ABOUT JPP

The Journal of Pharmacognosy and Phytotherapy (JPP) is published monthly (one volume per year) by Academic Journals.

The Journal of Pharmacognosy and Phytotherapy (JPP) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as ethnobotany, phytochemistry, ethnopharmacology, zoopharmacognosy, medical anthropology etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JPP are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jpp@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Pharmacognosy and Phytotherapy (JPP) will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Dr. Baojun Bruce Xu
Beijing Normal University-Hong Kong Baptist University United International College Zhuhai, Guangdong Province, China

Dr. Hamad H. Issa
Department of Physical Sciences, School of natural Sciences, The University of Dodoma, Tanzania

Dr. Gagan Deep
Department of Pharmaceutical Sciences School of Pharmacy, University of Colorado Denver, Colorado, USA

Dr. Fengguo Xu
Dept of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Dr. Haitao Lv
Medicine and Endocrinology, Albert Einstein College of Medicine, Yeshiva University, USA

Hassane MEKHFI
University Mohammed the First, Faculty of Sciences, Department of biology, Laboratory of Physiology and Ethnopharmacology, Morocco

Dr. Subhash C. Mandal
Division of Pharmacognosy Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, India.

Dr. Adibe Maxwell Ogochukwu
Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka Enugu state, Nigeria.

Dr. Odukoya, Olukemi Abiodun
Department of Pharmacognosy, Faculty of Pharmacy University of Lagos, Nigeria.

Dr. Qinxue Richard Ding
Medical Center at Stanford University, Palo Alto, USA

Dr. Sulejman Redžić
Faculty of Science of the University of Sarajevo 33-35 Zmaja od Bosne St., Sarajevo, Bosnia and Herzegovina

Dr. Michal Tomczyk
Medical University of Bialystok, Faculty of Pharmacy, Department of Pharmacognosy, Poland

Dr. Ugur Çakilcioglu
Firat University, Faculty of Science and Arts, Department of Biology, Elazig Turkey

Prof. Samson Sibanda
National University of Science and Technology Cnr Gwanda Road/Cecil Avenue, Ascot, Bulawayo, Zimbabwe
Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JPP to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The **Discussion** should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The **Acknowledgments** of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b; Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences:

(1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Pharmacognosy and Phytotherapy (JPP) is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2013, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JPP, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Articles

Antibacterial and antifungal screening of extracts from six medicinal plants collected in Kinshasa-Democratic Republic of Congo against clinical isolate pathogens

Antioxidant effects of curcumin against cadmium chloride-induced oxidative stress in the blood of rats
Atef M. M. Attia, Fatma A. A. Ibrahim, Noha A. Abd EL-Latif and Samir W. Aziz
Antibacterial and antifungal screening of extracts from six medicinal plants collected in Kinshasa-Democratic Republic of Congo against clinical isolate pathogens

Cimanga Kanyanga R.¹²*, Kikweta Munduku C.¹, Tshodi Ehata M.¹, Nsaka Lumpu S.¹, Mbamu Maya B.¹, Manienga, K.³, Bumoyi, M.³ and Kambu Kabangu O.¹

¹Faculty of Pharmaceutical Sciences, University of Kinshasa, P. O. Box 212, Kinshasa XI, Democratic Republic of Congo.
²Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy and Phytochemistry, Natural Products and Food Research (NaturA), University of Antwerp, Universiteistplein 1, B-2610, Antwerp, Belgium.
³Institut Supérieur des Techniques Médicales, P. O. Box 835, Bandundu, République Démocratique du Congo

Results from the in vitro evaluation of the antibacterial and antifungal activities of six plant extracts indicated that the aqueous and the methanol extracts of Acalypha wilkesiana leaves and Ageratum conyzoides leaves exhibited good and efficient antifungal activity against Candida albicans with minimum inhibitory concentration (MIC) of 31.25 µg/ml and minimum fungicidal concentration (MFC) of 62.5 µg/ml while the methanol extract from Pentaclethra macrophylla inhibited the yeast growth with minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 62.5 and 125 µg/ml respectively. The aqueous extracts from Acalypha wilkesiana, Ageratum conyzoides, Buchholzia tholoniana seeds, Gulboutia demeusei root and the aqueous and methanol extracts from Pentaclethra macrophylla stem bark showed good antibacterial activity against Escherichia coli, Klebsiella oxytoca, Proteus mirabilis, Salmonella typhimurium, Staphylococcus aureus and Shigella flexneri with minimum inhibitory concentration (MIC) of 62.5 µg/ml and minimum bactericidal concentration (MBC) of 125 µg/ml according to the case. These results partly support and justify the traditional use of these plant extracts for treating infections in traditional medicine.

Key words: Plant extracts, antibacterial, antifungal, infections.

INTRODUCTION

Bacteria’s are responsible for serious and various human and animal infections. For example, Pseudomonas aeruginosa is the most common bacteria in clinics with significant percentage of acquired infections (Abu-
Shanab et al., 2004). *Staphylococcus aureus* causes skin lesions which are often superficial, localized abscesses and food contamination or poisoning (Lotipour et al., 2008). Intestinal disorders are caused by bacteria such as *Vibrio cholerae*, *Escherichia dysenteriae*, *Escherichia coli* and *Salmonella* species especially diarrhoea as a major cause of mortality and morbidity in developing countries (Chitemerere and Makangangama, 2011). Long before mankind the existence of *microbes* was discovered, the idea that some medicinal plants had antibacterial and antifungal potential since they contain active constituents belonging to different phytochemical groups, was well accepted (Rios and Recio, 2005). Thus, the therapeutic properties of various medicinal plants have been known to treat particularly human and animal infectious diseases as it is estimated between 60 to 90% of the population in developing countries turn to traditional medicine and consider it to be a normal part of its primary healthcare (WHO, 2002).

The rapid spread of bacteria and fungi expressing multidrug resistance (MDR) has encouraged the discovery of new antibacterial and antifungal agents. The trend use in alternative and complementary healthcare has prompted scientists to investigate various biological activities of medicinal plants mainly according to their uses in traditional medicine to prove their effectiveness and safety to support and justify their traditional uses. Crude extracts prepared from medicinal plants as infusion, decoction, macerate, tincture or powder are traditionally used by the population to treat various diseases particularly infections from different origins. Although their efficacy and mechanism of action have not been scientifically elucidated in most cases, these different medicinal preparations often give beneficial response to human and animal due to the presence of active compounds (Barnes et al., 2007).

