ABOUT JCECT

Journal of Civil Engineering and Construction Technology (ISSN 2141-2634) is published monthly (one volume per year) by Academic Journals.

Journal of Civil Engineering and Construction Technology (JCECT) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as surveying, environmental engineering, hydrology, soil mechanics, shear moments and forces etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JCECT are peer-reviewed.

Contact Us

Editorial Office: jcect@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JCECT
Submit manuscript online http://ms.academicjournals.me/
Editorial Board

Dr. Ling Tung-Chai,
The Hong Kong Polytechnic University,
Department of Civil and Structural Engineering,
Faculty of Construction and Land Use,
HungHom, Kowloon, Hong Kong.

Dr. Miguel A. Benítez,
Project Manager,
Basque Center for Applied Mathematics (BCAM),
Bizkaia Technology Park, Building 500,
E-48160 Derio, Basque Country, Spain.

Dr. Shehata Eldabie Abdel Raheem,
Structural Engineering,
Civil Engineering Department,
Faculty of Engineering,
Assiut University, Assiut 71516, Egypt.

Dr. Zhijian Hu,
Department of Road and Bridge Engineering,
School of Communication,
Wuhan University of Science and Technology,
Wuhan, 430063, China.

Dr. Mohd Rasoul Suliman,
Prince Abdullah Bin Ghazi Faculty of Science & Information Technology,
Al-Balqa Applied University, Jordan.

Dr. Paul Scarponcini PE,
Geospatial and Civil Software Standards,
66 Willowleaf Dr., Littleton, CO 80127, USA.

Dr. Rita Yi Man Li,
Hong Kong Shue Yan University
North Point, Hong Kong.

Dr. Alaa Mohamed Rashad,
Building Materials Research and Quality Control Institute,
Housing & Building National Research Center, 87 El-Tahrir St., Dokki, Giza 11511,
P.O.Box: 1770 Cairo, Egypt.

Dr. Alaa Mohamed Rashad Abdel Aziz Mahmoud,
Housing and Building National Research Centre,
87 El-Tahrir St., Dokki, Giza 11511,
P.O.Box: 1770 Cairo, Egypt.

Dr. Nikos Pnevmatikos,
Greek Ministry of Environment,
Urban Planning and Public Works,
Department of Earthquake Victims and Retrofitting Services, Greece.

Prof. Karima Mahmoud Attia Osman,
6 Zahraa Naser City, Cairo, Egypt.

Dr. Lim Hwee San,
99E-3A-10, 1-Regency Condominium, Jalan Bukit Gambir,
11700, Penang, Malaysia.

Dr. Jamie Goggins,
Civil Engineering, School of Engineering and Informatics,
National University of Ireland, Galway, Ireland.

Dr. Hossam Mohamed Toma,
King Abdullah Institute for Research and Consulting Studies,
King Saud University, P.O.Box 2454,
Riyadh 11451, Saudi Arabia.

Dr. Depeng Chen,
School of Civil Engineering,
Anhui University of Technology,
59#, Hudong Road, Maanshan, 243002, China.

Dr. Srinivasan Chandrasekaran,
Room No. 207, Dept of Ocean Engineering,
Indian Institute of Technology Madras, Chennai, India.

Prof. Amir Alikhani,
Ministry of Oil, Harbour organization, and minister of Energy Tehran, Iran.

Dr. Memon Rizwan Ali,
Department of Civil Engineering,
Mehran University of Engineering & Technology,
Jamshoro.

Prof. Murat Dicleli,
Department of Engineering Sciences,
Middle East Technical University,
06531 Ankara, Turkey.
Effects of bridge length and span variations in curved integral abutment bridges

Jhunyawhatt Thaanasarttayawibul, Amde M. Amde and Andreas P. E. Paraschos
Full Length Research Paper

Effects of bridge length and span variations in curved integral abutment bridges

Jhunyawhatt Thaanasarttayawibul¹, Amde M. Amde² and Andreas P. E. Paraschos³*

¹TCC Land Company Limited, Thailand.
²Department of Civil and Environmental Engineering United States, University of Maryland, United States.
³New York City Department of Transportation/Division of Bridges United States.

