ABOUT BMBR

The Biotechnology and Molecular Biology Reviews (BMBR) (ISSN 1538-2273) is published Monthly (one volume per year) by Academic Journals.

Biotechnology and Molecular Biology Reviews (BMBR), a new broad-based review journal, is an open access journal that was founded on two key tenets: (1) to publish the most exciting, cutting-edge reviews in all areas of applied biochemistry, industrial microbiology, genomics and proteomics, and metabolic engineering, and (2) to provide the most rapid turn-around time possible for reviewing and publishing. It is our hope these articles will serve teaching and reference tools.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email bmbr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at bmbr@academicjournals.org.
Editor-In-Chief

P. Ravindra, Ph.D.
School of Engineering & IT
University Malaysia Sabah
88999, Kota Kinabalu, Sabah, Malaysia

Editor

David Maina Menge, Ph.D.
University of California, Irvine
College of Health Sciences/Program in Public Health
Hewitt Hall Room 3501; Irvine, CA 92697-4050, USA.

Evans Kaimoyo, Ph.D.
Plant Microbe-interactions Laboratory,
Boyce Thomsposm Institute of Plant Research,
Ithaca, NY, 14853, USA.

Solomon Olawale Odemuyiwa, Ph.D.
Pulmonary Research Group
Department of Medicine
550 Heritage Medical Research Centre
University of Alberta
Edmonton
Canada T6G 2S2

Vikash Kumar Dubey
Assistant Professor
Department of Biotechnology
Room No: 1N 102
Indian Institute of Technology, Guwahati
Guwahati- 781039, Assam,
India.

Beng Ti Tey
Department of Chemical and Environmental Engineering,
Faculty of Engineering,
Universiti Putra,
Malaysia

Behera B.C.
Agharkar Research Institute
Pune-411004, India

Editorial Board

Dr. Daiana P. Stolf
University of Toronto,
Toronto,
Canada

Dr. Stephane Chevaliez
Department of Virology and INSERM,
Henri Mondor Hospital,
avenue du Maréchal de latter de Tassigby
Cretéil

Dr. Mohammad Asgharzadeh
Tuberculosis and Lung Disease Research Center and Biotechnology Research Center,
Tabriz University of Medical Sciences,
Iran

Dr. Mukul Das
Food Toxicology Division Industrial Toxicology Research Centre
Mahatma Gandhi Marg Lucknow,
India

Dr. Jian-Zhong Liu
Biotechnology Research Center,
Zhongshan (Sun Yat-Sen) University Guangzhou,
China

Prof. Peter J. Reilly
Dept of Chemical and Biological Eng
Ansonlawa State University

Prof. Mohammad Miransari
Department of Soil Science,
College of Agricultural Sciences,
Shahed University,
Tehran,
Iran

Dr. Chhandak Basu
School of Biological Sciences
Ross Hall University of Northern Colorado Greeley,
Colorado
USA

Prof. Anil Kumar
School of BiotechnologyDevi Ahilya University,
Khandwa Road,
Indore,
India
Dr. Ahmed M Malki
*Alexandria University,
Faculty of Science,
Biochemistry department,
Alexandria,
Egypt*

Dr. Christopher Brigham
*Sinskey Laboratory
Massachusetts Institute of Technology
Cambridge,
USA*

Prof. Mahmoud Saker
*National Research Center,
El Behoose St., Dokki,
Cairo,
Egypt*

Prof. Karl Bayer
*Institute of Applied Microbiology,
University of Natural Resources and Applied Life Sciences,
Muthgasse
Austria.*

Dr. Hector Budman
*University of Waterloo
Waterloo,
Ontario*

Prof. Mohammad Miransari
*Shahed University,
Tehran,
Iran*

Prof. R.P Singh
*University of Roorkee,
Roorkee
India*

Prof. Jane B. Lian
*University of Massachusetts Medical School 55
Lake Avenue
North Worcester*

Dr. Micki Ann Luna
*University of South Florida
USA*

Dr. Helene F Rosenberg
*National Institute of Allergy and Infectious Diseases
Rockville Pike, Bethesda,
USA*

Dr. Silvia Bautista-Baños
*National Polytechnic Institute, Yautepec,
Morelos Cuernavaca,
México*

Dr. RA Siddique
*Department of Veterinary Biochemistry,
College of Veterinary Science and Animal Husbandry,
Navsari Agricultural University,
Navsari Gujarat,
India*

Dr. Eijiro Miyak
*Health Technology Research Center,
National Institute of Advanced Industrial Science and Technology (AIST)
Takamatsu,
Japan*

Dr. Carla Marchetti
*Istituto di Biofisica,
Consiglio Nazionale delle Ricerche.
via De Marini, Genova,
Italy*

Dr. T Anjana Devi
*Centre for Chemical Biology,
Indian Institute of chemical technology
Habsiguda Hyderabad
Andhra Pradesh,
India*

Dr. Moyatri Roy-Chowdhury
*Washington State University-Pullman,
Washington
USA*

Dr. Poluri Krishna Mohan
*University of Texas
Department of Biochemistry and Molecular Biology and The Sealy Center for Structural Biology and Molecular Biophysics
Medical Branch Galveston,
Texas*
Dr. Gao Guo
School of Dentistry,
University of California, Los Angeles (UCLA)
10833 Le Conte Avenue
Los Angeles, CA 90095, USA

