ABOUT IJPS

The International Journal of Physical Sciences (IJPS) is published weekly (one volume per year) by Academic Journals.

International Journal of Physical Sciences (IJPS) is an open access journal that publishes high-quality solicited and unsolicited articles, in English, in all Physics and chemistry including artificial intelligence, neural processing, nuclear and particle physics, geophysics, physics in medicine and biology, plasma physics, semiconductor science and technology, wireless and optical communications, materials science, energy and fuels, environmental science and technology, combinatorial chemistry, natural products, molecular therapeutics, geochemistry, cement and concrete research, metallurgy, crystallography and computer-aided materials design. All articles published in IJPS are peer-reviewed.

Contact Us

Editorial Office: ijps@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/IJPS
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Sanjay Misra
Department of Computer Engineering, School of Information and Communication Technology Federal University of Technology, Minna, Nigeria.

Prof. Songjun Li
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China

Dr. G. Suresh Kumar
Senior Scientist and Head Biophysical Chemistry Division Indian Institute of Chemical Biology (IICB)(CSIR, Govt. of India), Kolkata 700 032, INDIA.

Dr. `Remi Adewumi Oluyinka
Senior Lecturer, School of Computer Science Westville Campus University of KwaZulu-Natal P.O. Bag X5400 Durban 4000 South Africa.

Prof. Hyo Choi
Graduate School Gangneung-Wonju National University Gangneung, Gangwondo 210-702, Korea

Prof. Kui Yu Zhang
Laboratoire de Microscopies et d’Etude de Nanostructures (LMEN) Département de Physique, Université de Reims, B.P. 1039. 51687, Reims cedex, France.

Prof. R. Vittal
Research Professor, Department of Chemistry and Molecular Engineering Korea University, Seoul 136-701, Korea.

Prof Mohamed Bououdina
Director of the Nanotechnology Centre University of Bahrain PO Box 32038, Kingdom of Bahrain

Prof. Geoffrey Mitchell
School of Mathematics, Meteorology and Physics Centre for Advanced Microscopy University of Reading Whiteknights, Reading RG6 6AF United Kingdom.

Prof. Xiao-Li Yang
School of Civil Engineering, Central South University, Hunan 410075, China

Dr. Sushil Kumar
Geophysics Group, Wadia Institute of Himalayan Geology, P.B. No. 74 Dehra Dun - 248001(UC) India.

Prof. Suleyman KORKUT
Duzce University Faculty of Forestry Department of Forest Industrial Engineering Beciyorukler Campus 81620 Duzce-Turkey

Prof. Nazmul Islam
Department of Basic Sciences & Humanities/Chemistry, Techno Global-Balurghat, Mangalpur, Near District Jail P.O. Beltalapark, P.S: Balurghat, Dist.: South Dinajpur, Pin: 733103,India.

Prof. Dr. Ismail Musirin
Centre for Electrical Power Engineering Studies (CEPES), Faculty of Electrical Engineering, Universiti Teknologi Mara, 40450 Shah Alam, Selangor, Malaysia

Prof. Mohamed A. Amr
Nuclear Physic Department, Atomic Energy Authority Cairo 13759, Egypt.

Dr. Armin Shams
Artificial Intelligence Group, Computer Science Department, The University of Manchester.
Editorial Board

Prof. Salah M. El-Sayed
Faculty of Computers and Informatics,
Benha University. Benha, Egypt.

Dr. Rowdra Ghatak
Associate Professor
Electronics and Communication Engineering Dept.,
National Institute of Technology Durgapur
Durgapur West Bengal

Prof. Fong-Gong Wu
College of Planning and Design, National Cheng Kung University
Taiwan

Dr. Abha Mishra.
Senior Research Specialist & Affiliated Faculty.
Thailand

Dr. Madad Khan
Head
Department of Mathematics
COMSATS University of Science and Technology
Abbottabad, Pakistan

Prof. Yuan-Shyi Peter Chiu
Department of Industrial Engineering & Management
Chaoyang University of Technology
Taichung, Taiwan

Dr. M. R. Pahlavani,
Head, Department of Nuclear physics,
Mazandaran University, Babolsar-Iran

Dr. Subir Das,
Department of Applied Mathematics,
Institute of Technology, Banaras Hindu University, Varanasi

Dr. Anna Oleksy
Department of Chemistry
University of Gothenburg
Gothenburg, Sweden

Prof. Gin-Rong Liu,
Center for Space and Remote Sensing Research
National Central University, Chung-Li, Taiwan 32001

Prof. Mohammed H. T. Qari
Department of Structural geology and remote sensing
Faculty of Earth Sciences
King Abdulaziz University Jeddah, Saudi Arabia

Dr. Jyhwen Wang,
Department of Engineering Technology and Industrial Distribution
Department of Mechanical Engineering
Texas A&M University
College Station,

Prof. N. V. Sastry
Department of Chemistry
Sardar Patel University
Vallabh Vidyanagar, Gujarat, India

Dr. Edilson Ferneda
Graduate Program on Knowledge Management and IT,
Catholic University of Brasilia, Brazil

Dr. F. H. Chang
Department of Leisure, Recreation and Tourism Management,
Tzu Hui Institute of Technology, Pingtung 926, Taiwan (R.O.C.)

Prof. Annapurna P. Patil,
Department of Computer Science and Engineering,
M.S. Ramaiah Institute of Technology, Bangalore-54, India.

Dr. Ricardo Martinho
Department of Informatics Engineering, School of Technology and Management, Polytechnic Institute of Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901 Leiria, Portugal.

Dr. Driss Miloud
University of Mascara / Algeria
Laboratory of Sciences and Technology of Water Faculty of Sciences and the Technology Department of Science and Technology
Algeria
ARTICLES

The first integral method and its application for finding the exact solutions of nonlinear fractional partial differential equations (PDES) in the mathematical physics 174
Elsayed M. E. Zayed and Yasser A. Amer

Physicochemical characterization and inhibitive performance evaluation of Commiphora kestingii gum exudate in acidic medium 184
Paul Ocheje Ameh

An electrostatic lens system for the deceleration of high intensity heavy ion beams 199
F. W. Abdelsalam, M. M. Abdelrahman and B. A. Soliman
Full Length Research Paper

The first integral method and its application for finding the exact solutions of nonlinear fractional partial differential equations (PDES) in the mathematical physics

Elsayed M. E. Zayed* and Yasser A. Amer

Department of Mathematics, Faculty of Sciences, Zagazig University, Zagazig, Egypt.

Received 11 February, 2014; Accepted 21 March, 2014

In this article we apply the first integral method to construct the exact solutions of some nonlinear fractional partial differential equations (PDES) in the sense of modified Riemann–Liouville derivatives, namely the nonlinear fractional Zoomeron equation and the nonlinear fractional Klein- Gordon-Zakharov system of equations. Based on a nonlinear fractional complex transformation, these two nonlinear fractional equations can be turned into nonlinear ordinary differential equations (ODE) of integer order. This method has more advantages: it is direct and concise.

Key words: First integral method, exact solutions, nonlinear fractional Zoomeron equation, nonlinear fractional Klein-Gordon-Zakharov system of equations.

INTRODUCTION

Fractional differential equations have been the focus of many studies due to there frequent appearance in various applications in physics, biology, engineering, signal processing, systems identification, control theory, finance and fractional dynamics (Miller and Ross, 1993; Kilbas et al., 2006; Podlubny, 1999). Recently, a large amount of literature has been provided to construct the solutions of fractional ordinary differential equations, integral equations and fractional partial differential equations of physical interest. Several powerful methods have been proposed to obtain approximate and exact solutions of fractional differential equations, such as the Adomian decomposition method (El-Sayed et al., 2009; Safari et al., 2009), the variational iteration method (Inc, 2008; Wu and Lee, 2010; Fouladi et al., 2010), the homotopy analysis method (Song and Zhang, 2009;
which are consequences of the equation \(d^\alpha x(t) = \Gamma(1+\alpha)x(t) \).

Next, let us consider the following time fractional differential equation with independent variables \(x=(x_1,x_2,\ldots,x_m,t) \) and a dependent variable \(u \):

\[
F(u, D^\alpha_t u, u_{x_1}, u_{x_2}, \ldots, D^\alpha_t u_{x_1}, u_{x_2}, \ldots) = 0. \quad (5)
\]

Using the fractional complex transformation

\[
u(x_1,x_2,\ldots,x_m,t) = u(\xi), \quad \xi = x_1 + k_1x_2 + \cdots + k_nx_n + \frac{ct^\alpha}{\Gamma(1+\alpha)}
\]

where \(k_i, c \) are constants to be determined later; the fractional Equation (5) is reduced to the nonlinear ODE of integer orders:

\[
H(u, u', u'', \ldots) = 0,
\]

where \(u' = \frac{du}{d\xi}, u'' = \frac{d^2u}{d\xi^2}, \ldots \)

We assume that Equation (7) has a solution in the form

\[
u(\xi) = X(\xi),
\]

and introduce a new independent variable \(Y(\xi) = X'(\xi) \) which leads to a new system of equations

\[
X'(\xi) = Y(\xi), \quad Y'(\xi) = G(X(\xi), Y(\xi)). \quad (9)
\]

Now, let us recall the first integral method. By using the division theorem for two variables in the complex domain \(\mathbb{C}[X,Y] \) which is based on the Hilbert-Nullstellensatz Theorem (Bourbak, 1972), we can obtain one first integral to Equation (9) which can reduce Equation (7) to a first-order integrable ordinary differential equation. An exact solution to Equation (5) is obtained by solving this equation directly.

Division theorem

Suppose that \(P(x, y) \) and \(Q(x, y) \) are polynomials in \(\mathbb{C}[X,Y] \) and \(P(x, y) \) is irreducible in \(\mathbb{C}[X,Y] \). If \(Q(x, y) \) vanishes at all zero points of \(P(x, y) \), then there exists a polynomial \(H(x, y) \in \mathbb{C}[X,Y] \) such that
\[Q(x, y) = P(x, y)H(x, y). \quad (10) \]

Applications

Here, we present two examples to illustrate the applicability of the first integral method to solve nonlinear fractional partial differential equations.

Example 1. The nonlinear fractional Zoomeron equation

This equation is well-known (Alquran and Al-Khaled, 2012; Abazari, 2011) and can be written in the form:

\[D_{\alpha}^{2\alpha} \left[\frac{u_{xy}}{u} \right] - \left[\frac{u_{xy}}{u} \right]_{xx} + 2D_{\alpha}^{2\alpha} u^2 = 0, \quad 0 < \alpha \leq 1. \quad (11) \]

For our purpose, we introduce the following transformations

\[u(x, y, t) = u(\xi), \quad \xi = \ell x + cy - \frac{\alpha \omega}{\Gamma(1 + \alpha)}, \quad (12) \]

where \(\ell, c, \omega \) are constants. Substituting Equation (12) into (11), we have the ODE:

\[\ell c \omega^2 \left(\frac{u''}{u} \right)'' - c \ell^3 \left(\frac{u''}{u} \right)'' - 2\ell \omega (u^2)'' = 0 \quad (13) \]

Integrating Equation (13) twice with respect to \(\xi \), we get

\[\ell c \left(\omega^2 - \ell^2 \right) u'' - 2\ell \omega au^3 - ru = 0 \quad (14) \]

where \(r \) is a non-zero constant of integration, while the second constant of integration is vanishing.