Received 2 July, 2013; Accepted 3 January, 2014

This paper presents the results of a parametric study that focused on the effects of bridge length and span variations on the maximum stress intensity (stress concentration) in the piles of horizontally-curved steel I-girder integral abutment bridges. Over 1,700 three-dimensional nonlinear finite element models with bridge lengths up to 365 m (1200 ft) were analyzed as part of this study. The results indicate that the stress concentration in the piles increases with increasing bridge length and reaches its maximum value at a certain bridge length. Beyond that bridge length, pile stress concentration decreases despite the fact that bridge length continues to increase. This represents a difference in behavior compared to straight integral abutment bridges where the pile stress concentration always increases with increasing bridge length. The study also indicates that curved integral abutment bridges of smaller radius have a larger pile stress intensity reduction due to increased number of spans compared to curved integral abutment bridges of larger radius.

Key words: Integral abutment bridges, curved bridges, finite element modeling, thermal loads.

INTRODUCTION

Straight integral abutment bridges were studied by many researchers (Jorgenson, 1983; Yang et al., 1985; Greimann et al., 1986, 1987, 1988; Amde et al., 1988, 1997; Griton et al., 1991; Lawver et al., 2000; Paraschos and Amde, 2010). They concluded that thermal gradient had a relatively small effect on the movements of the abutments and piers of bridges up to 91 m (300 ft) in length. Its effect on bridges longer than 91 m (300 ft) in length might be significant. Skewed integral abutment bridges were studied by Greimann and Amde (Greimann et al., 1983) and Haj-Najib (Haj-Najib, 2002). They concluded that for bridges with skew up to 10° and an anticipated movement at each abutment of ± 1 cm (± 0.375 in) shall be treated as straight integral abutment bridges. For integral abutments, as their length and skew increases, temperature-induced stresses become more critical to the piling load capacities. This paper is focused on horizontally curved steel I-girder integral abutment bridges (hereafter referred to as curved IAB’s) with a degree of curvature ranging from 0 to 172°
Table 1. Material properties and loading.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td>Slab (thickness)</td>
<td>7 in.</td>
</tr>
<tr>
<td>Abutment (width × height)</td>
<td>3 ft × 7 ft 7 in.</td>
</tr>
<tr>
<td>Steel</td>
<td></td>
</tr>
<tr>
<td>Girders</td>
<td>W30 × 132</td>
</tr>
<tr>
<td>Cross-bracings</td>
<td>L6 × 6 × 1</td>
</tr>
<tr>
<td>Piles</td>
<td>HP10 × 42</td>
</tr>
<tr>
<td>Material properties</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>4 ksi</td>
</tr>
<tr>
<td>Weight</td>
<td>145 lb/ft³</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>6 × 10⁻⁶ in./in./°F</td>
</tr>
<tr>
<td>Steel</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>36 ksi</td>
</tr>
<tr>
<td>Weight</td>
<td>490 lb/ft³</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>6.5 × 10⁻⁶ in./in./°F</td>
</tr>
<tr>
<td>Soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Loads</td>
<td></td>
</tr>
<tr>
<td>Dead load</td>
<td>Self weight of bridge structure</td>
</tr>
<tr>
<td>Live load</td>
<td>HS20-44 lane loading</td>
</tr>
<tr>
<td>Thermal load</td>
<td>ΔT_{slab} = 90° F and ΔT_{the rest} = 60° F</td>
</tr>
<tr>
<td></td>
<td>ΔT_{slab} = 120° F and ΔT_{the rest} = 90° F</td>
</tr>
</tbody>
</table>

Table 3 shows the curved IAB parameters used in this study while Figure 3 presents a plot of various radii for the case of a 365 m (1200 ft) long IAB. End-bearing piles were used throughout this study. A sample model used in the analysis before and after applying forces is shown in Figure 4.

