ABOUT IJFA

The International Journal of Fisheries and Aquaculture (IJFA) (ISSN: 1996-0840) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as algaculture, Mariculture, fishery in terms of ecosystem health, Fisheries acoustics etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in the IJFA are peer-reviewed.

International Journal of Fisheries and Aquaculture (IJFA) (ISSN 2006-9839) is monthly (one volume per year) by Academic Journals.

Contact Us

Editorial Office: ijfa@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/IJFA

Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Ashraf Mohamed Abd El-Samee Goda.
Fish Nutrition Research Laboratory,
National Institute of Oceanography and Fisheries (NIOF), Cairo,
Egypt.

Dr. Kostas Kapiris
Institute of Marine Biological Resources of H.C.M.R.,
Athens, Hellas Greece.

Prof. Upali S. Amarasinghe
Department of Zoology,
University of Kelaniya,
Kelaniya 11600, Sri Lanka.
Sri Lanka.

Dr. Masoud Hedayatifard
Department of Fisheries Sciences and Aquaculture
College of Agriculture and Natural Resources
Advanced Education Center
Islamic Azad University, Ghaemshahr,
PO Box: 163, Iran.

Dr. V.S. Chandrasekaran
Central Institute of Brackishwater Aquaculture (ICAR)
75, Santhome High Road, R.A.Puram
Chennai-600028,
India.

Dr. Zhang Xiaoshuan
209#, China Agricultural University(East campus),
No.17 Qinghua Donglu,
Beijing, China

Prof. Nihar Rajan Chattopadhyay
Department of Aquaculture,
Faculty of Fishery Sciences,
West Bengal University of Animal & Fishery Sciences,
S. Buderhat Road,
P.O. Panchasayar, Kolkata 700094,
West Bengal,
India.

Dr. Dr. Zhang Xiaoshuan
Marine Bioprospecting Lab
Dept of Microbiology
Bharathidasan University
Tiruchirappalli 620 024
India.

Dr. Joseph Selvin
Marine Bioprospecting Lab
Dept of Microbiology
Bharathidasan University
Tiruchirappalli 620 024
India.

Dr. Lourdes Jimenez-Badillo
Ecology and Fisheries Centre, General Direction of Investigation, Universidad Veracruzana,
Hidalgo 617, Col. Río Jamapa,
Boca del Río,
Veracruz, México ZP 94290.
Editorial Board

Dr. Dada Adekunle Ayokanmi
Department of Fisheries and Aquaculture Technology, Federal University of Technology, P.M.B 704, Akure, Ondo State, Nigeria.

Dr. Ramasamy Harikrishnan
KOSEF Post Doctoral Fellow, Faculty of Marine Science, College of Ocean Sciences, Jeju National University, Jeju city, Jeju 690 756, South Korea.

Dr. Kawser Ahmed
Lab. of Ecology, Environment and Climate Change, Department of Fisheries, University of Dhaka, Dhaka-1000, Bangladesh.

Dr. Maxwell Barson
Biological Sciences Department
University of Zimbabwe PO Box MP 167
Mount Pleasant Harare, Zimbabwe.

Dr. Christopher Marlowe Arandela Caipang
Faculty of Biosciences and Aquaculture, Bodø University College, Bodø 8049, Norway.

Dr. William S. Davidson
Department of Molecular Biology and Biochemistry
Simon Fraser University 8888 University Drive
Burnaby, British Columbia
Canada V5A 1S6.

Dr. Babak Ghaednia
Iran Shrimp Research Center (ISRC)
Taleghani High Way, P.O.Box 1374
Bushehr, Iran.

Dr. Ramachandra Bhatta
Animal and Fisheries Sciences University, College of Fisheries, Kankanady Mangalore 575 002
India.

Dr. Harikrishnan
Faculty of Marine Science
College of Ocean Sciences
Jeju National University, Jeju, 690-756
South Korea.

Prof. Ratha Braja Kishore
Department of Zoology
Biochemical Adaptation Laboratory
Banaras Hindu University
Varanasi 221005 India.