On using Equations (8) and (9), then Equation (14) is equivalent to the two dimensional autonomous system:

\[X'(\xi) = Y(\xi) \quad (15) \]
\[Y'(\xi) = \frac{rX(\xi) + 2\ell \omega X^3(\xi)}{\ell c (\omega^2 - \ell^2)}, \quad (16) \]

where \(X(\xi) = u(\xi) \).

According to the first integral method, we suppose that \(X(\xi) \) and \(Y(\xi) \) are nontrivial solutions of Equations (15) and (16) and \(Q(X, Y) \) is an irreducible polynomial in the complex domain \(\mathbb{C}[X,Y] \) such that

\[Q(X, Y) = \sum_{i=0}^{m} a_i (X) Y^i(\xi) = 0 \quad (17) \]

where \(a_i(X) \), \(i = 1, 2, ..., m \) are polynomials in \(X \) and \(a_m(X) \neq 0 \). Due to the Division theorem, there exists a polynomial \(\left[g(X) + h(X) Y(\xi) \right] \) in the complex domain \(\mathbb{C}[X,Y] \) such that

\[\frac{dQ}{d\xi} + \frac{\partial Q}{\partial X} \frac{dX}{d\xi} + \frac{\partial Q}{\partial Y} \frac{dY}{d\xi} = \left[g(X) + h(X) Y(\xi) \right] \sum_{i=0}^{m} a_i(X) Y^i(\xi) \quad (18) \]

Let us now consider two cases.

Case 1

If \(m = 1 \).

Substituting Equations (15) and (16) into Equation (18) and equating the coefficients of \(Y^i(\xi), (i = 0, 1, 2) \) on both sides of Equation (18), we have respectively

\[g(X) a_0(X) = a_1(X) \left[\frac{rX(\xi) + 2\omega X^3(\xi)}{\ell c (\omega^2 - \ell^2)} \right], \quad (19) \]

\[\frac{da_i(X)}{dX} = g(X) a_{i-1}(X) + h(X) a_i(X), \quad (20) \]

\[\frac{da_i(X)}{dX} = h(X) a_i(X). \quad (21) \]

Since \(a_i(X), (i = 0, 1) \) are polynomials, then from Equation (21) we deduce that \(a_i(X) \) is a constant and \(h(X) = 0 \). For simplicity we take \(a_i(X) = 1 \).

Balancing the degrees of \(g(X) \) and \(a_0(X) \) we conclude that \(\deg \{ g(X) \} = 1 \). Suppose that \(g(X) = A_1X + B_0 \), then we find

\[a_0(X) = \frac{1}{2} A_1X^2 + B_0X + A_0, \quad (22) \]

where \(A_1, B_0, A_0 \) are constants to be determined.

Substituting \(a_0(X), a_1(X), g(X) \) into Equation (19) we get

\[\left[A_1X(\xi) + B_0 \right] \left[\frac{1}{2} A_1X^2(\xi) + B_0X(\xi) + A_0 \right] - \left[\frac{rX(\xi) + 2\omega X^3(\xi)}{\ell c (\omega^2 - \ell^2)} \right] = 0 \quad (23) \]
Setting the coefficients of powers of $X(\xi)$ to zero, we obtain the following system of algebraic equations:

$$A_0 B_0 = 0, A A_0 + B_0^2 = \frac{r}{\ell c(\omega^2 - \ell^2)}, \frac{3}{2} A B_0 = 0, A_1^2 = \frac{4 \omega}{c(\omega^2 - \ell^2)}$$ \hspace{1cm} (24)

On solving these algebraic equations, we have the results

$$A_1 = \pm 2 \frac{\omega}{\sqrt{c(\omega^2 - \ell^2)}}, B_0 = 0, A_0 = \pm \frac{r}{2 \ell \sqrt{c(\omega^2 - \ell^2)}}$$ \hspace{1cm} (25)

From Equations (17), (22) and (25) we conclude that

$$Y(\xi) = -a_0(X) = \frac{\pm r}{2 \ell \sqrt{c(\omega^2 - \ell^2)}} \pm \frac{\omega}{\sqrt{c(\omega^2 - \ell^2)}} X^2(\xi)$$ \hspace{1cm} (26)

and consequently we obtain the equation

$$X'(\xi) = \frac{\pm r}{2 \ell \sqrt{c(\omega^2 - \ell^2)}} \pm \frac{\omega}{\sqrt{c(\omega^2 - \ell^2)}} X^2(\xi)$$ \hspace{1cm} (27)

Equation (27) is just the well-known Riccati equation. With reference to the article (Ma and Fuchsteiner, 1996) the authors proved that the Riccati equation $V' = \alpha_0 + \alpha_1 V + \alpha_2 V^2$ where $\alpha_0, \alpha_1, \alpha_2$ are constants such that $\alpha_2 \neq 0$ has the following solutions:

(i) If $\Delta = \alpha_1^2 - 4 \alpha_0 \alpha_2 > 0$, then

$$V(\xi) = \left\{ \begin{array}{ll}
\frac{-1}{2 \alpha_2} [\alpha_1 + \sqrt{\Delta} \tanh\left(\frac{\sqrt{\Delta}}{2} \xi - \frac{\varepsilon \ln(\xi_0)}{2}\right)] & \text{if } \xi_0 > 0 \\
\frac{-1}{2 \alpha_2} [\alpha_1 + \sqrt{\Delta} \coth\left(\frac{\sqrt{\Delta}}{2} \xi - \frac{\varepsilon \ln(-\xi_0)}{2}\right)] & \text{if } \xi_0 < 0 \\
\frac{-1}{2 \alpha_2} [\alpha_1 + \varepsilon \sqrt{\Delta}] & \text{if } \xi_0 = 0
\end{array} \right. \hspace{1cm} (28)$$

(ii) If $\Delta = \alpha_1^2 - 4 \alpha_0 \alpha_2 < 0$, then

$$V(\xi) = \left\{ \begin{array}{ll}
\frac{-1}{2 \alpha_2} [\alpha_1 + \sqrt{-\Delta} \tan(\frac{\sqrt{-\Delta}}{2} \xi + \xi_0)],
\frac{-1}{2 \alpha_2} [\alpha_1 - \sqrt{-\Delta} \cot(\frac{\sqrt{-\Delta}}{2} \xi + \xi_0)].
\end{array} \right. \hspace{1cm} (29)$$

(iii) If $\Delta = \alpha_1^2 - 4 \alpha_0 \alpha_2 = 0$, then

$$V(\xi) = \left\{ \begin{array}{l}
\frac{-\alpha_1}{2 \alpha_2} - \frac{1}{\alpha_2} \xi + \xi_0, \\
\frac{-\alpha_1}{2 \alpha_2} + \frac{1}{\alpha_2} \xi + \xi_0.
\end{array} \right. \hspace{1cm} (30)$$

where ξ_0 is an arbitrary constant and $\varepsilon = \pm 1$.

With the aid of Equations (28) - (30) the solutions of Equation (11) have the forms:

(i) If $r \ell c(\omega^2 - \ell^2) < 0$, $\ell \omega < 0$

$$u_i(\xi) = \pm \frac{r}{2 \ell \omega} \tanh\left[\frac{r}{2 \ell c(\omega^2 - \ell^2)} \xi - \frac{\varepsilon \ln(\xi_0)}{2}\right] \text{ if } \xi_0 > 0$$

$$u_2(\xi) = \pm \frac{r}{2 \ell \omega} \coth\left[\frac{r}{2 \ell c(\omega^2 - \ell^2)} \xi - \frac{\varepsilon \ln(-\xi_0)}{2}\right] \text{ if } \xi_0 < 0$$

$$u_3(\xi) = \pm \frac{r}{2 \ell \omega} \frac{-\xi}{\xi_0} \text{ if } \xi_0 = 0$$

(ii) If $r \ell c(\omega^2 - \ell^2) > 0$, $\ell \omega > 0$

$$u_4(\xi) = \pm \frac{r}{2 \ell \omega} \tan\left[\frac{r}{2 \ell c(\omega^2 - \ell^2)} \xi + \xi_0\right]$$

$$u_5(\xi) = \pm \frac{r}{2 \ell \omega} \cot\left[\frac{r}{2 \ell c(\omega^2 - \ell^2)} \xi + \xi_0\right]$$

(iii) If $\ell c(\omega^2 - \ell^2) > 0$, $r = 0$

$$u_6(\xi) = \pm \frac{1}{\sqrt{c(\omega^2 - \ell^2)}} \frac{\xi}{\xi + \xi_0}$$

where ξ is given by Equation (12).

As a result, we find the periodic and solitary solutions of Equation (11) are new and when $\alpha = 1$ they are also different from the solutions found in (Alquran and Al-Khaled, 2012; Abazar, 2011).

Case 2

If $m = 2$.

In this case, Equations (17) and (18) respectively reduce to
\[Q [X (\xi), Y (\xi)] = a_x (X) + a_1 (X \psi' (\xi)) + a_2 (X \psi^2 (\xi)) = 0 \]
(34)

and

\[
\frac{da_x (X)}{dx} + \frac{da_y (X)}{dx} \psi' (\xi) + \frac{da_{y'} (X)}{dx} \psi'' (\xi) + a_x + 2a_1 (X \psi (\xi)) \frac{X (\xi) + 2a_2 (X \psi' (\xi))}{c (\omega^2 - \ell^2)} = 0
\]

(35)

Equating the coefficient of powers of \(Y (\xi) \) on both sides of Equation (35) we have

\[
\frac{da_x (X)}{dx} = h (X) a_x (X)
\]

(36)

\[
\frac{da_t (X)}{dx} = g (X) a_2 (X) + h (X) a_t (X)
\]

(37)

\[
\frac{da_x (X)}{dx} + 2a_x (X) \frac{\ell X (\xi) + 2a_2 (X \psi' (\xi))}{c (\omega^2 - \ell^2)} = g (X) a_x (X) + h (X) a_x (X)
\]

(38)

\[
g (X) a_0 (X) = a_t (X) \left[\frac{\ell X (\xi) + 2a_2 (X \psi' (\xi))}{c (\omega^2 - \ell^2)} \right]
\]

(39)

Since \(a_i (X) \), \(i = 0, 1, 2 \) are polynomials, then from Equation (36) we deduce that \(a_x (X) \) is constant and \(h (X) = 0 \). For simplicity we take \(a_x (X) = 1 \).

Balancing the degrees of \(g (X) \) and \(a_t (X) \) we conclude that deg \((g (X)) = 1 \), and hence we get

\[
g (X) = A_1 X + B_o,
\]

(40)

and

\[
a_t (X) = \frac{1}{2} A_1 X^2 + B_o X + A_o,
\]

(41)

where \(A_1, B_o, A_o \) are constants to be determined, such that \(A_1 \neq 0 \). Now, Equation (38) becomes

\[
\frac{da_x (X)}{dx} = \frac{-2r}{c (\omega^2 - \ell^2)} + A_1 a_0 + B_o X (\xi) + \frac{3}{2} A_1 B_o X^2 (\xi)
\]

\[
+ \frac{4ao}{c (\omega^2 - \ell^2)} + \frac{1}{2} A_1^2 X^3 (\xi) + A_1 B_o
\]

(42)

and

\[
a_0 (X) = \frac{-r}{c (\omega^2 - \ell^2)} + \frac{1}{2} A_1 a_0 + \frac{1}{2} B_o X^2 (\xi) + \frac{1}{2} A_1 B_o X^3 (\xi)
\]

\[
+ \frac{-ao}{c (\omega^2 - \ell^2)} + \frac{1}{2} A_1^2 X^4 (\xi) + A_1 B_o X (\xi) + d
\]

(43)

where \(d \) is the constant of integration.