Dr. Alireza Valdiani
Department of Biochemistry,
Faculty of Biotechnology and Biomolecular Sciences,
University Putra Malaysia,
43400 UPM Serdang, Selangor DE, Malaysia

Dr. S. A. Anitha Christy
Genomic Medicine
Methodist Hospital Research Institute
8.330, Bertner Ave
Houston, TX 77030

Dr. Sridhar Boppana
Department of Pediatrics,
Center for Advanced Biotechnology and Medicine (CABM),
University of Medicine and Dentistry of New Jersey (UMDNJ),
679 Hoes Lane West, Piscataway, New Jersey- 08854.
USA

Dr. Jeffy George
Department of Microbiology and Immunology
F. Edward Hébert School of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road,
Bethesda, MD 20814

Dr. Ajamaluddin Malik
Protein Research Chair
Department of Biochemistry
College of Science
Building no 5, room no 2A46
P.O. Box 2455
King Saud University
Riyadh 11451
Kingdom of Saudi Arabia

Dr. Deepshikha Pande Katare
Amity Institute of Biotechnology, AUUP, Noida, India

Dr. Haopeng Wang
Arthur Weiss Lab
UCSF-HHMI
513 Parnassus Ave, S-1024 Bay3, BOX 0795,
San Francisco, CA, 94143-0795

Dr. Mohammad Shoeb
University of Texas Medical Branch, Galveston-TX, USA

Dr. Bechan Sharma
Department of Biochemistry
University of Allahabad,
Allahabad, 211 002, India

Dr. Sarita Saraswati
Department of Pharmacology,
College of Medicine,
King Saud University, Riyadh
Kingdom of Saudi Arabia

Dr. Santosh R. Mohanty
Soil Microbiology
Department of Soil Biology
Indian Institute of Soil Science,
Indian Council of Agricultural Research (ICAR)
Bearsia Road, Nabibagh, Bhopal, MP, India

Dr. Yule Yue Wang
Biotechnology and Medicinal Biochemistry
Division of Life Science
The Hong Kong University of Science & Technology
Clear Water Bay,
Hong Kong

Dr. Yogender Pal Khasa
Department of Microbiology,
University of Delhi South Campus,
New Delhi – 110021

Dr. Wei Li Cai
Eunice Kennedy Shriver National Institute of Child Health and Human Development
National Institutes of Health,
18 Library Drive, MSC-5430
Bethesda, MD 20892
Dr. Alireza Valdiani
Department of Biochemistry,
Faculty of Biotechnology and Biomolecular Sciences,
Universiti Putra Malaysia (UPM),
43400 UPM Serdang
Malaysia
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by 'et al'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

Examples:
Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)
References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Biotechnology and Molecular Biology Reviews is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the BMBR, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Co-culture: A great promising method in single cell protein production
Asmamaw Tesfaw and Fassil Assefa
Co-culture: A great promising method in single cell protein production

Asmamaw Tesfaw and Fassil Assefa*

Department of Molecular, Microbial and Cellular Biology, College of Natural Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.

Received 17 March, 2014; Accepted 21 May, 2014

The term single cell protein (SCP) refers to the dried microbial cells or total protein extracted from pure microbial culture (algae, bacteria, filamentous fungi and yeasts) which serves as food or/and feed supplements. Different substrate and fermentation optimizations are being carried out to maximize SCP production. However, little attention was given to coculturing. SCPs are produced better using coculture than monoculture. This paper reviews the positive roles of coculture in SCP production. First, it results in better saccharification of substrates and efficient carbon source utilization. Second, filling substrate utilization gap is another contribution of coculture. Third, it upgrades biomass and enrich SCP with nutrients than monoculture. Fourth, it reduces fermentation time and production cost by reducing cost of substrate treatment.

Key words: Single cell protein, biomass, coculture, monoculture, mixed culture.

INTRODUCTION

A major problem facing the world, in particular the developing nations, is the explosive rate of population growth. The Economic and Social Affairs of the United Nations (ESAUN) in 2011 reported that the number of humans in the world now totals over 7 billion; it is increasing by approximately 77 million annually (ESAUN, 2011). Although fertility levels continue to decline (ESAUN, 2011), it could exceed 9 billion by 2050 and 10 billion by 2100 (Leridon, 2008; ESAUN, 2011). Conventional agriculture may well be unable to supply sufficient food (in particular protein) and to satisfy such demands (Smith, 2000). The Food and Agriculture Organization (FAO) already predicts a widening of the protein gap between developed and developing countries. The problem becomes more severe due to arid or changing climate; infertile lands hamper productive agriculture (Smith, 2000).

Hence, alternative protein source improved in quality is a must to deal with such problems. Single cell protein is one of the alternatives that cannot be affected by climate change. SCP has a high content of protein containing all the essential amino acids. Microorganisms are an excellent source of SCP because of their rapid growth rate, their ability to use very inexpensive raw materials as carbon sources, and the uniquely high efficiency, expressed as grams of protein produced per kilogram of raw material, with which they transform these carbon sources to protein (Glazer and Nikaido, 2007). It was produced using a monoculture starting from World War I for long period for...
animal feed. However, recently co-cultures were employed since it has so many positive effects as compared to monocultures.