In this present study, six medicinal plants belonging to different botanical families were selected and evaluated *in vitro* for their potential antibacterial and antifungal properties. All selected plant parts are used in traditional medicine in Kinshasa-Democratic Republic of Congo (DRCongo) to treat various ailments such as diarrhoea, wounds, burns and skin infections (Kerharo and Adam, 1974), (Oliver Bever, 1986), (Kambu, 1990), (Neuvinger, 2000). To treat wounds and burns, powder or decoction from the plant part is applied and this process gives good results as indicated by the acceleration of the rapid healing of affected part of the body and the decoction is employed to treat bacterial diarrhea. For this study, the aqueous and methanol extracts from the selected plant parts were tested against 9 clinical isolate pathogens and 1 yeast *in vitro*. Their minimum inhibitory concentrations were determined by dilution method when compared to the reference antibacterial and antifungal products.

MATERIALS AND METHODS

Selected Plants

They include leaves of *Acalypha wilkensia* Mull. Arg. (Euphorbiaceae), leaves of *Ageratum conyzoides* L. (Asteraceae), seeds of *Buchholzia tholioniana* Hua (Capparidaceae), root of *Guloumba demeusei* (Harms) J. Leonard (Fabaceae), stem bark of *Pentaclethra macrophylla* Benth (Mimosaceae) and leaves of *Syzygium guineense* (Wild.) DC. var. guineense (Myrtaceae) collected in Kinshasa-Democratic Republic of Congo (DRCongo) in April 2011. All plants were identified by Mr Nlandu Lukebiako, B. of the Institute National d’Études et de Recherches en Agromonie, Department of Biology, Faculty of Sciences, University of Kinshasa.

A voucher specimen of each plant NL01042011AW, NL02042011AC, NL03042011BT, NL04042011GD, NL05042011PM and NL06042011SG for *A. wilkensia* leaves, *A. conyzoides* leaves, *B. tholioniana* seeds, *G. demeusei* root, *P. macrophylla* stem bark and *S. guineense* leaves respectively has been deposited in the herbarium of this institute. All plant parts were dried at room temperature and reduced to powder.

Preparation of extracts

45 g of each dried plant material were macerated with distilled water or methanol (200 ml each) during 24 h. After, each mixture was filtered and each filtrate evaporated in vacuum yielding corresponding dried extracts (Table 1).

Phytochemical screening

This study was performed by thin-layer chromatography (TLC) on precoated silica gel plates F254 (thickness later 0.25, mm, Merck, Germany) using different reagents and mobile phases described in the literature for the identification of major chemical groups such as alkaloids, anthraquinones, coumarins, flavonoids, terpenes and steroids. Hydrochloric acid 2M/n-butanol (heating with HCl 2 M for 40 min at 100°C) and extracting the red color with iso-amyl alcohol, froth test and Stiasny’s reagent (formol + HCl conc.) were used to detect anthocyanins, saponins and tannins respectively (Harborne, 1998).

Antibacterial and antifungal testing

Selected test microorganisms

The selected microorganisms included the yeast *C. albicans*, and the bacteria *E. coli*, *Enterobacter cloacae*, *Klebsiella pneumonia*, *Klebsiella oxytoca*, *Proteus mirabilis*, *Shigella flexneri*, *S. thyphimurium* and *S. aureus*. The yeast and all bacteria were clinic isolated from patients diagnosed with infections in the Cliniques Universitaires de Mont-Amba/Kinshasa-DRCongo.

Culture medium

Bacteria and fungi were maintained on trypticase soy broth (TSB) plates and Sabouraud dextrose agar plates at 4°C respectively. Yeast were cultured in liquid Sabouraud dextrose medium for 48 h at 24°C. Test inocula of fungi were prepared by harvesting matured sporulating cultures in Sabouraud agar broth. For inoculation with the yeast, homogenized mycelia cultures of two weeks old were
Table 1. Uses in traditional medicine of ethnopharmacologically selected medicinal plants

<table>
<thead>
<tr>
<th>Plant</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acalypha wilkesiana Mull. Arg. (Euphorbiaceae)</td>
<td>The leaves are used to treat fungal skin diseases and function infections, pityriasis vesicolor, superficial mycoses. Associated to Ocimum gratissinum against methicillin resistant bacteria, to combat constipation, naso-pharyngeal infections, pain-killers, applied externally as an antiseptic to ulcers and wounds, antidiarrhoeal agent, used as antibiotic, bacteriostatic and fungistatic. The plant possess anticancer, antibacterial, antifungal, anti diabetic, analgesic, antiparasitic and antihypertensive properties and so on (Neuwinger, 2000; Lim et al., 2013: Royal Botanic Gardens Kew, 2014).</td>
</tr>
<tr>
<td>Ageratum conyzoides L. (Asteraceae)</td>
<td>The grain cannot be used if it is contaminated due to its toxicity. Leaves and entire plant are used to treat colic, colds and fever, diarrhea, rheumatism, spasms, headache, pneumonia, wounds, burns, and as a tonic. They are also recommended to treat burns, wounds infectious conditions and bacterial infections. The leaf sap is used to treat conjunctivitis, as galactagogue, liver and stomach problems, otitis, and so on (Anonymous, 2014).</td>
</tr>
<tr>
<td>Buchholzia tholoniana Hua (Capparaceae)</td>
<td>The seed is used to treat inflammation, gynecological infections, migraine, cough and stomach pains (Oliver Bever, 1986).</td>
</tr>
<tr>
<td>Gulbourtia demeusei (Harms) J. Léonard (Fabaceae)</td>
<td>The stem bark is employed to treat otitis, wound, skin infections and diarrhea (Oliver Bever, 1986)</td>
</tr>
<tr>
<td>Pentacletra macrophylla Benth. (Euphorbiaceae)</td>
<td>The bark is employed as a decoction to treat abdominal pains, dysmenorrheal, urogenital infections, gonorrhea, stomach pains, dysentery, hernia, as anthelmintic, The ripe seeds and stem bark powder are applied externally to treat wounds, and burns, Extracts of the leaf, stem bark, seeds and seed pulp have antiinflammatory and anthelmintic properties. They are used to treat gonorrhoea and convulsions, and as analgesic. The root and stem barks are used as a laxative, enema against dysentery and liniment against itch. It is also used to treat stomach pains, wounds, burns asthma, abscess, heart pains, diarrhoea and ulcers, and so on (Kerharo and Adam, 1974: Kambu, 1990; Neuwinger, 2000).</td>
</tr>
<tr>
<td>Syzygium guineense (Wild.) DC. (Myrtaceae)</td>
<td>The stem bark or leaf have febrifuge, anthelmintic and pugative properties They also are used to treat menstrual cycle, stomach pains, colics, dysentery, rheumatism pains, malnutrition, delibality, naso-pharyngeal affections, pain killers, pulmonory troubles and diarrhoea. The leaf powder is a healing agent. An infusion of bark and roots soaked in hot water is used as a purgative, the bark can be toxic and deaths from its use have been recorded. The root is soaked in water for drinking and bathing to treat epilepsy, Root extracts are used as taeniacide. Bark decoction is employed against stomach-ache, diarrhoea and malaria, as a mildly laxative and applied in draught or in baths as a tonic. Its infusion is taken against coughs, asthma, throat problems and intercostals pains. The bark is used for the treatment of snakebites and so on (Kerharo and Adam, 1974: Maroyi, 2008; Kuphumba, 2014).</td>
</tr>
</tbody>
</table>