Substituting Equations (40), (41) and (43) into Equation (39) and equating the coefficients of powers of \(X (\xi) \) we get

\[
A_1 = \frac{\pm 4ao}{\sqrt{\alpha (\omega^2 - \ell^2)}}, \quad B_o = 0, \quad A_o = \frac{\pm r}{\sqrt{\alpha (\omega^2 - \ell^2)}}, \quad d = \frac{r^2}{4 \alpha (\omega^2 - \ell^2)}
\]

Consequently, we deduce that

\[
a_o (X) = \frac{r}{\ell \sqrt{\alpha (\omega^2 - \ell^2)}} X^2 (\xi) + \frac{\omega}{c (\omega^2 - \ell^2)} X^4 (\xi) + \frac{r^2}{4 \ell \sqrt{\alpha (\omega^2 - \ell^2)}}
\]

(44)

and

\[
a_t (X) = \frac{\pm 2ao}{\sqrt{\alpha (\omega^2 - \ell^2)}} X^2 (\xi) \pm \frac{r}{\ell \sqrt{\alpha (\omega^2 - \ell^2)}}
\]

(45)

Substituting Equations (44), (45) into Equation (34) we deduce after some reduction that

\[
Y (\xi) = -\frac{1}{2} a_t (X)
\]

(46)

and hence

\[
X' (\xi) = \pm \frac{r}{2 \ell \sqrt{\alpha (\omega^2 - \ell^2)}} \pm \frac{\omega}{\sqrt{\alpha (\omega^2 - \ell^2)}} X^2 (\xi)
\]

(47)

which has the same form Equation (27) and gives the same solutions (31) to (33). This shows that the two cases \(m = 1 \) and \(m = 2 \) give the same solutions. Comparing our results with the results (Al-Qur'an and Al-Khaled, 2012; Abazar, 2011), it can be seen that our solutions are new.

Example 2. The nonlinear fractional Klein-Gordon-Zakharov equations

These equations are well-known (Thornhill and Haar, 1978; Dendy, 1990; Ebadi et al., 2010; Shang et al., 2008) and can be written in the following system:

\[
D_{u}^{2\alpha} u_{xx} + u + \beta u vv = 0,
\]

\[
D_{v}^{2\alpha} v_{xx} - \beta v (|u|)_{xx} = 0, \quad 0 < \alpha \leq 1,
\]

(48)

with \(u(x, t) \) is a complex function and \(v(x, t) \) is a real function, where \(\beta_1, \beta_2 \) are nonzero real parameters. This system describes the interaction of the Langmuir wave and the ion acoustic in a high frequency plasma. Using the wave variable
$u(x,t) = \phi(x,t) \exp \left[i (kx + \frac{\omega \alpha}{\Gamma(1+\alpha)} + \xi_1) \right], \quad (49)$

where $\phi(x,t)$ is a real-valued function, k, ω are real constants to be determined and ξ_1 is an arbitrary constant. Then the system (48) is carried to the following PDE system:

$$D_{\alpha}^{2\alpha} \phi - \phi_{xx} + (k^2 - \omega^2 + 1)\phi + \beta_1 \phi = 0$$

$$\omega D_{\alpha}^{\alpha} \phi - k \phi_x = 0$$

$$D_{\alpha}^{2\alpha} \psi - \nu_{xx} - \beta_2 (\psi^2)_{xx} = 0$$

Setting

$$v(x,t) = v(\xi), \quad \phi(x,t) = \phi(\xi), \quad \xi = ax + \frac{kt}{\Gamma(1+\alpha)} + \xi_2$$

where ξ_2 is an arbitrary constant, then we get

$$v(\xi) = \frac{\beta_1 \omega^2 \phi^2(\xi)}{(k^2 - \omega^2)} + C,$$

and

$$\phi''(\xi) + \ell_1 \phi(\xi) + \ell_2 \phi^3(\xi) = 0$$

where $\ell_1 = \frac{(k^2 - \omega^2 + \beta_1 C + 1)}{(k^2 - \omega^2)}$, $\ell_2 = \frac{\omega^2 \beta_2 \beta_1}{(k^2 - \omega^2)^2}$, C is an integration constant, and $k \neq \pm \omega$.

On using Equations (8) and (9), we deduce that Equation (53) is equivalent to the two dimensional autonomous system:

$$X'(\xi) = Y(\xi)$$

$$Y'(\xi) = -\ell_1 X(\xi) - \ell_2 X^3(\xi)$$

where $X(\xi) = \phi(\xi)$.

Now we consider the two cases.

Case 1

If $m = 1$.

Substituting Equation (54) and (55) into Equation (18) and equating the coefficients of $Y'(\xi), (i = 0,1,2)$ on both sides of Equation (18), we have respectively.

$$g(X) a_0(X) = a_i(X) [-\ell_i X(\xi) - \ell_2 X^3(\xi)], \quad (56)$$

$$\frac{da_0(X)}{dX} = g(X) a_1(X) + h(X) a_0(X), \quad (57)$$

$$\frac{da_i(X)}{dX} = h(X) a_1(X). \quad (58)$$

Since $a_i(X), (i = 0,1)$ are polynomials we deduce that $h(X) = 0, a_i(X) = 1$ and $\deg(g(X)) = 1$.

Then we obtain

$$g(X) = A_1 X + B_o,$$

$$a_0(X) = \frac{1}{2} A_1 X^2 + B_o X + A_o \quad (60)$$

Substituting $a_0(X), a_1(X), g(X)$ into Equation (56) we get

$$[A_1 X + B_o][\frac{1}{2} A_1 X^2 + B_o X + A_o] + \ell_1 X(\xi) + \ell_2 X^3(\xi) = 0 \quad (61)$$

Setting the coefficients of powers of $X(\xi)$ to zero, we obtain

$$A_0 B_0 = 0, A_1 A_0 + B_0^2 = -\ell_1, \quad \frac{3}{2} A_1 B_0 = 0, A_1^2 = -2 \ell_2$$

On solving these algebraic equations, we have the results

$$A_1 = \pm \sqrt{-2 \ell_2}, \quad B_0 = 0, A_0 = \pm \frac{\ell_1}{\sqrt{-2 \ell_2}}, \quad \ell_2 < 0.$$

Now, we deduce that

$$X'(\xi) = \pm \frac{\ell_1}{\sqrt{-2 \ell_2}} + \frac{1}{2} \sqrt{-2 \ell_2} X^2(\xi) \quad (62)$$

which represents the well-known Riccati equation. With the help of Equations (28) to (30) the solutions of the system (48) can be written in the forms:

(i) If $\ell_1 < 0$ and $\ell_2 < 0$ we get the hyperbolic and rational solutions.
and equating the coefficients of powers of \(Y (\xi) \) on both sides of Equation (18), we get

\[
\frac{da_2(X)}{dX} = h(X) a_2(X) \quad (69)
\]

\[
\frac{da_1(X)}{dX} = h(X) a_1(X) + g(X) a_2(X) \quad (70)
\]

\[
\frac{da_0(X)}{dX} + 2a_2(X) [-\ell_1 X - \ell_2 X^3] = g(X) a_1(X) + h(X) a_0(X) \quad (71)
\]

Since \(a_i(X), (i = 0, 1, 2) \) are polynomials, then from Equation (69) we deduce that \(a_2(X) \) is a constant and \(h(X) = 0 \). For simplicity we take \(a_2(X) = 1 \).

Balancing the degrees of \(g(X) \) and \(a_i(X) \) we conclude that \(\deg (g(X)) = 1 \), and hence we get

\[
g(X) = A_1 X + B_o, \quad (73)
\]

\[
a_i(X) = \frac{1}{2} A_1 X^2 + B_o X + A_o, \quad (74)
\]

where \(A_1, B_o, A_o, \) are constants to be determined, such that \(A_1 \neq 0 \). Now, Equation (71) reduces to

\[
\frac{da_0(X)}{dX} = [2\ell_1 + A_o A_1 + B_o^2] X^3 + \frac{3}{2} A_o B_o X^2 + [2\ell_2 + \frac{1}{2} A_1] X^3 \quad (75)
\]

Integrating Equation (75) with respect to \(X (\xi) \), we have

\[
a_o(X) = [\ell_1 + \frac{1}{2} A_o A_1 + \frac{1}{2} B_o^2] X^2 + \frac{1}{2} A_o B_o X^3 + [\frac{\ell_2 + 1}{8} + A_1^2] X^4 + d \quad (76)
\]

where \(d \) is the constant of integration.

Substituting Equations (73), (74) and (76) into Equation (72) and equating the coefficients of powers of \(X (\xi) \) we get

\[
A_0 = \pm \ell_1 \sqrt{-\ell_2} \quad \text{and} \quad B_0 = 0 \quad \text{where} \quad \ell_2 < 0.
\]
Consequently, we deduce that

\[a_0(X) = 3\ell_1 X^2(\xi) - \frac{1}{2} \ell_2 X^4(\xi) - \frac{\ell_4^2}{2\ell_2} \] \hspace{1cm} (77) \]

and

\[a_1(X) = \pm\sqrt{-2\ell_2} X^2(\xi) \pm \ell_1 \sqrt{-2\ell_2}. \] \hspace{1cm} (78) \]

Substituting Equations (77) and (78) into Equation (34) we deduce that

\[Y(\xi) = -\frac{1}{2} a_1(X) \pm \sqrt{-2\ell_1} X(\xi). \] \hspace{1cm} (79) \]

Hence we conclude that

\[X' (\xi) = \pm \frac{\ell_1}{2\ell_2} \pm \sqrt{-2\ell_1} X(\xi) \pm \frac{1}{2} \sqrt{-2\ell_2} X^2(\xi), \] \hspace{1cm} (80) \]

which represents the generalized Riccati equation. With the help of Equations (28) and (30) the solutions of the system (48) can be written in the forms:

(i) If \(\ell_1 < 0 \) and \(\ell_2 < 0 \), we get the hyperbolic and rational solutions

\[
\begin{align*}
 u_t(\xi) &= \sqrt{\ell_1/\ell_2} \left[1 \pm \sqrt{2} \tanh(\sqrt{-\ell_1} \xi - \frac{\ell_4 \ln \xi}{2}) \right] \exp(i \xi), \text{ if } \xi > 0 \\
 v_t(\xi) &= \frac{\beta \ell_{\ell_2} \omega}{\ell_1(k^2 - \omega^2)} \left[1 \pm \coth(\sqrt{-\ell_1} \xi - \frac{\ell_4 \ln \xi}{2}) \right]^2 + C, \text{ if } \xi > 0
\end{align*}
\] \hspace{1cm} (81) \]

\[
\begin{align*}
 u_\phi(\xi) &= \sqrt{\ell_1/\ell_2} \left[1 \pm \sqrt{2} \coth(\sqrt{-\ell_1} \xi - \frac{\ell_4 \ln \xi}{2}) \right] \exp(i \xi), \text{ if } \xi > 0 \\
 v_\phi(\xi) &= \frac{\beta \ell_{\ell_2} \omega}{\ell_1(k^2 - \omega^2)} \left[1 \pm \coth(\sqrt{-\ell_1} \xi - \frac{\ell_4 \ln \xi}{2}) \right]^2 + C, \text{ if } \xi > 0
\end{align*}
\] \hspace{1cm} (82) \]

\[
\begin{align*}
 u_\phi(\xi) &= \sqrt{\ell_1/\ell_2} \left[1 \pm \sqrt{2} \exp(i \xi) \right], \\
 v_\phi(\xi) &= \frac{\beta \ell_{\ell_2} \omega}{\ell_1(k^2 - \omega^2)} \left[1 \pm \sqrt{2} \right]^2 + C
\end{align*}
\] \hspace{1cm} (83) \]

(ii) If \(\ell_1 = 0 \) and \(\ell_2 < 0 \), in this case we can show that \(X(\xi) \) is complex. Since \(X(\xi) = \phi(\xi) \), then \(\phi(\xi) \) is complex. This contradicts (49) where \(\phi(\xi) \) should be real. Thus this case is rejected.

