ABOUT AJBR

The African Journal of Bacteriology Research (AJBR) (ISSN 2006-9871) is published Monthly (one volume per year) by Academic Journals.

African Journal of Bacteriology Research (AJBR) is a peer reviewed journal. The journal is published per article and covers all areas of the subject such as: Bacterial physiology, Bacterial floral for human, Prokaryotes of the environment, Bacterial endotoxin, Cell signalling.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email jbr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at jbr@academicjournals.org.
Editor

Dr. Colleen Olive
Queensland Institute of Medical Research
PO Royal Brisbane Hospital
Brisbane,
Australia.

Dr. Lyuba Doumanova
The Stephan Angeloff Institute of Microbiology
Bulgarian Academy of Sciences
Sofia,
Bulgaria.

Dr. Imtiaz Wani
S.M.H.S Hospital
Amira Kadal,
India.

Dr. Aamir Shahzad
Max F. Perutz Laboratories
University of Vienna
Vienna,
Austria.

Dr. Ömür Baysal
West Mediterranean Agricultural Research Institute (BATEM)
Antalya,
Turkey.

Associate Editors

Dr. Chang-Gu Hyun
Jeju Biodiversity Research Institute (JBRI) and Jeju Hi-Tech Industry Development Institute (HiDI)
Jeju,
Korea.

Dr. Ramasamy Harikrishnan
Jeju National University
Department of Aquatic Life Medicine
College of Ocean Science
Korea.

Prof. Salah M. Azwai
Al Fateh University
Tripoli,
Libya.

Dr. Osman Radwan
University of Illinois
Urbana, IL
USA.

Prof. Abdulghani Alsamarai
Tikrit University College of Medicine
Tikrit,
Iraq.

Dr. Nuno Cerca
University of Minho
Braga,
Portugal.

Dr. Mohammad Reza Shakibaie
Department of Microbiology and Immunology
Kerman University of Medical Sciences
*Kerman,
Iran.
Editorial Board

Dr. Bojarajan Senthilkumar
Institute for Ocean Management
Anna University
Chennai,
India.

Dr. Asis Khan
Washington University
St. Louis, MO
USA.

Saikat Kumar Basu
University of Lethbridge
Lethbridge, AB
Canada.

Dr. Sivaramaiah Nallapeta
ONAN Centre for Molecular Investigations
Secunderabad,
India.

Dr. Yajnavalka Banerjee
Max-Planck Institute for Biophysical Chemistry
Goettingen,
Germany.

Dr. Petr Slama
Mendel University of Agriculture and Forestry
Department of Animal Morphology, Physiology and Genetics
Brno,
Czech Republic.

Dr. Petros V. Vlastarakos
Lister Hospital
Stevenage,
UK.

Dr. Lee Seong Wei
Department Fishery Science and Aquaculture
Faculty Agrotechnology and Food Science
Universiti Malaysia Terengganu
Terengganu,
Malaysia.

Dr. Gurdeep Rastogi
Department of Plant Pathology
University of California
Davis, CA
USA.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the African Journal of Bacteriology Research is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and/or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JBR, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
Production Of Biosurfactants By Bacteria Isolated From A Mine Tailing Zone In Southern Mexico And Their Resistance To Heavy Metals
Jeiry Toribio-Jiménez, Miguel Ángel Rodríguez-Barrera, Monserrat Valdez Lucena, Ashanti Barrera Flores, Daniel Segura, Víctor Wilson-Corral, Eugenia Flores Alfaro and Yanet Romero
Production of biosurfactants by bacteria isolated from a mine tailing zone in Southern Mexico and their resistance to heavy metals

Jeiry Toribio-Jiménez¹, Miguel Ángel Rodríguez-Barrera¹, Monserrat Valdez Lucena¹, Ashanti Barrera Flores¹, Daniel Segura², Víctor Wilson-Corraí³, Eugenia Flores Alfaro⁴ and Yanet Romero¹*

¹Laboratorio de Investigación en Biotecnología y Genética Microbiana, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.
²Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
³Unidad Académica de Ingeniería, Universidad Autónoma de Sinaloa, Culiacan, México.
⁴Laboratorio de Investigaciones de Epidemiología clínica y Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México.

