ABOUT JTEHS

The Journal of Toxicology and Environmental Health Sciences (JTEHS) is published monthly (one volume per year) by Academic Journals.

The Journal of Toxicology and Environmental Health Sciences (JTEHS) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as toxicogenomics, enzyme inhibition, drug overdose, Children's Environmental Exposure Research Study etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JTEHS are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jtehs@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Toxicology and Environmental Health Sciences (JTEHS) will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Dr. Hazem Mohammed Ebraheem Shaheen
Department of Pharmacology, Faculty of Veterinary Medicine, Damanhur University, Behera – Dalangat – Elbostan, Egypt

Dr. Jianbo Xiao
College of Life & Environment Science, Shanghai Normal University 100 Guilin Rd, Shanghai 200234, PR China

Dr. Adriana Maria Neghina
Victor Babes University of Medicine and Pharmacy Biochemistry Department
2 Eftimie Murgu Square
RO - 300041, Timisoara
Romania

Dr. Rouabhi Rachid
Biology Department
University of Tebessa 12000. Algeria.

Prof. YongXun Pang
Endemic center, Harbin Medical University 157 BaoJian Road,
NanGang District, Harbin, P. R. China

Dr. Mahadeva Swamy
Mysore – 570 006, Karnataka, India

Dr. Shashank Shah
"40/29 Bhonde Colony, 14 Shwe Off Karve Road, Erandwane,
Pune, Maharashtra, India

Dr. Necati Celik
Karadeniz Technical University, Dept. of Phys. 61080 Trabzon,
Turkey

Prof. Yangfeng Wu
"Suite B1302, No 6, Zhichunlu Rd., Haidian District, Beijing, 100088,
China

Dr. Ashim Kumar Biswas
Department of Livestock Products Technology, COVS, Ludhiana- 141004 (Punjab)
India

Dr. Ilia Yarmoshenko
Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences
620219 S. Kovalevskoy Str., 20, Ekaterinburg, Russia

Dr. Şifa Türkoğlu
Cumhuriyet University, Faculty of Art and Science, Department of Biology, Sivas, Turkey

Dr. Juan Antonio Riesco Miranda
Pneumology Department. San Pedro Alcantara Hospital Cáceres
Spain

Dr. Norazmir Md Nor
Department of Nutrition & Dietetics
Faculty of Health Sciences MARA University of Technology Puncak Alam Campus42300 Puncak Alam Selangor,
Malaysia

Dr. Helal Ragab Moussa
Bahnay, Al-bagour, Menoufia, Egypt

Prof. Dr. Mamdouh Moawad Ali
33 El-Tahrir Street, Dokki 12622, Cairo, Egypt

Reza Hosseinzadeh
Shahid Beheshty Ave., Urmia University, Jahad-E-Daneshgahi, P. O. Box No. 165, Urmia, Iran

Moustafa Hossein El-Naggar
Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, KSA

Hasan TÜRKEZ
Division of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The **cover letter** should include the corresponding author's full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types

Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process

All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers' comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JPP to publish manuscripts within weeks after submission.

Regular articles

All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The **Title** should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The **Abstract** should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard **Abbreviations** should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The **Introduction** should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.

Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.
The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

- Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b,Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences:

1. Abstracts are limited to 100 words; 2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; 3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Veterinary Medicine and Animal Health (JVMAH) is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2013, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties
In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JVMAH, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Articles

Whole lung lavage therapy: Treatment for lung injury caused by paraquat poisoning
Baotian Kan, Xiangdong Jian, Zhongchen Zhang, Qian Zhou, Jieru Wang, Guangcai Yu and Jing Sun

Bisphenol A induced reactive oxygen species (ROS) in the liver and affect epididymal semen quality in adults Sprague-Dawley rats
Ansoumane Kourouma, Duan Peng, Quan Chao, Yaima M. Lopez T, Liu Changjiang, Wang Chengmin, Fu Wenjuan, Qi Suqin, Yu Tingting and Yang Kedi
Whole lung lavage therapy: Treatment for lung injury caused by paraquat poisoning

Baotian Kan1, Xiangdong Jian1*, Zhongchen Zhang2, Qian Zhou1, Jieru Wang1, Guangcai Yu1 and Jing Sun1

1Department of Poisoning and Occupational Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China.
2Department of Medicine, Hospital of Shandong University, Jinan 250012, Shandong, China.