(iii) If \(\ell_1 = 0 \) and \(\ell_2 < 0 \), we get the rational solutions

\[
\begin{align*}
 u_{t0}(\xi) &= \pm \frac{1}{\sqrt{-\ell_1/\ell_2}} \exp(i \xi) \\
 v_{t0}(\xi) &= \frac{\beta \ell_{\ell_2} \omega^2}{\sqrt{-\ell_1/\ell_2}} \left[1 \pm \frac{\xi}{\sqrt{-\ell_1/\ell_2}} \right]^2 + C
\end{align*}
\] \hspace{1cm} (84) \]

Comparing our results with the results in (Thornhill and Haar, 1978; Dendy, 1990; Ebadi et al., 2010; Shang et al., 2008) it can be seen that our results are new.

PHYSICAL EXPLANATIONS OF SOME OF OBTAINED SOLUTIONS

Here, we will present some graphs of our results to visualize the underlying mechanism of the original equations. Using the mathematical software Maple 15, we plot some of these obtained solutions which are shown in Figures 1 and 2.

The nonlinear fractional Zoomeron

The obtained solutions incorporate three types of explicit solutions namely, the hyperbolic, trigonometric and rational function solutions. From these explicit results, it easy to say that the solutions (31) are kink, singular and rational solutions respectively. While the solutions (32) are periodic solution and Equation (33) are the rational solutions. For more convenience the graphical representations of \(u_t(x, t) \) and \(u_\phi(x, t) \) of Equation (11) are shown in Figure 1.

The nonlinear fractional Klein-Gordon-Zakharov system of Equations (48)

The obtained solutions (63) are kink solutions, the solutions (64) are the singular, the solution (65) are rational. While the solutions (66) and (67) are periodic and the solutions (68) are rational. The graphical solutions (63) and (66) are shown in Figure 2.

CONCLUSIONS

The first integral method is applied successfully for finding the exact solutions of the nonlinear fractional Zoomeron equation and the nonlinear fractional Klein-Gordon-Zakharov system of equations. The performance of this method is reliable and effective and gives more solutions. Thus, we deduce that the proposed method can be extended to solve many systems of other areas such that physics, biology and chemistry. With the aid of the maple, we have assured the correctness of the
Figure 1. The plot of the solutions $u_1(\xi)$ and $u_4(\xi)$ of the nonlinear fractional Zoomeron equation.

Figure 2. The plots of some of solutions of nonlinear fractional Klein-Gordon-Zakharov equations.
obtained solutions by putting them back to the original equations.

ACKNOWLEDGEMENT

The authors wish to thank the referees for their comments.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

PMid:2339477

Zayed AM, Amer 183

Physicochemical characterization and inhibitive performance evaluation of *Commiphora kestingii* gum exudate in acidic medium

Paul Ocheje Ameh

Physical Chemistry Unit, Department of Chemistry, Nigeria Police Academy, Wudil, P. M. B. 3474, Kano State, Nigeria.

Received 24 January, 2014; Accepted 11 March, 2014

Gas chromatographic-mass spectrometry (GCMS), fourier transformed infra-red spectroscopy (FTIR) and physicochemical analysis of *Commiphora kestingii* gum have been carried out. The corrosion inhibition characteristics of *C. kestingii* (CK) gum on aluminium in sulphuric acid media were also investigated at 303 and 333K using gravimetric and scanning electron microscopic studies (SEM) method. The study revealed that the gum contains significant amount of Sucrose, Octadecanoic acid, Alpha camphorenal, Nerolidolisobutyrate, Diisopropenyl-1-methyl-1-vinyl cyclohexane, Abetic acid, Oleic acid, Verbenol, 2,6-dimethylhepta-1,5-diene, Naphthalene, Limonene, 7-hexadecenal and 10-methyl-8-tetradecen-1-ol acetate. Corrosion inhibition tests suggest that GS gum is a good inhibitor for the corrosion of Al in solution of H$_2$SO$_4$. The inhibition efficiency of this inhibitor increased with increasing temperature suggesting chemisorption mechanism. Also, the inhibition efficiency of these extract was found to increase in the presence of CK. Inhibition of Aluminium by *C. kestingii* gum occurred through synergistic adsorption of the various components of the gums hence the formation of multiple adsorption layer is proposed.

Key words: *Commiphora kestingii* gum, corrosion inhibitors, adsorption, aluminium.

INTRODUCTION

Aluminium has wider application ranging from all sorts packaging, vital in powerlines, the building and construction industry and common household objects (Hatch, 1984). The key features that lend aluminium to these uses are low density, ductility, electrical conductivity and strength in alloys. Aluminium has a natural corrosion protection from its oxide layer. However, the following factors may affect the stability of the aluminium oxide and thereby cause corrosion:

i. The oxide is not stable in acidic (pH < 4) or alkaline (pH > 9) environments (Shimizu et al., 1991).
ii. Aggressive ions (chlorides, fluorides) may attack the oxide locally,
iii. Certain elements (Ga, Tl, In, Sn, Pb) may become incorporated in the oxide and destabilize it (Nisancioglu, 1992).

Several methods have been employed to improve and enhance the metal’s life span, with the use of corrosion inhibitor being the most practical (Migahed and Nassar, 2008; Fouda and Ellithy, 2009). Corrosion inhibitors are
compounds or chemicals that react with metal surface and corrosion medium to protect the metal against corrosion. Most inhibitors are organic compounds synthesized from cheap raw materials. These non-toxic, benign, inexpensive, renewable and readily available alternative corrosion inhibitors have been found in different parts of plant extracts (Okafor et al., 2010; Ameh et al., 2012a, b; Eddy et al., 2012a, b).

Commiphora kestingii commonly called, Fula-fufulde (fulani), Mbiji (igbo), Npue (Esha), Yoruba (Origbo) and Hausa (árár(r)ábií) belongs to the Burseraceas family. The tree usually approaches height of 2 to 5 m and is found mostly in rocks within the low altitudes dry woodland and bush of the savanna from Togo to Nigeria, and on to Ubangi-Shari. Notably, in most developing nations, the washed bark mixed with salt is applied to snakebites, and the fruit provides remedy for stomach ailments (Meer, 1980). The tree exudes a pale yellow liquid, which soon hardens to form yellowish red or reddish brown tears or masses that are then collected when the bark is incised (Meer, 1980).

The present study is aimed at elucidating the chemical structure of C. kestingii gum and investigating the corrosion inhibition and adsorption potentials of C. kestingii gum for the corrosion of Al in 0.1 M H₂SO₄ using gravimetric, SEM and fourier transformed infra-red spectroscopy (FTIR) techniques.

Collection of sample

Crude gum of C. kestingii (CK) was obtained as dried exudates from the parent trees grown at Samaru, Zaria in Sabon Gari LGA of Kaduna State. The outer bark of the tree was broken using a small axe. The cut was extended upward and downward to a significant depth and the gum formed was collected. The rate of formation of gum was found to depend on weather conditions. Gum formation was favoured by dry and retarded by cold or wet weather. The first set of gum was collected six weeks after tapping, while other samples were collected at an interval of two to three weeks. Gum droplets collected, were 2.0 to 7.5 cm in diameter. They dried and hardened on exposure to atmosphere.

Purification of gum

The crude sample of the gum consisted of a mixture of large and small modules and other impurities. These were hand sorted to remove fragments of bark and other visible impurities and then were spread out in the sun to dry for one to two weeks. The gum was then dissolved in cold distilled water and the solution strained through muslin, and centrifuged to obtain a small quantity of dense gel. The straw coloured supernatant liquor obtained was separated and acidified to a pH of 2 with dilute hydrochloric acid. Ethyl alcohol was added until it was 80%. The gum precipitated out was removed by centrifugation at a rate of 2000 revolution per minute, washed with alcohol, ether and then dried in a desiccator.

Determination of physiochemical properties

Preliminary tests were performed to confirm the nature of the gum obtained. The test that were conducted are pH and solubility test.

Determination of pH

The pH of 2% w/v of the gum mucilage was determined using a Jenway pH meter (Model; 3505). The pH meter electrode was dipped into a buffer at a room temperature of 28°C after which it was removed, shaken a little to remove droplets of the buffer before immersion into the gum mucilage. The reading on the meter was recorded in triplicate measurements were made.

Determination of solubility in various solvents

The solubility of the gum was determined in cold and hot distilled water, acetone and chloroform. 10 mg sample of the studied gum exudate was added to 10 ml each of the solvents and left overnight. 5 ml of the clear supernatant was taken in small pre-weighed evaporating dishes and heated to dryness over a digital thermostatic water bath (Model. HHS, McDonald Scientific International). The weight of the dried residue with reference to the volume of the solutions was determined using a digital analytical balance (Model. XP-300, Denver instrument, USA) and expressed as the percentage solubility of the gum in the solvents (Carter, 2005).

MATERIALS AND METHODS

Corrosion studies

Aluminum alloy sheet of composition (wt. %, as determined by quantiometric method) Mn (1.28), Pb (0.064), Zn (0.006), Ti (0.029), Cu (0.81) and Si (0.381), Fe (0.57), and Al (96.65%) was used. The sheets were mechanically pressed cut into different coupons, each of dimension, 5 x 4 x 0.11 cm. Each coupon was degreased by washing with ethanol, cleaned with acetone and allowed to dry in the air before preservation in a desiccator. All reagents used for the study were analar grade and double distilled water was used for their preparation.