In nature, many species of microorganisms coexist by interacting with each other. Many species of microorganisms are most effective only when they are present in association with other groups of organisms. Mixed culture fermentations are those in which the inoculum consists of two or more organisms and are widely used in many processes including the production of antibiotics, enzymes, several types of fermented food, composting, dairy fermentation, biocconversion of apple distillery, single cell protein production, and domestic wastewater sludge (Alam et al., 2003; Gutierrez-Correa and Tengerdy, 1998). As compared to monocultures, mixed cultures of fungi may lead to better substrate utilization, increased productivity, increased adaptability to changing conditions and increased resistance to contamination by unwanted microbes (Alam et al., 2003). Nutritional limitations may be overcome in synergetic interactions between compatible partners (Gutierrez-Correa et al., 1999). The synergetic reaction occurs as a result of sequential, cooperative action between the enzymes components where the product of one enzyme reaction becomes the substrate for another (Ryu and Mandels, 1980). This paper reviews the positive roles of co-cultures in SCP production.

SUBSTRATE SACCHARIFICATION ENHANCEMENT

The presence of lignin in lignocellulosic biomass leads to a protective barrier which prevents enzymes from being accessible to cellulose and hemicellulose for hydrolysis. Lignin can be efficiently degraded by mixed microbes particularly white rot fungi. Bio pre-treatment is normally conducted at low temperatures and low pressures without using expensive equipment, chemical agents, reactors and additional energy for lignin removal and biomass structure destruction. Therefore, it is a green, safe, and inexpensive method (Tian et al., 2012). Co-cultures were more effective in substrate saccharification, which ranged between 85-88% as compared to the 62 - 67% saccharification shown by the monocultures (Eyini et al., 2002).

Cellulose and hemicellulose degradation

Cellulose is the most abundant organic compound on earth. Therefore, utilizing it as a substrate for SCP production is really what is advised. Since cellulose is a large polymer, it cannot be absorbed directly by microbes and hence it should be solubilized by enzymes. The efficiency of cellulose hydrolysis requires the synergetic action of a cellulase system containing endocellulase, which cleaves internal glycosidic bonds; exoglucanase, which cuts the cellulose chain from either the reducing or non-reducing end; and β-glucosidase, which hydrolyses cellulbiose to produce glucose (Bhat and Bhat, 1997; Duff and Murray, 1996).

The β-glucosidase contained in most Trichoderma derived cellulase was insufficient to hydrolyze the cellulbiose to glucose (Stockton et al., 1991; Tangnu et al., 1981; Wen et al., 2005) and this is due to the deficiency of β-glucosidase. This leads to the accumulation of cellubiose (Stockton et al., 1991). Cellulbiose is a strong inhibitor of endo and exoglucanases and the accumulation of cellubiose significantly slows down the overall hydrolysis process (Howell and Stuck, 1975). Several approaches have been attempted to overcome this deficiency. For example, a temperature and pH cycling strategy was applied to the culture Trichoderma reesei RUT-C30 to increase β-glucosidase production (Tangnu et al., 1981). In another study, the mutant Trichoderma E12 was grown on microcrystalline cellulose with peanut cake being used as a nitrogen source to obtain a high C/N ratio. As a result, a well balanced ratio of β-glucosidase activity to filter paper activity was observed (Cochet, 1991). Additionally, the problem was tried to solve by adding β-glucosidase to cellulases from either external sources (Khan et al., 1985), or by using co-culture systems (Duenas et al., 1995; Duff et al., 1987; Gutierrez-Correa and Tengerdy, 1997; Juhasz et al., 2003). Here, Trichoderma could be co-cultured with the fungi Aspergillus, which is a good producer of β-glucosidase (Duenas et al., 1995; Duff et al., 1987; Gutierrez-Correa and Tengerdy, 1997). The mixed culture of T. reesei and A. phoenicis could produce cellulase containing a high level of β-glucosidase from dairy manure; the hydrolysis efficiency (in terms of glucose produced) by the mixed enzymes was higher than those by commercial enzyme and enzyme from the single culture T. reesei (Wen et al., 2005). Similarly, when Aspergillus niger was used in combination with T. reesei M, production of both cellulase and xylanases on water hyacinth substrate was enhanced considerably (Deshpande et al., 2008). They postulated that the synergetic effect may be attributed to the β-glucosidase production by A. niger which could eliminate the inhibitory effect of cellulbiose.