Received 16 February, 2014; Accepted 6 May, 2014

Paraquat poisoning is characterized by multi-organ failure and pulmonary fibrosis with respiratory failure, resulting in high mortality and morbidity. To serious paraquat patients, the effectiveness of conventional treatments is unsuccessful. Whole lung lavage is a technique that was developed in the 1960s with the purpose of removing lipoproteinaceous material that accumulates in the bronchi of patients with alveolar proteinosis, leading to clinical and functional improvement. Pneumoconioses are characterized as irreversible, progressive respiratory diseases. No effective therapy exists to prevent progression of these diseases. Whole lung lavage might limit the rate of disease progression through the removal of dust, inflammatory cells, and cytokines. Whole lung lavage is also used successfully to treat other lung diseases such as endogenous lipoid pneumonia and mineral oil lipoid pneumonia. Paraquat poisoning could not be controlled by only one method and combined therapies are needed. So, we hypothesized that whole lung lavage will provide a new therapy of acute lung injury caused by paraquat. On the base of conventional therapy for paraquat poisoning, whole lung lavage could be considered in the early time of poisoning and then followed by glucocorticoid for patients with moderate to severe paraquat poisoning.

Key words: Paraquat, poisoning, acute lung injury, whole lung lavage.

INTRODUCTION

Paraquat is one of the most widely used herbicides in the world, and has been approved for use by authorities in more than 120 countries, and plays an important role in controlling weed in plantation estates. It is very popular in China countryside and widely used by Chinese farmers (Jian et al., 2008). On the other hand, paraquat is also a lethal poison. In China, paraquat is available and inexpensive, making poisoning prevention difficult. However, most of the people who become poisoned from paraquat have taken it as a means of suicide. So, paraquat is also a controversial herbicide, for it is highly toxic for humans (Kan et al., 2012). Intentional self-poisoning is the major reason for paraquat exposure and usually causes serious consequences in China (Shi et al., 2012). Paraquat poisoning is characterized by multi-organ failure and pulmonary fibrosis with respiratory failure,
resulting in high mortality and morbidity (Weng et al., 2012). Conventional therapy for paraquat poisoning both prevents further absorption and reduces the load of paraquat in the blood through haemoperfusion or haemodialysis. To serious paraquat patients, the effectiveness of standard treatments is unsuccessful (Liu et al., 2011). Paraquat mainly accumulates in the lung, and the main molecular mechanism of paraquat toxicity is based on redox cycling and intracellular oxidative stress generation (Huang et al., 2011). Immunosuppressive treatment using glucocorticoid and cyclophosphamide in combination is being developed and studied. But the effects of glucocorticoid with cyclophosphamide for patients with moderate to severe paraquat poisoning is limited (Li et al., 2010). Paraquat is actively taken up against a concentration gradient into lung tissue leading to pneumonitis and lung fibrosis. Paraquat also causes renal and liver injury. Activated charcoal and Fuller's earth are routinely given to minimize further absorption. Antioxidants such as acetylcysteine and salicylate might be beneficial through free radical scavenging, anti-inflammatory and NF-κB inhibitory actions. However, there are no published human trials. The case fatality is still very high in all centres despite large variations in treatment (Gawarammana et al., 2011).

WHOLE LUNG LAVAGE

Whole lung lavage is a technique that was developed in the 1960s with the purpose of removing lipoproteinaceous material that accumulates in the bronchi of patients with alveolar proteinosis, leading to clinical and functional improvement. There has been an evolution in the technique; initially, it was performed under local anesthesia to each segment of the lung and currently it is performed under general anesthesia sequentially to both lungs (Aguiar et al., 2009). In brief, it involves the induction of general anesthesia followed by isolation of the two lungs with a double-lumen endotracheal tube and performance of single-lung ventilation, while large-volume lavages are performed on the non ventilated lung. Warmed normal saline solution in 1-L aliquots (total volumes up to 20 L) was instilled into the lung, and chest physiotherapy was performed. The proteinaceous effluent is drained with the aid of postural positioning. The sequence of events was repeated until such time as the effluent becomes clear. This procedure results in significant clinical and radiographic improvement secondary to the washing out of the proteinaceous material from the alveoli (Michaud et al., 2009). Whole lung lavage is considered the golden standard of pulmonary alveolar proteinosis treatment (Stoica et al., 2012; Rebelo et al., 2012). However, not all patients respond to this treatment. Based on the current literature, a stepwise treatment plan is suggested starting with WLL, continuing to inhaled GM-CSF, and then to rituximab if the former treatment regimes are unsuccessful (Leth et al., 2013; Yamamoto et al., 2008). Some authors think that the whole-lung lavage is a safe and effective palliative procedure in pulmonary alveolar proteinosis and in the treatment of patients with pulmonary disease, such as cystic fibrosis or asthma, in which filling of the lung acini by liquid or solid material impairs oxygenation of the pulmonary capillary blood (Lippmann et al., 1977). Pneumonitis is another lung disease that used whole-lung lavage as one of the major therapy in China (Zhang et al., 2012). Pneumoconioses are characterized as irreversible, progressive respiratory diseases. No effective therapy exists to prevent progression of these diseases. Whole lung lavage might limit the rate of disease progression through the removal of dust, inflammatory cells, and cytokines. Whole lung lavage is also used successfully to treat other lung diseases such as endogenous lipid pneumonia and mineral oil lipid pneumonia (Nicholson et al., 2002; Ceruti et al., 2007; Chang et al., 1993; Ciravegna et al., 1997).

