ABOUT JMGG

The Journal of Medical Genetics and Genomics (JMGG) is published monthly (one volume per year) by Academic Journals.

Journal of Medical Genetics and Genomics (JMGG) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as metagenics, evolutionary anthropology, fragile X syndrome, immunotherapy etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMGG are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jmgg@acadjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Medical Genetics and Genomics will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Prof. Viroj Wiwanitkit, M.D.
Wiwanitkit House, Bangkhae, Bangkok Thailand 10160.
Visiting Prof. Tropical Medicine, Hainan Medical College, Hainan China.

Prof. Kenneth Blum
Institution Department of Psychiatry, University of Florida college of Medicine, Gainesville, Fl USA

Dr. Abd El-Latif Hesham
Genetics Department, Faculty of Agriculture, Assiut University, Egypt

Prof. Viroj Wiwanitkit
Wiwanitkit house, bangkhae, Bangkok Thailand 10160
Thailand

Prof. Pritha Ghosh
Indian Institute of Chemical Biology, India

Dr. Israel Fernandez-Cadenas
Neurovascular Research Laboratory, Institut de Recerca, Vall d’Hebron Hospital, Barcelona, Spain

Dr. Wani H Ibrahim
Qualifications: FRCP (Edin), FRCP (Glasg), FCCP Hamad General Hospital, Weill-Cornell Medical College, Qatar

Prof. Debnath Bhattacharyya
Hannam University, Daejeon, Korea

Dr. Khaled Abu-Amero
College of Medicine, King Saud University, Saudi Arabia

Dr. Faiyaz Ahmed
Department of Studies in Food Science and Nutrition, University of Mysore, India
Editorial Board

Prof. Rama Devi Mittal
Sanjay Gandhi PGI Lucknow,
India

Prof. Kai Li
Suzhou University, Suzhou,
Jiangsu, China

Dr. Aliza Amiel
Faculty of Life Science Bar-Ilan Ramat-Gan,
Israel

Dr. Olufemi Oloyede
Department of Obstetrics and Gynaecology,
Olabisi Onabanjo University Teaching Hospital, Sagamu,
Ogun State, Nigeria

Dr. Vishwanath Hucthagowder
Washington University School of Medicine,
USA

Dr. Abdelilah S. Gounni
Faculty of Medicine,
University of Manitoba,
Canada

Prof. Ruixing Yin
Department of Cardiology, Institute of Cardiovascular Diseases,
Guangxi Medical University,
22 Shuangyong Road, Nanning 530021, Guangxi, China

Dr. Guangming Han
Georgia State University,
USA

Dr. C. Emmanuel
Global Hospitals Group,
India

Dr. Alessio Squassina
Department of Neuroscience, University of Cagliari,
Italy

Dr. Jiexiong Feng
Department of Pediatric Surgery, Tongji Hospital,
Huazhong University of Science and Technology,
China

Dr. Magdy Abd ElRehim Sayed Aly
Faculty of Science,
Beni Suef University,
Egypt

Dr. Hamid Jafarzadeh
Mashhad Faculty of Dentistry and Dental Research Center,
Iran

Dr. Youse Rasmi
Department of Biochemistry, Faculty of Medicine,
Urmia University of Medical Sciences, Urmia, Iran

Dr. Keya Chaudhuri
Indian Institute of Chemical Biology,
India

Ivan Y. Torshin
Computational Center of The Russian Academy of Sciences,
Russia

Dr. Wagdy K. B. Khalil
National Research Centre (NRC),
Egypt

Vishnu Priya
Saveetha University,
India

Dr. A. Chandrasekar
Anthropological Survey of India, Southern Regional Bogadi 2nd stage, Mysore-570 026,
India

Dr Raghavendra Babu YP
Kasturba Medical College, Mangalore,
India

Dr. Shayesteh Jahanfar
Royal College of Medicine, Perak; University of Kuala Lumpur,
Malaysia