RESULTS

Effect of bridge length variation

Figures 5 to 10 indicate that the maximum stress intensity in the piles of curved IAB’s increases as the bridge length is increased. The maximum stress intensity in the piles will reach its highest value at a certain bridge length. Beyond that bridge length, pile stress concentration
Table 2. Elements in model.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Degree of Freedom</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL 43</td>
<td>a 4-node plastic shell</td>
<td>6 DOFs at each node: translations and rotations</td>
<td>Slabs, girders and piles</td>
</tr>
<tr>
<td>BEAM 4</td>
<td>3D elastic beam</td>
<td>6 DOFs at each node: translations and rotations</td>
<td>Cross bracings</td>
</tr>
<tr>
<td>SOLID 45</td>
<td>an 8-node plastic solid element</td>
<td>3 DOFs at each node: translations</td>
<td>Abutments</td>
</tr>
<tr>
<td>MPC184</td>
<td>Multipoint constraint elements with rigid beam option</td>
<td>6 DOFs at each node: translations and rotations</td>
<td>Connect all elements together</td>
</tr>
<tr>
<td>COMBIN39</td>
<td>Nonlinear spring</td>
<td>3 DOFs at each node: translations</td>
<td>Soil</td>
</tr>
</tbody>
</table>

Figure 1. Typical section of the bridge superstructure.

Figure 2. Soil properties and layout for the different soil profile models.

decreases despite the fact that bridge length continues to increase up to a bridge length of 365 m (1200 ft). This represents a difference in behavior compared to straight integral abutment bridges where the pile stress concentration always increases with increasing bridge length. Figures 5 to 7 also indicate that the maximum stress intensity in the piles of curved IAB’s with a 122 m (400 ft) radius and 15 m (50 ft) spans is almost constant for bridge lengths from 244 (800) to 365 m (1200 ft). The lengths of curved IAB’s with the highest stress intensity in the piles from Figures 5 to 10 are plotted in Figure 11. The maximum stress intensity in the piles in very stiff clay soil profile (no predrilled holes) of curved IAB’s of all radii starts to increase from a 15 m (50 ft) bridge length until it reaches its highest value at the bridge length indicated in Figure 11 (solid line). Beyond that bridge length, the highest pile stress intensity value will start decreasing as the bridge length is increased (dashed and dotted lines). For piles in predrilled holes, the maximum stress intensity in the piles of curved IAB’s of all radii starts to increase from a 15 m (50 ft) bridge length until it reaches its highest value at the bridge length indicated in Figure 11 (dashed line). Beyond that bridge length, the highest pile stress intensity value will start decreasing even though bridge length keeps increasing (dotted line). Figure 11 also indicates that the highest stress intensity value in the piles of curved IAB’s with radii of 122 m (400 ft) and infinity (straight IAB’s) is at the same bridge length [a 122 m (400 ft) length for a 122 m (400 ft) radius, and a 365 m (1200 ft) length for an infinite radius] for piles in all soil profile types. The introduction of predrilled holes results
Table 3. Information of curved integral abutment bridges.

<table>
<thead>
<tr>
<th>Span length (ft)</th>
<th>Number of spans</th>
<th>Bridge length (ft)</th>
<th>Degree of curvature (degrees) for radius</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>400 ft</td>
</tr>
<tr>
<td>50</td>
<td>1 50</td>
<td>14.324</td>
<td>4.775</td>
</tr>
<tr>
<td></td>
<td>2 100</td>
<td>21.486</td>
<td>14.324</td>
</tr>
<tr>
<td></td>
<td>4 200</td>
<td>42.972</td>
<td>28.648</td>
</tr>
<tr>
<td></td>
<td>6 300</td>
<td>57.296</td>
<td>38.197</td>
</tr>
<tr>
<td></td>
<td>8 400</td>
<td>85.944</td>
<td>57.296</td>
</tr>
<tr>
<td></td>
<td>12 600</td>
<td>114.592</td>
<td>76.394</td>
</tr>
<tr>
<td>100</td>
<td>1 100</td>
<td>28.648</td>
<td>19.099</td>
</tr>
<tr>
<td></td>
<td>2 200</td>
<td>42.972</td>
<td>28.648</td>
</tr>
<tr>
<td></td>
<td>3 300</td>
<td>57.296</td>
<td>38.197</td>
</tr>
<tr>
<td></td>
<td>6 400</td>
<td>85.944</td>
<td>57.296</td>
</tr>
<tr>
<td></td>
<td>8 800</td>
<td>114.592</td>
<td>76.394</td>
</tr>
<tr>
<td></td>
<td>10 1000</td>
<td>143.239</td>
<td>95.493</td>
</tr>
<tr>
<td></td>
<td>12 1200</td>
<td>171.888</td>
<td>114.592</td>
</tr>
</tbody>
</table>

Figure 3. 365 m (1200 ft) long curved integral abutment bridges on varying radii.