Received 21 March, 2014; Accepted 1 August, 2014

Tailings generated through mining processes often create leachates containing high concentrations of heavy metals such as As, Fe, Mn, Zn and Pb. These high concentrations of heavy metals result in environmental damage such as contamination of soil, groundwater and air, which represents a huge problem for individuals living near mining areas. An alternative for soil metal removal is microbiological processes including the production of biosurfactants, possibly a survival mechanism for adverse conditions of mine tailings and leachates. Moreover, mine tailings are materials that have attracted interest among researchers, because they can be exploited by innovative techniques like phytomining. In this study, we sampled the leachates of the “El fraile” mine tailings and identified 103 bacteria capable of growth on these leachates. We observed that 11 bacteria produce a high amount of biosurfactants and developed the multi-metal tolerance with higher concentration gradient of Pb, Cd, Cu, Fe, Zn and As. We showed that the bacteria tolerate 853 nM of As and up to 12 nM of Pb, 17 nM of Cd, 10.6 nM of Cu, 22 nM of Fe and 10.5 nM of Zn. We determined that the bacterial isolates clustered within five phylogenetic groups that were very close: Enterobacter, Klebsiella, Arthrobacter, Pantoea and Solibacillus groups. A bank of strains resistant to heavy metals and producers of biosurfactants was obtained for future studies on the mechanism of absorption or assimilation of heavy metals and light was shed on the alternative use of these bacteria in bioremediation of metal pollution.

Key words: Bacteria, metals, biosurfactants, mine tailings.

INTRODUCTION

Mining is one of the most important economic activities of Mexico since the 15th Century and is currently active in many parts of the country. The Taxco mining district has been one of the richest producers of silver and gold, among other metals, since colonial times (1523-1810). In this district, there are tailing impoundments of various ages and sizes...
(La Concha, Santa Rosa, Taxco and El Fraile) with high levels of metals (As, Pb, Cd, Zn, Mn) (Armienta et al., 2003; Talavera et al., 2005). During mining activities, large amounts of material or mine wastes are removed and deposited into surrounding areas. Leaching of heavy metals from these dumps is common during the rainy season, which contaminates the surface water as well as ground water bodies (Dhakate and Singh, 2008). In the El Fraile impoundments, different types of acidic (pH = 2.4-2.5) or near-neutral (pH = 6.3-7.7) leachates were identified. Some environmental monitoring studies on these leachates have shown high levels of CaSO₄, (Ca+Mg)SO₄, Mg-SO₄ and Ca-(SO₄+HCO₃) (Talavera et al., 2006). These deposits of mine tailings and their leachates are major sources of heavy metal contamination in and around the communities, because the leachates are sometimes used as alternative sources of domestic water.

Heavy metals are stable and persistent contaminants of the environment, since they cannot be degraded or destroyed (Sevji et al., 2009) so, the accumulation of metals in soil represents a health risk for people (Moreno et al., 2010), and other living things in terrestrial and aquatic environments near mining areas. The use of microorganisms for decontamination of heavy metals in the soil and water around industrial plants has gained growing attention (Doni et al., 2013; Gadd, 2004; Kavamura and Esposito, 2010). Tailings have very low concentrations of macronutrients for microbial growth, especially nitrogen, and conversely can contain high concentrations of heavy metals, which can be particularly problematic in tailings where the pH is low. In such instances, soil fertility and microbial communities are drastically reduced (Seaker and Sopper, 1988; Pepper et al., 2012). However, multiple investigations have been carried out with isolated microbial strains from soil, mud and water samples from metallurgically polluted environments for bioremediation of toxic heavy metals (Umrania, 2006; Das et al., 2013). Recent work indicated that most of the transitions between metal speciation forms are controlled by microbial activity (Johnson and Hallberg, 2004; Hall et al., 2005; Hall and Puhlmann, 2004). The potential for natural attenuation of acid mine drainage by microbial populations, and the subsequent removal of key toxic metal, particularly the removal of copper and zinc and the interaction of the root-organism in the activation of such decontamination procedures, were clearly demonstrated (Doni et al., 2013; Whitehead and Prior, 2004; Mulligan et al., 1999). Therefore, microbial processes that facilitate the detoxification and metal mobility using resistant microbial strains can be exploited for bioremediation of heavy metals from waste water and effluents containing heavy metals.

