ABOUT AJBR

The African Journal of Bacteriology Research (AJBR) (ISSN 2006-9871) is published Monthly (one volume per year) by Academic Journals.

African Journal of Bacteriology Research (AJBR) is a peer reviewed journal. The journal is published per article and covers all areas of the subject such as: Bacterial physiology, Bacterial floral for human, Prokaryotes of the environment, Bacterial endotoxin, Cell signalling.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email jbr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at jbr@academicjournals.org.
Editor

Dr. Colleen Olive
Queensland Institute of Medical Research
PO Royal Brisbane Hospital
Brisbane, Australia.

Dr. Lyuba Doumanova
The Stephan Angeloff Institute of Microbiology
Bulgarian Academy of Sciences
Sofia, Bulgaria.

Dr. Imtiaz Wani
S.M.H.S Hospital
Amira Kadal,
India.

Dr. Aamir Shahzad
Max F. Perutz Laboratories
University of Vienna
Vienna, Austria.

Dr. Ömür Baysal
West Mediterranean Agricultural Research Institute (BATEM)
Antalya, Turkey.

Associate Editors

Dr. Chang-Gu Hyun
Jeju Biodiversity Research Institute (JBRI) and Jeju Hi-Tech Industry Development Institute (HiDI)
Jeju, Korea.

Dr. Ramasamy Harikrishnan
Jeju National University
Department of Aquatic Life Medicine
College of Ocean Science
Korea.

Prof. Salah M. Azwai
Al Fateh University
Tripoli,
Libya.

Dr. Osman Radwan
University of Illinois
Urbana, IL
USA.

Prof. Abdulghani Alsamarai
Tikrit University College of Medicine
Tikrit,
Iraq.

Dr. Nuno Cerca
University of Minho
Braga,
Portugal.

Dr. Mohammad Reza Shakibaie
Department of Microbiology and Immunology
Kerman University of Medical Sciences
Kerman,
Iran.
Editorial Board

Dr. Bojarajan Senthilkumar
Institute for Ocean Management
Anna University
Chennai, India.

Dr. Asis Khan
Washington University
St. Louis, MO
USA.

Saikat Kumar Basu
University of Lethbridge
Lethbridge, AB
Canada.

Dr. Sivaramaiah Nallapeta
ONAN Centre for Molecular Investigations
Secunderabad, India.

Dr. Yajnavalka Banerjee
Max-Planck Institute for Biophysical Chemistry
Goettingen, Germany.

Dr. Petr Slama
Mendel University of Agriculture and Forestry
Department of Animal Morphology, Physiology and Genetics
Brno, Czech Republic.

Dr. Petros V. Vlastarakos
Lister Hospital
Stevenage, UK.

Dr. Lee Seong Wei
Department Fishery Science and Aquaculture
Faculty Agrotechnology and Food Science
Universiti Malaysia Terengganu
Terengganu, Malaysia.

Dr. Gurdeep Rastogi
Department of Plant Pathology
University of California
Davis, CA
USA.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc. should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:
Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the African Journal of Bacteriology Research is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties
In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJBR, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
Antibiogram of *Escherichia coli* strains isolated from food of bovine origin in selected Woredas of Tigray, Ethiopia
Antibiogram of \textit{Escherichia coli} strains isolated from food of bovine origin in selected Woredas of Tigray, Ethiopia

Abebe M.1*, Hailelule A.1, Abrha B.1, Nigus A.1, Birhanu M.1, Adane H.2, Genene T.3, Daniel H.4, Getachew G.1, Merga G.4 and Haftay A.1

1College of Veterinary Medicine, Mekelle University, Tigray, Ethiopia.2Wachemo University, SNNP, Ethiopia.3Institute of Biodiversity Conservation, Addis Ababa, Ethiopia.4Asella School of Health Science, Adama University of Science and Technology, Asella, Ethiopia.