Figure 4. Undefomed and deformed shape of a curved integral abutment bridge with 400 ft radius and 4 to 50 ft spans with 28.65° of curvature with piles in very stiff clay soil profile with 9 ft deep predrilled holes filled with loose sand. The bridge is subjected to a thermal load of ΔT_{slab} of 120°F and $\Delta T_{the rest}$ of 90°F. A deflection scale factor of 40 is used to enlarge the displacement of the bridge structure.

Figure 4. Undefomed and deformed shape of a curved integral abutment bridge with 400 ft radius and 4 to 50 ft spans with 28.65° of curvature with piles in very stiff clay soil profile with 9 ft deep predrilled holes filled with loose sand. The bridge is subjected to a thermal load of ΔT_{slab} of 120°F and $\Delta T_{the rest}$ of 90°F. A deflection scale factor of 40 is used to enlarge the displacement of the bridge structure.

in the highest stress intensity value in the piles of curved IAB's with radii of 183 (600), 244 (800), 365 (1200) and 731 m (2400 ft) occurring at 61 m (200 ft) longer bridge length compared to the highest stress intensity value in the piles without predrilled holes.

For piles in very stiff clay soil profile, curved IAB's of all radii have approximately the same maximum stress intensity value in the piles at the same bridge length for bridge lengths up to 91 m (300 ft). Beyond the 91 m (300 ft) length, curved IAB's with a smaller radius, for the most part, have a maximum stress intensity in the piles less than that of curved IAB's with a larger radius as the bridge length is increased. For piles in predrilled holes,
curved IAB’s with a larger radius have a maximum stress intensity in the piles less than that of curved IAB’s with a smaller radius for bridge lengths up to 122 m (400 ft). Beyond the 122 m (400 ft) length, curved IAB’s with a smaller radius, for the most part, have a maximum stress intensity in the piles less than that of curved IAB’s with a larger radius as the bridge length is increased. For curved IAB’s with 30 m (100 ft) spans and with piles in predrilled holes, curved IAB’s with double spans [bridge length of 61 m (200 ft)] can reduce the maximum stress intensity in the piles when compared with single span bridges [bridge length of 30 m (100 ft)]. The pile stress intensity reduction is in the range of 9.5 to 22% for $\Delta T = 90^\circ$ F and is in the range of 2.6 to 16.4% for $\Delta T = 120^\circ$ F as indicated in Figure 12. Figure 12 indicates that for piles in predrilled holes, curved IAB’s with a smaller radius have a pile stress intensity reduction less than that of curved IAB’s with a larger radius when comparing curved IAB’s with multi-span bridges consisting of two spans 61 m (200 feet) each with single span bridges [bridge length of 30 m (100 ft)]. It is shown that a temperature increase results in a lower pile stress intensity reduction. Curved IAB’s subjected to a temperature load of 120° F have a pile stress intensity reduction less than that of curved IAB’s subjected to a temperature load of 90° F.

It is also shown that 2.7 m (9 ft) deep predrilled holes filled with loose sand produce a higher reduction in the pile stress intensity compared to 1.5 m (5 ft) deep predrilled holes filled with loose sand. However, for predrilled holes deeper than 2.7 m (9 ft), the rate of reduction is significantly reduced, which results in only marginal reductions in pile stress intensity.