Prof. Wei Wang
Capital Medical University, Beijing, China; Chinese Academy of Sciences, Beijing, China,
China
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author's full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers' comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JMGG to publish manuscripts within 6 weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The **Discussion** should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The **Acknowledgments** of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author's name should be mentioned, followed by 'et al'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Medical Genetics and Genomics is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2014, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JMGG, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Article

Meta-analysis of methylenetetrahydrofolate reductase (MTHFR) A1298C polymorphism and risk of orofacial cleft

Vandana Rai
Meta-analysis of methylenetetrahydrofolate reductase (MTHFR) A1298C polymorphism and risk of orofacial cleft

Vandana Rai

Human Molecular Genetics Laboratory, Department of Biotechnology, VBS Purvanchal University, Jaunpur-222001, India.

Received 31 March, 2014; Accepted 10 June, 2014

Polymorphisms in key genes involving the folate pathway have been reported to be associated with the risk of orofacial cleft (OFC) and several studies were published with conflicting results. A meta-analysis of the previous studies of allelic association between OFC with A1298C polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene was carried out. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between MTHFR A1298C polymorphism and OFC risk. A total of 11 studies including 1628 cases and 2676 controls were involved in this meta-analysis. No statistical relationship was found with any genetic model (C vs. A (Additive): OR = 1.14, 95%CI = 0.76-1.65, P = 0.47; CC vs. AA (homozygote): OR = 0.90, 95%CI = 0.72-1.15, P = 0.41; AC vs. AA (co-dominant): OR = 0.97, 95%CI = 0.85-1.11, P = 0.63; CC+AC vs. AA (Dominant): OR = 0.96, 95%CI = 0.84-1.1 , P = 0.51; CC vs. AC+AA (Recessive): OR = 0.93, 95%CI = 0.74-1.16, P = 0.52). The present meta-analysis supports that the common A1298C polymorphism of MTHFR gene is not risk factor for OFC.

Key words: Orofacial cleft, cleft lip, cleft palate, methylenetetrahydrofolate reductase (MTHFR), A1298C, folic acid.

INTRODUCTION

Approximately 90% of craniofacial congenital abnormalities comprised orofacial cleft (OFC) or cleft lip and/or palate (CL/P). According to the world health organization (WHO) data, the frequency of this pathology in the world is 0.6 to 1.6 cases per 1000 newborns (Shaw et al., 2001; Chorna et al., 2011). Prevalence rate varies according to geographical origin, sex, racial background, ethnicity, and socio-economic status (Vanderas et al., 1987; Croen et al., 1998; Clark et al., 2003; Brito et al., 2011; Aslar et al., 2013). Prenatal folic acid supplementation to pregnant women has been shown to reduce the incidence of CL in many (van Rooij et al., 2004; Badovinac et al., 2007; Rouget et al., 2005; Yazdy et al., 2007; Wilcox et al., 2007), but not all (Ray et al., 2003) populations studied (Sozen et al., 2009). Several studies established that polymorphisms in genes implicated...
in folate metabolism may play a significant role in the OFC etiology. Among several genes that take part in folate metabolism, the methylenetetrahydrofolate reductase gene (MTHFR) has been the most frequently reported to be associated with OFC.

MTHFR (EC.1.5.1.20) is a key enzyme in folate and homocysteine metabolism and catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, which provides the methyl group for the remethylation of homocysteine to methionine. Methionine is in turn converted to S-adenosylmethionine (SAM), the common methyl donor for the methylation processes of DNA, proteins, phospholipids and neurotransmitters (Finkelstein, 1990; Bailey and Gregory, 1999; Ozarda et al., 2009). The MTHFR gene is localized on chromosome 1p36.3 and two common and clinically important polymorphisms (C677T and A1298C) identified in the MTHFR gene (Frosts et al., 1995; Weisberg et al., 1998) are implicated in the development of OFC. MTHFR C677T polymorphism is very well studied but A1298C polymorphism is less explored. A1298C influences specific activity of the enzyme, homocysteine levels, and plasma folate concentration, but to a lesser extent than the C677T polymorphism does (Blount et al., 1997; Shen et al., 2005).

