together using chip based spreading modulator. This modulator improves the SE which is defined in unit of bit(s) per chip to measure the bandwidth efficiency. The spreading modulator used by every user in which the input data stream is from the k^{th} user, $b_k = (b_{k1}, b_{k2}, ..., b_{kn})$. The input bit sequence of each user is spread with the corresponding element code, $c_{o,m} = (c_{o1,m}, c_{o2,m}, ..., c_{oK,m})$. Also, each information bit is shifted by one chip relative to another and then added. The OCC encoding output from user k is expressed as:

$$d_{k,m}(t) = \sum_{i=0}^{\infty} \sum_{n=0}^{N-1} b_{k,i} c_{m,n} \int \left[\frac{t-(i+n+1)T}{T} \right] \times \left[\frac{t-(i+n)T}{T} \right] \frac{(T/2-Tc)}{T}, \quad (3)$$
Where
\[
\Pi(s_1 \mid \omega) = \begin{cases}
1, & t \in (-\frac{T_u}{2}, \frac{T_u}{2}) \\
0, & \text{otherwise}
\end{cases}
\]

and
\[
d_{km}(t) \text{ represents the m-th OCC encoding output from user K,} \]
\[
b_{km}(t) \text{ denotes the } i^\text{th} \text{ information bit from user K,} \]
\[
C_{m,n} \text{ denotes the } n^\text{th} \text{ chip element code and} \]
\[
T_c \text{ and} T \text{ denote chip and bit duration, respectively. Then, each element code,} \]
\[
C_{km} \text{ is carrier modulated with sub-carrier,} \]
\[
f_m. \text{ Thus, in effect, the user data information has been spread in both the time and frequency domains. The time domain spreading is carried out by each} \]
\[
\text{individual element code, while the frequency spreading is fulfilled across different sub-carriers in different carrier frequencies. The two-dimensional spreading offers much more degrees of freedom to achieve orthogonality of the spreading codes in both the time and frequency domains.} \]

To maintain good performance in the presence of fading, for the element code length of 'N' of the OCC code the chip based spreading modulator is followed by a QAM map to transmit the L=(N-1) different levels in symbol duration for its robustness in detection efficiency. In the case of the downlink, the m-th OCC encoding output is the sum of all OCC spread streams from all the users associated with the m-th element code of each code family; for example, A_0, B_0, C_0, and D_0 belong to family 0. It is expressed as:
\[
s_m(t) = \sum_{k=0}^{M-1} d_{km}(t),
\]

Where \(M\) denotes the flock size, \(K=M \cdot N\).

To maintain good performance in the presence of frequency selective fading and hardware architecture simplification, the transmitter is implemented using OFDM architecture. Each transmitter will use \(M\) different subcarriers to transmit \(M\) element codes and the whole MCCI DMA system will share the same \(M\) subcarriers. The subcarriers carry the same data information but encoded by different element codes belonging to the same code flock. It is assumed to use only two antennas \(\{n= \text{ even}\}\) to achieve transmitter diversity. It is also assumed that signals from different antennas in a transmitter experience independent Rayleigh fading and additive white Gaussian noise (AWGN).

At a receiver, the received symbol streams go to maximum ratio combining (MRC) from \(M\) replicas to extract \(P\) parallel symbol streams. The combining of outputs from the \(M\) chip matched-filters using MRC improves the frequency diversity gain. Also, the correlation properties of element sequences along with MRC scheme achieve a MAI-free performance (Wei et al., 2013). The carrier demodulation should be carried out first, and then the correlation takes place between local sub-codes and the incoming signals in the \(M\) sub-channels, and is given by:
\[
\text{Cor}_K(t) = \sum_{m=0}^{M} r_K(t) \ast C_{K,m},
\]

Where \(r_K(t) \ast C_{K,m}\) is the correlation between the received signal of user \(K\) and element code \(m\) of the flock assigned to user \(K\). The \(M\) correlation outputs are then added together to obtain the decision variable. The receiver performs coherent decoding with perfect or estimated CSI. Then,
\[
b_{k,i}(t) = \text{sgn}(\text{cor}_{K}(t)),
\]

Where \(b_{k,i}(t)\) denotes the \(i^\text{th}\) demodulated information bit of user \(K\) and \(\text{sgn}(\cdot)\) denotes signum function.