Dr. Esmaile AM Shakman
Am Vögenteich,13/ 3.09.618057 Rostock
Germany.

Prof. B. Sharma,
Department of Biochemistry
Coordinator, Centre for Biotechnology
University of Allahabad
Allahabad-U.P., India.

Dr. Sebastián Villasante
Fisheries Economics and Natural Resources Research Unit
University of Santiago de Compostela, A Coruña, Spain.

Dr. Mohamed Hamed Yassien
National Institute of Oceanography and Fisheries, Suez branch,
P.O. Box (182), Suez, Egypt.

Dr. Abhay Bhalchandra Thakur
2/9 Mai Krupa Sagar Society Opp. Catering College
Veer Savarkar Marg Dadar, Mumbai -400 028
Maharashtra, India.

Dr. Riaz Ahmad
Department of Zoology
Aligarh Muslim University
Aligarh- 202002, (UP) India.
ARTICLES

Research Articles

Effects of carbohydrate sources on the growth and body compositions of African catfish (Clarias gariepinus) 55
Orire A. M. and Sadiku S. O. E.
Full Length Research Paper

Effects of carbohydrate sources on the growth and body compositions of African catfish (Clarias gariepinus)

Orire A. M. and Sadiku S. O. E.

Department of Water Resources, Aquaculture and Fisheries Technology, Federal University of Technology, Minna, P. M. B. 65, Niger State, Nigeria.

Received 28 July 2013; Accepted 21 October, 2013

Feeding trial was conducted to examine the protein sparing effects of carbohydrate in Clarias gariepinus, an attempt to reduce the feed cost. C. gariepinus fingerlings mean weights of 8.32 ±0.04 g were randomly allotted into a group of 15 fishes per tank in triplicate of 10 treatments. They were fed on nine experimental diets and a commercial catfish reference diet (CRD). The formulated diets have three levels of carbohydrate (5, 10 and 20%) of three carbohydrate sources (corn fibre, corn starch and glucose) and three levels of crude protein (30, 25 and 20%). The results of the trial showed significant differences (P<0.05) in all the carbohydrate sources fed to C. gariepinus at different levels of carbohydrate/protein ratios. However, of the three carbohydrate sources, corn fibre spared protein at 5% inclusion levels while other carbohydrate sources gave significantly same degree of performance.

Key words: Protein sparing, carbohydrate sources, Clarias gariepinus.

INTRODUCTION

Carbohydrate is a cheap source of dietary energy in domestic animals including fish (Shiau and Linn, 2001). Carbohydrates are important non-protein energy sources for fish and should be included in their diets at appropriate levels which maximize the use of dietary protein for growth. The amount of non-protein energy sources that can be incorporated in fish diets is not fully understood and as such no dietary requirement for dietary carbohydrate has been demonstrated in fish; however, certain fish species exhibit reduced growth rates when fed carbohydrate free diets (Wilson, 1994). Peragón et al. (1999) further reported that carbohydrates affect nutrient utilization in the muscle of Rainbow Trout (Oncorhynchus mykiss). Carbohydrate utilisation is much more variable and probably is related to natural feeding habits, and incorporation of this nutrient may add beneficial effects to the pelleting quality of the diet and to fish growth (Fagbenro et al., 2003; Wilson, 1994; NRC, 1993). Excessive dietary carbohydrate in fish diet may also lead to fat deposition by stimulating the activities of lipogenic enzymes (Likimani and Wilson, 1982). Thus, rainbow trout (Brauge et al., 1994), Tilapia zilli (El-sayed...
and Garling, 1988), and red drum, *sciaenops* (Serrano et al., 1992; Ellis and Reigh, 1991) have been reported to have poor utilization for carbohydrate than *Oreochromis niloticus* (Shimeno et al., 1993). It has been reported that carbohydrate deprivation reduces NADPH-production in fish liver but not in adipose tissue (Barroso et al., 2001). Information on nutritional studies in African catfish *Clarias gariepinus* seems limited and has been dealt mainly with dietary protein and energy requirements using semi purified diets (Degani et al., 1989; Uys 1989; Henken et al., 1986; Machiels and Henken, 1985). Until now, carbohydrate utilization is still under investigation as reported by Sánchez-Muros et al., 1996, although *C. gariepinus* is reported to be omnivorous and might utilize carbohydrate well. The objective of this study is to determine the effect of feeding various sources of carbohydrate on growth and body compositions of African catfish, *C. gariepinus*.