Gravimetric studies

The clean and dried previously weighed aluminum alloy coupon was completely immersed in 250 ml of the test solution in an open beaker. After every 24 h the corrosion product was withdrawn from the electrolyte, kept for 3 to 4 min in 70% nitric acid, washed thoroughly with distilled water and then dried and weighed. The
Table 1. Physiochemical properties of *Commiphora kestingii* gum.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>Pale yellow</td>
</tr>
<tr>
<td>Odour</td>
<td>Odourless</td>
</tr>
<tr>
<td>Taste</td>
<td>Bland</td>
</tr>
<tr>
<td>pH (28°C)</td>
<td>5.2</td>
</tr>
<tr>
<td>Percentage yield (%w/w)</td>
<td>63.5</td>
</tr>
<tr>
<td>Solubility (%w/v)</td>
<td></td>
</tr>
<tr>
<td>Cold water</td>
<td>14.00</td>
</tr>
<tr>
<td>Hot water</td>
<td>11.00</td>
</tr>
<tr>
<td>Acetone</td>
<td>2.00</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.00</td>
</tr>
<tr>
<td>Ethanol</td>
<td>2.00</td>
</tr>
</tbody>
</table>

experiment was repeated at 333 K. In each case, the difference in weight for a period of 168 h was taken as the total weight loss. From the average weight loss (mean of three replicate analysis) results, the inhibition efficiency (%I) of the inhibitor, the degree of surface coverage (θ) and the corrosion rate of aluminum (CR) were calculated using 3.1 to 3.3, respectively (Ameh et al., 2012a).

\[
%I = \left(1 - \frac{W_2}{W_1}\right) \times 100 \tag{1}
\]

\[
\theta = \left(1 - \frac{W_2}{W_1}\right) \tag{2}
\]

\[
CR = \frac{\Delta W}{A \cdot t} \tag{3}
\]

where \(W_1\) and \(W_2\) are the weight losses (g) for aluminum in the presence and absence of the inhibitor, \(\theta\) is the degree of surface coverage of the inhibitor, \(\Delta W = W_2 - W_1\), \(A\) is the area of the aluminium coupon (in cm\(^2\)), \(t\) is the period of immersion (in hours) and \(\Delta W\) is the weight loss of aluminum after time, \(t\).

Gas chromatography–mass spectrometry (GC-MS) analysis

GC-MS analysis was carried out on a GC Clarus 500 Perkin Elmer system. Interpretation on mass spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST) Abuja, having more than 62,000 patterns. The spectrum of the unknown component was compared with the spectrum of the known components stored in the NIST library. The name, molecular weight and structure of the components of the test materials were ascertained. Concentrations of the identified compounds were determined through area and height normalization.

RESULTS AND DISCUSSION

Physiochemical parameters of *CK* gum

Table 1 presents physical (pH, colour, taste and percentage yield) and chemical properties (solubility in ethanol, acetone, chloroform, cold and hot water) of *CK* gum. The gum is odourless, pale yellow in colour (Figure 1) and has a characteristic bland taste. The gum has a pH of 5.2 indicating that it is mild acidic. It is soluble in both cold and hot water. However, its solubility tends to decrease with increase in temperature indicating that the gum is ionic. It has been found that the solubility of some ionic solutes tends to decrease due to the change of properties and structure of liquid water; the lower dielectric constant results in a less polar solvent. Also, an increase in temperature will increase the motion of dissolved particles by weakening the forces acting between the solute and solvent. This allows the dissolved gum to re-coagulate without dissolution hence the decrease in solubility (Ebbing and Gammon, 2005). *CK* gum is also found to be slightly soluble in ethanol and acetone. The solubility of the gum in ethanol may be due to the presence of polar and non-polar ends in ethanol,
which makes it to dissolve some polar and non-polar compounds. On the other hand, aprotic solvents such as acetone tend to have large dipole moment (separation of partial positive and partial negative charges within the same molecule) and solvate positively charged species via their negative dipole. This probably explains why CK gum is soluble in acetone to some extent.

GC-MS study on CK gum

Figure 2 shows the GC-MS spectrum of CK gum. In Table 2, IUPAC names as well as concentrations of compounds identified from various lines in the spectrum are presented while their chemical structures are presented in Figure 3. The gas chromatographic-mass spectrometry (GCMS) spectrum of CK displayed 14 significant peaks. Since area under the chromatogram is proportional to concentration, area normalization was carried out and percentage concentrations of the respective chemical constituents were evaluated. The results obtained shows that the most abundant component of CK gum is sucrose (37.11%), followed by Octadecanoic acid (20.44%). The least abundant constituent was found to be 0.82% alpha camphorenal. Others constituents of the gum included nerolidolisobutrate (1.72%), diisopropenyl-1-methyl-1-vinyl cyclohexane (13.10%), abietic acid (4.10%), oleic acid (2.14%), verbenol (1%), 2,6-dimethylhepta-1,5-diene (6.11%), Naphthalene (1.40%), Limonene (2.34%), 7-hexadecenal (1.71%) and 10-methyl-8-tetradecen-1-ol acetate (6.20%). The molar mass and chemical formulas of these compounds are also presented in Table 2. Resolutions of each line in the spectrum of CK gum also revealed the occurrence of several fragmentation peaks for each fraction.

FTIR

Figure 4 presents the FTIR spectrum of CK gum. The spectrum displayed peaks due to C-H bend in phenyl ring (722.37 cm\(^{-1}\)), C-H stretch due to alkene at 981.8 cm\(^{-1}\), C=O stretch vibrations due to carboxylic acid, alcohol, ether or esters at 1164.08 and 1239.31 cm\(^{-1}\), C-H scissoring and bending vibrations at 1378.18 and 1465.95 cm\(^{-1}\). C=O stretch due to aldehyde, ketone, carboxylic acid or esters at 1745.64 cm\(^{-1}\), OH stretch due to carboxylic acid at 2853.78 and 2927.08 cm\(^{-1}\) and OH stretch due to alcohol or phenol at 3474.88 cm\(^{-1}\).

Corrosion study

Effect of CK gum on the corrosion of Al in 0.1 M H\(_2\)SO\(_4\)

Figures 5 and 6 show the variation of weight loss with time for the corrosion of Al in 0.1 M H\(_2\)SO\(_4\) containing...
various concentrations of CK gum at 303 and 333K. The figures revealed that the rate of corrosion of Al in solutions of H\textsubscript{2}SO\textsubscript{4} increases with the period of contact but decreases with increase in the concentration of CK gum, indicating that CK gum is an adsorption inhibitor for the corrosion of aluminium. It has been found that for an adsorption inhibitor, the corrosion rate decreases with increase in the concentration of the inhibitor (Emregul and Hayvali, 2006).

Calculated values of corrosion rate of Al, inhibition efficiency of CK gum and degree of surface coverage calculated from Equations 1 to 3 are presented in Table 4. The results confirmed that the corrosion rate decreases with increase in temperature, while the inhibition efficiency increases with increase in temperature indicating chemical adsorption. For chemical adsorption mechanism, inhibition efficiency increases with temperature while for physical adsorption mechanism, inhibition efficiency of an inhibitor decreases with temperature (Ebenso et al., 2008). The inhibition efficiency of CK gum was found to range from 65.40 to 83.20% and from 74.90 to 83.22%, indicating that CK gum is a good inhibitor compare to values obtained for other inhibitors (Ameh et al., 2012b).

Kinetic study

Most corrosion reactions have been found to be first order and are consistent with the following equation (Ameh et al., 2012a)

\[-\log \text{(weight loss)} = k_1 t/2.303\]
\[\text{(4)}\]

where \(k_1\) is the first order rate constant which is related to the half-life \(t_{1/2}\) through Equation 5:

\[t_{1/2} = 0.693/k_1\]
\[\text{(5)}\]

Figures 7 and 8 depict plots for the variation of \(-\log \text{(weight loss)}\) versus time for the corrosion of Al in solutions of H\textsubscript{2}SO\textsubscript{4} containing various concentrations of CK gum at 303 and 333K, respectively. Kinetic parameters deduced from Equations 4 and 5 are presented in Table 5. The results obtained indicated that the corrosion of Al in solutions of H\textsubscript{2}SO\textsubscript{4} obeys Equations 4 and 5. The half-lives in the presence of the CK gum are higher than those for the blanks at all temperature and concentrations of CK gum indicating that CK gum has the

Figure 2. Chemical structures of compounds identified in the GC-MS spectrum of Commiphora kestingii gum.
Table 2. Characteristics of suggested compounds identified from GC-MS of Commiphora kestingii gum.

<table>
<thead>
<tr>
<th>Line no</th>
<th>C (%)</th>
<th>Compound</th>
<th>MF</th>
<th>MW</th>
<th>RT</th>
<th>Fragmentation peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.20</td>
<td>10-methyl-8-tetradecen-1-ol acetate</td>
<td>C_{10}H_{20}O_{2}</td>
<td>240</td>
<td>8.2</td>
<td>27(15%), 41(15%), 43(15%), 65(10%), 77(50%), 93(100%), 105(2%), 121(2%), 136(10%)</td>
</tr>
<tr>
<td>2</td>
<td>1.81</td>
<td>n-Hexadecanoic acid</td>
<td>C_{16}H_{32}O_{2}</td>
<td>256</td>
<td>10.1</td>
<td>27(15%), 41(20%), 53(10%), 67(100%), 77(35%), 93(100%), 105(10%), 121(20%), 136(10%)</td>
</tr>
<tr>
<td>3</td>
<td>1.71</td>
<td>7-hexadecenal</td>
<td>C_{15}H_{30}O</td>
<td>238</td>
<td>35.2</td>
<td>41(80%), 55(90%), 71(78%), 85(50%), 98(40%), 121(40%), 135(20%), 141(10%)</td>
</tr>
<tr>
<td>4</td>
<td>2.34</td>
<td>Limonene</td>
<td>C_{10}H_{16}</td>
<td>136</td>
<td>9.8</td>
<td>27(40%), 39(60%), 53(45%), 68(100%), 79(40%), 93(65%), 107(20%), 121(20%), 136(25%)</td>
</tr>
<tr>
<td>5</td>
<td>1.40</td>
<td>Naphthalene</td>
<td>C_{10}H_{16}</td>
<td>272</td>
<td>10.1</td>
<td>27(10%), 41(20%), 67(10%), 81(30%), 9(35%), 105(40%), 121(20%), 136(50%), 143(20%), 157(20%), 171(10%), 185(20%), 213(30%), 241(40%), 259 (50%)</td>
</tr>
<tr>
<td>6</td>
<td>6.11</td>
<td>2,6-dimethylhepta-1,5-diene</td>
<td>C_{16}H_{36}</td>
<td>136</td>
<td>10.5</td>
<td>27(20%), 41(100%), 53(20%), 69(80%), 77(25%), 93(100%), 107(8%), 121(10%), 136(5%)</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>Verbenol</td>
<td>C_{10}H_{16}O</td>
<td>152</td>
<td>11.6</td>
<td>27(35%), 41(65%), 43(40%), 59(55%), 79(60%), 94(100%), 109(90%), 119(30%), 137(20%)</td>
</tr>
<tr>
<td>8</td>
<td>0.82</td>
<td>alpha-campholenal</td>
<td>C_{10}H_{16}O</td>
<td>152</td>
<td>12.0</td>
<td>27(15%), 39(20%), 55(20%), 67(25%), 81(20%), 93(55%), 108(100%), 119(5%), 137(2%), 152(2%)</td>
</tr>
<tr>
<td>9</td>
<td>2.14</td>
<td>Oleic acid</td>
<td>C_{18}H_{36}O_{2}</td>
<td>282</td>
<td>12.8</td>
<td>25(35%), 39(60%), 43(40%), 55(50%), 78(60%), 94(100%), 108(100%), 119(30%), 135(20 %)</td>
</tr>
<tr>
<td>10</td>
<td>37.11</td>
<td>Sucrose</td>
<td>C_{12}H_{22}O_{11}</td>
<td>152</td>
<td>14.3</td>
<td>25(20%), 39(40%), 43(20%), 67(20%), 78(100%), 94(50%), 108(40%), 119(30%), 134(20 %), 151(10%)</td>
</tr>
<tr>
<td>11</td>
<td>4.10</td>
<td>Abetic acid</td>
<td>C_{20}H_{36}O_{2}</td>
<td>302</td>
<td>14.8</td>
<td>25(10%), 39(32%), 55(35%), 69(20%), 81(30%), 83(55%), 108(100%), 119(20%), 134(10 %), 152(10%)</td>
</tr>
<tr>
<td>12</td>
<td>13.10</td>
<td>diisopropenyl-1-methyl-1vinylcyclohexane</td>
<td>C_{10}H_{24}</td>
<td>204</td>
<td>31.8</td>
<td>27(32%), 41(100%), 53(60%), 68(100%), 81(100%), 93(80%), 107(40%), 121(35%), 133(15 %), 147(20%), 161(15%), 189(15%)</td>
</tr>
<tr>
<td>13</td>
<td>20.44</td>
<td>Octadecanoic acid</td>
<td>C_{18}H_{36}O_{2}</td>
<td>284</td>
<td>33.2</td>
<td>27(12%), 39(18%), 43(38%), 59(100%), 81(50%), 93(70%), 107(40%), 121(30%), 135(22 %), 147(10%), 161(40%), 189(20%), 204(10%)</td>
</tr>
<tr>
<td>14</td>
<td>1.72</td>
<td>nerolidolisobutyrate</td>
<td>C_{18}H_{34}O_{2}</td>
<td>292</td>
<td>35.3</td>
<td>41(42%), 43 (100%), 69(25%), 71(50%), 93(30%), 107(10%), 121(40%), 127(5 %), 143(2%), 161(2%)</td>
</tr>
</tbody>
</table>
tendency of extending the half-life of Al in solution of H\textsubscript{2}SO\textsubscript{4}, hence it is a good inhibitor. The effect of temperature on the rate of corrosion of Al in solutions of H\textsubscript{2}SO\textsubscript{4} containing various concentrations of CK gum was investigated using the Arrhenius equation, which can be written as follows (Ebenso, 2003a, b):

