ABOUT JTEHS

The Journal of Toxicology and Environmental Health Sciences (JTEHS) is published monthly (one volume per year) by Academic Journals.

The Journal of Toxicology and Environmental Health Sciences (JTEHS) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as toxicogenomics, enzyme inhibition, drug overdose, Children's Environmental Exposure Research Study etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JTEHS are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jtehs@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Toxicology and Environmental Health Sciences (JTEHS) will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
<table>
<thead>
<tr>
<th>Editors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Hazem Mohammed Ebraheem Shaheen</td>
<td>Department of Pharmacology, Faculty of Veterinary Medicine,</td>
</tr>
<tr>
<td></td>
<td>Damanhur University, Behera – Dalangat – Elbostan, Egypt</td>
</tr>
<tr>
<td>Dr. Jianbo Xiao</td>
<td>College of Life & Environment Science, Shanghai Normal University</td>
</tr>
<tr>
<td></td>
<td>100 Guilin Rd, Shanghai 200234, PR China</td>
</tr>
<tr>
<td>Dr. Adriana Maria Neghina</td>
<td>Victor Babes University of Medicine and Pharmacy</td>
</tr>
<tr>
<td></td>
<td>Biochemistry Department</td>
</tr>
<tr>
<td></td>
<td>2 Eftimie Murgu Square RO - 300041, Timisoara Romania</td>
</tr>
<tr>
<td>Dr. Rouabhi Rachid</td>
<td>Biology Department</td>
</tr>
<tr>
<td></td>
<td>University of Tebessa 12000. Algeria.</td>
</tr>
<tr>
<td>Prof. YongXun Pang</td>
<td>Endemic center, Harbin Medical University 157 Baojian Road,</td>
</tr>
<tr>
<td></td>
<td>NanGang District, Harbin, P. R. China</td>
</tr>
<tr>
<td>Dr. M.Mahadeva Swamy</td>
<td>Mysore – 570 006, Karnataka, India</td>
</tr>
<tr>
<td>Dr. Shashank Shah</td>
<td>"40/29 Bhonde Colony, 14 Shwe Off Karve Road, Erandwane,</td>
</tr>
<tr>
<td></td>
<td>Pune, Maharashtra, India</td>
</tr>
<tr>
<td>Dr. Necati Celik</td>
<td>Karadeniz Technical University, Dept. of Phys. 61080 Trabzon,</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
</tr>
<tr>
<td>Prof. Yangfeng Wu</td>
<td>"Suite B1302, No 6, Zhichunlu Rd., Haidian District, Beijing. 100088, China</td>
</tr>
<tr>
<td>Dr. Ashim Kumar Biswas</td>
<td>Department of Livestock Products Technology, COVS, Ludhiana-</td>
</tr>
<tr>
<td></td>
<td>141004 (Punjab)</td>
</tr>
<tr>
<td></td>
<td>India</td>
</tr>
<tr>
<td>Dr. Ilia Yarmoshenko</td>
<td>Institute of Industrial Ecology of Ural Branch of Russian</td>
</tr>
<tr>
<td></td>
<td>Academy of Sciences</td>
</tr>
<tr>
<td></td>
<td>620219 S. Kovalevskoy Str., 20, Ekaterinburg, Russia</td>
</tr>
<tr>
<td>Dr. Şifa Türkoğlu</td>
<td>Cumhuriyet University, Faculty of Art and Science, Department of</td>
</tr>
<tr>
<td></td>
<td>Biology, Sivas, Turkey</td>
</tr>
<tr>
<td>Dr. Juan Antonio Riesco Miranda</td>
<td>Pneumology Department. San Pedro Alcantara Hospital Cáceres</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
</tr>
<tr>
<td>Dr. Norazmir Md Nor</td>
<td>Department of Nutrition & Dietetics</td>
</tr>
<tr>
<td></td>
<td>Faculty of Health Sciences MARA University of Technology</td>
</tr>
<tr>
<td></td>
<td>Puncak Alam Selangor, Malaysia</td>
</tr>
<tr>
<td>Dr. Hela Ragab Moussa</td>
<td>Bahnay, Al-bagour, Menoufia, Egypt</td>
</tr>
<tr>
<td>Prof. Dr. Mamdouh Moawad Ali</td>
<td>33 El-Tahrir Street, Dokki 12622, Cairo, Egypt</td>
</tr>
<tr>
<td>Reza Hosseinzadeh</td>
<td>Shahid Beheshty Ave., Urmia University, Jahad-E-Daneshgahi, P. O.</td>
</tr>
<tr>
<td></td>
<td>Box No. 165, Urmia, Iran</td>
</tr>
<tr>
<td>Moustafa Hossein El-Naggar</td>
<td>Biological Sciences, Faculty of Science, King Abdulaziz</td>
</tr>
<tr>
<td></td>
<td>University, Jeddah, KSA</td>
</tr>
<tr>
<td>Hasan TÜRKEZ</td>
<td>Division of Molecular Biology and Genetics, Faculty of Science,</td>
</tr>
<tr>
<td></td>
<td>Erzurum Technical University, Erzurum, Turkey</td>
</tr>
</tbody>
</table>
Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author's full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process