MATERIALS AND METHODS

Experimental system

The study was conducted in a recycling water system of the Federal University of Technology, Minna. Water quality parameters were monitored (Temperature- 24.5-25.60; pH-6.0-7.5; conductivity (μcm) × 10 –7.42-103.34; Dissolve oxygen (mg/L)-5.50-6.80 ± 3.00; Ammonia nitrogen (mg/L) -0.07-0.36 ± 0.05; nitrate nitrogen (mg/L) -0.39-0.67±250.00; Nitrite nitrogen (mg/L) -0.02-0.24±0.25.

Experimental diets

The experimental design was complete randomized design (CRD). Nine experimental diets and one commercial reference diet [CRD - Coppen Catfish feed from Netherland)] were used for the feeding trial. The experimental diets were formulated using equational method of two unknowns. Nine experimental diets of three levels of carbohydrate; complex, moderately complex and simple sugar (corn fibre, corn starch and glucose-D) at 5, 10 and 20% inclusion levels. The formulation and its proximate analysis is shown in Table 1.

Experimental fish

150 fingerlings of African catfish, *C. gariepinus* of mean weight 8.32±0.04 g were obtained from the hatchery unit of the Department of Water Resources, Aquaculture and Fisheries Technology of School of Agriculture and Agricultural Technology, Federal University of Technology, Minna. The fishes were acclimatized for one week in a 50 L cylindrical tank. The treatments were randomly assigned to a triplicate group of the tanks. The duration of the experiment was 8 weeks. Before the commencement of the feeding trial, 7 fishes from the acclimated lots were randomly sacrificed for determination of initial whole body composition. The fishes were bulked weighed fortnightly and at the end of the experiment, all fishes were weighed and counted individually. 5 fishes from each tank were collected for determination of final whole body composition. The fishes were fed twice daily between the hours 10.00 and 16.00 to apparent satiation.

Experimental analyses and growth parameters

Proximate analysis for moisture, crude protein, crude lipid and ash of carcass, feed ingredients and experimental diets were determined according to the methods of Association of Official Analytical Chemists (AOAC, 2000). Final values for each group represent the arithmetic mean of the triplicates. Feed intake was monitored to measure average feed intake and their effects on growth. The growth and nutrient utilization parameters measured include weight gain, specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), apparent net protein utilization (ANPU). The growth parameters were computed stated as follows:

Mean weight gain = Mean final weigh – mean initial weight

Specific Growth Rate (SGR) = \(\frac{(\log W_2 - \log W_1)}{T_2 - T_1} \) x 100

Where, \(W_2 \) and \(W_1 \) represent final and initial weight, and \(T_2 \) and \(T_1 \) represent final and initial time.

Feed conversion ratio = Feed fed on dry matter/fish live weight gain

Protein efficiency ratio (PER) = Mean weight gain per protein fed

Protein intake (g) = Feed intake x crude protein of feed

Apparent net protein utilization (ANPU %) = \(\frac{(P_2 \cdot P_1)}{\text{Total protein consumed (g)}} \) x 100

Where, \(P_1 \) is the protein in fish carcass (g) at the beginning of the study and \(P_2 \) is the protein in fish carcass (g) at the end of the study.

Statistical analysis

The experimental design was factorial and the data was subjected to one way analysis of variance to test their significant levels at 5% probability. The mean were separated using Turkey’s method. The regression coefficients were analyzed using Minitab Release 14 while the graphs were drawn using the Microsoft excel window 2007.