\[CR = A \exp(-E_a/RT) \] \hspace{1cm} \text{(6)}

where \(A \) is the pre-exponential factor, \(E_a \) is the activation energy, \(R \) is the gas constant and \(T \) is the temperature. By taking logarithm of Equations 6 and 7 was obtained:

\[\log(CR) = \log A - \frac{E_a}{R} \] \hspace{1cm} \text{(7)}

Between the temperature range of 303 (\(T_1 \)) and 333 K (\(T_2 \)) and the corresponding corrosion rates of \(CR_1 \) and \(CR_2 \), Equation 7 can be simplified to Equation 8 as follows:

\[\log \frac{CR_2}{CR_1} = \frac{E_a}{2.303R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \] \hspace{1cm} \text{(8)}

In Table 6, calculated values of activation energy are recorded. The activation energies are relatively low when compared to the threshold value (80 kJ/mol) required for the mechanism of chemical adsorption. According to Oguzie (2006), lowered value of \(E_a \) in inhibited system compared to the blank as observed in the study (Table 6) is indicative of chemisorption possibly because some of the energy is used up in the chemical reaction. \(E_a \) tends to decrease in the presence of an inhibitor by decreasing the available reaction area.

Figure 3. Chemical structures of compounds identified in GC-MS spectrum of CK gum.
Figure 4. FTIR spectrum of Commiphora kestingii gum.

Figure 5. Variation of weight loss with time for the corrosion of Al in HCl containing various concentrations of CK gum at 303K.

It is also significant to note that E_a values tend to increase with increase in the concentration of CK gum indicating better adsorption strength with increasing concentration.

Thermodynamic/adsorption study

The heat accompanying the adsorption of CK gum on
Figure 6. Variation of weight loss with time for the corrosion of Al in HCl containing various concentrations of CK gum at 333 K.

Table 3. Peaks and intensity of adsorption of FTIR by CK gum.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Intensity</th>
<th>Area</th>
<th>Assignments/functional groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>469.68</td>
<td>0.619</td>
<td>10.211</td>
<td>C-H bend due to phenyl ring substitution</td>
</tr>
<tr>
<td>722.37</td>
<td>30.649</td>
<td>39.98</td>
<td></td>
</tr>
<tr>
<td>981.8</td>
<td>44.661</td>
<td>16.031</td>
<td>C-H stretch due to alkene</td>
</tr>
<tr>
<td>1164.08</td>
<td>5.805</td>
<td>84.85</td>
<td>C-O stretch due to carboxylic acid, alcohol, ether, and esters</td>
</tr>
<tr>
<td>1239.31</td>
<td>15.641</td>
<td>76.575</td>
<td>C-O stretch due to carboxylic acid, alcohol, ether, and esters</td>
</tr>
<tr>
<td>1378.18</td>
<td>26.289</td>
<td>18.176</td>
<td>C-H scissoring and bending due to alkane</td>
</tr>
<tr>
<td>1465.95</td>
<td>13.963</td>
<td>15.642</td>
<td>C-H scissoring and bending due to alkane</td>
</tr>
<tr>
<td>1745.64</td>
<td>0.593</td>
<td>42.869</td>
<td>C=O stretch due to aldehyde, ketones, carboxylic acid and esters</td>
</tr>
<tr>
<td>2853.78</td>
<td>0.957</td>
<td>86.542</td>
<td>OH stretch due to carboxylic acid</td>
</tr>
<tr>
<td>2927.08</td>
<td>0.321</td>
<td>47.798</td>
<td>OH stretch due to carboxylic acid</td>
</tr>
<tr>
<td>3474.88</td>
<td>65.27</td>
<td>5.111</td>
<td>OH stretch due to alcohol or phenol</td>
</tr>
</tbody>
</table>

Table 4. Corrosion rates for Al, inhibition efficiency and degree of surface coverage of CK gum in 0.1M H₂SO₄.

<table>
<thead>
<tr>
<th>C (g/L)</th>
<th>CR (g/cm³/h) at 303K</th>
<th>%I (303K)</th>
<th>θ (303K)</th>
<th>CR (g/cm³/h) at 333K</th>
<th>%I (333K)</th>
<th>θ (333K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>1.09×10⁻⁴</td>
<td>-</td>
<td>-</td>
<td>1.63×10⁻⁵</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>3.77×10⁻⁵</td>
<td>65.40</td>
<td>0.654</td>
<td>4.10×10⁻⁵</td>
<td>74.90</td>
<td>0.749</td>
</tr>
<tr>
<td>0.2</td>
<td>303×10⁻⁵</td>
<td>72.30</td>
<td>0.723</td>
<td>3.80×10⁻⁵</td>
<td>76.70</td>
<td>0.767</td>
</tr>
<tr>
<td>0.3</td>
<td>2.61×10⁻⁵</td>
<td>76.10</td>
<td>0.761</td>
<td>3.24×10⁻⁵</td>
<td>80.20</td>
<td>0.802</td>
</tr>
<tr>
<td>0.4</td>
<td>2.08×10⁻⁵</td>
<td>81.00</td>
<td>0.810</td>
<td>3.09×10⁻⁵</td>
<td>81.10</td>
<td>0.811</td>
</tr>
<tr>
<td>0.5</td>
<td>1.84×10⁻⁵</td>
<td>83.20</td>
<td>0.832</td>
<td>2.76×10⁻⁵</td>
<td>83.22</td>
<td>0.831</td>
</tr>
</tbody>
</table>
aluminum surface was calculated using the following equation (Eddy et al., 2012b):

\[Q_{\text{ads}} = 2.303R \left(\frac{\theta_2 - \theta_1}{1 - \theta_2 - \theta_1} \right) \times \left(\frac{T_2 x T_1}{T_2 - T_1} \right) \]

(9)

Where \(Q_{\text{ads}} \) is the heat of adsorption, \(R \) is the universal gas constant, \(\theta_2 \) and \(\theta_1 \) are the degree of surface coverage at the temperatures \(T_1 \) (303K) and \(T_2 \) (333K), respectively. Calculated values of \(Q_{\text{ads}} \) are also recorded in Table 6. The results obtained reflect an endothermic process. Adsorption characteristics of a corrosion inhibitor can be simplified, using adsorption isotherms. In order to achieve this, the degrees of surface coverage at
Table 5. Kinetic parameters for the corrosion of Al in 0.1 M H₂SO₄ containing various concentrations of CK gum.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>C (g/L)</th>
<th>Slope</th>
<th>Intercept</th>
<th>k₁</th>
<th>R²</th>
<th>t₁/₂ (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303 K</td>
<td>0.1</td>
<td>-0.0031</td>
<td>1.4282</td>
<td>0.007139</td>
<td>0.9764</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>-0.0035</td>
<td>1.5612</td>
<td>0.008061</td>
<td>0.9883</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>-0.0037</td>
<td>1.6571</td>
<td>0.008521</td>
<td>0.996</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>-0.0032</td>
<td>1.6797</td>
<td>0.00737</td>
<td>0.9658</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>-0.0038</td>
<td>1.8088</td>
<td>0.008751</td>
<td>0.9353</td>
<td>2</td>
</tr>
<tr>
<td>333 K</td>
<td>0.1</td>
<td>0.0028</td>
<td>0.6843</td>
<td>0.006448</td>
<td>0.9377</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.0034</td>
<td>1.4186</td>
<td>0.00783</td>
<td>0.94559</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.0032</td>
<td>1.4147</td>
<td>0.00737</td>
<td>0.8920</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.0029</td>
<td>1.4427</td>
<td>0.006679</td>
<td>0.9270</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.0029</td>
<td>1.5094</td>
<td>0.006679</td>
<td>0.9700</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 6. Activation energy and heat of adsorption of various concentrations of CK gum on Al surface.

<table>
<thead>
<tr>
<th>C (g/L)</th>
<th>Eₐ (kJ/mol)</th>
<th>Q_ads (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>11.27</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.35</td>
<td>52.83</td>
</tr>
<tr>
<td>0.2</td>
<td>6.34</td>
<td>32.93</td>
</tr>
<tr>
<td>0.3</td>
<td>6.35</td>
<td>41.85</td>
</tr>
<tr>
<td>0.4</td>
<td>11.08</td>
<td>1.34</td>
</tr>
<tr>
<td>0.5</td>
<td>11.15</td>
<td>3.46</td>
</tr>
</tbody>
</table>

Various concentrations of the inhibitor were used to test for the fitness of Langmuir, Freundlich, Flory-Huggins, El awardy et al., Temkin and Frumkin adsorption isotherms. The tests indicated that Freundlich, Temkin and Flory-Huggins adsorption isotherms are applicable to the adsorption of CK gum on aluminum surface. Expression of Flory-Huggins isotherm is given by Equation 10:

\[
\log \left(\frac{\theta}{1-\theta} \right) = \log b + x \log(1-\theta)
\]

where \(x\) is the number of inhibitor molecules occupying one site (or the number of water molecules replaced by one molecule of the inhibitor). Other parameters are as defined earlier. From Equation 10, a plot of \(\log(\theta/C)\) versus \(\log(1-\theta)\) should produce a straight line if the adsorption of the inhibitor follows Flory-Huggins isotherm. Flory-Huggins isotherm for the adsorption of CK gum is presented in Figure 9. Adsorption parameters deduced from the plots are presented in Table 7. From the results, it can be seen that \(R^2\) values are very close to unity confirming the application of the Flory-Huggins adsorption parameters.