HYPOTHESIS

Paraquat poisoning is an extremely frustrating clinical condition with a high mortality and with a lack of effective treatments in humans up to now. It is impossible for us stop person making use of paraquat, but some new therapy must be considered to control paraquat poisoning. Paraquat poisoning could not be controlled by only one method and combined therapies are needed (Lin et al., 2011). So, it was hypothesized in this study that whole lung lavage will provide a new therapy of acute lung injury caused by paraquat. Conventional therapy for paraquat poisoning both prevents further absorption and reduces the load of paraquat in the blood by using gastric lavage, catharsis, activated carbon adsorption, Fuller’s earth inactivation, transfusion, dieresis, antioxidant, haemoperfusion or haemodialysis, etc. On the base of the earlier mentioned methods, whole lung lavage could be considered in the early time of poisoning and then followed by glucocorticoid for patients with moderate to severe paraquat poisoning.

DISCUSSION

Deliberate self-harm with pesticides is a significant public health problem in rural China. Even though many paraquat poisoning cases died in the past ten years in China, the pathological mechanisms of paraquat poisoning-induced acute lung injury were not well understood. A lot of clinical and basic research work has been done on paraquat poisoning in the past decade in our department (Zhao et al., 2010; Ning et al., 2010). This study developed and characterized a mouse model of paraquat-induced acute lung injury and studied the role of
cytokines in the pathogenesis of paraquat poisoning (Xiangdong et al., 2011). Acute lung injury is characterized by three consecutive phases: exudative, proliferative, and fibrotic. In the exudative phase alveoli contain proteinaceous fluid, red blood cells, neutrophils, and macrophages. Edema and neutrophils accumulate in the interstitium, and alveolar ducts contain hyaline membranes. Microatelectasis is present, endothelial cells are swollen, and focal destruction of endothelial cells occurs (Meduri et al., 1996). The pathogenesis of acute lung injury involves various cytokines and growth factors (Gauldie et al., 1993). In the exudative phase, a number of presentations addressed the importance of the early response of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and interleukin (IL)-6 for their role in initiation of inflammation. The release of these cytokines into the alveolar space with diffusion to the vascular space in turn triggers diverse effects, including activation of the endothelium and circulating and resident leukocytes (Baughman et al., 1996; Metz et al., 1991). Studies have provided evidence for the importance of these cytokines in the pathogenesis of acute lung injury induced with paraquat (Ishida et al., 2006; Satomi et al., 2004). Abnormal expression of inflammatory cytokines is believed to play an important role in the pathogenesis of pulmonary fibrosis. So, thorough removal of inflammatory cytokines maybe a useful strategy to prevent further injury to the lungs. Whole lung lavage can remove the inflammatory seepage content from the lung tissue of paraquat poisoning at early stage, especially inflammatory factors. Therefore, it is recommend along with conventional therapies in the treatment of acute paraquat poisoning.

Conflict of Interests

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

This study was supported by Grant from Taishan Scholar Program of China, Shandong Province, Natural Science Foundation of China, Shandong Province (Project number: Y2008C123), and Shandong University Qilu Hospital Clinical New Technology Innovation Project, P.R. China (Project number: 2013527Z1, 2013527Z2).

REFERENCES

Xiangdong Jian, Ming Li, Yijing Zhang, Yanjun Ruan, Guangran Guo, Hong Sui, Yuanchao Z (2011). Role of growth factors in acute lung...
injury induced by paraquat in a rat model. Hum. Exp. Toxicol. 30: 460-469.
Bisphenol A induced reactive oxygen species (ROS) in the liver and affect epididymal semen quality in adults Sprague-Dawley rats

Ansoumane Kourouma 1*, Duan Peng 1, Quan Chao 1, Yaima M. Lopez T 2, Liu Changjiang 1, Wang Chengmin 1, Fu Wenjuan 1, Qi Suqin 1, Yu Tingting 1 and Yang Kedi 1

1Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China.
2Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio, Km2 ½ CP: 19370, La Habana, Cuba.

Reactive oxygen species (ROS) generation, induced by Bisphenol A (BPA) may cause mammalian sperm damage according to research findings. BPA is a known contaminant that with increased exposure in the body can exert both toxic and estrogenic effects in mammalians cells. The aim of this study was to evaluate the effect of BPA-induced oxidative stress in the liver on epididymal semen quality in adult rat. BPA was mixed in corn oil and intra-peritoneally administered for 20 days in dose dependent manner. After 24 h of the last treatment, rats were weighed, sacrificed and organs harvested for analysis. BPA caused a reduction in the epididymal semen quality and sperm count in a dose dependent manner. Sperm analyses results showed that there was oligozoospermia (<20 × 10⁶ spermatozooids/ml) and asthenozoospermia (motility <50%) in the treatment group compared to the control groups. The levels malondialdehyde (MDA) and superoxide dismutase (SOD) increased significantly in the treatment group compared to the control group (P < 0.05; P < 0.01, respectively). While, the levels of glutathione peroxidase (GSH-Px) decreased in the treatment group compared to the control group (P < 0.01). These results indicate that exposure of graded doses of BPA may elicit depletion of antioxidant system and induce oxidative stress in epididymal sperm of rat thereby decreasing sperm count and quality. These findings provide a possible toxicological evidence of an adverse effect of BPA on semen quality.