The cellulases obtained from simultaneous compatible mixed cultures of Aspergillus niger MSK-7 and Trichoderma viride MSK-10 have 59-66% more cotton saccharifying activity as compared to their pure cultures and other combinations (Ikram-ul-Haq et al., 2005). Likewise, A. niger produces a strong activity of β-glucosidase (Rashid et al., 1997), which causes deglycosylation of substrates and produces gentiobiose, a strong inducer of cellulases (Suto and Tomita, 2001). It was realized that co-culturing A. niger and T. reesei produces cellulases in substantial amounts (Juhasz et al., 2003). The synergetic interaction of these two strains in submerged fermentation led to a more efficient cellulose degradation than using either T. reesei or A. niger mono-cultures, owing to the complementary interactions of T. reesei cellulases and the β-glucosidases.
of A. niger strain for complete cellulose hydrolysis (Ahmad and Vermette, 2008). The enzyme activity and fungal biomass accumulated over time suggesting that there is a strong relationship between cellulase synthesis and the amount of total biomass formation (Ahmad and Vermette, 2008). That is why the dry biomass production in mixed culture of T. reesei and A. niger (21.4 g L\(^{-1}\)) as significantly increased by 91% as compared to that of mono-cultures, 11.2 g L\(^{-1}\) (Ahmad and Vermette, 2008).

On another study, it was found that highest β-glucosidase, α-celllobiohydrolase, β-galactosidase, and laccase activities were found for A. oryzae in combination with other fungi, in particular with Phanerochaete chrysosporium and highest β-xylolodase activity was obtained when A. niger was co-cultivated with P. chrysosporium on wheat bran (Hu et al., 2011). Therefore, the protein content of A. niger and Magnaporthe grisea co-culture was doubled as compared to respective monocultures on wheat bran at 25°C (Hu et al., 2011). Likewise, van Wyk (1999) investigated the effect of cellulases mixture from Penicillium funiculosum and T. reesei on used paper products (foolscap paper, filter paper, newspaper and office paper) degradation; he found that the mixture is an effective way to increase the degree of saccharification in equal cellulase combinations (1:1). For example, this combination caused a 32% increase of glucose production relative to the amount formed by P. funiculosum cellulase and 72% more than the amount produced by cellulase from T. reesei while acting on foolscap paper. With filter paper as substrate the increase was 34% higher than obtained with P. funiculosum cellulase and 82% more than that which resulted from the action of T. reesei cellulase. With newspaper, a 59% increase to P. funiculosum action and 65% higher value to T. reesei cellulase action was observed while this combination caused 310% more glucose formation from office paper than observed with P. funiculosum and 50% more than that produced by T. reesei cellulase.

What is discussed till now is enzymatic scarification of cellulose using two strains co-culture. However, Kato et al. (2004) investigated a four-strains-mixed-culture consisting of Clostridium straminisolvens CSK1, Pseudoxanthomonas sp. MI-3, Brevisbacillus sp. MI-5 and Bordetella sp. MI-6 (named CSK + M356) on cellulose degradation; cellulose degradation efficiency was different at varying sequential culture. Accordingly, four culture mixture was better than three and the three was more efficient than two culture mixture in cellulose degradation and biomass production.

Although, C. straminisolvens CSK1 had cellulose-degrading capability under anaerobic conditions, it did not grow under the conditions used for the original microflora, that is, aerobic static conditions (Kato et al., 2004). Likewise, Liesack et al. (2000) reported that anaerobic cellulolytic Clostridia and aerobic bacteria are often simultaneously detected at various sites where cellulose degradation occurs, such as rice paddy soils. In a mixed-culture consisting of C. straminisolvens CSK1 and all the aerobic isolates, cellulose degradation occurred under aerobic static conditions, while it did not in the pure culture of C. straminisolvens CSK1 or a mixed-culture of the aerobic isolates only. This indicates that the aerobic isolates enable C. straminisolvens CSK1 to grow and degrade cellulose under the aerobic static conditions.

Kato et al. (2004) summarized four reasons for efficient degradation of cellulose by mixed culture of CSK + M356. First, the aerobic bacteria supply anaerobic environment, which is an essential condition for growth of C. straminisolvens CSK1. The aerobic bacteria would consume oxygen by utilizing substrates contained in yeast extract and peptone, such as peptides and amino acids. Second, the aerobic isolates scavenge metabolites derived from cellulose, which otherwise deteriorate cellulolytic activity. Water soluble cellobiooligosaccharides, especially cellobiose, are known to repress cellulose degradation by cellulolytic Clostridia. The addition of the aerobic bacteria reduced the concentration of cellobiooligosaccharides in the culture solution. Third, the aerobic isolates neutralize the pH of the culture solution. It had been shown that the optimum initial pH for growth and cellulose degradation of C. straminisolvens CSK1 was 7.5, and little cellulose degradation occurred under pH 6.0. During cellulose degradation by CSK + M356, although the pH value dropped to below 6, it returned to and remained around 7. Although it is not accurately clear how the aerobic bacteria neutralize the pH value, acetic acid consumption would be one of the factors. In addition to the three functions mentioned above, another possible function for strengthening the cellulose degradation in the mixed-cultures might be stimulation of growth of other species by excretion of low-molecular weight compounds. Because of synergistic and better enzyme activity and hence better substrate scarification in coculture, more biomass and protein was obtained. When Eyini et al. (2002) compared protein productivity by the cellulolytic fungi, T. viride (MTCC 800), Chaetomium globosum and Aspergillus terreus in co-culture fermentations of cashew nut bran with monoculture, they found that co-cultures were more effective in substrate saccharification, which ranged between 85-88% as compared to the 62-67% saccharification shown by the monocultures. Maximum saccharification was induced by T. viride and C. globosum co-culture resulting in the highest 34% release of reducing sugars. As a result of better saccharification, the maximum biomass protein (16.4%) and the highest protein productivity (0.58%) were shown by T. viride and A. terreus co-culture (Eyini et al., 2002). With similar reason, Duenas et al. (1995) pointed out that the mixed culture in solid state fermentation (SSF) enriched the protein content of bagasse by 13%, converted 46% of its cellulose and hemicellulose into fermentable sugars, and produced the main enzymes for cellulose hydrolysis in optimal proportions with respectable volumetric productivity. In comparison, single culture SSF with T. reesei only resulted in 5% protein enrichment, a 32% conversion of cellulose.
and hemicellulose, an enzyme complex lacking the critical \(\beta \)-glucosidase components, and a much lower overall volumetric productivity (Duenas et al., 1995).