Antibacterial and antifungal testing

The antimicrobial and antifungal tests extracts used against bacteria and yeast respectively were performed by the microtiter plate dilution method. For this technique, 2 mg of each extracts was dissolved in dimethysulfoxide (DMSO), water and trypticase soy broth (TSB), final volume 2 ml (concentration of DMSO < 1%) to have a final concentration of 1 mg/ml. These stock solutions were repeatedly diluted in two fold with TSB or Sabouraud medium to obtain a series of test concentrations samples from 500 to 10 µg/ml. An inoculum consisting of about 10⁵ microorganisms/ml TSB or 10⁶ yeast /ml Sabouraud medium was incubated overnight at 37°C for 24 h. A 1/1000 dilution of each suspension was prepared with the corresponding medium. Thereafter, 1 ml of the test sample was added. Each vertical column contained 100 µl TSB and bacteria or 100 µl Sabouraud medium and yeast without test sample was in control for the normal growth of bacteria or yeast. The plates were incubated at 37°C in humidified atmosphere for 24 h. The inhibition of bacterial and yeast growth was evaluated by comparing it with normal bacterial or yeast growth in control holes prepared without test samples. The MIC was determined as the lowest concentration of the sample that completely inhibited macroscopic growth of bacteria or yeast. To determine the minimum bactericidal or
fungicidal concentration (MBC or MFC), the two lowest concentrations which inhibited bacterial or yeast growth were plated out on a nutrient agar and incubated at 37°C for 24 h. Results were evaluated by comparing them with the control holes containing bacteria or yeast without test sample (Vanden Berghe and Vlietinck, 1991; Cimanga et al., 1998).

RESULTS AND DISCUSSION

The type and level of different biological activities exhibited by any plant extract is dependent on many factors such as geographical area, time of collection, soil conditions, harvesting time, moisture content, drying method, storage conditions and post-harvest process (Wendakoon; Calderon, 2012). Also, the relatively high temperature and humidity can be generated during tissue grinding and can denature chemical constituents, the extractive solvent can also affect the level and composition of secondary active metabolites extracted. It is well known that the bacteriostatic effect of an antibiotic is sufficient to treat infections in correlation with the host's defense such as cellular and humoral systems while severe infections necessitate a rigorously bactericidal or fungicidal agent administered together which may produce a synergistic effect (Hardman and Limbird, 2001; Wheels, 2008). In the present study, Table 1 reports some traditional uses of the six ethnopharmacologically selected medicinal plants while Table 2 shows the amounts of the aqueous and methanol extracts of each treated plant part. The six medicinal plants chosen for this study are commonly used for the treating diverse infections in traditional medicine in Kinshasa according to the daily practices of interviewed traditional healers and the literature data. Some of them are known to produce bioactive products (Djoukeng et al., 2005).

Table 3 reports results from the phytochemical screening of the aqueous extract of all selected plant parts. The chemical composition of each methanol extract was similar to that of the corresponding aqueous extract. These results revealed the presence of alkaloids in Guibourtia demeusei, Pentaclethra macrophylla and Syzygium guineense extracts, flavonoids, steroids and terpenes in all plant extracts, tannins in Ageratum conyzoides, Acalypha wilkesiana, Pentaclethra macrophylla and Syzygium guineense, saponins in Guibourtia demeusei, Pentaclethra macrophylla and Syzygium guineense.
extracts and sugars in *Buoccholzia tholoniana*, *Guibourtia demeusei* and *Pentaclethra macrophylla*. Coumarins were only detected in *Buoccholzia tholoniana* while anthocyanins were not found to be present in all extracts in our experimental conditions.

The dilution method used in this study has been currently employed in other previous investigations (Kambu et al., 1990; Vlietinck et al., 1995; Fabry et al., 1998; Cimnaga et al., 1998; David et al., 2009; Singla et al.; 2011, Djeussi et al., 2013) and is recommended as a good method for determining the relative potency of crude extracts and establishing their antibacterial and antifungal spectrum as it facilitates the use of different strains and to determine their MIC and MBC or MFC. It concerns polar, apolar and complex extracts in testing to establish their real potency by determining their MIC and MBC or MFC (Rios; Recio, 2005). Beside the dilution procedure, the disc diffusion method is also frequently used with high test concentrations from 1 to 100 mg to evaluate antibacterial and antifungal activity of plant extracts, it is only a qualitative technique since the MIC and MBC are not determined (Kelmanson et al., 2000; Samy and Ignacimuthu, 2000; Islam et al., 2008; David et al., 2009, Jamuna Bai et al., 2011; Chitemerere et al., 2011; Muhamed Muback et al., 2011; Neeraj and Madivi, 2011; Debajit et al., 2012; Israr et al., 2012; Sakunpak and Panichayupakaranant, 2012; Sharmeen et al., 2012; Tabasum et al., 2013; Gupta et al., 2013). To avoid this inconvenience, both techniques are used at the same time (Jagessar et al., 2008; Oskay et al., 2009; Chitemeterere and Mukananganyama, 2011; Kondo et al., 2010; Shinkafi and Dauda, 2013; Raghavendra and Mahadevan, 2011; Dugler and Dugler, 2012; Sadeghi-Nejad and Azish, 2013) Antibacterial and and antifungal activities of plant extracts or other compounds is largely influenced by the susceptibility testing method used (Vanden Bergh and Vlietinck, 1991).