RESULTS

Table 2 showed the results of growth parameters for various carbohydrate sources fed *C. gariepinus*. The growth performance of *C. gariepinus* fed corn fibre at three levels of carbohydrate (C) and protein (P) (C/P) ratios indicated no significant differences (P<0.05) between treatment 10:25 and 20:20 C/P ratios both of which were significantly lower (P<0.05) than 5 : 30 in mean weight gain (MWG) and specific growth rate (SGR). There were no significant differences (P>0.05) in the feed conversion ratios (FCR) for all the treatments. There were significant differences (P<0.05) in the protein
Table 1. Formulation and composition of the experimental diets and proximate analysis.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishmeal</td>
<td>27.92</td>
<td>33.31</td>
<td>36.39</td>
<td>20.97</td>
<td>26.93</td>
<td>30.33</td>
<td>14.03</td>
<td>20.70</td>
<td>24.26</td>
<td></td>
</tr>
<tr>
<td>Corn fibre</td>
<td>67.09</td>
<td>0.00</td>
<td>0.00</td>
<td>74.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>80.97</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Corn Starch</td>
<td>0.00</td>
<td>61.69</td>
<td>0.00</td>
<td>0.00</td>
<td>68.08</td>
<td>0.00</td>
<td>0.00</td>
<td>74.46</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>0.00</td>
<td>0.00</td>
<td>58.61</td>
<td>0.00</td>
<td>64.67</td>
<td>0.00</td>
<td>0.00</td>
<td>70.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V/M premix</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.01</td>
<td>100.00</td>
<td>100.00</td>
<td>100.01</td>
<td>100.00</td>
<td>100.01</td>
<td>100.00</td>
<td>100.16</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Proximate values</td>
<td></td>
</tr>
<tr>
<td>Crude protein</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>40.20</td>
<td>41.10</td>
<td>44.00</td>
<td>40.78</td>
<td>40.35</td>
<td>42.87</td>
<td>41.87</td>
<td>32.46</td>
<td>35.95</td>
<td>5.34</td>
</tr>
<tr>
<td>NFE</td>
<td>5.45</td>
<td>3.16</td>
<td>5.77</td>
<td>14.83</td>
<td>12.10</td>
<td>13.98</td>
<td>20.98</td>
<td>25.50</td>
<td>24.00</td>
<td>11.15</td>
</tr>
<tr>
<td>Moisture</td>
<td>9.80</td>
<td>10.10</td>
<td>8.89</td>
<td>9.78</td>
<td>9.98</td>
<td>8.76</td>
<td>9.50</td>
<td>8.67</td>
<td>10.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100.04</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Mean growth parameters of *Clarias gariepinus* fed various Carbohydrates : Protein ratios for 8 weeks.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Body Wt. (g)</td>
<td>1.72±0.08</td>
<td>1.80±0.11</td>
<td>1.87±0.33</td>
<td>1.72±0.06</td>
<td>1.72±0.21</td>
<td>1.72±0.30</td>
<td>1.68±0.16</td>
<td>1.83±0.05</td>
<td>1.53±0.06</td>
<td>1.68±0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Final Body Wt. (g)</td>
<td>3.17±1.75</td>
<td>2.02±0.11</td>
<td>2.14±0.37</td>
<td>2.25±0.52</td>
<td>2.61±0.56</td>
<td>2.04±0.16</td>
<td>1.89±0.29</td>
<td>2.00±0.09</td>
<td>1.83±0.35</td>
<td>6.55±1.34</td>
<td>0.76</td>
</tr>
<tr>
<td>Weight gain (g)</td>
<td>1.46±1.74</td>
<td>0.37±0.31</td>
<td>0.27±0.10</td>
<td>0.54±0.51</td>
<td>0.90±0.58</td>
<td>0.32±0.31</td>
<td>0.21±0.31</td>
<td>0.18±0.05</td>
<td>0.30±0.39</td>
<td>4.87±1.18</td>
<td>0.74</td>
</tr>
<tr>
<td>SGR(%)</td>
<td>1.09±0.90</td>
<td>0.21±0.48</td>
<td>0.24±0.07</td>
<td>0.48±0.40</td>
<td>0.75±0.40</td>
<td>0.31±0.33</td>
<td>0.21±0.14</td>
<td>0.16±0.04</td>
<td>0.32±0.38</td>
<td>2.42±0.21</td>
<td>0.41</td>
</tr>
<tr>
<td>FCR</td>
<td>3.08±2.32</td>
<td>3.29±1.89</td>
<td>3.24±2.55</td>
<td>4.02±3.22</td>
<td>2.67±1.26</td>
<td>4.45±1.70</td>
<td>4.32±0.00</td>
<td>4.95±0.00</td>
<td>2.59±0.00</td>
<td>0.41±0.09</td>
<td>1.99</td>
</tr>
<tr>
<td>PER</td>
<td>2.86±3.40</td>
<td>0.91±0.76</td>
<td>0.73±0.28</td>
<td>0.92±0.88</td>
<td>1.87±1.21</td>
<td>2.94±2.74</td>
<td>0.36±0.39</td>
<td>0.38±0.10</td>
<td>0.81±1.04</td>
<td>5.19±1.25</td>
<td>1.57</td>
</tr>
<tr>
<td>ANPU(%)</td>
<td>43.43±0.01</td>
<td>75.91±0.01</td>
<td>91.49±0.01</td>
<td>1.60±0.01</td>
<td>66.26±0.01</td>
<td>59.19±0.01</td>
<td>13.03±0.01</td>
<td>39.51±0.01</td>
<td>95.53±0.01</td>
<td>30.88±0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>53.34±23.09</td>
<td>60.00±6.67</td>
<td>62.22±7.70</td>
<td>68.89±36.71</td>
<td>46.67±24.04</td>
<td>71.11±10.18</td>
<td>40.00±0.00</td>
<td>44.44±15.39</td>
<td>40.00±24.04</td>
<td>75.55±16.78</td>
<td>19.40</td>
</tr>
</tbody>
</table>