Substitution at nucleotide 1298 (exon 7) results in an amino acid substitution of glutamate for alanine at codon 429. A1298C (glutamate to alanine) polymorphism, has been associated with decreased enzyme activity (40%), although to a lesser extent than C677T (Weisberg et al., 1998). Those who have the AC or CC genotype present with a decreased ability to produce the methyl form of folate, which together with cobalamin, is essential for the remethylation of homocysteine to methionine. The resulting abnormality in folate metabolism and the resultant increase in homocysteine levels may be a direct cause of the observed teratogenicity, homocysteine itself may be toxic to the embryo or it may be an indicator of reduced availability of SAM for the methylation of DNA. Animal studies suggest that a decreased conversion of homocysteine to methionine could be a crucial step in causing neural tube defects. It has been shown that rat embryos in culture require methionine for neural tube closure (Mills et al., 1999).

A1298C allele frequency differs greatly in various ethnic groups of the world. The prevalence of the A1298C homozygote variant genotype ranges from 7 to 12% in White populations from North America and Europe. Lower frequencies have been reported in Hispanics (4 to 5%), Chinese (1 to 4%) and Asian populations (1 to 4%) (Botto and Yang, 2000; Rabein and Ulrich, 2003). A number of molecular epidemiological studies have been conducted to investigate the associations of the MTHFR A1298C polymorphism with OFC. However, the results remain conflicting rather than conclusive. Hence, a meta-analysis to derive a more precise estimation of this association is needed. In light of the above facts, a meta-analysis of all available studies relating the A1298C polymorphism of MTHFR gene to the risk of having cleft lip was conducted.

METHODOLOGY

Selection of studies

All studies that investigate the association of the A1298C polymorphism in the MTHFR gene with CLP published before October 2013 were considered in the meta-analysis. The studies were identified by extended computer-based searches of the PubMed, Google Scholar, Elsevier and Springer Link databases. As a search criterion, the following terms were used: ‘MTHFR’, ‘orofacial cleft’, ‘OFC’, ‘cleft lip’, ‘cleft lip and palate’, ‘A1298C’.

The following inclusion criteria were used: (i) studies must have a case–control study, (ii) study must be published as full papers, (iii) authors must investigate patients with cleft lip and palate cases and healthy control subjects, (iv) authors must provide information on genotype frequencies of the MTHFR A1298C polymorphism or sufficient data for the calculation, (iv) studies with overlapping cases and/or controls, the largest study with extractable data was included. The major reasons for exclusion of studies were (1) only case studied, (2) review papers, editorial, letter to editor and (3) containing overlapping data.

Data extraction

Following information was extracted from each study: first author, journal, year of publication, racial descent of study population, demographics, matching, validity of the genotyping method, and the number of cases and controls for MTHFR A1298C. The frequencies of A and C alleles were calculated for cases and controls from the corresponding genotype distributions.

Meta-analysis

The meta-analysis examined the overall association of the C allele with the risk of OFC relative to the A allele, the additive model for C allele (C vs. A), the co-dominance model (AC vs. AA), the homozygote model for allele C (CC vs. AA), the dominant model for C allele (CC + AC vs. AA), and the recessive model for C allele (CC vs. AC + AA). All associations were indicated as odds ratios (OR) with the corresponding 95% confidence interval (CI). A pooled OR was estimated based on the individual ORs. Heterogeneity between studies was tested using the Q statistic (Cochran, 1954). Heterogeneity was considered statistically significant if P<0.05. Heterogeneity was quantified with the I² metric, which is independent of the number of studies in the meta-analysis (I²<25%: no heterogeneity; I²=25–50%: moderate heterogeneity; I²=50–75%: large heterogeneity; I²>75%: extreme heterogeneity (Higgins and Thompson, 2002). The pooled OR was estimated using fixed effects (Mantel and Haenszel, 1959) and random effects (Dersimonian and Laird, 1986) models (Whitehead, 2002). Random effects modeling assume a genuine diversity in the results of the studies, and it incorporates the calculations of between-study variability; it therefore tends to provide wider CIs (Zintzaras and Hadji Georgiou, 2005).