Starch degradation

Highest level of total digestibility (810.95%) was recorded in potato starch by culture filtrate from mixed culture of *A. niger* and *S. cerevisiae* without mineral supplementation than the monocultures (Abu et al., 2005). More ethanol was produced when amylolytic yeast (*Saccharomyces diastaticus* and *Endomycopsis capsularis*) cocultured with *Saccharomyces cerevisiae* 21 than their respective monocultures due to fast starch saccharification by amylolytic fungi (Verma et al., 2000). Although biomass production decreased, amylolytic activity rate and amount of starch utilization increased several-fold in coculture (*A. niger* and *S. cerevisiae*) versus the monoculture due to the synergistic metabolic interactions between the species (Abouzied and Reddy, 1986). Here, the reason for biomass production decrement should be investigated further. However, it might be the conversion of the carbon source to alcohol or other metabolic products that are not involved in growth.

EFFICIENT CARBON SOURCE UTILIZATION

Cheapest agricultural residues are used as substrates, basically as carbon source, for SCP production by microorganisms. Among these agricultural residues, apple pomace is the residue left after the extraction of juice from the apples. From an animal nutrition point of view, apple pomace is not a suitable feed as it is deficient in digestible protein (Rumsey, 1978). Growth of yeast on the apple pomace increases protein and vitamin contents (Hang, 1988). However, the low level of fermentable sugars limits protein enrichment of the pomace by yeasts; a major portion of the pomace comprises lignocelluloses. Co-culture of cellulolytic moulds (*A. niger* and *T. viridae*) and yeasts (*S. cerevisiae* NCIM 3261, *Candida tropicalis* "NCIM 3119 and *Candida utilis* NCIM 2353) enrich protein in apple pomace (Bhalla and Joshi, 1994) since adequate amount of fermentable sugars are obtained from cellulolytic mould partner. In the co-cultures, the mould hydrolyses the cellulose or hemicellulose component of the pomace by secreting extracellular enzymes (cellulases and xylanases) and the yeast then uses the sugar released. This results in better utilization of the substrate than either microorganism achieved independently (Bhalla and Joshi, 1994).

The use of *Candida kefyr* LY496 alone growing on whey as a source of SCP is disadvantageous because this represents an energetically less efficient method of lactose utilization since ethanol carried out of the reactor in the exit gas stream represents a potential loss of carbon source. In co-culture of *C. kefyr* LY496 and *Candida valida* LY497, no ethanol was detected (Carlotti et al., 1991) because it was used as a substrate by *C. valida* LY497. Hence the carbon source is efficiently utilized.

Several reasons for the efficiencies of nutrient utilization are investigated. Firstly, co-cultures are more efficient than monoculture for enzyme productions that are useful for substrate scarification. For example, in a mixed culture of *T. reesei* LM-UC4E1 mutant and *A. niger* ATCC 10864 with inorganic N-source, 10% more biomass, but 63% more cellulase, 85% more endoglucanase and 147% more \(\beta \)-glucosidase was produced than in single culture (Gutierrez-Correa et al., 1999). In view of the fact that co-culturing helped enzyme production more than growth, it appeared that synergistic interactions not directly related to growth were responsible for increased enzyme production (Gutierrez-Correa et al., 1999).

FILL SUBSTRATE UTILIZATION GAP

Even though microbes are nutritionally versatile, one microbe cannot utilize all substrates available. However, metabolic product of one microbe could be a substrate for other(s). For instance, *Candida valida* LY497 cannot utilize lactose present in whey. However, it uses alcohol produced by *C. kefyr* LY496 in the co-culture as a substrate (Carlotti et al., 1991). Hence, *C. valida* LY497 growth in lactose is indirectly possible in co-culture with *C. kefyr* LY496. *S. cerevisiae* cannot utilize starch (Shafiee et al., 2005). Nevertheless, it is greatly important for SCP production when it is compared with *Cryptococcus aerius*. That is why Shafiee et al. (2005) has grown *S. cerevisiae* with *C. aerius* on wheat starch for microbial protein production and the biomass increased by 10%.