Mean data on the same row carrying letters with different superscripts are significantly different (P<0.05) from each other.

Efficiency ratios (PER) of treatments 15:25 and 20:20 C/P ratios which were significantly higher (P<0.05) than 5:30 C/P ratio. There were significant differences (P<0.05) in the apparent net protein utilization (ANPU) for all the treatments which was highest for diet 20:20 C/P ratio. The survival percentages also indicated significant differences (P<0.05) between diets 15:25 and 20:20 both of which were significantly higher (P<0.05) than 5:30 C/P ratio.

The corn starch based diets did not exhibit significant differences (P>0.05) for all the
treatments, however, diet 20:20 C/P ratio gave the lowest mean weight gain (MWG). There were significant differences (P<0.05) in the SGR for all the treatments which was highest in 10:25 C/P ratio. The FCR values also indicated significant differences (P<0.05) for all the treatments but diet 10:25 gave the lowest FCR value. There were significant differences (P<0.05) in the PER values for all the treatments which was highest for 20:20 C/P ratio. However, the ANPU values also showed significant differences (P<0.05) for all the treatments but diet containing 10:25 C/P ratio gave the highest value.

The corn starch based diets exhibited significant differences (P<0.05) in the body protein for all the treatments which was highest for 15:25 C/P ratio. However, the growth responses for corn fibre and glucose shown in Figure 1 indicated a growth curve with apparently similar trend while, the corn fibre appeared to have a better protein sparing effect toward the end of the feeding trial at 5:30 C/P ratio.

Table 3. Body composition of Clarias gariepinus fed different carbohydrate sources to different protein ratio.