Effect of span length variation

For piles in very stiff clay soil profile as shown in Figure
Figure 7. Maximum stress intensity in end-bearing piles in 2.7 m (9 ft) deep predrilled holes of bridges with 15 m (50 ft) spans. a) $\Delta T_{\text{slab}} = 90^\circ \text{F}$, $\Delta T_{\text{the rest}} = 60^\circ \text{F}$; b) $\Delta T_{\text{slab}} = 120^\circ \text{F}$, $\Delta T_{\text{the rest}} = 90^\circ \text{F}$.

Figure 8. Maximum stress intensity in end-bearing piles in very stiff clay soil profile of bridges with 30 m (100 ft) spans. a) $\Delta T_{\text{slab}} = 90^\circ \text{F}$, $\Delta T_{\text{the rest}} = 60^\circ \text{F}$; b) $\Delta T_{\text{slab}} = 120^\circ \text{F}$, $\Delta T_{\text{the rest}} = 90^\circ \text{F}$.

13, the highest pile stress intensity reduction value due to the increase in the number of spans of curved IAB’s of all radii is between 52.2 and 54.2% for ΔT 90° F and between 40.5 and 42.6% for ΔT 120° F at a 30 m (100 ft) bridge length. It decreases to its lowest value at a certain bridge length. After it reaches its lowest value, almost all pile stress intensity reduction rates start increasing and continue to increase as the bridge length is increased to 365 m (1200 ft). Except curved IAB’s with a 122 m (400 ft) radius, after the pile stress intensity reduction rate reaches its lowest value at the bridge length between 91 to 122 m (300 to 400 ft), then the pile stress intensity reduction rate starts to increase as the bridge length is increased until it has the highest value at a 305 m (1000 ft) length and beyond a 305 m (1000 ft) length the pile stress intensity reduction rate decreases again as the bridge length is increased to 365 m (1200 ft). For piles in 2.7 m (9 ft) deep predrilled holes filled with loose sand as shown in Figure 14, the highest pile stress intensity reduction value due to the increase in the number of spans of curved IAB’s of all radii is between 61.8 and 64.7% for ΔT 90° F and between 45.6 and 50.8% for ΔT 120° F at a 30 m (100 ft) bridge length. It decreases to its lowest value at a certain bridge length. After they reach their lowest value, some of the pile stress intensity reduction rates showed an increase as the bridge length is increased until it has the highest value at a 305 m (1000 ft) length and beyond a 305 m (1000 ft) length the pile stress intensity reduction rate decreases again as the bridge length is increased to 365 m (1200 ft).

Figure 15 indicates that the pile stress intensity reduction due to the increase in the number of spans of curved IAB’s with piles in predrilled holes is greater than that of curved IAB’s with piles without predrilled holes. It is shown that piles in 2.7 m (9 ft) deep predrilled holes filled with loose sand have a significant reduction in the pile stress intensity when compared with piles in 1.5 m (5 ft) deep predrilled holes filled with loose sand. The depth
Figure 9. Maximum stress intensity in end-bearing piles in 1.5 m (5 ft) deep predrilled holes of bridges with 30 m (100 ft) spans. a) $\Delta T_{\text{slab}} = 90^\circ \text{F}, \Delta T_{\text{the rest}} = 60^\circ \text{F};$ b) $\Delta T_{\text{slab}} = 120^\circ \text{F}, \Delta T_{\text{the rest}} = 90^\circ \text{F}.$

Figure 10. Maximum stress intensity in end-bearing piles in 2.7 m (9 ft) deep predrilled holes of bridges with 30 m (100 ft) spans. a) $\Delta T_{\text{slab}} = 90^\circ \text{F}, \Delta T_{\text{the rest}} = 60^\circ \text{F};$ b) $\Delta T_{\text{slab}} = 120^\circ \text{F}, \Delta T_{\text{the rest}} = 90^\circ \text{F}.$

increase of predrilled holes deeper than 2.7 m (9 ft) will further reduce the stress intensity in the piles, but the rate of reduction is much smaller than that of 2.7 m (9 ft) deep predrilled holes. Figures 13 and 15 indicate that curved IAB’s with a smaller radius, for the most part, have a pile stress intensity reduction due to the increase in the number of spans greater than that of curved IAB’s with a larger radius. The difference in the pile stress intensity reduction due to the increase in the number of spans between curved IAB’s with different radii is smaller when predrilled holes are used for the piles compared to the piles with no predrilled holes as shown in Figure 15. In addition, larger temperature increases result in lower pile stress intensity reduction compared to smaller temperature increases.