A mutualistic symbiotic relationship between *Cellulomonas* and *Pseudomonas* was demonstrated to take place during the mixed growth on bagasse pith; the *Cellulomonas* supplying the carbon source (glucose produced from bagasse degradation) to the *Pseudomonas*, and the latter producing the vitamin supplements necessary for the *Cellulomonas* growth, allowing the growth of the mixed culture in a minimal medium, without any growth factor supplement (Rodriguez and Gallardo, 1993). As a result, high biomass production (19.4 g/L) was achieved on batch culture using this method (Rodriguez and Gallardo, 1993).

REMOVAL OF BYPRODUCT INHIBITION

Microorganisms may produce metabolic products that are inhibitory to the microbes or to others when they grow especially during stationary or death phase. *Kluyveromyces*, *Candida* and *Trichosporon*, which are involved in SCP production, are capable of metabolizing lactose (Fleet, 1990; Fleet and Main, 1987; Galvez et al.,...
1990). However, it has been observed that in the air limited cultures of \textit{Kluyveromyces fragilis}, a change in the cellular metabolism from oxidative to a mixed oxidative-fermentative state can occur. These changes could result in production of by-metabolic products such as alcohol, aldehydes, esters, etc., which reduce the yield of biomass on whey (Beausejour et al., 1981; Moresi et al., 1989; Pigache et al., 1992). It has been shown that a co-culture of \textit{Kluyveromyces} strains and \textit{S. cerevisiae} could overcome these undesired effects (Pigache et al., 1992). Since the \textit{S. cerevisiae} could not grow in lactose medium, it might have consumed some of the extracellular metabolites produced during the growth of \textit{Kluyveromyces} species.

Similarly, Cristiani-Urumba et al. (1997) reported that intermediate compounds such as ethanol, esters etc., formed during aerobic growth of \textit{K. lactis} and \textit{K. marxianus} could reduce the yeast biomass yields. Correspondingly, higher cell mass was produced in monoculture than in coculture (\textit{A. niger} and \textit{S. cerevisiae}), suggesting that substantially more carbon is used for cell production in monoculture, whereas in the coculture most of the substrate carbon is utilized for ethanol production; \textit{S. cerevisiae} was the dominant organism in coculture (Abouzied and Reddy, 1986). These intermediate compounds can be metabolized by some other yeast strains. In Carlotti et al. (1991) study, the ethanol produced by \textit{C. kefyr} LY496 from lactose in whey was utilized by its co-culture \textit{C. valida} LY497. That is why no ethanol was detected in \textit{C. kefyr} LY496 and \textit{C. valida} LY497 coculture.

The mixed culture of \textit{Lactobacillus kefranofaciens} and \textit{S. cerevisiae} increased the productivity of the lactic acid bacterium and kefiran production (Cheirsilp et al., 2003). Cheirsilp et al. (2003) reasoned out that the yeast assimilate the lactic acid produced by \textit{L. kefranofaciens} and hence the yeast make suitable environment for the lactic acid bacterium. In addition, since it is well known that the yeast possess catalase activity, one possibility is that yeast might reduce the amount of hydrogen peroxide, which is a growth inhibitor of lactic acid bacteria, in mixed culture (Chang et al., 1997).

The major problem in vitamin B12 production using \textit{Propionibacterium}, a bacterium used in SCP production, is the growth inhibition of the cell due to the accumulation of inhibitory metabolites such as propionic acid and acetic acid (Miyano et al., 2000). The propionic acid concentration can be lowered by introducing a mixed culture of \textit{Propionibacterium freudenreichii} and \textit{Ralstoniaeutropha}, noting that the latter microorganism can assimilate propionic acid and acetate under aerobic condition (Miyano et al., 2000).

Biomass Production Upgrading

In all SCP production, maximizing biomass must be given more emphasis since SCP is produced from microbes. Among different methods, coculturing is one. Accordingly, highest biomass yields were obtained from mixed cultures than monocultures (Carlotti et al., 1991; Ghanem, 1992; Moeini et al., 2004; Shafiee et al., 2005). The efficiency of whey conversion to biomass using \textit{C. kefyr} LY496 and \textit{C. valida} LY497 co-culture was increased by 20% as compared with pure culture of \textit{Candida kefyr} LY496 (Carlotti et al. 1991). Ghanem (1992) found that a mixed culture of \textit{T. reesei} and \textit{K. marxianus} was found to be more efficient for single cell protein production (51%) from beet pulp than a monoculture of \textit{T. reesei} (49%). Similarly, biomass production increased from 10.02 to 11.22 g/L using mixed culture of \textit{Cryptococcus aerius} and \textit{S. cerevisiae} (Shafiee et al., 2005).

Co-cultures increase biomass productivity by either efficient utilization of substrate or removal of inhibitory by products. Cristiani-Urumba et al. (2000) suggested that the ability of the mixed culture to use several sources of carbon simultaneously might be the main reason for increment of biomass. In addition, when two strains of amylolytic fungi, \textit{A. foetidus} MTCC 508 and \textit{A. niger} ITCC 2012, were assessed for amylolytic activity on a quantitative and qualitative basis in potato chips industry waste, it was found that more enzymes are produced in co-culture than monoculture. This results in better saccharification of substrates. Therefore, more biomass was found in mixed culture (4.55g L$^{-1}$) than \textit{A. foetidus} (2.4 g L$^{-1}$) and \textit{A. niger} (2.85 g L$^{-1}$) monocultures (Mishra et al., 2004). Coculture of \textit{Monascus} cells with a \textit{S. cerevisiae} culture filtrate stimulate reproduction followed by cell proliferation (Suh and Shin, 2000) and raising of biomass. According to Suh and Shin (2000), this is because of the protein kinase C (PKC) since PKC, which is produced by \textit{S. cerevisiae} in co-culture, has a profound effect on cell proliferation and differentiation.