Temkin adsorption isotherm operates on the assumptions that relate the concentration of the inhibitor to the degree of surface coverage according to Equation 11:

\[
\exp (-2a\theta) = bC
\]

where \(a\) is molecular interaction parameter; \(\theta\) is degree of surface coverage, \(C\) is inhibitor concentration and \(b\) is equilibrium constant of the adsorption process. From the logarithm of both sides of Equation 11 and 12 is obtained

\[
\theta = \frac{-\ln K}{2a} - \frac{\ln C}{2a}
\]

From Equation 12, a plot of \(\theta\) versus \(\log C\) should give a straight line with slope equal to \(2.303 \times a/2\) and intercept equal to \(2.303 \times \log K/2\) provided assumptions of Temkin isotherm are valid (Emregul et al., 2003, Emregul and Hayvali, 2006). Figure 10 presents Temkin isotherm for the adsorption of CK gum on aluminum surface while Temkin adsorption parameters are recorded in Table 7. The results indicated that the interaction parameters, ‘a’ are positive indicating the attractive behaviour of the inhibitor. The parameter tend to increase with increasing
Figure 9. Flory-Huggins isotherm for the adsorption of CK gum on aluminum surface at 303 and 333 K.

Figure 10. Temkin isotherm for the adsorption of CK gum on aluminum surface at 303 and 333 K.

Table 7. Adsorption parameters for Flory-Huggins, Temkin and Freundlich adsorption isotherms.

<table>
<thead>
<tr>
<th>Isotherm</th>
<th>T (K)</th>
<th>Slope</th>
<th>Intercept</th>
<th>a or x</th>
<th>ΔG_{ads} (kJ/mol)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flory-Huggins</td>
<td>303</td>
<td>0.2563</td>
<td>0.9057</td>
<td>0.26</td>
<td>-30.62</td>
<td>0.9901</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>0.1208</td>
<td>0.8631</td>
<td>0.12</td>
<td>-51.57</td>
<td>0.9459</td>
</tr>
<tr>
<td>Temkin</td>
<td>303</td>
<td>1.8266</td>
<td>1.6068</td>
<td>4.49</td>
<td>-19.44</td>
<td>0.9584</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>3.4301</td>
<td>2.8426</td>
<td>9.53</td>
<td>-26.61</td>
<td>0.9169</td>
</tr>
<tr>
<td>Freundlich</td>
<td>303</td>
<td>0.1508</td>
<td>1.965</td>
<td>6.63</td>
<td>-21.52</td>
<td>0.9946</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>0.065</td>
<td>1.9365</td>
<td>15.38</td>
<td>-21.35</td>
<td>0.9552</td>
</tr>
</tbody>
</table>
temperature, which also indicate that the strength of adsorption increases with temperature and points toward chemisorption, which is expected to have chemical bond between the inhibitor and the metal surface.

Freundlich adsorption isotherm is an established isotherm for adsorption through physiosorption. The assumptions establishing the isotherm given in Equation 13 which simplifies to 14:

\[
\frac{x}{m} = kC^{\frac{1}{n}}
\]

\[
\log\left(\frac{x}{m}\right) = \log k + \frac{1}{n}\log C
\]

The fraction \(x/m\) in Equation 14 is approximately the inhibition efficiency of a given inhibitor. Therefore from Equation 14, a plot of \(\log(\text{inhibition efficiency})\) versus \(\log C\) should give a straight line if Freundlich isotherm is obeyed. Figure 11 shows Freundlich plots for the adsorption of CK gum on Al surface. Adsorption parameters deduced from the plots are also presented in Table 7.

Adsorption of organic adsorbate on the aluminum electrode surface is regarded as substitutional adsorption process between the organic molecule in the aqueous phase \((\text{Org}_{\text{ads}})\) and the water molecules adsorbed on the Al surface \((\text{H}_2\text{O})_{\text{ads}}\):

\[
x\text{H}_2\text{O}_{\text{ads}} + \text{Org}_{\text{sol}} \xrightarrow{\text{ads}} x\text{Org}_{\text{ads}} + \text{H}_2\text{O}_{\text{sol}}
\]

where \(x\) is the size ratio, that is, the number of water molecules replaced by one organic molecule.

From the Flory-Huggins adsorption isotherm, the value of \(x\) was computed to be 0.26 and 0.12 at 303 and 333K and the corresponding number of available adsorption site \((n)\) computed from Freundlich adsorption isotherms were 6.63 and 15.38, respectively. These results show that the fraction of CK molecule adsorbed is temperature dependent, which point towards chemisorption, a mechanism whose extent of adsorption is expected to increase with increasing temperature.

Scanning electron microscopy (SEM) study

The scanning electron micrograph of the polished aluminium, uninhibited and inhibited aluminium in the presence of acidae shown in Figure 12a to c, respectively. It can be observed that there are distinct differences between the three SEM microphotographs. The SEM micrograph of aluminium surface (control) shows the smoothness of the metal surface implying the absence of any corrosion product formed on the metal surface.

The micrograph of the bared aluminum (Figure 12b) compared to the inhibited one (Figure 12c) shows that the former had suffered more severe corrosion than inhibitor protected one. The surface of the aluminium in the absence of the inhibitor was completely damaged after the exposure time while the CK–modified aluminium sheet was not so severely damaged. This means the
presence of CK gum can partially protect aluminum from corrosion.

Conclusion

This study shows that CK gum contains significant amount of Sucrose, Octadecanoic acid, Alpha camphorene, Nerolidol isobutyrate, Diisopropenyl-1-methyl-1-vinyl cyclohexane, Abetic acid, Oleic acid, Verbenol, 2,6-dimethylhepta-1,5-diene, Naphthalene, Limonene, 7-hexadecenal and 10-methyl-8-tetradecen-1-ol acetate. Corrosion inhibition tests suggest that CK gum is a good inhibitor for the corrosion of Al in solution of H2SO4. The inhibition efficiency of this inhibitor increased with increasing temperature suggesting chemisorption mechanism. Also, the inhibition efficiency of these extract was found to increase in the presence of CK. Inhibition of aluminium by C. kestingii gum occurred through synergistic adsorption of the various components of the gums hence the formation of multiple adsorption layer is proposed.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Ameh PO, Eddy NO, Gimba CE (2012b). Physiochemical and rheological studies on some natural polymers and their potentials as corrosion inhibitors. Published by Lambert Academic Publishing, UK.

An electrostatic lens system for the deceleration of high intensity heavy ion beams

F. W. Abdelsalam, M. M. Abdelrahman* and B. A. Soliman

Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority P. O. Box: 13759Inchas, Atomic Energy, Cairo, Egypt.

Received 31 January, 2014; Accepted 2 April, 2014

This work focuses on the design and implementation of an electrostatic lens system to produce high-intensity, low-energy ion beams, by means of numerical simulation of the beam trajectories (SIMION 7). The lens design was optimized using the simulation data obtained with a performance characteristics of the electrostatic lens system. This lens system maintains good beam focal quality for the deceleration of heavy ion beams of argon ions of with space charge of 10 mA. The beam emittance and beam diameter as a function of the gap width for a decel voltage of 45 kv of a deceleration lens system for a singly charged argon ion trajectories were investigated. A gap width of 5 mm and a tube diameter of 26 mm were found to be the minimum values. Also, a minimum of 24 mm of inner tube diameter was obtained for the relation between the inner tube diameter and the beam diameter. Beam emittance and beam diameter as a function of the focusing points for a decel voltage of 45 kv of a deceleration lens system for a singly charged argon ion trajectories was studied. A minimum of 455 mm was obtained at the outer exit of the deceleration lens system. While for the beam diameter, a minimum of 460 mm was deduced. It was found also that, a minimum of $V_{decel} = 43$ kV, deceleration voltage was obtained for the relation between the deceleration voltage and beam emittance. Also, a minimum of $V_{decel} = 49$ kV was found for the relation between the deceleration voltage and beam diameter.

Key words: Deceleration lens system and decel voltage, SIMION computer program, Beam emittance and beam radius.

INTRODUCTION

High-current ion beams are widely used for basic research and high technology applications, including for example, heavy ion fusion research, high current linear accelerators, spacecraft control systems, high dose ion implantation for material surface modification, and for surface cleaning and activation prior to film deposition (Goncharov, 2013). The advent of sophisticated computational techniques for simulating the actions of electric and magnetic fields on the motions of charged-particle beams under their influence has greatly facilitated
the design of low-aberration systems for use in ion acceleration and transport. These codes have been employed to design a variety of beam transport components, including lenses, magnets, steerers, deceleration/acceleration electrode systems, etc., and to simulate ion extraction from solid and plasma emitters. Among the computer codes for simulating the extraction of space-charge-dominated ion beams from plasma ion sources are those described according to Wheatland and Whitson (1980), Wheatlon et al. (1988), Boers (1993), Spadtke (1983) and Becker and Herrmannsfeldt (1992). Electrostatic cylinder lenses are widely used to control beams of charged particles with different energies and directions in experiments covering many applications including electron spectroscopy, surface science and mass spectroscopy (Sise et al., 2007; 2005), and find use in focused ion beam systems, where they are more effective than magnetic lenses.

Electrostatic lenses usually consist of simple electrodes which are easy to manufacture and align. The major manufacturing problems are electric breakdown and the accumulation of charges on the insulating surfaces. The properties of the lenses comprising a pair of symmetrically arranged cylinders depend on a large number of parameters: the electrode voltage ratios, cylinder sizes and the gap between the electrodes. The field of electron and ion optics is based on the analogy between geometrical light optics and the motion of charged particles in electromagnetic fields. The aim is to concentrate as many particles in as small a volume as possible. The optical properties of electrostatic lenses are fixed by the voltage ratios. The focusing of charged particles with an electrostatic field can be achieved by devices consisting of a sequence of the accelerating electrodes with cylindrical symmetry which have lens-like properties. Recently, a heavy ion injector was installed at the Accelerators and Ion Sources Department, Nuclear Research Center, the Atomic Energy Authority (A.E.A), Egypt (Abdelrahman, 2009). The design is intended for use in isotope separators and ion implantation, as well as for research in the physics and technology of ion sources and surface physics. It is complete with power supply, control, vacuum and cooling system. This source (Nikiforov et al., 1996; Wielunski et al., 2004) was supplied by Efremov Research Institute of Electro Physical Apparatus, Saint Petersburg, Russia.

In the source, the ions are generated through crossed electric and magnetic fields discharge plasmas. The discharge is formed between the thermo emission core cathode and cylindrical anode surrounding it. The electrons emitted by the hot cathode have high ionization efficiency. The ions are extracted from the discharge region through an emission slit in the anode. The system uses an acceleration/deceleration scheme to avoid compensating electrons being accelerated back into the source, thus destroying its rear side and leaving the ion beam uncompensated. The main beam extraction characteristics of this Freeman type ion source system were investigated with the SIMION computer program version 7, using singly charged argon ions with and without space charge (Abdelrahman and Abdelsalam, 2011).

It is the intent of this paper to discuss the computer beam optical properties for the deceleration lens system used to decelerate an ion beam extracted from a Freeman type ion source. Design and performance characteristics of the electrostatic lens system which maintains good beam focal quality for the deceleration of heavy ion beams of argon ions of space charge of 10 mA, are described.