Key words: Bisphenol A (BPA, 2, 2-bis (4-hidroxyphenyl) propane), semen quality, oxidative stress, sperm count, rat, reactive oxygen species (ROS).

INTRODUCTION

During the last two decades, it has become evident that environmental contaminants disrupt male reproduction in wildlife and humans and play an important role in the decline of quality and quantity of human semen. Bisphenol A [BPA: 2, 2-bis (4-hydroxyphenyl) propane] is a well known estrogenic endocrine disruptor used as a
epoxy resin lining of canned foods; it is also released from epoxy resin lining of canned foods, beverages, dental sealants and a multitude of consumer products (Vandenberg et al., 2009). The detection of BPA in biological fluids like maternal plasma, fetal plasma, placental tissue, amniotic fluid and umbilical cord blood have indicated that it can easily transverse the placental barrier (Tsutsumi, 2005; Vandenberg et al., 2007). Numerous toxicological studies have shown that rodents exposed to BPA during the prenatal and perinatal period show a marked negative change in the reproductive system, including decreased epididymal weight and daily sperm production (vom Saal et al., 1998; Salian et al., 2009a,b), and an increase in prostate weight (Nagel et al., 1997). Similarly, BPA was also reported to significantly increase anogenital distance (AGD) and prostate weight, and decrease epididymal weight in postnatal offspring among CD-1 mice fed BPA at 50 μg/kg on day 16 to 18 of pregnancy (Gupta, 2000). Moreover, it interferes with the function of androgen receptors and the production of male sex hormones (Richter et al., 2007; vom Saal et al., 2007). Recently, high risk of male sexual dysfunction associated with exposure to BPA has been reported (Li et al., 2010a, b). Concurrently, other studies have reported that exposure to low doses of BPA causes reproductive toxic effects (Nagel et al., 1997; vom Saal et al., 1998). A significant decrease in the efficiency of sperm production and a constant increase in weight were also observed when male rats were fed BPA at 20 μg/kg, and after feeding pregnant CF-1 mice with BPA at 2 and 20 μg/kg on days 11 to 17 of pregnancy, a decrease in epididymal weight was observed among their offspring up to six months after birth (Cagen et al., 1999). In addition, vom Cooke et al. (1998) demonstrated toxic effects and reduced daily sperm production per gram of testes in male offspring of mice fed with BPA and octylphenol during pregnancy. One cannot rule out the possibility that BPA can affect spermatogenesis in rodents; problems with spermatogenesis are associated with varying degrees of oxidative stress (Menezo et al., 2007) and environmental factors in general have doubtlessly been identified as likely causes of these disorders.

BPA has been shown to cause injury in the liver, kidney, brain, epididymal sperm in rodents and other organs by forming reactive oxygen species (ROS) (Bindhumol et al., 2003; Chitra et al., 2003; Kabuto, 2003; Kabuto et al., 2004). The liver has a range of antioxidant defense systems. ROS are scavenged by the endogenous antioxidant defense system, including superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in cells. ROS have been shown to play an important role in the defense mechanisms against pathological conditions, but excessive generation of free oxygen radicals may damage tissues (Kitas et al., 1991). The fundamental notion that spermatozoa could generate ROS, specifically hydrogen peroxide, was confirmed by Tosic and Walton (1946). However, Aitken and Clarkson (1987) demonstrated that the notion that oxidative stress might also be factor in the etiology of defective sperm function in our species (Alvarez et al., 1987).

BPA is currently a very controversial subject; any factor that exacerbates the production of oxygen free radicals in the mitochondria is a major source of oxidative stress and apoptosis among sperm cells. Several studies have shown BPA effect on the ARs, on male sex hormone levels, on male reproductive organs including testes, epididymal sperm and seminal vesicles and prostate gland, and on sperm production (Richter et al., 2007; National Toxicology, 2008). However, the mechanisms of the adverse effect on semen quality are not yet completely understood. The liver has a range of antioxidant defense systems. The purpose of this study was to evaluate the relationship between the presence of oxidative stress indicators in the liver during exposure to BPA and its effects on sperm quality.

MATERIALS AND METHODS

Animals

Twenty four healthy male Sprague-Dawley rats (50-days olds, weighing 170 to 185 g) were purchased from the Tongji Medical College Animal Laboratory (Wuhan, China) and kept in accordance with the Guide for the Care and Use of Laboratory Animals published by Ministry of Health of People’s Republic of China (Permit Number: 2011-s2456).