Nutrient Enrichment of SCP

Fermentation is one method of to enhance nutrient content of feed through the biosynthesis of vitamins, essential amino acids, and proteins, by improving protein quality and fiber digestibility (Oboh, 2006). Among different kinds of fermentations, mixed culture fermentation are currently employed to increase nutritional value.

Protein enrichment

Growth of yeast on the agriculture residue increases protein and vitamin contents (Villas-Boas et al., 2002). The low level of fermentable sugars in rape straw for protein enrichment by yeasts was solved using co-culture of \textit{Ganoderma lucidum} and \textit{Candida utilis} (Ke et al., 2011). \textit{G. lucidum} and \textit{C. utilis} produced more protein (16.23%) than monoculture, \textit{G. lucidum}, (8.75 %) when \textit{C. utilis} is added after 7 day fermentation of \textit{G. lucidum}. In the co-cultures, the white rot fungi, \textit{G. lucidum} hydrolyses the cellulose or hemi-cellulose.
component of the rape straw by secreting extracellular enzymes (cellulases and xylanases) and the yeast then uses the sugar released (Ke et al., 2011) and produce protein. In the same manner, Oboh (2006) demonstrated that the low protein content of cassava peel was enriched by mixed culture of S. cerevisiae and Lactobacillus spp. using solid media fermentation techniques.

According to Bhalla and Joshi (1994), the co-culture of C. utilis and A. niger proved to be the best combination in increasing protein content of dried pomace to 20% under SSF conditions. The higher yield of protein from the C. utilis and A. niger combination probably results from the enzymatic hydrolysis of the lignocellulosic component of the pomace by the Aspergillus releasing hexoses and pentoses which Candida spp. can efficiently metabolize. S. cerevisiae, however, uses only hexoses and consequently is less efficient than the Candida spp. Similarly, the protein yield was increased from 49.3 to 54% using co-culture of T. reesei and K. marxianus on beet pulp wastages (Ghanem, 1992). Shafiee et al. (2005) pointed out that the protein content of the biomass increased from 27 (monoculture of Cryptococcus aerius) to 44.7% (mixed culture of C. aerius and S. cerevisiae) using wheat starch substrate. In the similar study, the amylolytic activity and starch degradation rate increased several fold in co-culture as compared to the monoculture due to synergetic metabolic interaction between the two species even though S. cerevisiae is nonamylolytic. Surprisingly, the crude protein increased from 11.3 to 54.5% with a sequential mixed culture of C. utilis and Brevibacterium lactofermentum on mixed substrates (Rajoka et al., 2011).

Sharma et al. (2006) showed that coculture with three cultures gave more protein than coculture with two cultures. The coculture of Saccharomyces sp. No. 12 + Phanerochaete chrysosporum and Saccharomyces sp. No. 12 + Pleurotus sajor-caju produce 4.55 and 4.025% crude protein which is more than their respective monocultures. When Azotobacter chroococcum, a free living nitrogen fixer, is added to Saccharomyces sp. No. 12 + P. chrysosporum and Saccharomyces sp. No. 12 + P. sajor-caju, the crude protein content of SCP increased to 5.075 and 4.55% respectively (Sharma et al., 2006). In addition, they also demonstrated that sequential culture order had great impact on amount of crude protein present in SCP. For instance, the crude protein content of Saccharomyces sp. No. 12 + A. chroococcum (added 3rd day) + {P. sajor-caju + P. chrysosporum} (added 6th day) combination and Saccharomyces sp. No. 12 + {P. sajor-caju + P. chrysosporum} (added 3rd day) + A. chroococcum (added 6th day) combination was 18.38 and 7.7%, respectively (Sharma et al., 2006).

Amino acid enrichment

When amino acid profiles of the mixed culture (T. reesei and K. marxianus) was compared with that of monoculture (T. reesei), content of some amino acids (leucine, phenylalanine, threonine, valine, aspartic, glutamic and proline) were higher in mixed culture than in monoculture while some others (crystine, methionine, tyrosine, glycine, histidine, and serine) were comparable (Ghanem, 1992). Ghanem (1992) also investigated that amino acid contents are higher than FAO standards except lysine and methionine in co-culture than monoculture.

Lipid enrichment

Monascus sp.JIOI cells co-cultured with a S. cerevisiae culture filtrate contained approximately four times more total lipids (mainly linoleic and oleic acid) than Monascus cells without co-culture (Suh and Shin, 2000).