Received 16 February, 2014; Accepted 18 June, 2014

\textit{Escherichia coli} is a food borne pathogen causing a major public health problems. The use of antimicrobials in food animals produces resistant bacteria. To determine antimicrobial resistance of \textit{E. coli} species isolated from food of bovine origin, a total of 384 of milk samples (n=192) and meat samples (n=192) were collected from different sources in 1:1 ratio in selected Woredas of Tigray, Ethiopia. Samples were cultured on sheep blood agar and sub-cultured on Eosin Methylene and further sub-cultured on Biolog Universal Growth Agar (BUG media). Pure colonies were taken and suspension was made and inoculated into micro plates. The bacteria were identified by BiOLOG Identification system. Antimicrobial resistance of \textit{E. coli} isolates was done by disk diffusion method using twenty antimicrobials and minimum inhibitory concentration was determined for resistant isolates. The study revealed that out of 384 samples of milk and meat, \textit{E. coli} 0\textsubscript{157}:H\textsubscript{7} (10.4\%), \textit{E. coli}, Non 157 STEC (2.6\%) and \textit{E. coli} enterotoxigenic (10.7\%) were isolated. Antimicrobial resistance pattern of \textit{E. coli} isolates (n=91) revealed high resistance against cephalothin (84.6\%), chloroamphenicol (83.3\%), tetracycline (88.9\%), gentamicin (65.9\%), but low resistance for sulphonazole-trimethoprim (16.5\%), neomycin (15.4\%), streptomycin (29.7\%), kanamycin (30.8\%), ciprofloxacin (10\%), nitrofurantoine (3.3\%), norfloxon (3.3\%) and ciftriacone (9.9\%). Multidrug resistance was observed in 82 (93.2\%) of species. The high prevalence of 0\textsubscript{157}:H\textsubscript{7} and enterotoxigenic and high rates of multiple drug resistance indicate there is a need for timely designing prevention and control strategies.

Key words: Antimicrobial, \textit{Escherichia coli}, meat, milk, resistance, zoonoses.

INTRODUCTION

Food safety, safety of products of animal origin in particular, is an increasingly important issue with regards to human health. With increasing consumption of products of animal origin, the risk of food borne...
diseases of humans also increases. One product that is commonly distributed in raw form is milk. Raw milk is a known vehicle and medium for pathogens like *Escherichia coli*. Milk can become contaminated in many ways. There are mammary gland infection (mastitis) or a systemic infection, and contamination through the faeces of the animals and the hand of the milker usually during hand milking procedure or by equipment used for milk collection and storage (Leedom, 2006).

Similarly, meat and its products are important reservoirs for many of the food-borne pathogens, including *E. coli* O157:H7. Foodborne diseases remain a major public health problem across the globe. The problem is severe in developing countries due to difficulties in securing optimal hygienic food handling practices. In developing countries, up to an estimated 70% of cases of diarrheal disease are associated with the consumption of contaminated food (WHO, 2000). Reliable statistics on food borne diseases are not available due to poor or non-existent reporting systems in most developing countries.

Besides its high prevalence, the rising antimicrobial resistance (AMR) is partly due to the overuse and misuse of antimicrobials (e.g. as growth promoters for food animals) in food animal production, becoming a major problem.

In some countries, up to 70% of antibiotics are used for animals raised in industrial farms that are not sick, to offset the effects of crowding and poor sanitation. This practice promotes the development of drug-resistant bacteria that can spread to humans. Thus, food borne diseases, when associated with resistant bacteria, are harder to treat, resulting in longer hospitalization, higher mortality and morbidity, decreased productivity, and increased costs (WHO, 2011). Likewise, antimicrobial resistance is constantly evolving challenge. Further transfer of antimicrobial resistant bacteria to humans via food chain has been reported (Angulo et al., 2004). A limited number of investigations have been studied regarding the presence of antimicrobial resistance in food animals in Ethiopia (Mekonnen et al., 2005; Hundera et al., 2005). The finding of the present study on antimicrobial resistance of food borne pathogens will provide useful information on the development of public health policy in food animal production. Thus, the study was carried out with the aim to isolate *E. coli* species and to determine its antimicrobial resistance from food of bovine origin.