Treatments

The animals were housed in plastic cages under a well-regulated light and dark schedule (12 h light:12 h dark) at 24±3°C, humidity (50 ± 5%) environment, and free access to chow and tap water ad libitum. The rats were randomly divided into four groups, each group containing six rats. Each group (e.g. control group, low dose group, middle dose group and high dose group) was fed different doses of BPA: 0, 2, 10, and 50 mg/kg body weight, respectively in corn oil every other day by intra-peritoneal injection for 20 days. After 20-days of treatment, the rats were sacrificed; the testes, epididymis, seminal vesicles and ventral prostates were removed, freed of the adhering tissues and weighed. Ethical clearance for the use of animals in the study was obtained from the Institutional Animal Ethics Committee prior to the initiation of the study, and the experiments were performed in accordance with the guidelines for the Care and Use of Laboratory Animals published by Ministry of Health of People’s Republic of China.

Dose selection and preparation

The doses and time used for the present study were derived from published data (You et al., 1998; Yamasaki et al., 2009) and the results of our preliminary experiment. BPA was dissolved in a in corn oil to obtain the desired concentration of BPA dose range, that is, 0, 2, 10 and 5 mg/kg. An additional control group that had received only corn oil. Dose formulations were well mixing and stored in crystal bottles at 37°C overnight and were subsequently kept at room temperature throughout the study. Solutions were mixed thoroughly before use.
Chemicals and reagents

BPA (2,2-Di (4-hydroxyphenyl) propane) was purchased from DR Co., Augsburg, Germany, purity: 98.5%. Corn oil was obtained from Sigma-Aldrich, St. Louis, MO, USA. Sigma Chemical Co. (St. Louis, MO) USA. Collagenase, Trypsin-EDTA were obtained from GIBCO (Grand Island, NY, USA), sodium lauryl sulphate from SRL. Eosin stain, Hematoxylin stain, Orange G stain from HiMedia (Mumbai). GSH-Px, MDA and SOD assay kit (Jiancheng Bioengineering Ltd., Nanjing, China).

Body weight and organ collection

The weight of each animal was recorded every two days and any gross abnormality was noted. The animals were fasted overnight, weighed and killed by cervical dislocation. Testes, epididymis, liver and other organs, were isolated from adhering tissues and weighed independently. The liver and testes were quickly frozen at -70°C for later use for biochemical assays, while epididymal sperm was used immediately for sperm analysis (CASA).

Parameters of oxidative stress

Glutathione peroxidase (GSH-Px) activity, SOD activity and malondialdehyde (MDA) level were measured.

The liver was homogenized using lysis buffer (containing 1 mM Na2EDTA, 150 mM NaCl, 10 mM PMSF, 10 mM Tris, 1 mM aprotin). The homogenates was centrifuged at 10,000 rpm at 10 min at 4°C and the supernatant was recovered for use to evaluate oxidative stress following the protocol of GSH-Px, SOD and MDA assay kit (Jiancheng Bioengineering Ltd., Nanjing, China).

GSH-Px

GSH-Px activities were assayed by quantifying the rate of oxidation of the reduced glutathione to the oxidized glutathione by H2O2. One unit of GSH-Px was defined as the amount that reduced the level of GSH by 1 µM in 1 min/mg protein at 412 nm absorbance.

MDA

MDA level were assessed to determine the concentration of MDA, measuring thiobarbituric acid (TBA) reacting substances at 532 nm. The level of MDA was expressed as nmol MDA per milligram protein. Protein content was measured according to Bradford method.

SOD

SOD activity in supernatant was determined by determining the reduction of nitro blue tetrazolium (NBT) by O2⁻ produced from the xanthine-xanthine oxidase system. One unit of SOD was defined as the amount of protein inhibited in the rate of NBT reduction by 50%. Results were defined as U/mg protein.

Analysis of semen quality

Semen quality analysis was performed simultaneously using the CASA system (CFT-9200 computer-aided sperm and microorganism test and analysis system). After the animals were sacrificed, the epididymis was immediately removed and the tissues were minced with surgical scissors to extract the sperm cells into 2 ml of 0.9% NaCl solution at 37°C and kept for 15 min to allow the sperm to disperse. The sperms were counted with CASA to evaluate the specific parameters of sperm quality, sperm motility, density and motion including beat cross frequency VCL, straight line velocity (VSL), average path velocity (VAP), linearity (LIN=VSL/VCL), and straightness (STR=VSL/VAP). The CASA settings were followed according to the manufacturer’s instructions.

Morphology and sperm normality criterion

A small amount of sperm suspension was smeared on to a slide using a pipette and fixed with methanol; after drying for 10 min, it was stained with 2% Eosin for 1 h. Each of the stained slides was analyzed. The images were captured by a color by light microscopy (Olympus IX-71, Tokyo, Japan) for high quality image production. Morphological evaluation was accomplished on a monitor screen and the total calculated magnification was (×400). For a spermatozoon to be considered normal, the sperm head, neck, mid piece and tail must be considered normal. The head should be oval in shape. The percentage of normal sperm cells was calculated. It showed normal looking hook-shaped heads and the shape and thickness of the tail was thin uniform. Abnormal sperm cells included headless and hookless cells; amorphous shapes and forms; folded, short and double Y tail and other aberrations.