The production of biosurfactants by bacteria plays a role in the adaptation of these organisms to different environments (Toribio et al., 2011); therefore, this could be a mechanism by which the bacteria can absorb heavy metals and become resistant to growth in soils polluted by tailings. Biosurfactant producing bacteria are very diverse and have been isolated from a wide variety of environments, including contaminated soil or water (Bodour et al., 2003), but there are no reports of biosurfactant producing bacteria isolated from mining soils.

The present study is aimed at isolating, characterizing and monitoring biosurfactant producing bacterial isolates and their ability to resist heavy metal leachates from the mine El Fraile tailings located in the Taxco mining district in southern Mexico for their possible use in bioremediation in metal contaminated environments.

MATERIALS AND METHODS

Site description and tailing sampling

The present study was conducted near a mine site (El Fraile) located at Taxco, Guerrero, in southern Mexico (Figure 1). Thirty-two samples were randomly collected from heavy metal-contaminated mine tailings and leachates of the El Fraile and were put into aseptic screw capped bottles. The pH of the mine tailing and leachate was determined using a pH meter (Orion Research, Beverly, MA).

Isolation of strains, media and growth conditions

A quantity of 1 mL of leachate or 1 g of soil of El Fraile mine tailings from each of the collected samples was mixed in 9 mL of sterile saline solution (NaCl 0.85%) and serial dilutions were made (1:1,000 and 1:10,000). 100 µL of each dilution was plated on Luria Bertani (LB) agar plates supplemented with 0.025 mM Pb(NO₃)₂ and 0.0125 mM de Cd (NO₃)₂. Plates were incubated at 30°C for 48 h and colonies differing in morphological characteristics were selected.

Detection of biosurfactant production

The isolated bacteria were screened for their biosurfactant-producing ability by blood agar plate assay and PSVW agar plate assay. The screening was done culturing the bacteria on PSVW (PPGAS medium supplemented with 2.5 mg/ml of methylene blue, 200 mg/ml of the surfactant cetyl-thimethyl-ammonium-bromide (CTAB) and 1.5% agar) plates and blood agar (15 g/L enzymatic digest of casein, 4 g/L enzymatic digest of animal tissue, 2g/L yeast extract, 1g/L corn starch, 5g/L sodium chloride and 14g/L agar) plates (Will et al., 1997). Plates were incubated at 30°C for 72 h. Bacteria producing a blue halo around the colonies and hemolysis were cultured on PPGAS liquid medium (0.02 M NH₄Cl, 0.02 M KCl, 0.12 M Tris-HCl, 0.0016 M MgSO₄, 0.5% glucose, and 1% peptone, pH 7.2; Zhang and Miller, 2002) and were incubated at 30°C for 7 or 15 days shaken at 225 rpm. Foam-forming activity, drop collapse assay and emulsification ability (Sen, 2010; Toribio et al., 2011) were also evaluated.

*Corresponding author. E-mail: yromero@uagro.mx. Tel: 01-747-4719310 ext.4525. Fax: 01-747-47 25503.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Biochemical characterization

Morphological and biochemical properties of the strains isolated were determined and compared by The Analytical Profile Index (API 20E) and VITEK2 Compact (bioMérieux). These systems use 8 conventional biochemical tests and 12 carbohydrate assimilation tests and were performed according to the manufacturer’s instructions. Gram staining, catalase and oxidase test were done with standard protocols as described in MacFaddin’s Manual of Identification of Bacteria (MacFaddin, 2000; Kannan, 2002).

Minimum inhibitory concentration (MIC) determination

The MIC was used to define the lowest concentration of heavy metals and metalloids that inhibit the visible growth of bacteria (Andrews, 2001). The MIC values were determined using the agar dilution method (Kamala-Kannan and Krishnamoorthy, 2006). A log-phase culture of the isolates was inoculated onto LB agar plates supplemented with increasing concentrations (1-900 mM) of heavy metal salts and metalloids: Pb(NO₃)₂, Cd(NO₃)₂, Cu(NO₃)₂, Fe(NO₃)₃, Zn(NO₃)₂ and As IV. The plates were incubated at 30°C for a week, looking for bacterial growth.