Materials and Methods

Study area

The study was conducted in three districts of Tigray, Mekelle; Alamata and Adigrat. These districts were selected mainly because of their difference in the altitudes that may help us to obtain reliable evidence on the magnitude and epidemiology of disease in the region (RSITBARD, 2009).

Study design

A cross-sectional study was conducted from November 2012 to June 2013 in the selected districts of Tigray, Ethiopia.

Sample size and sampling technique

A total of 384 samples were collected from bovine raw milk and meat in the selected Woredas of Tigray, Ethiopia. The sample size was determined according the formula given by Thrusfield (2005) by taking prevalence of 50% so that the maximum sample size could be achieved. Accordingly, the calculated value for sample size was 384. Then, equal number of milk (n1=192) and meat (n2=192) samples were included purposely. In sampling of milk and meat samples, simple random sampling technique was applied until sample size was achieved.

Sample collection, transport and handling

Milk samples

Milk samples were collected according to the National Mastitis Council Guideline (1990) by principal investigator. Milk samples were aseptically collected directly from teats of lactating cows (n=64) and from distribution sites (shop=64 and restaurant=64) using sterile sample bottles. Samples were transported using icebox to Microbiology Laboratory of College of Veterinary Medicine, Mekelle University. Milk samples were immediately cultured or stored at 4°C for a maximum of 24 h until the samples were cultured.

Meat samples

Raw meat from slaughter house (n=64) during slaughtering and non pre-packed meat samples from beef were purchased randomly from selected butcher shops (n=64) and restaurant (n=64). Sections of meat (10 × 10 × 3 cm) from neck of each carcass were aseptically removed and placed in separate sterile plastic bags to prevent spilling and cross contamination. It was immediately transported to Microbiology Laboratory of College of Veterinary Medicine, Mekelle University in a cooler with ice packs. After culture, the prepared samples were transported with icebox to Microbiology Laboratory of Institute of Biodiversity Conservation, Addis Ababa for further confirmatory identification.

Culture and identification

Milk sample

Bacteriological examination was done according to the National Mastitis Council Guideline (1990). A 0.1 ml of milk was spread on tryptose blood agar base (Oxoid, UK) enriched with 7% defibrinated sheep blood using spread plate after centrifugation and discarding the supernatant. Blood agar plates were incubated aerobically at 37°C for 24 - 48 h. Then Gram staining was done for all suspected cultures of *E. coli* and Gram negative bacillus were sub-cultured into Eosin Methylene blue agar. Then, pure colony was taken and sub-cultured on BUG/BIOLOG Universal Growth Media) at 37°C for 18-24 h as a primary and secondary culture. Well-isolated fresh colonies from BUG (Biolog, USA) media were inoculated into 18-20 inoculation fluid to have bacterial suspension with turbidity equivalent to 20% transmittance as measured by turbidity meter. This suspension was poured into micro plates with multi-channel pipettes. The micro plates were loaded into Omnilog tray to be
incubated, analyzed and interpreted for 18-24 h as per BILOG Users Guideline (2008) and finally identified bacteria were printed out.

Meat sample

The microbiological examination of each meat sample, 25 g was homogenized with 1 g of the homogenate and added to 5 mL of buffered peptone water (BPW· HiMedia Laboratories, Mumbai, India) and incubated. Cultures spread on tryptose blood agar base (Oxoid, UK) enriched with 7% defibrinated sheep blood using the spread plate techniques and the plates were incubated overnight at 37°C. From each plate (one plate for each meat sample), 5 to 10 suspected bacterial colonies were selected and sub-cultured onto Eosin Methylene Blue agar. Then pure colony was further subcultured on BUG at 37°C for 18-24 h as primary and secondary culture. Well-isolated fresh colonies from BUG (Biolog, USA) media were inoculated into 18-20 inoculation fluid to have bacterial suspension with turbidity equivalent to 20% transmittance as measured by turbidity meter. This suspension was poured into micro plates with multi-channel pipettes. The micro plates were loaded into Omnilog tray and incubated, analyzed and interpreted for 18-24 h as per BILOG Users Guideline (2008) and finally identified bacteria were printed out.