All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers' comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JPP to publish manuscripts within weeks after submission.

Regular articles

All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.

Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.
The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc. should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b; Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences:

(1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Toxicology and Environmental Health Sciences (JTEHS) is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2014, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties
In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JTEHS, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
Research Articles

1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its derivatives in marketed *Clarius werneri* caught from Uganda’s major urban wetlands

Proscovia Nnamuyomba, Jolocam Mbabazi and Muhammad Ntale

113
1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its derivatives in marketed Clarius werneri caught from Uganda’s major urban wetlands

Proscovia Nnamuyomba¹, Jolocam Mbabazi² and Muhammad Ntale²*

¹Department of Chemistry, Gulu University, P.O. Box 166, Gulu, Uganda.
²Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda.

The presence of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and derivatives in the Clarius werneri of Uganda’s major urban wetland ecosystems was investigated. Solid dispersion extraction method for extraction, florisil column method for clean-up, gas chromatograph equipped with an electron capture detector (GC-ECD) for analysis and gas chromatograph equipped with mass spectrophotometer (GC-MS) for confirmation of results were used in this study. The major DDT contaminants detected in the samples were p,p’-DDD, p,p’-DDE and p,p’-DDT which were found in 25, 22 and 21% of the samples, respectively. o,p’-DDD was detected in 19% and o,p’-DDT in 13% of the samples. For o,p’-DDE there were no measurable values since the levels were below limit of quantitation (LOQ). The concentrations of DDT derivatives ranged between ND-0.478 µg/kg for p,p’-DDE, ND-0.387 µg/kg for o,p’-DDD, ND-0.476 µg/kg for p,p’-DDD, ND-0.345 µg/kg o,p’-DDE and ND-0.556 µg/kg for p,p’-DDT. The concentration of total DDT in C. werneri was in the range of 1.111 to 1.328 µg/kg dry wt. Generally, all the samples had DDT derivative levels below the maximum residue limit recommended by Food and Agriculture Organisation/World Health Organization (FAO/WHO) Codex Alimentarius Commission.

Key words: 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), DDT derivatives, Clarius werneri, Uganda, wetlands.

INTRODUCTION

1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) is a broad-spectrum insecticide that was once widely used in many countries in 1940’s to control insects on agricultural crops and insects that carry diseases like malaria and typhus (Coulston, 1985), but was banned in the 1970’s because of its persistence in the environment (Shigeyuki et al., 2002). It is now used in only a few countries to control malaria (Agency for Toxic Substances and Disease Registry (ATSDR), 2002). DDT derivatives have entered all compartments of the world ecosystems due to
their mobility, environmental stability and affinity for biological materials (ATSDR, 2002). When DDT enters the environment, most of it breaks down slowly into dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenylchloroethane (DDD) generally by the action of microorganisms (ATSDR, 2002; Guilherme et al., 2000). DDE, the principle derivative of DDT generally resists further chemical and biological degradation (Guilherme et al., 2000). This phenomenon is usually used as an indicator for the time lapse of DDT usage (Montgomery, 2000). DDD and DDT are further oxidized to DDA, the major excreted derivative in animals (Gold and Brunk, 1982; Wallecave et al., 1974).