For the present study, the following criteria were adopted to appreciate the level of evaluated activities: MIC, MBC or MFC ≤ 10 µg/ml: pronounced activity, 10 ≤ MIC, MBC or MFC < 100 µg/ml: good activity, 100 ≤ MIC, MBC or MFC ≤ 125 µg/ml: moderate activity, 125 < MIC, MBC or MFC ≤ 250 µg/ml: low activity, 250 < MIC, MBC or MFC ≤ 500 µg/ml: very low activity, MIC, MBC or MFC > 500 µg/ml: inactive. Results presented in Table 4 shows the MICs of tested plant extracts. They show that the aqueous and the methanol extracts from all selected medicinal plants exhibited antibacterial (bacteriostatic) and antifungal (fungistatic) activity at different extents.

When tested against the yeast *C. albicans*, the most active extracts with good activity were the aqueous extracts from *A. wilkesiana* leaves and *A. conyzoides* leaves inhibiting the yeast growth activity with MIC value of 31.25 µg/ml. The methanol extracts from *A. wilkesiana*, *A. conyzoides* and *Pentaclethra macrophylla* stem bark also presented good antifungal activity with MIC value of 62.5 µg/ml. The aqueous extracts of *Buoccholzia tholoniana* seeds and *P. macrophylla*, and the aqueous and methanol extract of *Syzygium guineense* leaves showed moderate activity with MIC value of 125 µg/ml. The remaining samples displayed low, very low antifungal activity or were inactive against the selected yeast (Table 4). The observed effect of these plant extracts against *C. albicans* was fungistatic at different degrees. Results in Table 4 also show the effect of these extracts against 9 clinical isolate pathogens. They indicated that the aqueous from *A. conyzoides* exhibited good antibacterial activity (bacteriostatic effect) against *E. coli* with MIC value of 62.5 µg/ml. The same minimum inhibitory concentration was also presented by the methanol extracts from *P. macrophylla* and *S. guineense* against *Enterobacter* species, the aqueous extracts from *A. wilkesiana* and *P. macrophylla*, and the methanol extract from *P. macrophylla* against *Klebsiella oxytoca*, the aqueous extracts from *A. wilkesiana*, *G. demeusei*, *P. macrophylla* and the methanol extract of this last plant against *Proteus mirabilis*, the aqueous extracts from *A. conyzoides* and *P. macrophylla* against *Salmonella typhimurium*, the aqueous extract of *B. tholoniana* against *S. aureus*. The remaining samples were found to display moderate activity (MIC = 125 µg/ml), low (125 < MIC ≤ 250 µg/ml), very low (250 < MIC ≤ 500 µg/ml) or were inactive (MIC > 500 µg/ml) against the selected clinical isolate bacteria (Table 4).

Table 5 shows the minimum bactericidal (MBCs) and fungicidal (MFCs) concentrations of the selected plants extracts. Results indicated that the aqueous extracts from *A. wilkesiana* and *A. conyzoides*, and the methanol extract from *P. macrophylla* presented good fungicidal activity with MBC value of 62.5 µg/ml against *C. albicans*. The aqueous and methanol extract from *P. macrophylla* exhibited good activity against *K. oxytoca* (MBC = 62.5 µg/ml). The same MBC was also shown by the aqueous extracts of *A. wilkesiana*, *G. tholoniana*, the aqueous and methanol extract of *P. macrophylla* against *P. mirabilis*, the aqueous extract of *A. conyzoides* and *P. macrophylla* against *S. typhimurium*. The remaining plant extracts showed moderate, low and very low bactericidal and fungicidal activities or were devoid with these effects according to the case (Table 5). The bacteriostatic and bactericidal effect of the aqueous extracts of *A. conyzoides*, *A. wilkesiana* and *G. demeusei*, and the methanol extract of *P. macrophylla* was higher compared to that of norfloxacin, used an antibiotic reference product against some bacteria such as *E. coli*, *E. cloacae*, *K. oxytoca*, *P. mirabilis*, *S. typhimurium*, *S. aureus* and *S. flexneri* according to the tested bacteria. The activity of the remaining extracts was sometime similar or lower.
Table 4. Antibacterial and antifungal activities of plant extracts (MIC, µg/ml)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. wilkesiana</td>
<td>Aqueous</td>
<td>31.1</td>
<td>125</td>
<td>125</td>
<td>250</td>
<td>62.5</td>
<td>62.5</td>
<td>125</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>62.5</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>500</td>
<td>125</td>
<td>500</td>
</tr>
<tr>
<td>A. conyzoides</td>
<td>Aqueous</td>
<td>31.5</td>
<td>62.5</td>
<td>125</td>
<td>250</td>
<td>250</td>
<td>125</td>
<td>62.5</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>62.5</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td>250</td>
<td>250</td>
<td>125</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>B. thioniana</td>
<td>Aqueous</td>
<td>125</td>
<td>1000</td>
<td>500</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>250</td>
<td>62.5</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>1000</td>
<td>1000</td>
<td>500</td>
<td>250</td>
<td>500</td>
<td>250</td>
<td>250</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>G. demeussi</td>
<td>Aqueous</td>
<td>500</td>
<td>125</td>
<td>500</td>
<td>250</td>
<td>125</td>
<td>62.5</td>
<td>125</td>
<td>125</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>500</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>125</td>
<td>250</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>P. macrophylla</td>
<td>Aqueous</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>62.5</td>
<td>125</td>
<td>62.5</td>
<td>250</td>
<td>62.5</td>
<td>62.5</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>S. guineense</td>
<td>Aqueous</td>
<td>250</td>
<td>500</td>
<td>125</td>
<td>500</td>
<td>125</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>125</td>
<td>500</td>
<td>62.5</td>
<td>500</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>-</td>
<td>125</td>
<td>62.5</td>
<td>250</td>
<td>500</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Tetracycline HCl</td>
<td>-</td>
<td>7.81</td>
<td>7.81</td>
<td>3.90</td>
<td>3.90</td>
<td>1.95</td>
<td>0.97</td>
<td>0.98</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Nystatin</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