Antimicrobial susceptibility test

Antimicrobial susceptibility test was performed for all isolates according to the criteria of the Clinical and Laboratory Standards Institute (2008). For susceptibility test, a pure culture of all identified E. coli was taken from BUG media and transferred to a tube containing 5 ml of sterile normal saline and mixed gently to make homogenous suspension which was adjusted to a turbidity equivalent to a 0.5 Mc Farland standard as measured by turbidity meter. The bacterial suspension was inoculated on to Mudder-Hinton agar (Oxoid, UK) with the sterile swab to cover the whole surface of the agar. The inoculated plates were left at room temperature to dry. The plates were prepared as per the manufacturer’s instructions and checked for sterility before inoculation by incubating the plates over night at 37°C. Before using the antimicrobial disks, they were kept at room temperature for one hour and then dispended on the surface of media. Following this, the plates were incubated aerobically at 37°C for 24 h.

For susceptibility test, antimicrobials which were used for treatment of bovine mastitis or considered as important antimicrobial agents for human was selected for antibiogram based on the criteria of Clinical and Laboratory Standards Institute (2008). Thus, antimicrobials used in this study were cephalothin (30 μg), sulphonazole-trimethoprim (25 μg), neomycin (5 μg), streptomycin (10 μg), kanamycin (30 μg), chloramphenicol (30 mg), tetracycline (30 μg) and gentamicin (10 μg) (Oxoid, UK). Antimicrobials not used for treatment of bovine mastitis but important for human were ciprofloxacin (5 μg), nitrofurantoin (300 μg), norfloxon(10 μg), ciprofloxon(30 μg) (Oxoid, UK). The diameters of the zone of inhibition around the disks were measured to the nearest millimeter using calibrated rulers, and the isolates were classified as susceptible, intermediate and resistant according to the interpretative standards of Clinical and Laboratory Standards Institute (2008). In addition, minimum inhibitory concentration (MIC) was determined using broth dilution method with an antimicrobial concentration ranging from 0.25-512 μg/L in accordance with the guidelines of the Clinical and Laboratory Standards Institute (CLSI, 2008). Those isolates with minimum inhibitory concentrations (MIC) higher than the breakpoint for the respective antimicrobial agents were regarded as resistant, while those with MIC equal to or lower than the breakpoint were regarded as susceptible. Moreover, isolates showing resistance to three or more antimicrobial subclass were considered as multidrug resistant.

Quality control

Confidence in the reliability of test results was increased by adequate quality assurance procedures, and the routine use of control strains. Thus, E. coli ATCC-25922 was taken as an important part of quality control for culture, BILOG identification and antimicrobial susceptibility through this study.

Variables

Independent variables such as types of samples were interpreted against dependent variable of species isolates and antimicrobial sensitivity pattern of each isolates.

Ethical issues

Verbal consent was obtained from dairy farms, abattoirs and butcher shop owners/managers.

Statistical analysis

The collected data was entered into EPI data version 3.1 and exported to SPSS version 16 computer software then the data was analyzed. Accordingly, descriptive statistics such as percentages and frequency distribution were used to describe/present bacterial isolates and antimicrobial susceptibility which were expressed as percent of resistant and susceptible. In addition, the proportion of bacteria resistant to at least one of the antibiotics and resistant to two or more were calculated.

RESULTS

Prevalence of subspecies isolated from milk and meat samples of bovine origin

The total number of species isolated from milk and meat samples of bovine origin are indicated in Figure 1. 0157:H7 (10.4%), Non 157 STEC (2.6%) and E. coli enterotoxigenic (10.7%) were detected in all the samples tested.