In Uganda, DDT had been heavily used for agricultural and public health purposes starting in the 1950’s through the 1980’s (Mitemi and Gitau, 1990). Although DDT was banned for agricultural and public health purposes in Uganda in the mid 1980’s, its derivatives have been detected in sediments (Wasswa, 2009), water (Kasozi et al., 2006) and fish (Bimenya et al., 2007; Kasozi et al., 2006; Kyarimpa, 2007; Ogwo et al., 2009; Sebugere et al., 2008) from various aquatic ecosystems. These derivatives are still slowly being released into aquatic and terrestrial food chains and can reach significant concentrations in animals at higher trophic levels. The lipophilic nature, hydrophobicity and low chemical and biological degradation rates of DDT derivatives have led to their accumulation in biological tissues and subsequent magnification of concentrations in organisms progressing up the food chain (Ayas, 2007; Feng et al., 2003; Guzzella et al., 2005). DDT, DDE and DDD are believed to be possible carcinogens (ATSDR, 2000). DDT affects stages of neurological development (Ericksson et al., 1992; Rogan and Chen, 2005) and has been accused of being a potential endocrine disruptor (Frigo et al., 2002). DDE levels in the blood of pregnant women increase the chances of having a pre-term baby (ATSDR, 2002), also hyporeflexia in infants has been associated with DDE levels as low as 4 mg/kg milk fat in breast milk (Rogan and Chen, 2005).

Since the late 1980s, Kampala city has developed rapidly. People from the countryside have migrated to the city and its suburbs to find work and livelihood based on trade and industry. This has caused the rapid population rise in these areas during the last three decades. There is increasing pollution load in urban wetland ecosystems due to population pressure (Rusongoza, 2003). Nakivubo and Lubigi channels are important pathways for pollutant transport into the urban wetland ecosystems. An important threat to these aquatic ecosystems is contamination by DDT derivatives, both directly and indirectly by rivers that feed them. Considering the duration and intensity of the application of DDT in Uganda, the richness of the country in wetlands and the biodiversity in these wetlands, studies on DDT and its derivatives are essential in these systems. Previous studies have collected data on DDT derivatives for various fish species (Bimenya et al., 2007; Kasozi et al., 2006; Kyarimpa, 2007; Sebugere et al., 2008) from different aquatic ecosystems in Uganda. Substantial work has also been carried out on heavy metal contamination in urban wetlands, particularly in Nakivubo (Mwanga, 2006; Nabulo, 2008; Sekabira, 2010). Earlier studies on benthic feeders focused on Clarias gariepinus from Lake Edward (Bimenya et al., 2007; Sebugere et al., 2008) and Lake Victoria (Henry and Kishimba, 2006; Kasozi et al., 2006; Kyarimpa, 2007). Nonetheless, there is a lack of data pertaining to DDT derivatives in Clarias wernerii from wetland ecosystems. The present study indentifies and quantifies these derivatives in marketed C. wernerii caught from Nakivubo and Lubigi wetlands. The results will serve in generating information needed for the assessment of DDT derivatives intake from this source.

MATERIALS AND METHODS

Study area

This study took place in Nakivubo and Lubigi wetlands. Nakivubo wetland is located in Kampala District at 0° 18' 13.32" N and 32° 37' 39.36" E whereas Lubigi is located in Wakiso District Central region, Uganda at 00° 19' 56" N and 32° 31' 34" E. Sampling stations in Nakivubo wetland were selected at Gaba and Bugolobi (Figure 1); this portion of the wetland is still intact with its natural vegetation, Cyperus papyrus and is the only part of the wetland where C. wernerii are found. This part of the wetland receives most of the waste water carried by the channel before it joins Lake Victoria (NEMA, 2011; Ssentongo, 1998). The selected section of Lubigi wetland was between Bombo and Mityana roads where the wetland is still intact. One sampling station was set along the main stream at Namungona, along Hoima road; this part of the wetland receives municipal wastes and other wastes from Bwaise and Kawempe slums (NEMA, 2011). Other sampling sites were set at points where Sentema and Mityana roads cut-across the wetland (Figure 2).