and 5). According to Bauernfeind and Petermüller (1983) and Boyd et al. (2009), MICs of norfloxacin for isolate pathogens from hospital ranged from 0.03 to 0.15 µg/ml. Results from our study showed that this antibiotic had high MICs against all clinical isolated bacteria tested in the present study. This finding suggested that these bacteria are resistant to norfloxacin. Tetracycline used also as an antibiotic reference product presented high antibacterial activity than norfloxacin and all tested extracts. However, the antifungal and fungicidal activity of all tested extracts was lower than that of nistatin used as an antifungal reference product (Tables 4 and 5).

Our results are only qualitatively in good agreement with those previously reported by Kambu et al. (1990) and Tona et al. (1999) concerning the antibacterial activity of *P. macrophylla* stem bark, the antibacterial and antifungal activity of *A. conyzoides* leaves described by Ahmagboul et al., (1985), Yamamoto et al., (1991), Gamesan and Krishnaraju (1995), Dayie et al., (2008) and Okwori et al. (2013) and the antibacterial and antifungal activity of *A. wilkesiana* leaves reported by Alade and Irobi (1993); Adesina et al., (2000); Gote et al., (2010) and Haruna et al. (2013). Although these activities were carried out by the diffusion method, Gallic acid, corilagin and geraniin isolated from the leaves were reported to be responsible for the observed antibacterial activity (Adesina et al., 2000). In clinical trial on dermatitis, the water extract was found to be reasonably useful in the treatment of eczema and no allergy or irritation was observed in treated patients (Jekayinfa et al., 1997).

A previous investigation of the antibacterial activity of the methanol *A. conyzoides* whole plant extract was
compared to that of the leaves and flowers, and the results had indicated that the two last extracts were more effective than the first one against the tested bacteria such as *S. aureus*, *E. coli* and *P. aeruginosa* (Dayie et al., 2008). The essential oil of *A. conyzoides* leaves was also reported to have antibacterial activity against a large microorganisms and yeasts by diffusion method (Osho and Adetunji, 2011). In addition, it had been reported that wounds treated with the aqueous leaves extract in combination with honey and with solcosery ointment significantly accelerate wound healing process and the rates of wounds sterility compared to wound treated with honey alone (Mustafa et al., 2005). An other study conducted by Dash and Murthy (2011) demonstrated that the methanol and aqueous extract from *A. conyzoides* leaves showed father rate of wound healing compared to the effect of petroleum and chloroform extract from the same plant part. Among these later extracts, the chloroform extract was found to produce promising effect, but lower compared to that of the methanol and aqueous extracts, while the petroleum ether extract did not produce significant effect. In a previous study, a series of triterpene compounds were isolated from the leaves of *S. guineense* among which arjumolic acid and asiatic acid showed the most significant antibacterial activity against *E. coli*, *B. subtilis* and *S. sonnei* (Djoukeng et al., 2005). Our results also indicated that the antibacterial and antifungal activities vary with the plant species, the plant part used and the nature of the extractive solvent (Malesh and Satish, 2008; Rios and Recio, 2005). Moreover, these reported results in sometime compared to those from previous screenings of other medicinal plants for the

Table 5. Antibacterial and antifungal activities of plant extracts (MBC and MFC, µg/ml).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. wilkesiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>62.5</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>125</td>
<td>62.5</td>
<td>125</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>Methanol</td>
<td>125</td>
<td>500</td>
<td>500</td>
<td>250</td>
<td>250</td>
<td>125</td>
<td>500</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>A. conyzoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>62.5</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>250</td>
<td>125</td>
<td>62.5</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>Methanol</td>
<td>125</td>
<td>250</td>
<td>250</td>
<td>125</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>B. tholoniana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>250</td>
<td>1000</td>
<td>500</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>125</td>
<td>1000</td>
</tr>
<tr>
<td>Methanol</td>
<td>1000</td>
<td>1000</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>250</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>G. demeussi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>1000</td>
<td>250</td>
<td>1000</td>
<td>500</td>
<td>250</td>
<td>62.5</td>
<td>250</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>P. macrophylla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>62.5</td>
<td>62.5</td>
<td>62.5</td>
<td>125</td>
</tr>
<tr>
<td>Methanol</td>
<td>62.5</td>
<td>125</td>
<td>62.5</td>
<td>250</td>
<td>62.5</td>
<td>62.5</td>
<td>125</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>S. guineense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous</td>
<td>500</td>
<td>1000</td>
<td>250</td>
<td>1000</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Methanol</td>
<td>250</td>
<td>1000</td>
<td>125</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>-</td>
<td>125</td>
<td>62.5</td>
<td>250</td>
<td>500</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>-</td>
<td>15.62</td>
<td>15.61</td>
<td>7.80</td>
<td>7.80</td>
<td>3.90</td>
<td>1.95</td>
<td>1.95</td>
<td>0.97</td>
</tr>
<tr>
<td>Nystatin</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
same biological activities, showed good effect against Gram-positive strains while Gram-negative remained resistant (Vlietinck et al., 1995), (Rabe and van Staden, 1997). The observed biological activities in all selected plant extracts are related to the presence of some secondary metabolites such as terpenes, steroids, alkaloids, flavonoids, saponins and tannins found to be present in these crude extracts for which they are well known to possess these activities at different extents (Helberg et al., 1983: Ebi et al., 1997, Cowan, 1999; Mendonça Filho, 2006, Das, 2010).

Conclusion

These selected plant extracts which are used for the treatment of several infections in traditional medicine demonstrate an appreciable in vitro antibacterial and antifungal, and at some extents bactericidal and fungicidal activities. Thus there is now a scientific validation for the use of the selected plant part extracts for the treating of infectious diseases in traditional medicine.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Full Length Research Paper

Antioxidant effects of curcumin against cadmium chloride-induced oxidative stress in the blood of rats

Atef M. M. Attia, Fatma A. A. Ibrahim, Noha A. Abd EL-Latif and Samir W. Aziz

Biophysical Laboratory, Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Center, Dokki, Cairo, Egypt.