Statistical analysis

Data were presented as the mean ± standard error of mean (SEM) and were analyzed using the GraphPad PrismTM software version 5.0 (San Diego, USA) and SPSS statistical package 17.0 (SPSS Inc, Chicago, IL, USA). Comparison of means for treatment and control groups were done by independent-sample T-test. semen quality analysis was performed simultaneously using the CASA system (CFT-9200 computer-aided sperm and microorganism test and analysis system). Levels of significance were set at P ≤ 0.05.

RESULTS

The results are illustrated as shown in Figure 1. The body weights of BPA-treated rats did not show significant changes as compared to the corresponding control groups except for a slight difference with the low dose group. The same behavior was observed in testicular weight; in this case, a significant difference was observed (P < 0.05) (Figure 2). However, the weights of the liver, decreased significantly when the concentration of BPA was gradually increased to 50 mg/kg, P < 0.05 (Figure 3). Among the BPA treated rats, the activities of superoxide dismutase (SOD), malondialdehyde (MDA) increased significantly (**P < 0.01, *P < 0.05), respectively (Table 1). A dose dependent decrease in the levels of glutathione peroxidase (GSH-Px) was observed in response to BPA treatment when compared with the control group (**P < 0.01) (Table 1).

Effect of BPA on sperm counts

Figure 4 demonstrates the results obtained after exposure to BPA on epididymal sperm counts of adult male rats. Outcomes according to the percentage were strictly
strictly normal morphology. Total sperm counts were reduced at all doses, but whilst a significant decrease was observed at a dose of 50 mg/kg. The semen characteristics from a total of twenty four fresh semen samples were examined by CFT-9200 computer-aided sperm analyzer (Table 2 and Figure 5). The mean ± standard deviation (SD) of total sperm concentration, density, motility, and sperm motion variables (LIN=VSL/VCL and STR=VSL/VAP; P > 0.05) were analyzed by SPSS Student’s t-test.

Sperm morphology

After observation under the microscope, a significant reduction in the number of normal sperm was observed compared to the control group (Table 2). Sperm analyses showed oligozoospermia (<20 x 10^6 spermatozoids/ml) and asthenozoospermia (progressive motility <50%) in all groups treated by BPA including control groups. Meanwhile, in the 2, 10, and 50 mg/kg dose groups, percentage of sperm normality decreased gradually to 15.00, 6.50 and 2.33%, respectively; compared with the control group, the differences were statistically significant (P < 0.05 and P < 0.01). Finding on sperm abnormalities showed that, headless sperm cells were the most common abnormality followed by amorphous cells, bent tail, coiled tail, pyriform head abnormal midpiece detached head and highly unusual double tail (Figures 4 and 5). Sperm with deformed heads were observed in all four groups.

Figure 1. Effect of BPA on body weight of adult SD rats at 20 days. Data represent as means ± standard error of mean (SEM) (n= 6 rats per group). *P < 0.05 denotes significant difference when compared with controls.

Table 1. The effect of BPA on antioxidant enzymes, GSH-Px, MDA and SOD on rat SD liver tissues.

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>n</th>
<th>GSH-Px (U/mg prot)</th>
<th>MDA (nmol/mg prot)</th>
<th>SOD (U/mg prot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>47.83 ± 4.08</td>
<td>2.47 ± 0.39</td>
<td>49.94 ± 2.82</td>
</tr>
<tr>
<td>Low 2 mg/kg</td>
<td>6</td>
<td>42.93 ± 2.83*</td>
<td>2.85 ± 0.18</td>
<td>54.81 ± 6.61*</td>
</tr>
<tr>
<td>Middle 10 mg/kg</td>
<td>6</td>
<td>37.13 ± 2.17*</td>
<td>3.30 ± 0.82</td>
<td>65.71 ± 8.74**</td>
</tr>
<tr>
<td>High 50 mg/kg</td>
<td>6</td>
<td>29.16 ± 2.35**</td>
<td>3.32 ± 0.72*</td>
<td>73.38 ± 6.97**</td>
</tr>
</tbody>
</table>