\section*{Proposed constellation movement scheme}

The overlapped symbols result at particular channel conditions due to the fact that received signals from multi-paths add destructively causing multi-user interference. This results in high error rates, worst transmission quality for all users and the number of subscribers able to be facilitated (user capacity) is limited. The constellation movement scheme is proposed to break the multi-user interference limitation in order to improve the performance in terms of SE and system capacity. In this scheme, the constellation angle is adaptively controlled by moving the constellation of one of the users relative to the other with an optimal angle based on simple quantized estimation so that the distance between the symbols can be increased above the minimum distance threshold at the detectors without varying the transmit power. This will increase the interference mitigation efficiency against multipath effects.

It is assumed that destination knows details of channel gains, \(h_k\) for the users-k separately. The channel amplitude ratio, \(\gamma = \frac{|h_k|}{|h_0|}\) and phase difference \(\theta = \frac{\phi_k}{\sqrt{M}}\), are calculated. The pair \((\gamma, \theta)\) is used to represent the channel state, \(y^{\text{th}}\) in the complex plane \((\Gamma, \Phi)\). The received symbols are represented collectively as additive constellation,
\[
S_{\text{ADD}}(h_0, h_1, \theta) = \sqrt{E_s} h_0 S_{\text{MAP}}(y, \theta) \text{ where } S_{\text{MAP}}(y, \theta) \text{ is group constellation,} \]

\[
\text{Minimum distance threshold}
\]

The minimum squared Euclidean distance between the transmitted data \((s_A, s_B)_{\text{ADD}}\) and its candidate \((s_A', s_B')_{\text{ADD}}\) is measured as performance metric at the destination. The normalized squared distance can be written as:
\[
\begin{align*}
 d^2_{\text{ADD}}(s_A, s_B) &= |(s_A - s'_A) + \gamma e^{j \theta} (s_B - s'_B)|^2
 \end{align*}
\]

At particular channel conditions, the squared Euclidean distance \(d^2_{\text{ADD}}(s_A, s_B)\) goes to zero whenever,
\[
\begin{align*}
 \gamma e^{j \theta} &= -(s_A - s'_A) \quad \text{or} \quad (s_B - s'_B)
 \end{align*}
\]

That is, the two received symbols are overlapped due to MAI caused by multipath effects. These values of \(\gamma\) and \(\theta\) are called singular channel fade state at which the minimum distance, \(d_{\text{min}}\) is zero or very low, resulting in poor error performance at the destination. Thus, it is necessary to fix the threshold of minimum distance, \(\delta\) to reduce the error rate such that any channel states \((\gamma, \theta)\) lying close to any singular channel states should be controlled so that \(d_{\text{min}} > \delta\). This requires identification of channel fade states which reduce minimum distance below distance threshold and avoiding this using adaptive control of constellation angle of one of the users relative to the other based on channel quantized estimation and adaptive control of constellation angle.

\section*{Procedure for quantized estimation}

The proposed idea of the quantized estimation is to collect the quantized details of channel states using channel distance mapping with respect to the singular channel states, indicate the details of channel states which reduce minimum distance to the users. The set of singular channel states \((\gamma, \theta)\) are obtained for the QAM signal set in the plane for \(\gamma \geq 1\) and \(\theta \in [0, \pi/M]\) where \(1 \leq i \leq
The optimal phase \(\theta_{i} \) is disturbed. Therefore, the distance between the center of each of the changed circle \((\gamma_{i}, \theta_{i}) \) and radius \(\delta_{i} = |s_{ij} - s_{i}'j| \) is changed to \((\gamma_{i}, \theta_{i} + \beta) \) or \((\gamma_{i}, \theta_{i} - \beta) \). The proposed constellation movement scheme mitigates the MAI effect through adaptive control of constellation angle by keeping the squared Euclidean distance between the transmitted data and its received candidate above minimum distance threshold. The quantized estimation reduces the complexity by considering only the quantized details of channel states and send to the user for controlling the constellation angle.