Publication bias

An estimate of the potential publication bias was carried out by
Table 1. Characteristics of eleven studies included in the present meta-analysis.

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Year</th>
<th>Case</th>
<th>Control</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chorna et al.</td>
<td>Ukraine</td>
<td>2011</td>
<td>33</td>
<td>50</td>
<td>Cytology and Genetics, 45: 177–181</td>
</tr>
<tr>
<td>Semic-Jusufagic et al.</td>
<td>Turkey</td>
<td>2012</td>
<td>56</td>
<td>76</td>
<td>The Turkish Journal of Pediatrics, 54: 617-625</td>
</tr>
</tbody>
</table>

funnel plot, in which the standard error (SE) of log (OR) of each study was plotted against its log (OR). An asymmetric plot suggested a possible publication bias. The funnel plot asymmetry was assessed by Egger’s test, and P<0.05 was considered representative of statistically significant publication bias (Egger et al., 1997). All analyses were performed using the computer program MIX version 1.7 (Bax et al., 2006). A p value less than 0.05 was considered statistically significant, and all the p values were two sided.

RESULTS

Eligible studies

Eleven articles were found to be eligible for the inclusion in the present meta-analysis (Tolarova et al., 1998; Grunert et al., 2002; Shoteresuk et al., 2003; van Roij et al., 2003; Pezzetti et al., 2004; Mills et al., 2008; Ali et al., 2009; Sozen et al., 2009; Chorna et al., 2011; Semic-Jusufagic et al., 2012; Kumari et al., 2013). All these eleven studies were performed in different countries: Argentina (Tolarova et al., 1998), Germany (Grunert et al., 2002), India (Ali et al., 2009; Kumari et al., 2013), Ireland (Mills et al., 2008), Italy (Pezzetti et al., 2004), Netherlands (van Roij et al., 2003), Thailand (Shoteresuk et al., 2003), Ukraine (Chorna et al., 2011), and Venezuela (Sozen et al., 2009). In one study, Ali et al. (2009) reported only allele numbers (Table 1).

Statistical analysis

Overall, eleven studies provided 1628/2676 cases/controls for MTHFR A1298C. The frequencies of the genotypes MTHFR 1298AA and AC were the highest in both OFC cases and controls, and allele A was the most common. In all eleven studies, total cases were 1628 with AA (825), AC (668) and CC (135), and controls were 2676 with AA (1285), AC (1140), and CC (251) genotypes. In controls genotypes, percentage of AA, AC and CC were 48, 42.6, and 9.38%, respectively. In total cases, genotype percentage of AA, AC, and CC was 50.6, 41 and 8.3%, respectively. The genotype and allele distributions are as shown in Table 2. Only in four studies (Shoteresuk et al., 2003; van Roij et al., 2003; Semic-Jusufagic et al., 2012; Kumari et al., 2013), OR was above one and in other seven studies did not show any association between MTHFR A1298C polymorphism and OFC. The distribution of genotypes in the control groups were in Hardy-Weinberg equilibrium (HWE) in all studies. Lack of HWE indicates possible genotyping errors and/or population stratification (Zintzaras, 2007).

Allele contrast meta-analysis

The main results of this meta-analysis and the heterogeneity test were shown in Tables 3. Mutant allele (C vs. A) did not show significant association with OFC in both fixed effect (OR=1.06, 95% CI=0.96-1.16, P=0.25, P hetero<0.0001, I^2=92.62%, P P=0.60) and random effect (OR=1.14, 95% CI=0.79-1.65, P=0.47) models (Table 2 and Figure 1).

Genotype contrast meta-analysis

Overall, no significantly elevated cleft lip risk was detected in any genetic models when all studies were pooled into the meta-analysis. Homozygote model (CC vs. AA) did not show significant association with OFC in both fixed effect (OR=0.97, 95% CI=0.72-1.15, P=0.41, P hetero=0.04, I^2=47.04%, P P=0.57) and random effect (OR=0.88, 95% CI=0.59-1.28, P=0.49) models (Table 3 and Figure 2). Similarly dominant model (CC+AC vs. AA) also did not show any association between A1298C polymorphism and risk of OFC either with fixed effect (OR=0.96, 95% CI=0.84-1.08, P=0.51, P hetero=0.13, I^2=34.65%, P P=0.61) or random effect (OR=0.94, 95% CI=0.78-1.12, P=0.47) model. Meta-analysis result using
Table 2. The distributions of MTHFR A1298C genotypes and allele frequencies for CLP cases and controls.