Vitamin enrichment

Bacillus firmus AZ-78B and Streptomyces halstedii AZ- 8 A mixed culture was found to produce significantly higher yield of the vitamin B12 by growing on medium used for microbial growth under solid state fermentation conditions (SSF) containing agricultural wastes (sugarcane bagasse, wheat straw, rice straw, bean straw and cotton stalks) supplemented with the mineral salts (Atta et al., 2008). Likewise, vitamin B12 production using Propionibacterium was done more by coculturing withRalstoniaeutropha(Miyano et al., 2000). Cocultures fermentation of Bacillus sp. B4 and Klebsiella sp.KB2 could improve the quality of Thua- nho by enhancing more soluble protein and vitamin B12 content in the fermented soybean nine times higher than control fermentation with only Klebsiella sp.KB2 even though growth of the Bacillus sp. B4 and Klebsiella sp. KB2 by coculture was lower than that in the monoculture fermentation (Tangjitjaroenkun et al., 2004).

REDUCTION OF PRODUCTION COST

In SCP production, expensive chemicals and pressures were used to treat lignocellulosic substrates. In addition, substrates can be degraded to water soluble and simpler forms using industrial produced and very costly enzymes (Azmi et al., 2010) even though employing enzymes are environmentally friend. Co-culture reduces the cost of enzymes and chemicals required for treatments of lignocellulosic agricultural wastes (Azmi et al., 2009). Chen (2011) demonstrated cost reduction using co-culture of Pichia stipitis with S. cerevisiae and Zymomonas mobilis with cells of P. stipitis. However, biological processes can be cost effective and give useful byproducts (Mishra et al., 2004). Similarly, bio-treatment of lignin that protect cellulose and hemicellulose from being decomposed is inexpensive (Tian et al., 2012). Bio- treatment is environmental friendly. The single step
bioconversion from unhydrolyzed cassava starch into ethanol will reduce the cost of enzymes that is normally used in liquefaction and saccharification steps especially on yeast cells (Azmi et al., 2010).

In addition, the maintenance of strict anaerobic conditions for Clostridium to grow requires special conditions such as an addition of costly reducing agents into the medium, and flushing with N₂ gas. These factors increase the costs of the fermentation process. However, the cost was minimized by growing Clostridium botulinum with aerobic B. subtilis in cassava starch since the later removes the oxygen (Tran et al., 2010).

REDUCTION OF FERMENTATION TIME

One problem of producing microbial products and biomass at industry level is the relatively long time it takes to grow microbes as compared to the short time required to manufacture goods. Currently, different trials are being carried out using co-cultures to solve such problems. Co-culture (Pichia stipitis with S. cerevisiae and Z. mobilis with cells of P. stipitis) fermentation on lignocellulosic biomass can increase production rate and shorten fermentation time, and it is a promising technology although immature (Chen, 2011). In comparison with fermentation T. viride alone, the production time for maximum protein yield was reduced by several days in sequential co culture of T. viride and C. utilis on wheat straw (Peitersen, 1975). In addition, Shafiee et al. (2005) showed that co-culture of Cryptococcus aerius and S. cerevisiae fermentation for SCP production using wheat starch as a substrate was 58 h whereas C. aerius alone was 78 h.

Paring S. thermophilus ST5 with Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 resulted in faster fermentation. For instance, S. thermophilus ST5 in mixed cultures attains a pH of 4.7 in only 8 h as compared to the 16 h needed for pure cultures of B. longum R0175 and 12 h needed by L. helveticus R0052 (Champagne et al., 2009). Therefore one major upshot of mixing cultures was reducing the time the bacteria had to grow (Champagne et al., 2010).

STRAIN COMPATIBILITY

Strain compatibility is the determining factor for successful mixed culture fermentation. Therefore, the optimization of compatible mixed culturing of organisms having non-antagonistic behavior should be exploited before they are employed for SCP production (Ikrum-ul-Haq et al., 2005). For instance, Hu et al. (2011) showed that the mixed cultivation of A. niger and A. oryzae produced a little less protein than the individual cultures, while combination of either fungus with P. chrysosporium resulted in a small increase in protein production. Only the combination of A. niger and M. grisea among strains tested at 25°C resulted in a strong increase in protein production (Hu et al., 2011).

Similarly, A. terreus performed better in co-culture in the presence of T. viride (16.4% biomass protein by saccharification) rather than with Chaetomium globosum producing 12.4% biomass protein by saccharifying 85% of the substrate in 25 days (Eyini et al., 2002).

Strain compatibility is based on several factors. For instances, when a specified pH is favorable for one partner in coculture it might not be suitable for others. The same might be true for temperature, salt concentrations and other environmental variables (Chen, 2011). As it is discussed above, one may be antagonistic to other by producing harmful chemicals or/and creating not suitable environments. Therefore, strain compatibility should be studied before cocultures are are used for biomass or/and microbial product manufacturing.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Champagne CP, Tompkins TA, Buckley ND, Green-Johnson JM (2010).
Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isolavone and B-vitamin content of a fermented soy beverage. Food Microbiol. 27:968-972.

Biotechnology and Molecular Biology Reviews

Related Journals Published by Academic Journals

- Journal of Cell and Animal Biology
- African Journal of Environmental Science and Technology
- African Journal of Biochemistry Research
- African Journal of Agricultural Research
- African Journal of Microbiology Research
- African Journal of Biotechnology
- African Journal of Pharmacy and Pharmacology
- Scientific Research and Essays