RESULTS AND DISCUSSION

Based on the discussion given in the earlier sections, the performance of this modified MCCDMA systems and proposed constellation movement scheme is evaluated in terms of BER and SE using MATLAB against signal to noise-ratio (SNR) with different spreading codes such as Walsh, Gold and OCC codes. In the simulations, downlink frequency selective Rayleigh fading channel with AWGN floor and multipath environments are considered. It is assumed that the path components are different and independent for all paths. The receiver had perfect knowledge of the CSI. The Gold and Walsh codes are taken as examples for traditional quasi-orthogonal codes and typical orthogonal codes, respectively. The data packet of 256 symbols, the symbol length of 64, the modulation of 16-QAM, the number of subcarriers of 128 and the following key parameters of those spreading codes used in the simulations are:

1) OCC: block size \((M) = 4\), element code length \((G) = 16\), Sequence length \(N = 64\),
2) Walsh code: sequence length \(G = N = 64\)
3) Gold code: sequence length \(G = N = 63\)

Figure 2 shows the BER curves simulated against SNR among the MCCDMA system with different spreading codes for increased number of users \((K = 16)\) under a two-ray multipath channel with its delay profile being \([1/2, 0.1/2]\) and one chip inter path delay. The BER curves for the unitary spreading codes (Walsh and Gold codes) deteriorate obviously because of loss of orthogonality due to increased MAI in frequency selective fading, while OCC code performs nearly the same as that in the single user scenario. Hence, the orthogonality of the spectral modulated signal using OCC code is retained. Thus, the user capacity increases due to this increased interference mitigation efficiency.

The higher processing gain can be possible when element code length increases but it does not increase...
BER performance is compared for MAI robustness among the MCCDMA system using Walsh and OCC codes with and without constellation movement in Figure 3 for increased number of users \((K = 16) \). The BER curves for the Walsh codes deteriorate obviously due to increased MAI, whereas the system with OCC code outperforms that with Walsh codes due to good correlation among the users provided by OCC codes and diversity gain. It is observed that the performance gain of SNR of 3 dB is achieved using constellation movement scheme compared to that without this scheme. It shows that the detrimental effects of MAI are reduced by keeping the squared Euclidean distance between the transmitted data and its received candidate above minimum distance threshold. This increases the interference mitigation efficiency against random constellations caused by multipath effects so that the receiver can decode the messages very easily from the received symbols. The results reveal that the minimum distance threshold ensures large channel amplitude ratio \(\{ \gamma = \frac{h_B}{h_A} \} \). This results in more reliable communications;
In order to solve the channel estimation issues and reduce the computational complexity based on the above discussion, the simple quantized modified estimation design strategy based on the minimum distance criterion is implemented in the proposed constellation movement scheme. This simple estimation and constellation movement scheme can provide much robustness to amplitude and phase shifts caused by difficult multipath effects.

Another significant dividend of quantized estimation method is that it limits the amount of required channel information at the users so that associated overhead is nominal compared to perfect CSI requirement.

The feedback of $\log_2(N_S + 1) = 5$ bits for 16QAM signal set is required as channel estimation load in this simplified quantized estimation procedure. When comparing with the perfect CSI, the required bits for feedback of channel states to the users reduces from 16 symbols to 5 bits and that the required computational complexity reduces from the order of $O(2^K)$ to $O(k)$ with K users by the simple quantized modified estimation.

Figure 3 compares average SEs of MCCDMA system using Walsh and OCC codes with and without constellation movement scheme. The SEs for Walsh code cannot be improved further beyond some high SNR due to the excessive interferences. Obviously, the SE of the MCCDMA system using OCC code outperforms that using the Walsh codes. This improvement in SE is obtained jointly by the chip width of the chip based spreading modulation through increased processing gain and the desirable correlation properties of OCC code. The MCCDMA system using constellation movement scheme outperforms that using OCC code without this scheme. This scheme achieves SNR gain of 2 dB compared to system using OCC code and of 4 dB compared to system using Walsh code for achieving an average SE of 1.8 bits/ch.use (90%). This is certainly obtained through adaptive control of position of the constellation angle against random constellation. This result shows significant improvement of SE due to interference mitigation efficiency of the proposed adaptive constellation movement scheme.

Figure 4 compares BER comparison for MAI robustness against SNR among MCCDMA system using Walsh and OCC codes with and without constellation movement scheme.
The modified MCCDMA and constellation movement scheme have several advantages compared to conventional MCCDMA systems with unitary spreading codes. The robustness to difficult multipath channel and interference mitigation efficiency are increased. The SE improvement and reduced error rate are achieved.

On the other hand, complexity of the system is increased. However, the complexity of the simple quantized estimation is reduced compared to the perfect CSI. Generally, the complexity of estimation scheme increases for large constellations if the required CSI is large, which implies that the constellation movement scheme might be feasible for the scenario intended for large signaling constellations.