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Genotype</th>
<th>Genotypes</th>
<th>Alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case</td>
<td>Control</td>
<td>Case</td>
</tr>
<tr>
<td>Tolarova et al. (1998)</td>
<td>67</td>
<td>63</td>
<td>39</td>
</tr>
<tr>
<td>Grunert et al. (2002)</td>
<td>28</td>
<td>77</td>
<td>30</td>
</tr>
<tr>
<td>Shoteresuk et al. (2003)</td>
<td>55</td>
<td>108</td>
<td>48</td>
</tr>
<tr>
<td>van Roij et al. (2003)</td>
<td>48</td>
<td>61</td>
<td>34</td>
</tr>
<tr>
<td>Pezzetti et al. (2004)</td>
<td>56</td>
<td>95</td>
<td>46</td>
</tr>
<tr>
<td>Mills et al. (2008)</td>
<td>202</td>
<td>519</td>
<td>172</td>
</tr>
<tr>
<td>Ali et al. (2009)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sozen et al. (2009)</td>
<td>138</td>
<td>101</td>
<td>37</td>
</tr>
<tr>
<td>Chorna et al. (2011)</td>
<td>19</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Semic-Jusufagic et al. (2012)</td>
<td>21</td>
<td>36</td>
<td>25</td>
</tr>
<tr>
<td>Kumari et al. (2013)</td>
<td>191</td>
<td>201</td>
<td>225</td>
</tr>
</tbody>
</table>

Table 3. Summary estimates for the odds ratio (OR) of MTHFR A1298C in various allele/genotype contrasts, the significance level (p) value of heterogeneity test (Q test), and the I² metric: overall analysis, subgroup analyses, and publication bias p-value (Egger test).

<table>
<thead>
<tr>
<th>Genetic models</th>
<th>Fixed effect OR (95% CI), p</th>
<th>Random effect OR (95% CI), p</th>
<th>Heterogeneity p-value (Q test)</th>
<th>I² (%)</th>
<th>Publication Bias p-value (p of Egger's test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele contrast (C vs. A)</td>
<td>1.06 (0.96-1.16), 0.25</td>
<td>1.14 (0.79-1.65), 0.47</td>
<td><0.0001</td>
<td>92.62</td>
<td>0.60</td>
</tr>
<tr>
<td>Co-dominant (AC vs. AA)</td>
<td>0.97 (0.85-1.107), 0.63</td>
<td>0.96 (0.83-1.11), 0.61</td>
<td>0.38</td>
<td>6.12</td>
<td>0.56</td>
</tr>
<tr>
<td>Homozygote (CC vs. AA)</td>
<td>0.90 (0.72-1.15), 0.41</td>
<td>0.88 (0.59-1.28), 0.49</td>
<td>0.04</td>
<td>47.04</td>
<td>0.57</td>
</tr>
<tr>
<td>Dominant (CC+AC vs. AA)</td>
<td>0.96 (0.84-1.08), 0.51</td>
<td>0.94 (0.78-1.12), 0.47</td>
<td>0.13</td>
<td>34.65</td>
<td>0.61</td>
</tr>
<tr>
<td>Recessive (AA+AC vs. CC)</td>
<td>0.93 (0.74-1.16), 0.52</td>
<td>0.91 (0.66-1.26), 0.58</td>
<td>0.14</td>
<td>33.64</td>
<td>0.59</td>
</tr>
</tbody>
</table>

co-dominant and recessive genetic models were also not significant: (AC vs. AA: OR=0.96, 95% CI=0.85-1.11, P=0.63, P_hetero=0.38, I²=6.16%, P_P=0.56 and CC vs. AC+AA: OR=0.93, 95% CI=0.74-1.16, P=0.52, P_hetero=0.14, I²=33.64%, P_P=0.59), the pooled ORs were performed using fixed-effect model. Table 3 lists the main results of the meta-analysis.