<table>
<thead>
<tr>
<th>Proximate analysis (%)</th>
<th>Initial</th>
<th>Corn fibre</th>
<th>Corn starch</th>
<th>Glucose-D</th>
<th>CRD</th>
<th>SD±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>52.95±0.01</td>
<td>63.35±0.00</td>
<td>66.78±0.01</td>
<td>66.33±0.01</td>
<td>67.15±0.01</td>
<td>63.47±0.01</td>
</tr>
<tr>
<td>Crude fat</td>
<td>5.39±0.01</td>
<td>9.52±0.01</td>
<td>3.78±0.02</td>
<td>4.45±0.01</td>
<td>5.72±0.01</td>
<td>2.98±0.01</td>
</tr>
<tr>
<td>Ash</td>
<td>6.20±0.01</td>
<td>7.17±0.04</td>
<td>5.71±0.01</td>
<td>7.02±0.01</td>
<td>5.97±0.02</td>
<td>3.71±0.01</td>
</tr>
<tr>
<td>NFE</td>
<td>0.36±0.01</td>
<td>2.01±0.01</td>
<td>3.11±0.01</td>
<td>1.10±0.01</td>
<td>1.99±0.01</td>
<td>0.99±0.01</td>
</tr>
<tr>
<td>Moisture</td>
<td>26.15±0.01</td>
<td>14.91±0.01</td>
<td>16.08±0.01</td>
<td>27.47±0.01</td>
<td>13.68±0.01</td>
<td>10.57±0.01</td>
</tr>
</tbody>
</table>

Mean data on the same row carrying letter(s) with different superscripts are significantly different (P<0.05).

The corn starch based diets exhibited significant differences (P<0.05) in the body protein for all the treatments which was highest for 15:25 C/P ratio. Similarly, the body fat indicated significant differences (P<0.05) for all treatments but was lowest for 20:20 C/P ratio. The body ash also expressed significant differences (P<0.05) for all the treatments, however, diet 10:25 gave the lowest body ash. There was also significant differences (P<0.05) in the moisture contents which was lowest for diet 20:20 C/P ratio.
Figure 1. *Clarias gariepinus* fed various sources of carbohydrate at varying levels of inclusion for 56 days.

\[
\text{weight gain (g) vs Level} = 1.33 + 0.05 \quad r^2 = 40.1 \quad (p<0.05)
\]

Figure 2. Regression of *Clarias gariepinus* fed varying inclusion levels of corn starch, corn fibre and glucose for 8 weeks.
ratio. The regression co-efficient in Figure 2 showed positive relationships between weight gain and the glucose levels and negative relationship with protein levels. The corn starch also showed a negative relationship in its weight gain and the inclusion levels of corn starch and a positive relationship with protein levels the corn fibre based diets indicated a negative relationship between the weight gain and the corn fibre levels and positive relationship with protein levels.

DISCUSSION

The results on growth performance indicated utilization of carbohydrate irrespective of sources by *C. gariepinus* which was an expression of carbohydrate sparing effects of protein. Examining the carbohydrate sources at the three levels of carbohydrate/protein ratios, the corn fibre based diets was well utilized for growth at the lowest inclusion level of carbohydrate and highest crude protein inclusion level (C5:30P). However, this performance may not be seen as true protein sparing since protein was still at its maximum level of inclusion. On the contrary, the corn starch based diets at a higher inclusion level (15:25), performed better than other carbohydrate sources. While at the highest level of ratio (20:20), glucose exhibited same level of growth with other ratios. The similar in trend of growth for the glucose based diets signified that *C. gariepinus* can tolerate up to 20% glucose level in its diet without adverse effects. Utilization of up to 20% glucose level is an indication of protein sparing effects of glucose in *C. gariepinus* as evident in the regression equation that was positive which was corroborated with strong positive correlation between the mean weight gain and glucose levels and negative relationship between the mean weight gain and protein levels and negative correlation between the mean weight gain and corn starch inclusion level (Adeparusi and Jimoh, 2002). The negative relationship in its weight gain and the corn fibre levels and positive relationship with protein levels.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGMENTS

Authors expressed appreciation to STEP-B innovator of Tomorrow grant that enabled the conduct of the research work.

REFERENCES

International Journal of Fisheries and Aquaculture

Related Journals Published by Academic Journals

- African Journal of Agricultural Research
- Journal of Horticulture and Forestry
- Journal of Cereals and Oilseeds
- International Journal of Livestock Production
- International Journal of Fisheries and Aquaculture
- Journal of Development and Agricultural Economics