Moreover, it is power efficient because it does not requires extra power to control the constellation angle adaptively in the proposed constellation movement scheme where only the phase is changed with same amplitude.

Conclusion

In this paper, the modification of MCCDMA system is studied for ideal correlation properties and maximum channel diversity gain to solve the problem of loss of orthogonality among the users due to MAI in frequency selective fading channel in order to increase the user capacity. The constellation movement scheme is proposed in the MCCDMA system to recover the overlapped symbols due to random constellation caused by MAI at particular channel conditions in order to increase the SE and the user capacity. The performance of modified MCCDMA and constellation movement scheme are evaluated in terms of BER and SE and it outperforms the conventional MCCDMA systems. The interference mitigation efficiency of the system improved against the frequency selective fading effects by the orthogonality of the OCC codes and OCC encoding of the modified MCCDMA system and by the adaptive control of random constellation in the constellation movement scheme. The system robustness to multipath effects improved by combined quantized estimation and adaptive control of random constellation in the constellation movement scheme and correlation properties of OCC codes. Furthermore, the issues for modification of MCCDMA system, procedure for simple quantized
estimation, procedure to compute the optimal angle for movement are given. Design criterions such as condition for singular channel fade states; minimum distance threshold and condition to avoid overlapping with other channel states for MQAM signal set are developed. Thus, this modified MCCDMA system has MAI-free capability regardless of the number of users and so, the user capacity is increased.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Sorption mechanism of some heavy metal ions from aqueous waste solution by polyacrylamide ferric antimonate

I. M. El-Naggar¹, E. A. Mowafy¹, Y. F. El-Aryan¹ and M. G. Abd El-Wahed¹,²*

¹Atomic Energy Authority, Hot Laboratories Center, P. No. 13759, Cairo, Egypt.
²Chemistry Department, Faculty of Science, Zagazig University, Egypt.

Received 30 December, 2013; Accepted 12 March, 2014

Incorporation of a polymer material into an inorganic ion exchanger provides a class of hybrid ion exchangers with a good ion exchange capacity, high stability and high selectivity for heavy metals. We can see these properties in the present study. The kinetic of Fe (III), Pb (II), Cd (II), Cu (II), and Zn (II) ions on polyacrylamide ferric antimonate has been studied. The thermodynamic parameters such as activation energy (Ea), entropy of activation ∆S* and diffusion coefficient (Dᵦ) have been evaluated and a correlation has been made of these parameters with the ion exchange characteristics of the material.

Key words: Synthesis, polyacrylamide ferric antimonite, adsorption, isotherm, diffusion, heavy metals.

INTRODUCTION

In recent years, the search for a new class of high performance and high functional organic-inorganic composite ion-exchangers were developed by the incorporation of organic conducting polymers into inorganic precipitates (Khan et al., 2003, 2003; Khan and Alam, 2004). Heavy metals contamination exists in aqueous waste stream from many industries such as metal plating, mining, tanneries, and painting, car radiator manufacturing, as well as agricultural sources where fertilizers and fungicidal spray were intensively used. The removal of heavy metal in an effective manner from water and waste water is, thus, ecologically very important. There are many reported and established technologies for the recovery of metals from waste water, which include chemical precipitation, flotation, electrolytic recovery, membrane separation and activated carbon adsorption. In recent years, the search for a new class of high performance and high functional organic-inorganic composite ion-exchangers were developed by the incorporation of organic conducting polymers into inorganic precipitates (Khan et al., 2004). These materials were found selective for heavy toxic metal ions and utilized for analysis of water pollution as such materials have a great deal of attention because of their special mechanical and chemical stabilities (Khan et al., 2004). The newly developed composite offered a high capacity and Faster sorption kinetics for the metal ions such as Fe (III), Pb (II), Cd (II), Cu (II), and Zn (II) ions.

EXPERIMENTALS

Materials

All chemicals used in this work were of analytical grade and used...
Preparation of polyacrylamide

Polyacrylamide was prepared by mixing equal volume of 20% acrylamide prepared in distilled water with 0.1 M potassium persulfate \((K_2S_2O_8)\) prepared in 1 M HCl, a viscous solution was obtained by heating the mixture gently at 70±5°C with continuous stirring.