Effect of BPA on the activity of the antioxidant enzymes, glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and superoxide dismutase (SOD) in liver tissues. Data are presented as the mean ± standard deviation (SD). *Indicate significant change compared with control group, by means of Independent-Samples T test. *P < 0.05 versus control; **P < 0.01 versus control.
Table 2. This table shows caudal epididymal semen characteristics in the experimental adult male rats SD using CASA CFT-9200.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control (n=6)</th>
<th>Low 2 mg/kg (n=6)</th>
<th>Middle 10 mg/kg (n=6)</th>
<th>High 50 mg/kg (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (M/ml)</td>
<td>21.23 ± 2.44</td>
<td>20.02 ± 1.51</td>
<td>12.35 ± 2.62*</td>
<td>9.33 ± 2.77**</td>
</tr>
<tr>
<td>Motility (%)</td>
<td>55.21 ± 6.57</td>
<td>44.82 ± 9.86</td>
<td>34.72 ± 3.04**</td>
<td>32.51 ± 5.88**</td>
</tr>
<tr>
<td>VSL (µm/s)</td>
<td>40.30 ± 6.07</td>
<td>30.53 ± 7.67**</td>
<td>34.42 ± 3.66</td>
<td>34.89 ± 2.04</td>
</tr>
<tr>
<td>VCL (µm/s)</td>
<td>19.82 ± 6.15</td>
<td>15.65 ± 4.02</td>
<td>19.09 ± 6.17</td>
<td>18.41 ± 4.50</td>
</tr>
<tr>
<td>VAP (µm/s)</td>
<td>20.85 ± 6.08</td>
<td>17.96 ± 5.18</td>
<td>22.93 ± 6.35</td>
<td>21.56 ± 3.03</td>
</tr>
<tr>
<td>LIN</td>
<td>2.18 ± 0.75</td>
<td>2.05 ± 0.66</td>
<td>1.93 ± 0.48</td>
<td>1.98 ± 0.41</td>
</tr>
<tr>
<td>STR</td>
<td>2.05 ± 0.53</td>
<td>1.72 ± 0.17</td>
<td>1.57 ± 0.31</td>
<td>1.64 ± 0.17</td>
</tr>
</tbody>
</table>

Data represent as means ± SEM (n= 6 rats per group). *P ˂ 0.05 and **P ˂ 0.01 denotes significant difference compared with controls.

Figure 2. Effect of BPA on weight of the testis of adult SD rats. Data represent as means ± standard error of mean (SEM) (n= 6 rats per group). *P < 0.05 denotes significant difference when compared with controls.

The groups, but most notable in the groups treated with BPA (10 and 50 mg/kg). As related to tail abnormalities, some had no flagella, and others had proximal and distal cytoplasmic droplets.

DISCUSSION

It has been shown that BPA may have effect on liver enzymes and also affect sperm quality. Less is known about effects of BPA on the liver, and there are only a few animal studies done to show for instance formation of DNA adducts and impaired mitochondrial functioning (Ronn et al., 2013) exposure route. These studies are not compared with our study. Our study suggests that ROS may be associated with biochemical markers of liver damage. In this study, a weight gain was observed during the administration of BPA as well as testicular volume of rats which was statistically significant between low dose and control groups (P ˂ 0.05). BPA has been reported to interfere with the function of Leydig cells resulting in a reduction of testosterone biosynthesis (Akingbemi et al., 2004).

In this study, it was observed that BPA treatment did not affect the body weight of rats except the low dose, and testis. In the liver, a decrease in weight of rats treated with BPA compared with those of control group was observed (*P < 0.05) (Figure 3). Thus, the tissues (liver)
antioxidant evaluation seems to have important role in the etiology of semen quality. The levels of enzymatic antioxidants GSH-Px, SOD and MDA activity were determined to evaluate the stability of ROS production in liver. In this study, the BPA (10 to 50 mg/kg) groups significantly increased in MDA and SOD in liver tissues. Whilst GSH-p decreased GSH-Px levels in liver tissues. This reduction in activities of antioxidant enzymes shows the failure of primary antioxidant system to act against free radicals. Decrease in the activity of GSH-Px indicates either reduced synthesis, may be elevated degradation or inactivation of the enzyme and excessive ROS production. So, the GSH-Px deficiency can result in the emergence of morphologic abnormalities in sperm cell mitochondria (Imai et al., 2001; StradaioI et al., 2009). The increase in the activity of SOD, may be due to higher enzyme activity, but do not mean better antioxidative protection of spermatozoa. The over expression of SOD may reflect a defect in the development or maturation of spermatozoa, as well as sperm cellular damage, resulting in decreased sperm fertilization potential (Sinha et al., 1991; Gavella et al., 1996). The beneficial effect of SOD activity may concern only sperm movement, but has no influence on sperm count. It has been reported that there is relationship between the rate of lipid peroxidation and some morphological characteristics of spermatozoa, such as motility loss (Alvarez et al., 1987) or occurrence of midpiece defects (Rao et al., 1989; Aitken et al., 1993), which could explain the distortion level of sperm flagella in our study (Figure 5).