CONSTRUCTION OF THE ION SOURCE

Ions of various elements are generated in this version of a Freeman type ion source (Aitken, 2004) and accelerated in a four electrode acceleration/deceleration extraction system to obtain energies of up to 50 keV. The ion source and the accelerating/decelerating system are constructed as a single unit mounted around the vacuum chamber of the system. It consists of a thermoemission tungsten cathode rod with 2mm diameter, fixed inside a molybdenum anode by boron nitride insulators. The anode has an emission slit 40 mm in length and 0.5 – 2 mm wide, which is formed by two replaceable molybdenum plates mounted between the anode and the emission electrode, where the distance between the cathode and the exit slit is equal to 3.7 mm. An auxiliary magnetic field of 100 gauss is maintained parallel to the axis of the cathode. The anode contains three holes for feeding with gas, liquid or solid materials. A schematic diagram of this ion source system is shown in Figure 1.

EMITTANCE OF AN ION BEAM

A charged particle beam is a group of particles possessing about the same kinetic energy and moving in about the same direction. The high kinetic energies and good directionality of charged particles in beams make them useful for various applications, such as, beam lithography for micro circuits, thin film technology, radiation processing of materials, and free electron lasers (Jr. Humphries, 1990). Beams extracted from different types of ion sources have to be transmitted without any loss. It is very important that the particles striking the target should have the parameters required for the target application. For beam transmission without loss of particles, the cross section of the beam must not exceed a given maximum value of a well defined point. To achieve this we introduce a quantity, the emittance (El-saftawy, 2013) which is important for high quality beams and which is defined by the product of the width and the
transverse velocity spread of the beam (region of phase space occupied by beam). If the beam is densely packed, then the emittance is said to be low and if it is somewhat spread out, it possesses high emittance (Masood et al., 2008). Any ion beam can be described in a six dimensional phase space \((x, y, z, p_x, p_y, p_z)\), where \((x, y, z)\) represents the position and \((p_x, p_y, p_z)\) the momentum components of the ions. The emittance of the beam, which must be invariant and independent of any electrostatic or magnetic fields through which the beam passes, is subject to Liouville’s theorem (Forrester, 1988), which states that the motion of charged particles under the action of conservative fields is such that the local number density in six dimensional phase space is a conserved quantity. If a group of ions or electrons is accelerated through the same potential difference and travelling with small angles relative to the \(z\) direction, we can say that they have a very small spread in \(z\) directed velocities and that this spread is invariant. Then the phase space \((x, y, p_x, p_y)\) should be an invariant of the beam. For a beam with cylindrical symmetry, it implies that the two-dimensional area with coordinates \((r, p)\) should be an invariant. At a certain position on the \(z\) axis (momentum component \(p_z\) approximately equals the total particle momentum \(\mathbf{P}\)), we consider ions which pass through \((x, y)\) related to \(r\), and if cylindrical symmetry can be assumed (Abdelrahman and Zakhary, 2009) then:

\[
x' = \frac{p_x}{p_z}, \quad y' = \frac{p_y}{p_z}, \quad r' = \frac{p_r}{p_z}
\]

(1)

Then,

\[
\varepsilon_x = \frac{1}{\pi} A(x, x'), \quad \varepsilon_y = \frac{1}{\pi} A(y, y'), \quad \varepsilon_r = \frac{1}{\pi} A(r, r')
\]

(2)

where \(\varepsilon_x\), \(\varepsilon_y\) and \(\varepsilon_r\) are the transverse emittance or simply emittance in the \((x-x')\), \((y-y')\) and \((r-r')\) planes respectively. The values \(A(x, x')\), \(A(y, y')\) and \(A(r, r')\) represent two dimensional phase space areas and remain constant along drift region (Figure 2).

The emittance is related to another property of accelerators or charged particle system namely the acceptance, sometimes called admittance. Acceptance is defined as the maximum emittance that a beam transport or analyzing system is able to transmit without flux loss. This is the size of the chamber transformed into phase space and does not suffer from the ambiguities of the definition of beam emittance. To get good performance of an ion beam transport system, the emittance should be much smaller than the acceptance (Lee, 1999). Figure 3
Figure 2. Different cases of two dimensional emittance patterns, with the corresponding beams as (a) divergent, (b) convergent, (c) parallel and (d) focused.

Figure 3. Accelerator acceptance with relation to the definition of emittance in phase space.

represents a schematic diagram that describes the acceptance of the accelerating system in phase space representation. To characterize the emittance of a beam in SIMION, it is necessary to create a user program, since the capability was not built into the original SIMION program. Each particle's coordinates and velocity components were tracked and logged. After the particles exited the simulation domain at the right of the mesh, their components were logged in a database, and the averages taken to find the emittance.
In the present study, beam emittance was calculated by using the separate standard deviations of the positions \((\sigma_y)\) and the elevation angles \((\sigma_\alpha)\) for singly charged argon ion trajectories;

\[
\varepsilon = \sigma_y \cdot \sigma_\alpha
\]

\((3)\)

Standard deviation can be defined as

\[
\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}
\]

\((4)\)

where \(n\) is the number of repeated measurements, \(y_i\) is the individual values and \(\bar{y}\) is the mean value of the repeated-values. For a fixed geometry of the deceleration lens system, the following calculations have been done with space charge of 10 mA.

SIMULATION PROCESS

The deceleration lens system was simulated using the ion optics simulation program SIMION (Dahl, 2000; Dahl et al., 1990). The program has been proven extremely useful in numerous applications. SIMION is an electrostatic lens analysis and design program that is capable of modeling charged particle optics problems with electrostatic and/or magnetic potential arrays. This program is used to simulate electrostatic and static magnetic devices for accelerating, transporting and otherwise manipulating beams of charged particles. For the purposes of this article, electrostatic fields only were modeled. In SIMION, five-point relaxation, a finite difference technique, is used as the iterative process to converge on the electric potential field solution for voltage contours and charged particle trajectories to be computed and plotted.

The lens system consists of a set of five cylindrical electrodes followed by a circle shaped electrode, all arranged along a common axis (Figure 4). As the beam traverses successive gaps between the electrodes, it encounters an increasing potential. The axial part of the electrostatic force is directed opposite to the direction of the incoming beam and has the net effect of reducing the energy of the beam.

Figure 5 shows the beam emittance and beam diameter as a function of the gap width for a decel voltage of 45 kv of a deceleration lens system for singly charged argon ion trajectories. It is clear from the figure that, a minimum gap width of 5 mm was obtained for its relation to beam emittance while an increase of the gap width was accompanied by an increase in beam diameter. Beam emittance and beam diameter as a function of the tube diameter for a decel voltage of 45 kv of a deceleration lens system for a singly charged argon ion trajectories was investigated (Figure 6). This figure shows that, there is a minimum of 26 mm of tube diameter for the relation between the inner tube diameter and beam emittance. Also, a minimum of 24 mm of inner tube diameter was obtained for the relation between the inner tube diameter and the beam diameter. Beam emittance and beam diameter for singly charged argon ion trajectories as a function of the focusing points for a decel voltage of 45 kv of a deceleration lens system were studied (Figure 7). A minimum of 455 mm was obtained at the outer exit of the deceleration lens system for the relation between the beam emittance and focusing points. While for the relation between the focusing points and beam diameter, a minimum of 460 mm was deduced. Figure 8 shows the influence of the deceleration voltage on both the beam emittance and beam diameter of a deceleration lens system for singly charged argon ion trajectories. It is found from this figure that, a minimum deceleration voltage of \(V_{\text{decel}} = 43\) kV, was obtained for the relation between the deceleration voltage and beam emittance. Also, a minimum of \(V_{\text{decel}} = 49\) kV is found for the relation between the deceleration voltage and beam diameter.
Figure 5. Beam emittance and beam diameter as a function of the gap width for a decel voltage of 45 kv of a deceleration lens system for a singly charged argon ion trajectories.

Figure 6. Beam emittance and beam diameter as a function of the tube diameter for a decel voltage of 45 kv of a deceleration lens system for singly charged argon ion trajectories.

Figure 9 illustrates a study of the influence of deceleration voltage on both beam emittance and beam diameter of a deceleration lens system for singly charged argon ion trajectories at the center of the experimental chamber. It was deduced from this figure that, a minimum deceleration voltage, $V_{\text{decel}} = 47.5$ kV occurred for the relation between the deceleration voltage and beam emittance at the center of the experimental chamber. In case of the relation between the deceleration voltage and beam diameter, increasing deceleration voltage applied to the deceleration electrode was accompanied by decreasing beam diameter.

CONCLUSIONS

These studies clearly demonstrate the necessity of providing means for varying the extraction gap to assure
high quality space-charge-dominated beams and also find the optimum parameters for the deceleration lens system which will be used experimentally in the next stage in isotope separation of ion beams of heavy ions. It was found that a minimum of gap width of 5 mm was obtained for the relation between the gap width and beam emittance while an increase of the gap width was accompanied by an increase of the beam diameter. Also, a minimum of 26 mm of tube diameter was obtained for the relation between the inner tube diameter and beam emittance. Furthermore, a minimum of 24 mm of inner tube diameter was obtained for the relation between the inner tube diameter and the beam diameter. In further consequence, a minimum of 455 mm was obtained at the outer exit of the deceleration lens system for the relation between the beam emittance and focusing points. While for the relation between the focusing points and beam diameter, a minimum of 460 mm was deduced. It was found that a minimum of deceleration voltage \(V_{\text{decel}} = 43 \) kV, was obtained for the relation between the beam diameter and focusing points.

Figure 7. Beam emittance and beam diameter as a function of the focusing points for a decel voltage of 45 kV of a deceleration lens system for singly charged argon ion trajectories.

Figure 8. Influence of the deceleration voltage on both the beam emittance and the beam diameter of a deceleration lens system for singly charged argon ion trajectories.
deceleration voltage and beam emittance. Also, a minimum, \(V_{\text{decel}} = 49 \) kV was found for the relation between the deceleration voltage and beam diameter. Finally, a minimum of deceleration voltage, \(V_{\text{decel}} = 47.5 \) kV was obtained for the relation between the deceleration voltage and beam emittance. In case of the relation between the deceleration voltage and beam diameter, an increase of the deceleration voltage applied to the deceleration electrode was accompanied by a decrease of the beam diameter. From these results, it was concluded that the ion beam extracted from this ion source was decelerated to a certain amount of energy with a newly designed and simulated deceleration system for injection of an isotope separator system.

Conflict of Interests

The author(s) have not declared any conflict of interests

REFERENCES

Boers JE (1993). A digital computer code for the simulation of electron and ion beams on a PC, IEEE Cat. No. 93CH3334-0 213. (PBGUNS is electron/ion optics simulation code, developed by Thunderbird Simulations, Garland, TX, USA).
El-sattawy AM (2013). PhD. Thesis, Department of Physics Faculty of Science Zagazig University, Zagazig, Egypt.

International Journal of Physical Sciences

Related Journals Published by Academic Journals

- Journal of Internet and Information Systems
- Journal of Geology and Mining Research
- Journal of Oceanography and Marine Science
- Journal of Environmental Chemistry and Ecotoxicology
- Journal of Petroleum Technology and Alternative Fuels