Preparation of ferric antimonate

Ferric antimonate prepared from 0.5 M of ferric chloride was dissolved in distilled water and adding the same volume of 0.5 M antimony metal dissolved in aqua regia slowly with constant stirring using a magnetic stirrer at a temperature of 70±5°C. The resulting solution was precipitated by using ammonia solution drop by drop until the pH was about 0.13. This results in formation of red brown precipitate.

Preparation of polyacrylamide ferric antimonate

Polyacrylamide ferric antimonate was formed by adding a precipitate of ferric antimonate to polyacrylamide with stir by using magnetic stirrer to obtain homogenous precipitate. The precipitates were left to age in the mother liquor overnight, the precipitate was washed with distilled water several times. The supernatant liquid was decanted and the gel filtered using a centrifuge (about 10^4 rpm) and dried at 50±1°C. The product was crashed and sieved to obtain different mesh sizes of 0.12 to 1.00 mm. The weight loss of polyacrylamide ferric antimonate in the different forms such as H(II), Pb (II), Fe (III), Cd (II), Cu (II) and Zn (II) ions at 1000°C were determined using thermal analysis technique (TG and DTA) to be 34.9, 17.33, 19.81, 21.55, 21.22 and 21.33% w/w, respectively.

Chemical stability

Chemical stability of polyacrylamide ferric antimonate ion exchangers were studied in water, nitric and hydrochloric acid [1, 2, 3, 4, 5 and 6 M], as well as in potassium and sodium hydroxide (0.1, 1 M) by mixing 50 mg of ion exchanger samples and 50 ml of the desired solution with intermittent shaking for approximately three weeks at 25±1°C.

Data analysis

Pb (II), Fe (III), Cd (II), Cu (II) and Zn (II) ions were measured using ICP-7500 atomic absorption flame emission spectrophotometer (AA-6701F).

RESULTS AND DISCUSSION

The ion exchange capacity of polyacrylamide ferric antimonate for Pb (II), Fe (III), Cd (II), Cu (II) and Zn (II) ions were found to be 5.33, 4.31, 3.12, 2.51 and 2.35 respectively. It is indicated that the affinity sequence for all cations is Pb\(^{2+}\) > Fe\(^{3+}\) > Cu\(^{2+}\) > Cd\(^{2+}\) > Zn\(^{2+}\). This trend may be due to the electronegativity of Pb\(^{2+}\) > Fe\(^{3+}\), Cu\(^{2+}\), Cd\(^{2+}\) and Zn\(^{2+}\) and may be due to the hydrated ionic radii according to the fact that increasing atomic number results in decreasing hydrated ionic radii (Abou-Mesalam and El-Naggar, 2003).

The effect of particle sizes on the rate of exchange of Pb (II), Fe (III), Cd (II), Cu (II) and Zn (II) ions on polyacrylamide ferric antimonate was studied at 25±1°C. Straight lines passing through the origin are obtained, which were taken as indication of a particle diffusion mechanism as shown in Figure 1. The results and figures of Lead were taken as example for the sake of brevity, a relation between F and Bt against time. Similar trend was observed by El-Naggar et al. (2007, 2012).

The plots of Bt and F against t for the exchange of Pb (II), Fe (III), Cd (II), Cu (II) and Zn (II) ions at different reaction temperatures (25, 45 and 65 ±1°C) on polyacrylamid ferric antimonate are presented in Figure 2. The results and figures of Lead were taken as example for the sake of brevity). straight lines were observed to be passing through the origin. This confirms that the phenomenon is particle diffusion controlled, and the rate of exchange increases by increasing the reaction temperatures from 25 to 65±1°C. The relatively small activation energy values \((E_a)\) obtained in Table 1, for Pb (II), Fe (III), Cd (II), Cu (II) and Zn (II) ions, indicated that the rate of exchange is particle diffusion mechanism (El-Naggar et al., 2012).