Received 30 March, 2014; Accepted 15 April, 2014

Humans are exposed to a number of toxic elements in the environment. Cadmium, widely used in industry, is a great environmental health problem of both humans and animals. Effects of reactive oxygen species (ROS) generation have been postulated to be major contributors to cadmium-exposure related disease. The aim of this study was to investigate the effect of curcumin on oxidative stress in rats exposed to cadmium. Curcumin was administered orally (600 mg/kg body weight). After 24 days, significant increases in methemoglobin percentage (metHb%), superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, malondialdehyde (MDA) concentration and hemolysis test were observed in cadmium exposed rats compared to control group (P < 0.05), while GSH concentration showed insignificant change. Curcumin treatment of cadmium exposed rats significantly lowered metHb%, while significantly increased oxyhemoglobin percentage (HbO₂%), compared to cadmium alone group (P < 0.05). Also curcumin treatment significantly increased GPx activity of cadmium exposed rats as compared to cadmium alone group (P < 0.05). Curcumin treatment of cadmium exposed rats lowered MDA concentration and hemolysis percentage by 10 and 9%, respectively. The findings of this study suggest that curcumin elevated the GPx activity of cadmium exposed rats and had ameliorative effect on lipid peroxidation and erythrocytes hemolysis. Moreover, the results of multi-component spectrophotometric analysis suggest that curcumin treatment of lead exposed rats lowered the levels of inactive metHb level and elevated the level of active HbO₂. Curcumin may exert its protective actions against cadmium-induced hematotoxicity in rats possibly through its antioxidant mechanisms and may have future therapeutic relevance.

Key words: Cadmium, curcumin, oxidative stress, erythrocytes, hemolysis, Hb-derivatives, rats.

INTRODUCTION

Cadmium (Cd) is an important industrial and environmental pollutant that currently ranks seventh on the Agency, for Toxic Substances and Disease Registry (ATSDR)/EPA list of hazardous substances (ATSDR 2003.). Cd will invariably be present in our society, either in useful products in the form of nickel-cadmium batteries, dyes, plastics, electrochemistry, paint pigments or in controlled wastes as a major source of pollution, in water
and as a constituent of food material (Jarup et al., 1998; Ikeda et al., 2000). Cd is an omnipresent heavy metal which enters the biological systems from natural sources, such as volcanic emissions, weathering of rocks, mining processes as well as from industrial applications, agricultural practices and human usages. Cd emissions into the environment are normally continuous between the three main environmental compartments, air, water and soil. The majority of Cd exposure arises from ingestion of food substances due to uptake of Cd by plants from fertilizers, sewage, sludge, manure and atmospheric deposition (Anderson et al., 1988; Hotz et al., 1989; Lauwerys et al., 1991; Iwata et al., 1992; Bernard et al., 1992; Ikeda et al., 2000). Human uptake of Cd is mainly through cigarette smoking, food and water intake. In vegetarian diet, mushrooms, cacao powder, potatoes, fruits, wheat, grains, bran, sugerbeet fiber, carrot, dried seaweeds, etc., are the source of Cd intake. Similarly, in non-vegetarian diets shellfish, mussel, meat and fish are rich in cadmium. These Cd rich foods can greatly increase cadmium concentration in the human body (Friberg et al., 1985; Valtner et al., 1996; WHO, 2000). Therefore, Cd is a wide-spread environmental pollutant, characterized by its toxicity to various organs, including kidney, liver, lung, testis, brain, bone, blood system (Gunnarsson et al., 2003; WHO, 1992). The molecular mechanisms of its toxicity are not yet well defined. Cd has been demonstrated to stimulate free radical production, resulting in oxidative deterioration of lipids, proteins and DNA, and initiating various pathological conditions in humans and animals (Manca et al., 1991; Shaikh et al., 1999). After the intake and resorption, Cd enters the blood where it binds to erythrocytes and hematotoxicity markers (Kostić et al., 1993). The rats were housed in stainless steel cages in a temperature-controlled room (25±2°C) with a 12 h light and 12 h dark exposure.

MATERIALS AND METHODS

Eighteen male albino rats (age: 6 to 8 weeks and about 80 to 110 g body weight) were obtained from the animal house, National Research Center, Cairo, Egypt. All animals were treated in accordance to the principles of Laboratory Animal Facilities of World Health Organization, Geneva, Switzerland (2003). The animals were fed a standard pellet diet and had free access to water. The standard diet contained 50% wheat, 21% corn, 20% soybean, 8% concentrated proteins and 1% a mixture of salts, vitamins and dicalcium phosphate. The nutritional content was 5% fat, 21% protein, 55% nitrogen free extract and 4% fibre (w/w) with adequate minerals and vitamin contents. The rats were housed in stainless steel cages in a temperature-controlled room (25±2°C) with a 12 h light and 12 h dark exposure.
Grouping of animals and treatment

The animals were randomly divided into three groups of 6 animals each, control, cadmium chloride alone, and cadmium chloride with curcumin. All groups were given a standard rat chow and water. Rats in cadmium alone and cadmium with curcumin groups were given treatments orally by gavage needle for 24 days. Rats of cadmium alone group were given daily 2 ml dose of a solution containing 10 mg/kg body weight of monohydrated cadmium chloride orally. While, rats of cadmium with curcumin group received a daily dose of a solution containing 10 mg/kg body weight of monohydrated cadmium chloride and 600 mg/kg body weight of curcumin dissolved in 2 ml of distilled water orally. The dose of curcumin used in this study was selected on the basis of the previous study (Chuang et al., 2000). Curcumin, an active component of turmeric (C. longa Linn) and a yellow coloured phenolic pigment yield from the rhizome of this tumeric, was purchased in a powder form from Elgabry Company for medicinal herbs, Giza, Egypt.