Sample collection

Sampling was conducted between March, 2012 and 2013. C. wernerii of length between 13 and 20 cm were collected every two months (from sites N1-N3 in the Nakivubo wetland and L1-L3 in the Lubigi wetland) by fishermen in basket like structures, dragged to the shores, killed and smoked. Because C. wernerii are consumed smoked by the local population, it was considered necessary to first smoke them. Samples were taken in triplicate per sampling site, wrapped in aluminium foil, placed in air tight bags and labeled. They were then kept in cold boxes containing ice during transportation to the laboratory where they were kept at -18°C until they were extracted for DDT derivatives.

Standards and chemicals

Certified pesticide standards, o,p'-DDE, p,p'-DDE, o,p'-DDT, p,p'-DDE, o,p'-DDD, p,p'-DDD and parathion ethyl (internal standard) were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany). Pesticide residue grade solvents: ethyl acetate, hexane and acetonitrile were supplied by the British Drug Houses (BDH, UK). These chemicals were used for extraction, analysis and
confirmation. All solvents were of the highest purity commercially available.

Sample extraction

The sample was extracted using a method described by Åkerblom (1995). 10.0 g of smoked fish sample was weighed using analytical balance with a sensitivity of 0.1 mg in an Erlenmeyer. The sample was ground with a known quantity of sodium sulphate and parathion ethyl (internal standard) using a mortar and a pestle. An internal standard is a chemical compound that is similar but not identical to the chemical species of interest in the sample, it is added in a constant amount to the samples, blanks and calibration standards in a chemical analysis to correct for the loss of the analyte during sample preparation (Åkerblom, 1995). The mixture was then extracted with ethyl acetate (50, 20, 20 and 20 ml). The combined extract was concentrated using a rotary evaporator at a temperature of 40°C. The concentrated extract was then dissolved in 30 ml of acetonitrile stored in a freezer at -18°C and allowed to stand overnight for lipids precipitation and separation. The cold extract at -18°C was immediately filtered with glass wool to remove frozen lipids. The precipitated lipids on the flask surface were redissolved in 10 ml acetonitrile to perform filtration again by the same procedure. The filtered extract was concentrated to 1 ml by rotary evaporation and dried under nitrogen atmosphere to follow the Florisil clean-up procedure (Åkerblom, 1995). A 15 cm long glass column of 4 mm id was plugged with glass wool and washed with hexane (10 ml). It was then packed with florisil (10.0 g) followed by anhydrous sodium sulfate (4 g). The column was lightly tapped to compact the florisil bed and then rinsed with hexane (5 ml) to remove any impurities. The column was conditioned with 5 ml of hexane/acetone 9:1 and then with 5 ml hexane. Elution was done by hexane/acetone 9:1 mixture. The eluate was concentrated on a rotary vacuum evaporator and transferred quantitatively to a glass stopper test tube. Solvents were completely evaporated under mild flow of pure nitrogen. The evaporated sample was dissolved in double distilled hexane (1 ml) for GC-µECD analysis.

Analysis of samples

GC-µECD analysis was performed on a Varian CP-3800 gas chromatograph equipped with a 63Ni electron capture detector.
Figure 2. Map of Lubigi wetland showing sampling stations.

Map of Uganda showing the location of the Wakiso District where Lubigi wetland is located.

N: Map of Lubigi showing sampling sites.