DNA extraction, sequencing and phylogenetic analyses

Genomic DNA was extracted by using a GeneJet™ Genomic DNA purification kit (Thermo Scientific) according the manufacturer’s instructions. Bacterial 16S rDNA was amplified by PCR using the universal bacterial 16S rDNA primers f1 5’-AGAGTTTGATCCTGGCTCAG-3’ and rd1 5’-AAGGAGGTGATCCAGCC-3’ (Ndip et al., 2007; Rodicio et al., 2004). PCR was performed with a 25 µl reaction mixture containing 1 µl (10 ng) of DNA as a template, each primer at a concentration of 5 µM, 2.5 mM MgCl₂ and dNTP’s at a concentration of 2.5 µM, as well as, taq polymerase and buffer used as recommended by the manufacturer (Thermo Scientific). The PCR conditions consisted of an initial denaturing step at 95°C for 7 min, 30 cycles of 95°C for 40 s, 55°C for 40 s, 72°C for 2 min and a final extension at 72°C for 15 min. The PCR products were electrophoresed and purified from 1% agarose gels (0.56 TAE buffer; 2.42 g Tris-HCl, 0.57 ml glucic acid, 1 ml 0.5 M EDTA (pH 8.0) and 1 L distilled and deionized water) using the GeneJET™ PCR Purification Kit (Thermo Scientific). DNA sequences were determined by the dideoxy chain termination method (Sanger et al., 1977) with a Perkin Elmer/Applied Biosystems DNA Sequencer. The 16S rDNA sequences were aligned and compared with other 16S rDNA genes in Ribosomal Database Project II (RDP) by using SEQUMATCH (Wang et al., 2007) and GeneBank by using NCBI basic local alignment search tools BLASTn program (Benson and Karsch-Mizrachi, 2000). The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test, has 1000 replicates (Felsenstein, 1985). The evolutionary distances were computed using the Jukes-Cantor method (Jukes and Cantor, 1969). The rate variation among sites was modeled with a gamma distribution. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). GenBank accession numbers for Enterobacter cancerogenus 16S rDNA sequences are KF811178, KF811179, KF811181, KF811185, KF811186, KF811187 and KF811188, for Klebsiella pneumonia 16S rDNA gene sequence is KF811183. That for Solibacillus silvestris 16S rDNA gene sequence is KF811182; for Arthrobacter luteolus 16S rDNA gene sequence is: KF811177 and for Pantoea vagans 16S rDNA gene sequence is KF811192.
Table 1. Microbiological characterization.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Samples pH</th>
<th>Gram staining</th>
<th>Oxidase assay</th>
<th>Catalase assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leachates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14D1-12</td>
<td>2.0</td>
<td>Bacillus Gram -</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>M14D2-13</td>
<td>2.0</td>
<td>Bacillus Gram -</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>M14-1</td>
<td>6.0</td>
<td>Bacillus Gram +</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>M14A-1</td>
<td>2.0</td>
<td>Bacillus Gram -</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M14B</td>
<td>2.0</td>
<td>Bacillus Gram -</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mine tailings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2B-1</td>
<td>8.4</td>
<td>Bacillus Gram -</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>M2B-4</td>
<td>8.0</td>
<td>Bacillus Gram +</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>M15A-4</td>
<td>7.0</td>
<td>Bacillus Gram -</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M4D-2</td>
<td>7.4</td>
<td>Bacillus Gram -</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>M10-7</td>
<td>8.4</td>
<td>Bacillus Gram -</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>PAO</td>
<td>8.4</td>
<td>Bacillus Gram -</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

All determinations were done in duplicate. (-), No activity, (+), activity.

Statistical analysis

The experiments were set up in duplicate. Data sets of resistance to metal among individual isolates were analysed by principal component analysis (PCA) using a statistical package STATA v 11.