Animal sacrifice and collection of samples

The experiments lasted for 24 days. At the end of the experimental period, blood samples were collected from all animals from the retro-orbital venous plexus. The blood samples were collected into heparinized tubes. The plasma obtained after centrifugation (3000 rpm for 10 min at 4°C) was used for MDA determination. Erythrocytes were washed three times in phosphate buffered saline (PBS) solution. Lysed erythrocytes were prepared by addition of four volumes of ice-cold distilled water. Cell membranes were removed by centrifugation at 8,500 rpm for 20 min, and the supernatant was used for the assay of GSH concentration and antioxidant enzymes activities. According to the antioxidant assays, appropriate phosphate buffers of pH 7 for GPx and pH 8.5 for SOD were added to the hemolysate samples; therefore, the antioxidant enzymes do not loss their activities.

Biophysical assays

Levels of hemoglobin derivatives (sulhemoglobin (Shb), methemoglobin (methB), carboxyhemoglobin (HbCO), and oxymemoglobin (HbO2)) in blood of rats were determined by the multicomponent spectrophotometric method described previously (Attia et al., 2011a). Percentages of erythrocytes hemolysis were determined according to the method of Attia et al. (2011b).

Biochemical assays

For biochemical analysis specially manufactured kits were used. Reduced glutathione (GSH) concentration was determined spectrophotometrically by the method of Beutler et al. (1963). The method based on the reduction of 5,5 dithiobis (2-nitrobenzoic acid) (DTNB) with GSH to produce a yellow compound. The reduced chromogen directly proportional to GSH concentration and its absorbance can be measured at 405 nm. Plasma malondialdehyde (MDA) concentration was determined spectrophotometrically by the method of Satoh (1978). Thiobarbituric acid (TBA) reacts with MDA in acidic medium at temperature of 95°C for 30 min to form thiobarbituric acid reactive product. The absorbance of the resulting pink product can be measured at 534 nm. Superoxide dismutase (SOD) activity was determined spectrophotometrically by the method of Nishikimi et al. (1972). The principle of this assay relies on the ability of the enzyme to inhibit the phenazine methosulphate-mediated reduction of nitroblue tetrazolium dye. The percent inhibition directly proportional to SOD activity was calculated, depending on the increase in absorbance at 560 nm for control and sample, respectively. Glutathione peroxidase (GPx) activity was determined spectrophotometrically by the method of Paglia and Valentine (1967). The assay is an indirect measure of the activity of cellular GPx (c-GPx). Oxidized glutathione (GSSG), produced upon reduction of an organic peroxide by c-GPx, is recycled to its reduced state by the enzyme glutathione reductase (GR). The oxidation of NADPH to NADP+ is accompanied by a decrease in absorbance at 340 nm (A340) providing a spectrophotometric means for monitoring GPx enzyme activity. To assay c-GPx, erythrocytes hemolysate is added to a solution containing glutathione, glutathione reductase, and NADPH. The enzyme reaction is initiated by adding the substrate, hydrogen peroxide and the A340 is recorded. The rate of decrease in the A340 is directly proportional to the GPx activity in the sample.

Statistical analysis

Data were presented as the mean ± standard error (SE) values. One way analysis of variance (ANOVA) was carried out, and the statistical comparisons among the groups were performed with Post Hoc and the least significant difference (LSD) tests using a statistical package program (SPSS version 14). P < 0.05 was considered as statistically significant.

RESULTS

Blood hemoglobin derivatives

Table 1 shows the levels of inactive hemoglobins (Shb, methHb, HbCO) and active HbO2 in all groups. After 24 days, significant increase in methHb% was observed in cadmium-exposed rats, compared to the control group (P < 0.05), while cadmium treatment had no significant effects on Shb% and HbCO%. Curcumin treatment of cadmium exposed rats significantly lowered methHb%, while significantly increased HbO2%, compared to the cadmium alone group (P < 0.05).

Plasma MDA concentration

Table 2 shows the concentration of MDA in plasma of all groups. After 24 days, significant increase in MDA concentration was observed in cadmium exposed rats as compared to control group (P < 0.005). Curcumin treatment of cadmium exposed rats lowered MDA concentration (P < 0.05, -10%) compared to cadmium alone group.

Erythrocyte antioxidant enzyme activities and GSH concentration

Table 2 shows the concentration of GSH as well as the activities of SOD and GPx in erythrocytes of all groups. Superoxide dismutase (SOD) and GPx activity significantly increased (P < 0.05) in cadmium compared to the control group, while GSH concentration showed insignificant change. Curcumin treatment significantly increased...
increased GPx activity of cadmium exposed rats as compared to cadmium alone group (P < 0.05), while it has no effect on SOD activity and GSH concentration. However, SOD and GPx activity of cadmium+curcumin group is significantly higher (P < 0.005) than controls.

Percentages of erythrocytes hemolysis

Figure 1 shows the hemolysis percent of erythrocytes in all groups. The hemolysis test indicates that intoxication by cadmium significantly increases the hemolytic effect (P < 0.05), whereas after treatment with curcumin, it decreases by 9%.

DISCUSSION

Cd is a toxic metal that is widely used in different industries. The Agency for Toxic Substances and Disease Registry (ATSDR, 1989) in Atlanta, Georgia has listed Cd as a number 7 in its top 20 list of hazardous substances. It promotes an early oxidative stress and afterward contributes to the development of serious pathological conditions, because of its long retention in some tissues (Bagchi et al., 2000). The present results have clearly demonstrated the ability of Cd to induce oxidative stress in rat blood as evidenced by increased lipid peroxidation after 24 days of Cd treatment. This finding is in agreement with several reports demonstrating that Cd induces oxidative stress in tissues by increasing lipid peroxidation and altering the antioxidant status in several tissues (Ognjanović et al., 2003; Sinha et al., 2008; Kanter et al., 2009; Onwuka et al., 2011; Tarasub et al., 2011, 2012; El-Sokkary et al., 2009).

This study showed that erythrocytes hemolysis in Cd treated animals is higher than controls consistent with a previous study (Kanter et al., 2009). This high rate of Cd-induced hemolysis decreases by 9% after curcumin treatment. Curcumin represents a class of antioxidants reported to be a potent inhibitor of ROS formation (Venkatesan et al., 2000; Biswas et al., 2005). Reddy and Lokesh (1994b) indicated that curcumin is a potent scavenger of a variety of ROS including superoxide anion radicals (O$_2^-$) and hydroxyl radicals (OH). This high antioxidant activity of curcumin can account for the decrease in lipid peroxidation and erythrocyte hemolysis after curcumin treatment of Cd-exposed rats, observed in this study.