Adsorption isotherm

The Langmuir adsorption isotherm assumes that adsorption takes place at specific homogeneous sites within the adsorbent and has found successful applications in many adsorption processes of monolayer adsorption. For the case of adsorption in solution, the equation is represented by the following (Langmuir, 1916).

\[
\frac{C_e}{q_e} = \frac{1}{q_{\text{max}} K_L} + \frac{C_e}{q_{\text{max}}}
\]

Where \(q_e\) (mol g\(^{-1}\)) is the adsorption capacity for Pb(II), Fe(III), Cd(II), Cu(II) and Zn(II) ions on the adsorbent at the equilibrium, \(C_e\) (mol dm\(^{-3}\)) is the equilibrium ions concentration in the solution, \(q_{\text{max}}\) is the monolayer adsorption capacity of the adsorbent, and \(K_L\) is the Langmuir adsorption constant. The plots of \(C_e / q_e\) vs. \(C_e\) for the adsorption of Pb(II) onto composite Figure 3 give a straight line of the slope \(\frac{1}{q_{\text{max}} K_L}\) and intercept \(\frac{1}{q_{\text{max}}}\).

We took the results and figures of lead as example for the sake of brevity. The Freundlich isotherm is an empirical equation employed to describe heterogeneous systems The plot of \(\ln K_f\) vs. \(1/T\) for Pb(II), Fe(III), Cd(II), Cu(II) and Zn(II) ions is given in Figure 4. Accordingly the values of \(\Delta H\) at saturation are calculated without further purification.
Figure 1. Plots of F and Bt against time for exchange of Pb(II) on polycrylamid ferric antimonate at different particle diameters.

Figure 2. Plots of F and Bt against time for exchange of Pb(II) on polycrylamid ferric antimonate at different reaction temperatures.
Table 1. Thermodynamic parameters for the exchange of Fe$^{3+}$, Pb$^{2+}$, Cd$^{2+}$, Cu$^{2+}$, and Zn$^{2+}$ on polyacrylamide ferric antimonate, at different reaction temperatures.

<table>
<thead>
<tr>
<th>Metal ion</th>
<th>Reaction temperature</th>
<th>$D_i \times 10^8$ (cm2 s$^{-1}$)</th>
<th>$D_o \times 10^5$ (cm2 s$^{-1}$)</th>
<th>E_a (KJ mol$^{-1}$)</th>
<th>ΔS^* (mol$^{-1}$ k$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb(II)</td>
<td>25</td>
<td>0.57</td>
<td>1.83</td>
<td>2.86</td>
<td>-121</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.61</td>
<td>1.82</td>
<td></td>
<td>-122.3</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>0.65</td>
<td>1.83</td>
<td>2.86</td>
<td>-122.8</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.59</td>
<td>3.44</td>
<td></td>
<td>-116.4</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.67</td>
<td>3.54</td>
<td>4.37</td>
<td>-116.8</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>0.73</td>
<td>3.44</td>
<td></td>
<td>-117.6</td>
</tr>
<tr>
<td>Cd(II)</td>
<td>25</td>
<td>0.59</td>
<td>3.8</td>
<td></td>
<td>-115.7</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.69</td>
<td>3.89</td>
<td>4.56</td>
<td>-116</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>0.75</td>
<td>3.8</td>
<td></td>
<td>-116.8</td>
</tr>
<tr>
<td>Zn(II)</td>
<td>25</td>
<td>0.81</td>
<td>8.55</td>
<td></td>
<td>-107.2</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1.04</td>
<td>9.3</td>
<td>6.27</td>
<td>-107.4</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>1.08</td>
<td>8.56</td>
<td></td>
<td>-108.6</td>
</tr>
<tr>
<td>Cu(II)</td>
<td>25</td>
<td>0.44</td>
<td>17.9</td>
<td></td>
<td>-102.8</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.62</td>
<td>20.04</td>
<td>9.14</td>
<td>-102.4</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>0.67</td>
<td>17.9</td>
<td></td>
<td>-103.9</td>
</tr>
</tbody>
</table>

Figure 3. Plots of C_e / q_e against C_e for exchange of Pb(II) on polycrylamid ferric antimonate at different reaction temperatures.
for Pb(II), Fe(III), Cd(II), Cu(II) and Zn(II) ions on polycrylamide ferric antimonate and represented in the Table 2. These values indicate the exothermic behavior of polycrylamide ferric antimonate. The linearized form of the Freundlich isotherm equation (Freundlich, 1906) is.

\[
\log q_e = \log k_F + \frac{1}{n} \log C_e
\]

Where \(K_F \) (dm\(^3\) g\(^{-1}\)) and \(n \) (dimensionless) are Freundlich adsorption isotherm constants, being indicative of the extent of the adsorption and the degree of nonlinearity between solution concentration and adsorption, respectively.