RESULTS

Isolation, identification and characteristics of biosurfactant-producing bacteria

This study represents an attempt to identify the biosurfactant producing bacteria within mine tailings and leachates from El Fraile. Serial dilution plating of mine tailing suspensions and leachates on LB plates resulted in the isolation of a total of 103 morphologically distinct bacteria (23 isolates of leachates and 80 of mine tailings). Screening of the bacterial isolates for biosurfactant production resulted in the isolation of 11 strains (5 of leachates and 6 of mine tailings) which gave positive results for most of the screening assays, indicating that they are efficient biosurfactant producers. Strains were subjected to Gram staining to determine their structure and morphology. We found that nine of these bacteria are Gram negative bacillus and two are Gram positive bacillus. We also carried out the oxidase and catalase assays in order to determine the metabolism of the 11 strains isolated. Table 1 indicates the results obtained. All bacteria were catalase positive and most were oxidase negative.

Study of the emulsifying capacity of biosurfactants produced by the bacterial isolates

The 11 isolates were tested for biosurfactant production and activity (Table 2). In all assays and tests _Pseudomonas aeruginosa_ was used as reference biosurfactant producing bacteria. We used the hemolytic activity assay as the first method for screening biosurfactant producers. In this assay, we looked for a clear zone around the wells produced by hemolysis. Although we did not observe hemolytic activity of the isolates in this assay, when we used PSVW plates to detect extracellular glycolipid production, the formation of dark blue halos around all the isolates was observed, and the halos produced by the isolates M14D1-12, M14D2-13 and M14-1 were similar to those produced by _P. aeruginosa_ (Table 2). Biosurfactant activity was measured by the drop collapse test, by comparing an oil droplet treated with sterile medium as the control to an oil droplet treated with the culture (Table 2). The oil droplet collapsed when treated with cultures of all isolates, especially with cultures of the isolates M14D2-13 and M14-1 (Table 2). In addition, biosurfactant activity was also confirmed by the emulsifying activity of biosurfactant in the supernatant. The emulsifying capacity was evaluated by the _E_{24}^a_ emulsification index using _P. aeruginosa_ PAO1 as a control. Amongst the isolates from the mine tailings, the emulsifying capacity was higher with the isolates M10-7 and M4D-2, with a 52.27 and 26.09% respectively, whereas with the isolates from the leachates it was M14D1-12, with 44% (Table 2). No substantial emulsification was achieved with M14D2-13 (isolate from leachates) and M2B-4, M15A-4 and PAO (isolates from mine tailings). Foam formation was evaluated in the isolates on PPGAS medium, for a period of 7 to 15 days. We observed that the isolates from leachates that showed the higher production were M14D2-13, M14D1-12 and M14A-1, whereas the isolates M2B-1, M2B-4, M15A-4 and M4D-2 from the mine tailings showed the same production, except for strain M10-7 that produced less and the strain PAO whose production was similar to that of the control strain (Table 2).
Table 2. Detection of biosurfactant production assays.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Hemolytic activity</th>
<th>PSVWagar test</th>
<th>Drop collapse test</th>
<th>E_{24} (%)</th>
<th>Foam-forming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa PA01</td>
<td>++++</td>
<td>+++</td>
<td>+++</td>
<td>60</td>
<td>+++</td>
</tr>
<tr>
<td>Leachates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14D1-12</td>
<td>-</td>
<td>+++</td>
<td>+</td>
<td>44</td>
<td>+++</td>
</tr>
<tr>
<td>M14D2-13</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>10</td>
<td>+++</td>
</tr>
<tr>
<td>M14-1</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
<td>17</td>
<td>++</td>
</tr>
<tr>
<td>M14A-1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>12</td>
<td>+++</td>
</tr>
<tr>
<td>M14B</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>12</td>
<td>+++</td>
</tr>
<tr>
<td>Mine tailings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2B-1</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>11.9</td>
<td>++</td>
</tr>
<tr>
<td>M2B-4</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>6.98</td>
<td>++</td>
</tr>
<tr>
<td>M15A-4</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>8.70</td>
<td>++</td>
</tr>
<tr>
<td>M4D-2</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>26.09</td>
<td>++</td>
</tr>
<tr>
<td>M10-7</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>52.27</td>
<td>+</td>
</tr>
<tr>
<td>PAO</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+++</td>
</tr>
</tbody>
</table>

All determinations were done in duplicate using *P. aeruginosa* PA01 as a control. (-), No produced hemolysis, (+), Foam formation and stability.