At doses 10 and 50 mg/kg of BPA, there was decreased epididymal sperm count which may have been due to increased MDA (Thiele et al., 1995; Bindhumol et al., 2003). It is well known that sperm cell membranes are rich in polyunsaturated fatty acids and are very susceptible to free radical attack. Lipid peroxidation affects the sperm concentration, motility, morphology and related with poor sperm quality. Increased MDA level might represent the pathologic lipid peroxidation of spermatozoa membrane and inhibition of sperm motility (Hsieh et al., 2006) which may corroborate our findings of the low percent active sperm motility in rats. MDA is one of the major end products of lipid peroxidation, especially the poly-unsaturated fatty acid peroxidation. Lipid peroxidation is used to monitor the oxidative stress in cells and tissues and it is a well developed way of describing cellular injury which causes endothelial damage, vascular inflammation and cell membrane injury (Subermaniam et al., 2014). Other studies have shown that BPA in combination with carbohydrates can affect fat mass or liver fat content during prenatal and perinatal periods (Marmugi et al., 2012; Ronn et al., 2013). In rats, the main route of elimination of conjugated BPA is by biliary and fecal elimination which enables enterohepatic recirculation.
Figure 4. Effect of BPA on the epididymal sperm count of adult rats SD. (A) Outcomes according to the percentage strictly normal morphology. (B) Mean and standard error of normal sperm cells (%) of the semen of adult rats SD after 20 days treatment with BPA.

Data represent as means ± SEM (n= 6 rats per group). *P < 0.05 and **P < 0.01 denotes significant difference compared with controls.

(Volkel et al., 2002). Atkinson and Roy (1995) have reported that BPA accumulates in fatty tissues and is metabolized to 5-hydroxybisphenol by Cytochrome P-450 dependent enzymes and further converted to 4,5-bisphenol-O-quinone. Cytochrome P-450 has been shown to induce ROS that permanently impairs sperm function thereby resulting in decline of sperm counts in men and laboratory animals. Cytochrome P-450 once activated, inactivates, and facilitates the excretion of most xenobiotics, thus modulating the intensity and duration of their toxicity (Aitken et al., 1989) such as drugs and environmental chemicals as well as endogenous compounds such as steroids and fatty acids (Hanioka et al., 2000).

It has been shown that CASA is likely to be of greater value in predicting male fertility than the routine semen examination (Suzuki et al., 2002). The common sperm parameters of CASA have shown significant correlation of sperm concentration in all groups treated with BPA against control group (Table 2). Observed values are below the values of references of semen analysis (Cooper et al., 2010). Sperm density <20 × 10^6/ml, sperm motility <50%, VCL <70 µm/s in most cases except VSL >25 µm/s; this result is similar to the findings of a previous in vivo study on murine, but they are different with respect to the dose and time of exposure to BPA (Ashby et al., 2003; Bindhumol et al., 2003) and in humans (Meeker et al., 2010; Li et al., 2011). Majority of the epididymal sperm from adult rat had normal morphology (77.44%). This study strictly considered only the percentage normal morphology to be the outcomes. However, there was a decrease in the epididymal sperm count among the animals treated with BPA dose dependent manner (Figure 4). The morphological study showed abnormalities related to spermatozoon. The most abundant abnormalities were bent tail, coiled tail, detached head and a highly unusual double tail (Figure 5; M). The coiled tail was seen in control group and low dose group (Figure 5; C, L). An increasing number of kinked sperm were seen in these rats treated with BPA when compared with the control group (Figure 5, C). Additionally, an increase in detached head sperm was seen in rats treated with BPA of 50 mg/kg (Figure 5, H). These abnormalities may be attributed to damage of DNA by BPA during the process of spermatogenesis. This study provides toxicological evidence that exposure to BPA has an adverse effect on semen male rat. Also, the interesting remark in our study was the observation of significant difference in the sperm morphology between the groups treated with BPA against the control groups. The high prevalence of
oxidative stress in the spermatozoa may have effect on male infertility and implications in reproductive health. High ROS in the liver due to high dose of BPA could cause damage to sperm production and fertility and need to be taken into consideration when handling the interpretation of such results.

Conclusion

Conclusively, this study provides evidence that exposure of adult male rats to low dose of BPA induces oxidative stress in the liver, and impairs spermatogenesis through decreasing epididymal sperm count. However, the differences between humans and animals in terms of kinetics may make it difficult to transpose the effects observed in animals to humans directly. The analyzed semen parameters using CASA might be useful in planning the strategy of screening for semen quality. A clear understanding of the potential mechanisms of observed adverse effects of BPA exposure in the liver and on male reproductive organs including semen quality may help to explain the observed abnormalities and exploration of future treatments.

COMPETING INTERESTS

The authors declare that they have no competing interests.

ACKNOWLEDGEMENTS

The authors thank the staff of the Department of Occupational and Environmental Health and Ministry of Education Key Laboratory for Environmental and Health, School of Public Health (Tongji Medical College), Huazhong University of Science and Technology, People’s Republic of China, for providing various resources. This work was supported by grants from the National Natural Science Foundation of China (30972436...
and 81172623).

REFERENCES

Theriogenology 72(1):91-98.