The free energy \(\Delta G^\circ \) were associated to the adsorption process and were determined using the following equation

\[\Delta G^\circ = -RT \ln K_F\]

The results given in Table 2 show that the change of free energy for physisorption is generally between -20 and 0 kJ mol\(^{-1}\); the physisorption together with chemisorption is at the range of -20 to -80 kJ mol\(^{-1}\) and chemisorptions is at a range of -80 to -400 kJ mol\(^{-1}\) (Jaycock and Parfitt, 1981). The negative value of the enthalpy change of Pb(II) ion indicates an exothermic behavior; the positive value of the enthalpy change indicates that the adsorption process is endothermic and this value also indicates that the adsorption follows a physisorption mechanism in nature involving weak forces of attraction between the adsorbed [Pb(II), Fe(III), Cd(II), Cu(II) and Zn(II)] ions and composite, thereby demonstrating that the adsorption process is stable energetically (Yu et al., 2001). The Freundlich constant \(n \) is a measure of the deviation from linearity of the adsorption. If a value for \(n \) is below unity, this implies that adsorption process is governed by a chemical mechanism; however, if a value for \(n \) is above unity, adsorption is favorably a physical process. The \(K_F \) and \(n \) were calculated from the slopes of the Freundlich plots as shown in Figure 4. The results and figures of Lead were taken as example for the sake of brevity and were found to be (1.64 to 2.57) and (2.70 to 4.76) respectively. The magnitudes of \(K_F \) and \(n \) show easy separation of heavy metal ion from wastewater and high adsorption capacity (Saifuddin and Raziah, 2007). The value of \(n \), which is related to the distribution of bonded ions on the sorbent surface, represent beneficial adsorption if it is between 1 and 10 (Kadirvelu and

Figure 4. Freundlich adsorption isotherm for the sorption of Fe(III), Pb(II), Cd(II), Cu(II) and Zn(II) ions on polycrylamid ferric antimonate at different reaction temperatures.
Namasivayam, 2000; Solener et al., 2008). The values of \(n \) at equilibrium represents favorable adsorption at studied temperatures and therefore this would seem to suggest that a physical mechanism, referred to as the adsorption bond becomes weak (Jiang et al., 2002) and conducted with van der Waals forces. Table 2 gives the isotherm parameters for both Langmuir and Freundlich isotherms. From these parameters of the adsorption isotherm, it was noted that the Freundlich isotherm model exhibits better data than the Langmuir isotherm model.

Conclusion

The present study shows that polyacrylamide ferric antimonate is an effective adsorbent for the removal of Pb(II), Fe(III), Cd(II), Cu(II) and Zn(II) ions from aqueous solutions. The following results have thus been obtained:

1) Polyacrylamide ferric antimonate has a good ion exchange capacity, high stability and high selectivity for Pb(II) and Fe(III) than Cd(II), Cu(II) and Zn(II) ions.
2) The adsorption follows a physisorption mechanism in nature involving weak forces of attraction between the adsorbed [Pb(II), Fe(III), Cd(II), Cu(II) and Zn(II)] ions and polyacrylamide ferric antimonate.
3) It was noted that the Freundlich isotherm model exhibits better data than the Langmuir isotherm model.

Conflict of Interests

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors are thankful to Prof. El-Naggar, Head of Hot Laboratory Center and Prof. Abd El-Wahed, Dean of Faculty of Science, Zagazig University, Egypt.

REFERENCES

Table 2. Isotherm parameters for adsorption of Pb (II), Fe (III), Cd (II), Cu (II) and Zn (II) ions on polyacrylamid ferric antimonate.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Langmuir</th>
<th>Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta H) (KJ/mol)</td>
<td>(\Delta G^\circ) (KJ/mol)</td>
</tr>
<tr>
<td>Pb</td>
<td>-3.34</td>
<td>-10.33</td>
</tr>
<tr>
<td>Fe</td>
<td>21.17</td>
<td>-10.55</td>
</tr>
<tr>
<td>Cu</td>
<td>8.09</td>
<td>-9.98</td>
</tr>
<tr>
<td>Cd</td>
<td>32.5</td>
<td>-10.60</td>
</tr>
<tr>
<td>Zn</td>
<td>14.78</td>
<td>-11</td>
</tr>
</tbody>
</table>

Related Journals Published by Academic Journals

- International NGO Journal
- International Journal of Peace and Development Studies