Effect of growth of bacteria on heavy metal

Diverse studies have shown that bacteria isolated from mine tailings show metal tolerance (Pepper et al., 2012; Koc et al., 2012). To determine the extent of tolerance through MIC values, the isolated bacteria were grown on LB agar plates containing different concentrations of heavy metals and metalloids (Pb, Cd and As). The results of the metal sensitivity tests (inhibition zone diameters) for the isolates and the control strain (*P. aeruginosa* PAO1), on Pb(NO\(_3\))\(_2\), Cd(NO\(_3\))\(_2\), Cu(NO\(_3\))\(_2\), Fe(NO\(_3\))\(_2\), Zn(NO\(_3\))\(_2\) and As IV, are provided in Table 3. The cut-off value of MIC was taken to be 17 mM for Pb(NO\(_3\))\(_2\), Cd(NO\(_3\))\(_2\), Cu(NO\(_3\))\(_2\), Fe(NO\(_3\))\(_2\), Zn(NO\(_3\))\(_2\) and 853 for As. All the isolates showed high tolerance to the various heavy metals and metalloids tested. The MIC levels were significantly higher as compared to the control (Table 3). Isolates from leachates exhibited MIC values of 11 mM on Fe(NO\(_3\))\(_2\), up to 17 mM on Cd(NO\(_3\))\(_2\), 12 mM on Pb(NO\(_3\))\(_2\), 10.5 and 10.6 mM on Zn(NO\(_3\))\(_2\) and Cu(NO\(_3\))\(_2\) respectively; whereas on As IV, the MIC value was 853 mM. For the isolates from the mine tailings, we observed that the MIC values on Pb(NO\(_3\))\(_2\), Cu(NO\(_3\))\(_2\) and Zn(NO\(_3\))\(_2\) were similar to the values of isolates from the leachates, whereas the maximum MIC values on Fe(NO\(_3\))\(_2\) and Cd(NO\(_3\))\(_2\) were 22 and 8.5 mM, respectively, instead of 11 and 17 mM. Of these isolates from the mine tailings, only M15A-4 and M10-7 displayed a high MIC value on As IV (853 mM (Table 3). PCA was performed to compare resistance to metal among individual isolates. We observed the higher tolerance to Pb ascribed to the variability between the strains isolated, variability was not observed in the resistance to Cd, As, Fe and Zn, even though the As showed the highest resistance concentrations, but has no variability as the Pb resistance. So, according to data from the principal component analysis (PCA), the strains isolates showed higher tolerance to Pb followed by Cd and As and less tolerance to Fe and Zn, the analysis results were consistent with the values of the MICs.