The inactive components of Hb (SHb, metHb and HbCO) are unable to transport oxygen, while HbO$_2$ is the active Hb. When the iron atom is in the ferrous form, the protein is active and can bind oxygen reversibly. The oxidation to the ferric form (metHb) leads to an inactive protein. Methemoglobin is unable to carry oxygen. High oxidative stress in red blood cells of cadmium exposed animals can account for the increase in metHb% produced through HbO$_2$-autoxidation reactions (Waltkins et al., 1985) and its improvement after treatment with curcumin can account for the decrease in metHb% and...
increase in HbO₂% observed in the present study.

Previous investigations showed that chronic treatment with Cd induced oxidative damage in erythrocytes of rats, causing destruction of red cell membranes and increased lipid peroxidation, as well as alteration of the antioxidant defense system, energy metabolism and appearance of anemia (Kostič et al., 1993; Kanter et al., 2005; Ognjanović et al., 2000; Zikić et al., 1997, 2001; Pavlovic et al., 2001).

The results obtained in our present study show that treatment with Cd induces an increase of the level of lipid peroxidation product, MDA, in the blood of rats, which were accompanied by increased formation of ROS (Ognjanović et al., 2003; Sinha et al., 2008; Kanter et al., 2009). As a consequence of enhanced lipid peroxidation, DNA damage, altered calcium and sulfhydryl homeostasis as well as marked marker disturbances of antioxidant defense system occurred (Hiruku and Kawanishi, 1996). Treatment with curcumin was effective in decreasing oxidative damage induced by Cd which resulted in markedly lower MDA concentration. Curcumin was capable of inhibiting formation of ROS which caused hemolysis, through its high antioxidant activity (Venkatesan et al., 2000; Biswas et al., 2005; Reddy and Lokesh, 1994a).

It is assumed that except of therapeutic intervention by using potent chelating agents capable to mobilize intracellularly bound Cd (Eybl et al., 1984; Jones and Cherian, 1990), curcumin as antioxidants may be important components of an effective Cd intoxication treatment. The inhibitory effect of turmeric on Cd induced lipid peroxidation in blood was in parallel with Lalitha and Selvam (1999) who suggested that, curcumin provided a protection against lipid peroxidation and hemolysis of RBCs induced by H₂O₂.

In animals exposed to Cd, the activities of SOD and GPx in RBC were significantly increased (Table 2). These results are consistent with previous studies (Zikić et al., 2001; Ognjanović et al., 2003; Kanter et al., 2005, 2009). It is known that Cd induces the formation of superoxide anion radicals in erythrocytes and it is reasonable to expect an increased activity of SOD. Cd induced an increase in GPx activity which may be explained by their influence on hydrogen peroxide as substrate which is formed in the process of dismutation of superoxide anion radicals (Shaikh et al., 1999). The treatment with curcumin of Cd exposed rats increased GPx activity, indicating that this substance eliminates the toxic effects of Cd on the activity of this enzyme. At the same time, erythrocyte GSH concentration remains at the level of control values which confirm the protective role of curcumin. Moreover, curcumin treatment enhances the activity of SOD as compared to controls. The indirect antioxidant capacity of curcumin is defined by its ability to induce the expression of antioxidant enzymes such as SOD (Panchal et al., 2008) and GPx (Yarru et al., 2009). The antioxidant enzymes induced by curcumin are regulated by the nuclear factor erythroid-derived 2 (Nrf2) (Cuadrado et al., 2009; Rojo et al., 2012), which in turns is also activated by curcumin (Calabrese et al., 2008; Egglie et al., 2008).

The antioxidant mechanism of curcumin was attributed...
to its conjugated structure which includes two methoxylated phenols and an enol form of β-diketone. The structure showed a typical radical trapping ability as a chain breaking antioxidant (Masuda et al., 2001). Curcumin exhibit a differential antioxidant activity in several in vitro and in vivo models, for example, preventing lipid peroxidation in a variety of cells such as erythrocytes and rat liver microsomes, where peroxidation is induced by Fenton’s reagent, as well as for metals and hydrogen peroxide (H₂O₂) (Reddy and Aggarwal, 1994b). Furthermore, it has been reported that curcumin is a bifunctional antioxidant (Dinkova-Kostova and Talalay, 2008), because of its ability to react directly with reactive species and to induce an up-regulation of various cytoprotective and antioxidant proteins. Curcumin is able to scavenge superoxide anion (O₂⁻) (Ak and Gülčin, 2008; Sreejayan and Rao, 1996), hydroxyl radicals (OH) (Barzegar and Moosavi-Movahedi, 2011), singlet oxygen (Das and Das, 2002), nitric oxide (Sreejayan, 1997; Sumanont et al., 2004), peroxynitrite (Kim et al., 2003) and peroxyl radicals (ROO⁻) (Barzegar and Moosavi-Movahedi, 2011). Together, these mechanisms might explain, at least in part, some of the cytoprotective effects of this compound. Features as the presence of phenolic groups in the structure of curcumin explains its ability to react with reactive oxygen species (ROS) and reactive nitrogen species (RNS) and might probably be one of the mechanisms through which curcumin treatment protects erythrocytes from oxidative damage. It can be concluded from the presented results that cadmium induced oxidative damage in erythrocytes, leading to loss of membrane function by enhanced lipid peroxidation as well as alteration of the activity of antioxidant enzymes. Moreover, the results of multi-component spectrophotometric analysis showed an increase in the level of inactive methemoglobin (metHb). Curcumin expressed protective role against toxic influence of cadmium on all affected parameters in rats. Curcumin may exert its protective actions against cadmium-induced hematoxicity in rats possibly through its antioxidant mechanisms. The results raise the possibility of curcumin being considered as one of the component of the regular diet of the people in the areas, where they may have chances of exposure to cadmium occupationally or environmentally.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

the tests of rats. Toxicol. 183:57-63.

Journal of Pharmacognosy and Phytotherapy

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Research in Pharmaceutical Biotechnology
- Medical Practice and Reviews
- Journal of Clinical Pathology and Forensic Medicine
- Journal of Medicinal Plant Research
- Journal of Drug Discovery and Development
- Journal of Clinical Virology Research