- Sampling sites
 - Cyperus papyrus.
 - Roads

(ECD) fitted with both semi-polar (CP-Sil 19 CB, J & W Scientific, Folsom, CA, USA), and non-polar (CP-Sil 8 CB, J & W Scientific, Folsom, CA, USA) fused-silica capillary columns (30 m length, 0.25 mm i.d. and 0.25 µm film thickness). Hydrogen (99.9% purity) with a flow rate electronically set at 1.2 ml min$^{-1}$ was used as the carrier gas, while nitrogen was used as an auxiliary gas for the ECD at a flow rate of 30 ml min$^{-1}$. An oven temperature was programmed as follows: 90°C for 1 min, 30°C min$^{-1}$ to 180°C, 4°C min$^{-1}$ to 260°C, and maintained at this temperature for 16 min for both categories of columns. The temperatures of the injector and ECD detector were 250 and 300°C, respectively. A turbochrom (Perkin–Elmer Corporation, 1989–1995, Norwalk, CT, USA) 4.0 chromatography station was used for chromatographic data processing. The GC was operated in a splitless mode and the injection volume was 1 µl for each injection. Identification and quantification were accomplished by comparison with reference standards. The concentration (µg/kg) of each component in the sample was calculated from its chromatogram using the peak area and concentration of the reference standards using the following formula:

\[
\text{Concentration (µg/kg)} = \frac{1000 \times \text{Peak area of standard} \times \text{Peak area of sample} \times \text{Volume of concentrated extract}}{\text{Peak area of standard} \times \text{Weight extracted}}
\]

Quality control

Calibration curves using the internal mixed standard of DDT and derivatives was performed for each compound to be quantified at concentrations of 5, 10, 20, 50, and 100 ng/ml. Calibration standards were run every 10 samples and all measurements were performed in the ranges of linearity found for each compound. The limit of detections (LODs) and the limit of quantifications (LOQs) were calculated from DDT and derivatives mixed standard as 3.3 and 10 SD/b, respectively; where SD is the standard deviation of the GC chromatographic area (response) and b is the slope of the regression line of each derivative and the results are shown in Table 1. Accuracy and precision were determined by the standard addition method (ICH, 1994, 1995) at three different fortification levels (0.05, 0.1 and 0.15 µg/ml). The samples were analysed in triplicates and recoveries and precision calculated for each derivative. The validation data showed quantitative recoveries in the range of 81 to 124%. The precision of the matrix was in the range of 1.87 to 9.7% CV. We considered the method to be reliable to quantify the concentration of DDT and derivatives.

Confirmation of results

Confirmation of results was carried out using an Agilent 6890N GC–MS, USA version with a fused silica capillary column (HP-5MS) of 30 m length, 0.25 mm i.d. and 0.25 µm film thickness. The GC-MS used was equipped with a selective mass detector (Agilent 5975 inert XL Quadrupole, Palo Alto, CA, USA). The operating
Table 1. Mean values of LODs and LOQs (µg/Kg) of DDT and derivatives determined using GC-ECD technique.

<table>
<thead>
<tr>
<th>Derivative</th>
<th>LOD</th>
<th>LOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>p,p'-DDE</td>
<td>0.013</td>
<td>0.044</td>
</tr>
<tr>
<td>o,p'-DDE</td>
<td>0.021</td>
<td>0.071</td>
</tr>
<tr>
<td>o,p'-DDD</td>
<td>0.030</td>
<td>0.099</td>
</tr>
<tr>
<td>p,p'-DDD</td>
<td>0.021</td>
<td>0.069</td>
</tr>
<tr>
<td>p,p'-DDT</td>
<td>0.024</td>
<td>0.074</td>
</tr>
<tr>
<td>o,p'-DDT</td>
<td>0.058</td>
<td>0.065</td>
</tr>
</tbody>
</table>

Figure 3. Variation in mean DDT derivatives in *C. werneri* of Nakivubo and Lubigi wetlands.

conditions included a series of conditions: The oven temperature was programmed to: 90°C for 1 min, 30°C min⁻¹ to 180°C, 4°C min⁻¹ to 260°C, and maintained at this temperature for 16 min. The temperatures of the injector and MS detector were 250 and 300°C, respectively. Helium was used as the carrier gas at 1 ml min⁻¹ flow rate. The GC–MS was operated in a splitless mode with a purge-off of 1 min and the injection volume was 1 µl for each injection. The MS solvent delay time was 3.57 min and the scanned mass range was 50 to 550 m/z. The full scan ion monitoring mode was used for the determination of DDT and derivatives. Identification of the derivatives was done using the internal standards method (Åkerblom, 1995).