DISCUSSION

1. The radius of curvature of IAB’s is an important parameter in their design and construction. Curved IAB’s with a larger radius and with piles in very stiff clay soil profile have a maximum stress intensity (stress concentration) in the piles less than that of curved IAB’s with a smaller radius for bridge lengths up to 91 m (300 ft). It is the same for curved IAB’s with piles in predrilled holes for bridge lengths up to 122 m (400 ft). Beyond those bridge lengths, curved IAB’s with a smaller radius and with piles in all soil profile types, for the most part, have a maximum stress intensity in the piles less than that of curved IAB’s with a larger radius as the bridge length is increased to 365 m (1200 ft).

2. For straight IAB’s, the maximum stress intensity (stress concentration) in the piles increases as the bridge length is increased. In the case of curved IAB’s, the maximum stress intensity in the piles begins to increase
Figure 11. Highest stress intensity in end-bearing piles at different bridge lengths of curved integral abutment bridges of different radii.

Figure 12. Stress reduction (%) of end-bearing piles in varying depths of predrilled holes of bridges with 30 m (100 ft) spans and bridge length of 30 (100) and 61 m (200 ft).

Figure 13. Stress reduction (%) of end-bearing piles in very stiff clay soil profile due to the increase in the number of spans. a) $\Delta T_{\text{slab}} = 90^\circ F$, $\Delta T_{\text{the rest}} = 60^\circ F$; b) $\Delta T_{\text{slab}} = 120^\circ F$, $\Delta T_{\text{the rest}} = 90^\circ F$.

at a shorter bridge length. As the bridge length is increased, the stress intensity in the piles continues to increase until it reaches its highest stress intensity value at a certain bridge length. Beyond that bridge length, it starts decreasing and continues to decrease even though bridge length continues to increase.

3) Curved IAB’s with a smaller radius, for the most part, have a pile stress intensity reduction due to the increase in the number of spans greater than that of curved IAB’s with a larger radius.

4) The pile stress intensity reduction due to the increase in the number of spans of curved IAB’s with piles in predrilled holes is greater than that of curved IAB’s with piles without predrilled holes. It is shown that piles in 2.7 m (9 ft) deep predrilled holes filled with loose sand have
significantly higher reduction in the pile stress intensity compared to piles in 1.5 m (5 ft) deep predrilled holes filled with loose sand. However, for predrilled holes deeper than 2.7 m (9 ft), the rate of reduction is significantly reduced, which results in only marginal reductions in pile stress intensity.

(5) The difference in pile stress intensity reduction due to the increase in the number of spans between curved IAB’s with different radii is smaller when predrilled holes are used for the piles instead of the piles with no predrilled holes.

(6) Increasing the number of spans within a given bridge length results in pile stress reduction. However, this reduction is less at higher temperatures compared to lower temperatures.

Figure 14. Stress reduction (%) of end-bearing piles in 2.7 m (9 ft) deep predrilled holes due to the increase in the number of spans. a) ΔT_{slab} = 90° F, ΔT_{the rest} = 60° F; b) ΔT_{slab} = 120° F, ΔT_{the rest} = 90° F.

Figure 15. Mean of stress reduction of end-bearing piles in various soil profile types due to the increase in the number of spans. a) ΔT_{slab} = 90° F, ΔT_{the rest} = 60° F; b) ΔT_{slab} = 120° F, ΔT_{the rest} = 90° F.

Conflict of Interest

The author(s) have not declared any conflict of interests.

REFERENCES

Journal of Civil Engineering and Construction Technology

Related Journals Published by Academic Journals

- International Journal of Computer Engineering Research
- Journal of Electrical and Electronics Engineering Research
- Journal of Engineering and Computer Innovations
- Journal of Petroleum and Gas Engineering
- Journal of Engineering and Technology Research
- Journal of Civil Engineering and Construction Technology