Sensitivity analysis

Sensitivity analysis was performed by sequential omission of individual studies from various contrasts. The associations of the A1298C polymorphism with cleft lip did not change during the sensitivity analysis.

Publication bias

Funnel plots using standard error and precision values for allele and genotypes using fixed effect model were generated (Figure 3). Symmetrical distribution of studies in the funnel plots suggests absence of publication bias. This is also supported by Beggs and Eggers test (Beggs'
DISCUSSION

Normal MTHFR activity is crucial to maintain the pool of circulating folate and methionine and to prevent the accumulation of homocysteine (Frosst et al., 1995). Homocysteine considered as a useful and important metabolic marker of the overall folate status. Folic acid derivatives provide essential single carbon units for nucleic acid synthesis and methylation reactions both of which are essential for cell division, gene expression and maintenance of chromosome structure during fetal development. It is interesting to note that the case control...
Figure 3. (A) Funnel plots A. precision versus OR (C vs. A), (B) standard error versus OR (C vs. A), (C) precision versus OR (CC vs. AA), (D) standard error versus OR (CC vs. AA).

Studies have indicated an effect of the maternal MTHFR genotype rather than that of the affected child (Martinelli et al., 2001; Prescott et al., 2002; Pezzetti et al., 2004). The association of MTHFR polymorphisms with the
increased risk of OFC supports the protective effect of maternal use of multivitamins containing folic acid with respect to the occurrence of orofacial clefts (Bailey et al., 2005).

Several meta-analysis studies illustrate the utility of the technique in identifying genes of small effects like MTHFR with phenotypes like-NTD (Zhang et al., 2013); down syndrome (Zintzaras, 2007; Wu et al., 2013); cardiovascular disease (Xuan et al., 2011), stroke (Yadav et al., 2013); migraine (Shurks et al., 2010), Alzheimer’s (Zhang et al., 2010), bipolar disorder (Rai, 2011), and depression (Zintzaras, 2006; Wu et al., 2013). Author identified one meta-analysis (Verkleij-Hagoort et al., 2007) published in 2007 concerning similar topic during the literature search. Verkleij-Hagoort performed a meta-analysis based on eight studies and find meager between MTHFR C677T polymorphisms and orofacial cleft (OR=1.01; 95% CI=0.87–1.16; I2=0%). They investigated MTHFR C677T polymorphism and did not investigate A1298C polymorphism.

This study has some limitations and strength also. The main strength was the absence of publication bias and except additive model, low heterogeneity was observed. The insignificant and inconclusive result of the present meta-analysis may be due to (i) small number of studies (only eleven studies), (ii) small sample size, (iii) different ethnic backgrounds of the individuals included in the study, (iv) widely spread exclusion and inclusion criteria which might complicate the comparison between the studies.

In conclusion, result of the present meta-analysis demonstrated that MTHFR A1298C polymorphism did not show any association with CLP and is not a risk factor for oral facial cleft. Oral facial cleft has not been studied as extensively. Further research on facial cleft associations with this MTHFR polymorphism is needed.

ACKNOWLEDGEMENTS

The authors are highly grateful to Leon Bax (Chief Scientific Officer at BiostatXL, UMC Utrecht) for his valuable suggestions, which help us in statistical analysis.

Conflict Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Abbreviations

OFC, Orofacial cleft; MTHFR, methylenetetrahydrofolate reductase C677T; SAM S, adenosylmethionine.

REFERENCES

Journal of Medical Genetics and Genomics

Related Journals Published by Academic Journals

- Journal of Medical Laboratory and Diagnosis
- Journal of Metabolomics and Systems Biology
- Journal of Neuroscience and Behavioral Health
- Journal of Physiology and Pathophysiology
- Journal of Public Health and Epidemiology
- Journal of Petroleum Technology and Alternative Fuels