RESULTS AND DISCUSSION

Derivatives of DDT in *C. werneri* from Nakivubo and Lubigi wetlands

Out of all the samples analysed, DDT derivatives were detected in 85% (34 out of 40) of the samples. The major DDT derivatives detected in the samples were *p,p*-DDE, *p,p*-DDD and *p,p*-DDT which were found in 25, 22 and 21% of the samples, respectively. *o,p*-DDD was detected in 19% while *o,p*-DDT was found in 13% of the samples. For *o,p*-DDE there were no measurable values since the levels were below LOQ. Presence of *p,p*-DDE and *p,p*-DDD derivatives in most of the samples indicates historical usage. The detection of *p,p*-DDT and *o,p*-DDT in more than 30% of the fish samples suggests recent exposure of the fish to DDT which may be due to some illegal usage or dumping. The presence of DDT and derivatives in fish may be due to run-off and atmospheric depositions as a result of their use in Uganda. Fish tend to concentrate DDT derivatives from the surrounding water and diet into their tissues (Bryan et al., 1979). *C. werneri* being a benthic organism accumulates high concentrations of DDT derivatives due to its feeding habits and habitats. In addition, DDT derivatives have a high affinity for the un-dissolved organic matter in the benthic zone and the organisms living in the benthos are more exposed to these contaminants (Ayas, 2007).

Composition of DDT in *C. werneri* from the urban wetlands

The contribution of all the detected metabolites showed slight differences between Nakivubo and Lubigi wetlands (Figure 3). Generally, fish from Nakivubo wetland contained...
slightly higher concentrations of all the derivatives except \(o,p'-\text{DDT}, p,p'-\text{DDE}\). This indicates that human activities which lead to waste discharge into this wetland are more intense. The Nakivubo channel passes through relatively dense industrial and residential areas where expired pesticides and wastes could be discharged directly or indirectly into the wetland. Among the derivatives, \(o,p'-\text{DDT}, p,p'-\text{DDD}, p,p'-\text{DDE}\) and \(p,p'-\text{DDT}\) were found to be in notable amounts in both wetlands. This may be attributed to slow degradation or recent inputs of the pesticide in the environment. The high percentage composition of \(o,p'-\text{DDT}\) and \(p,p'-\text{DDT}\) with respect to total DDT in both wetlands clearly illustrates that DDT usage has not been eradicated yet in the country, and there might be new inputs of the pesticide to the aquatic ecosystems as asserted by (Kyarimpam, 2007; Sebugere et al., 2008; Wasswa, 2009). This situation suggests that, although it was restricted, the illegal use of DDT still continues. The sources of contamination to both wetlands are closely related to human activities such as domestic and industrial discharge, street runoff as well as atmospheric transport.