Antimicrobial resistance profile of species isolated from milk and meat samples

Analysis of subspecies specific resistance rates indicated for isolates from milk and meat are shown in Table 1. All E. coli strain showed high percentage resistance to cephalothin, chloramphenicol, tetracycline and gentamicin. On the other hand, most E. coli isolates were susceptible to sulphonazole-trimethoprim, neomycin, streptomycin, kanamycin, ciprofloxacin, nitrofurantoin, norfloxon and ciprofloxon.

The overall multiple antimicrobial resistance rate was 93.2%. The resistances against two or more antimicrobial 19
agents were observed in all $0_{157}:H_7$ and non 157 STEC and 95% enterotoxigenic isolated from milk showed multiple drug resistance (Table 2). 89.5% $0_{157}:H_7$, 71.4% of Non 157 STEC and 94.7% enterotoxigenic isolated from meat samples showed multiple drug resistant.

DISCUSSION

In the present study, the presence of strains in food of bovine origin indicated that the bacteria originated from infected animals or unhygienic conditions during processing, handling and distribution. It did not only originate from infected animals but more likely as an indicator of poor hygiene and sanitary practices while handling food of animal origin.

The isolation rate of $E.~coli$ in the present study was 23.7% and it was mainly isolated from meat samples from restaurant (28.5%) and milk sample from cafeteria (26.6%). These findings are in conformity with reports by other researchers (Yismaw et al., 2010; Al-Tawfiq, 2006; Gangoue et al., 2004). Higher prevalence was reported by Ali and Abdelgadir (2011) 63% and Lingathurai and Vellathurai (2010) 70%. In fact, if the methods of production, transportation, handling and sale of milk are entirely unhygienic there is high prevalence (Yismaw et al., 2010).

Antibiotic resistance development among the bacteria poses a problem of concern. In all food samples of bovine origin in the present study, $E.~coli$ showed high resistance rates (greater than 80%) to cephalothin, chloramphenicol, tetracycline and (greater than 60%) to gentamicin. The results of this study are in line with the findings of other studies conducted in different parts of the world (Bharathi et al., 2008; Briscoe et al., 2005). However, antimicrobial resistance rates obtained in this study were higher as compared to susceptibility patterns reported from previous studies (Zhanel et al., 2006; Karlowsky et al., 2002; Barrett et al., 2000).

$E.~coli$ isolates were sensitive to sulphoxazole-trimethoprim, neomycin, streptomycin, kanamycin ciprofloxacin, nitrofurantoin, norfloxon and ciftriaxone. Similar studies conducted in Ethiopia by Tesfaye et al. (2009) and in Nigeria by Wariso and Ibe (2006) have reported comparable susceptibility rates. In this study, sulphoxazole-trimethoprim, neomycin, streptomycin, kanamycin ciprofloxacin, nitrofurantoin, norfloxon, and ciftriaxone were found to be the most effective antimicrobials against $E.~coli$ isolates. Furthermore in this study, a high rate of multiple antimicrobial resistance
(93.2%) was recorded, which is consistent with the reports of studies done elsewhere by other scholars (Orrett and Shurl, 2001; Kurutepe et al., 2005). Increases in rate of resistance to different antimicrobials have been reported from previous studies conducted in different parts of the world (Orrett and Shurl, 2001; Kurutepe et al., 2005). Results clearly indicated that there is a possibility of potential public health threat of species originating from food of bovine origin. The high prevalence \(O_{157}:H_{7} \) (Shiga toxin producing) and enterotoxigenic, and high rates of multiple drug resistance indicates alarming situation for designing prevention and control methods.

Conclusions

Results clearly indicated that there is a possibility

Acknowledgements

The authors are grateful to Mekelle University-NORAD Project III for giving financial support to the present investigation and also thankful to Institute of Biodiversity Conservation, Ethiopia for identification of \(E. \) coli strains.

REFERENCES