16S rRNA sequence analysis

To further characterize the isolated bacteria, their 16S rDNA sequences were obtained by amplifying and sequencing their DNA fragments. The results from the analysis using the Ribosomal Database project II (RPD II), showed that the 16S rDNA sequences of all isolates group in five distant clusters (Figure 2). The first one belongs to the *Enterobacter* group and contains seven isolates showing a unique 16S rDNA sequence (M14D2-13, M14-A1, M2B-1, M14B, M15A-4, M4D-2 and PAO). The second one (M14D1-12) belongs to the *Pantoea* group and displays the same 16S rDNA sequence as *P. vagans*. The third (M10-7) belongs to the *Klebsiella* group, displaying the same 16S rDNA sequence as *K. pneumoniae*. The fourth one (M14-1) belongs to the *Solibacillus* group; displaying the same 16S rDNA sequence as *S. silvestris*, and the fifth one (M2B-4) belongs to the *Arthrobacter* group, displaying the same 16S rDNA sequence as *A. luteolus*. The seven *Enterobacter* strains, sharing a 100% identity of the 16S rDNA sequence between them, were closer to
<table>
<thead>
<tr>
<th>Isolate</th>
<th>Pb(NO₃)₂</th>
<th>Cd(NO₃)₂</th>
<th>Cu(NO₃)₂</th>
<th>Fe(NO₃)₂</th>
<th>Zn(NO₃)₂</th>
<th>As IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa PA01</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Leachates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14D1-12</td>
<td>12</td>
<td>17</td>
<td>10.6</td>
<td>11</td>
<td>10.5</td>
<td>853</td>
</tr>
<tr>
<td>M14D2-13</td>
<td>12</td>
<td>17</td>
<td>10.6</td>
<td>11</td>
<td>5.3</td>
<td>853</td>
</tr>
<tr>
<td>M14-1</td>
<td>12</td>
<td>8.5</td>
<td>10.6</td>
<td>11</td>
<td>5.3</td>
<td>853</td>
</tr>
<tr>
<td>M14A-1</td>
<td>12</td>
<td>17</td>
<td>10.6</td>
<td>11</td>
<td>5.3</td>
<td>853</td>
</tr>
<tr>
<td>M14B</td>
<td>12</td>
<td>17</td>
<td>10.6</td>
<td>11</td>
<td>5.3</td>
<td>853</td>
</tr>
<tr>
<td>Mine tailings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2B-1</td>
<td>6</td>
<td>8.5</td>
<td>10.6</td>
<td>22</td>
<td>10.5</td>
<td>426</td>
</tr>
<tr>
<td>M2B-2</td>
<td>6</td>
<td>4.2</td>
<td>10.6</td>
<td>22</td>
<td>10.5</td>
<td>426</td>
</tr>
<tr>
<td>M15A-4</td>
<td>6</td>
<td>8.5</td>
<td>10.6</td>
<td>22</td>
<td>5.3</td>
<td>426</td>
</tr>
<tr>
<td>M4D-2</td>
<td>6</td>
<td>4.2</td>
<td>10.6</td>
<td>22</td>
<td>5.3</td>
<td>426</td>
</tr>
<tr>
<td>M10-7</td>
<td>12</td>
<td>8.5</td>
<td>10.6</td>
<td>22</td>
<td>10.5</td>
<td>853</td>
</tr>
<tr>
<td>PAO</td>
<td>6</td>
<td>4.2</td>
<td>10.6</td>
<td>22</td>
<td>5.3</td>
<td>426</td>
</tr>
</tbody>
</table>

All determinations were done in duplicate in cells grown for a week on LB agar plates supplemented with increasing concentrations (1–900 mM) of heavy metal salts and metalloids: Pb(NO₃)₂, Cd(NO₃)₂, Cu(NO₃)₂, Fe(NO₃)₂, Zn(NO₃)₂, and As IV. (–), No MIC hence no growth. *P. aeruginosa* PA01 was used as a control, the results are expressed as MIC mM.

E. cancerogenus, than to *E. asburlae*.

DISCUSSION

The mining activity in Taxco, Guerrero, Mexico has resulted in the discharge of large amounts of mine wastes (Talavera et al., 2005, 2006). These deposits are major sources of heavy metal contamination affecting the surrounding area. We have interest in finding bacteria capable of absorbing or assimilating heavy metals as an alternative to bioremediation. We isolated eleven novel strains capable of growing in mine tailings and leachates, in addition to producing biosurfactants. Biosurfactant applications in environmental applications are promising due to their biodegradability, low toxicity and effectiveness in enhancing the biodegradation and solubilization of low solubility compounds (Soberón-Chávez G and Maier, 2011; Mulligan et al., 1999). A number of studies have demonstrated that biosurfactants produced by bacteria, accelerate the bioremediation of hydrocarbon contaminated soils and organic contaminants (Moldes et al., 2001; Mahjoubi et al., 2013; Lawniczak et al., 2013). It has also been demonstrated that the production of biosurfactants greatly contributes to the metal removal from contaminated soils (Wang and Mulligan, 2009). It has been proposed that the rhamnolipids can remove arsenic and heavy metals through the formation of complex micelles with the metals, reducing the interfacial tension (Wang and Mulligan, 2009). However, the presence of biosurfactant producing bacteria isolated from metal contaminated soils has not been documented; therefore, these bacteria are the focus of attention in this work because the production of biosurfactants could possibly be a mechanism that the bacteria isolates of leachates of mine tailings use to resist high levels of heavy metals. Therefore, in this study, we characterized biosurfactant producing bacteria capable of growth on high levels heavy metals with the objective of creating a collection of strains for future studies on the role of biosurfactants on removal of heavy metals from the mine tailings and the possible mechanisms involved.