Total DDT reported in this study is less than that reported in earlier studies in fish from other aquatic ecosystems in Uganda and other African countries. ΣDDT concentrations of 33 µg/kg in \(B.\) docman, 20 µg/kg in \(P.\) gthepi, and 33 µg/kg in \(O.\) niloticus from Lake Edward were reported (Sebugere et al., 2008), on the other hand (Kasoz et al., 2006) found total DDT of 11.67 µg/kg wet wt in Nile perch and 20 µg/kg wet wt in Nile tilapia from Lake Victoria. Similarly, Henry and Kishimba (2006) reported 20 µg/kg wet wt in Nile tilapia from Lake Victoria. Similar studies on determination of DDT derivatives in Tanzania’s freshwater reported ΣDDT of 60.7 µg/kg, in \(L.\) miiodon, 95.7 µg/kg in \(S.\) tanganyikae and 794.7 µg/kg fat wt in \(B.\) microlepis (Manirakiza et al., 2002). In a related study Kidd et al. (2001) found 13.1, 13.4 and 11.4 µg/kg wet wt of total DDT derivatives in \(B.\) meridionale, \(B.\) nototaen and a variety of \(C.\) sp. of Lake Malawi, respectively. The total DDT found in a survey by Said et al. (2008) was 5.13 µg/kg wet wt in \(O.\) niloticus and 12.54 µg/kg wet wt \(C.\) sp. from Lake Burullus, Egypt. Organochlorine pesticides have also been studied in Tilapia Zilli and Catfish caught from river Ogba, Nigeria and found to contain total DDT of 56 and 106 µg/kg wet wt, respectively. In all these studies, \(p,p'-\text{DDT}\) was detected in high percentages (34 to 88%), suggesting that DDT was used in those countries in the recent years. The species in these studies are at higher trophic levels in the food chain and are larger than \(C.\) werneri. The low concentrations of ΣDDT reported in the present study could be attributed to the size (Feng et al., 2003) and bottom position of \(C.\) werneri in the food web (Feng et al., 2003; Kumblad et al., 2001) since bioaccumulation of these pollutants depends on these two factors. In addition, high temperatures and solar radiation could have resulted in high degradation rates (Samuel and Pillai, 1989) and increased volatilization of the pesticide derivatives (Larson et al., 1995) leading to low levels detected in the fish. The mean ΣDDT concentrations in fish samples were far below the FAO action levels for fish (edible portion) of 5000 µg/kg (FAO–WHO, 1997), implying that the fish are safe for human consumption.

However, over consumption of \(C.\) werneri from those water bodies may lead to increased levels of the pesticide derivatives over time. Increased levels of DDE in the blood of pregnant women increase the chances of having a pre-term baby. Long-term exposure to small amounts of DDT may affect the liver. Children being smaller than adults would accumulate a higher dose of DDT derivatives (amount of DDT ingested per kilogram of body weight) than adults once exposed over the same period, implying that those effects would be more severe in the former (ATSDR, 2002). Studies outside Africa have also reported DDT derivatives in fish, with some ΣDDT values higher while others were lower than the ones found in the present study. ΣDDT magnitudes: 1010 µg/kg fat wt in pelagic from Lake Como Como Italy (Bettini et al., 2008), 60 µg/kg wet wt in Archit char from Lake Oyangen (Evset al et., 2004) and 0.35 µg/kg wet wt in white fish from Lake Stuorajavri, Norway (Christensen and Savinova, 2007). In all these studies low (1 ~ 6%) percentage of \(p,p'-\text{DDT}\) was detected and derivatives of \(p,p'-\text{DDE}\) (\(p,p'-\text{DDE}\) and \(p,p'-\text{DDD}\)) were detected at high percentage and long-term no use of DDT was presumed in the countries.

Conclusion

Five out of the six DDT metabolites were detected namely: \(p,p'-\text{DDE}, o,p'-\text{DDD}, p,p'-\text{DDD}, o,p'-\text{DDT}, p,p'-\text{DDT}\), however their levels were still below the FAO/WHO recommended limit. The detection of notable amounts of \(o,p'-\text{DDT}\) and \(p,p'-\text{DDT}\) suggests that DDT is being used or was used in the country in the recent years. From the present findings, we suggest that fish are a good bio-indicator of environmental contamination by DDT derivatives. Periodic bio-monitoring of these derivatives in the environment should be carried out so as to assess the trends of environmental contamination by these chemicals.

ACKNOWLEDGEMENTS

The authors acknowledge with gratitude the financial support of Gulu University. Dr John Wasswa and Mr. Christopher Bitainensha of the Department of Chemistry, Makerere University are also thanked for their support during sample preparation and analysis.
Journal of Toxicology and Environmental Health Sciences

Related Journals Published by Academic Journals

- Journal of Clinical Pathology and Forensic Medicine
- Journal of Infectious Diseases and Immunity
- Journal of Clinical Virology Research
- Clinical Reviews and Opinions
- Medical Case Studies
- Medical Practice and Reviews