The high value of MIC that the bacterial isolates present, indicate their capacity to resist high concentrations of heavy metals. This should be taken into consideration if these bacteria are to be used on the remediation of arsenic and heavy metal contaminated mine tailings or soils. We observed that the best BS producing strain isolated from leachates was the M14D1-12, exhibiting an index of emulsification of 44%, whereas that the best BS producing strain isolated from the mine tailing was the M10-7, with an index of emulsification of 52.27%, with respect to the control strain *P. aeruginosa* PA01 (Table 2). This strains were capable of tolerating more value of Cd(NO₃)₂ and Fe(NO₃)₂, therefore we observed the correlation between the production of biosurfactant, with the ability for growth in high concentrations of heavy metals. The RDP II 16S rRNA gene sequence analysis was carried out to identify the dominant bacterial population. The data showed that the most
persistent bacterial populations were members of dominant soil bacterial group in distant clusters: *Enterobacter*, *Klebsiella*, *Arthrobacter*, *Silobacillus* and *Pantoea*, the strain isolated from leachates M14D1-12 was identified as *P. vagans*, whereas the strain isolated from the mine tailing M10-7 was identified as *E. cancerogenus* (Figure 1). Using denaturing gradient gel electrophoresis (DGGE) bacteria isolates were found in heavy metal contaminated soils belonging to the genus *Arthrobacter*, *Bacillus*, *Brevibacterium*, *Brochothrix*, *Comamonas*, *Cytophaga*, *Deinococcus*, *Enterobacter*, *Hafnia*, *Micrococcus*, *Mycobacterium*, *Nocardia*, *Pseudomonas*, *Rathayibacter*, *Rhodococcus*, *Salmonella*, *Serratia*, *Staphylococcus*, *Variovorax* and *Xanthomonas* (Ellis et al., 2003).
However, the existence of these microorganisms can be influenced by several factors such as the presence of nutrients, pH and specially the humidity and temperature. In this study, we found the genus *Enterobacter, Silobacillus, Klebsiella, Arthrobacter and Pantoaea* and we observed that they were capable of growth in a mineral-rich environment; therefore these bacteria are remarkably tolerant to a wide range of soluble metal ions (Table 3). The capacity of these bacteria to tolerate high concentrations of heavy metals and the production of BS can be exploited for the remediation of heavy metal pollution.

Experiments are in progress to characterize the optimal conditions for biosurfactant production on heavy metal to determine the type and the potential role biosurfactants may play in heavy metal metabolism by the producing organism. The current study showed that bacteria of genus: *Enterobacter, Silobacillus, Klebsiella, Arthrobacter and Pantoaea* isolated from mine tailings and leachates of the "El fraile" mine tailing are capable of resisting high concentrations of heavy metal salts and metabolites: Pb(NO₃)₂, Cd(NO₃)₂, Cu(NO₃)₂, Fe(NO₃)₂, Zn(NO₃)₂ and As IV and produce biosurfactants (BS). This is the first study on bacteria isolated from mine tailing and leachates that showed the production of BS which can be a key factor for living in these ecosystems.

Conflict of Interests

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

This work was supported by convening 2012 of the University of Guerrero. We are grateful to Travis Ashworth for critical discussions of this work and Dr. Daniel Segura Gonzalez for sequencing the 16S rDNA sequences. We also thank Fernando Reyna, Ana Patricia Torres, Daysi Roman and Analy Lara for their technical support, Dr. Germán Bonilla Rosso for his constructive criticism on phylogenetic analysis.

REFERENCES

African Journal of Bacteriology Research

Related Journals Published by Academic Journals

- Journal of Cell and Animal Biology
- International Journal of Genetics and Molecular Biology
- African Journal of Microbiology Research
- Journal of Evolutionary Biology Research
- International Journal of Biodiversity and Conservation
- Journal of Enzymology and Metabolism
- Journal of Environmental Microbiology and Microbial Ecology