ABOUT AJPP

The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals.

African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, pharmaceuticals, pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: ajpp@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The African Journal of Pharmacy and Pharmacology will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Sharmilah Pamela Seetulsingh-Goorah
Associate Professor,
Department of Health Sciences
Faculty of Science,
University of Mauritius,
Reuduit,
Mauritius

Himanshu Gupta
University of Colorado- Anschutz Medical Campus,
Department of Pharmaceutical Sciences, School of Pharmacy Aurora, CO 80045,
USA

Dr. Shreesh Kumar Ojha
Molecular Cardiovascular Research Program
College of Medicine
Arizona Health Sciences Center
University of Arizona
Tucson 85719, Arizona,
USA

Dr. Victor Valenti Engracia
Department of Speech-Language and Hearing Therapy Faculty of Philosophy and Sciences, UNESP
Marilia-SP, Brazil

Prof. Sutiak Vaclav
Rovniková 7, 040 20 Košice,
The Slovak Republic,
The Central Europe,
European Union
Slovak Republic
Slovakia

Dr. B. RAVISHANKAR
Director and Professor of Experimental Medicine
SDM Centre for Ayurveda and Allied Sciences,
SDM College of Ayurveda Campus,
Kuthpady, Udupi- 574118
Karnataka (INDIA)

Dr. Manal Moustafa Zaki
Department of Veterinary Hygiene and Management
Faculty of Veterinary Medicine, Cairo University
Giza, 11221 Egypt

Prof. George G. Nomikos
Scientific Medical Director
Clinical Science
Neuroscience
TAKEDA GLOBAL RESEARCH & DEVELOPMENT CENTER, INC. 675 North Field Drive Lake Forest, IL 60045
USA

Prof. Mahmoud Mohamed El-Mas
Department of Pharmacology,

Dr. Caroline Wagner
Universidade Federal do Pampa
Avenida Pedro Anunciação, s/n
Vila Batista, Caçapava do Sul, RS - Brazil
Editorial Board

Prof. Fen Jicai
School of life science, Xinjiang University, China.

Dr. Ana Laura Nicoletti Carvalho
Av. Dr. Arnaldo, 455, São Paulo, SP. Brazil.

Dr. Ming-hui Zhao
Professor of Medicine
Director of Renal Division, Department of Medicine
Peking University First Hospital
Beijing 100034
PR. China.

Prof. Ji Junjun
Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, China.

Prof. Yan Zhang
Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Canada.

Dr. Naoufel Madani
Medical Intensive Care Unit
University hospital Ibn Sina, Univesity Mohamed V Souissi, Rabat, Morocco.

Dr. Dong Hui
Department of Gynaecology and Obstetrics, the 1st hospital, NanFang University, China.

Prof. Ma Hui
School of Medicine, Lanzhou University, China.

Prof. Gu Huijun
School of Medicine, Taizhou university, China.

Dr. Chan Kim Wei
Research Officer
Laboratory of Molecular Biomedicine,
Institute of Bioscience, Universiti Putra, Malaysia.

Dr. Fen Cun
Professor, Department of Pharmacology, Xinjiang University, China.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Prof. Ehab S. EL Desoky
Professor of pharmacology, Faculty of Medicine
Assiut University, Assiut, Egypt.

Dr. Yakisich, J. Sebastian
Assistant Professor, Department of Clinical Neuroscience
Beijing 100034
Assistant Professor, Department of Clinical Neuroscience
PR. China.

Prof. Dr. Andrei N. Tchernitchin
Head, Laboratory of Experimental Endocrinology and Environmental Pathology LEEPA
University of Chile Medical School, Chile.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Dr. Yasar Tatar
Marmara University, Turkey.

Dr Nafisa Hassan Ali
Assistant Professor, Dow institute of medical technology
Dow University of Health Sciences,Chand bbi Road, Karachi, Pakistan.

Dr. Krishnan Namboori P. K.
Computational Chemistry Group, Computational Engineering and Networking,
Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-641 112
India.

Prof. Osman Ghani
University of Sargodha, Pakistan.

Dr. Liu Xiaoji
School of Medicine, Shihezi University, China.
ARTICLES

Research Articles

6-Thioguanine Loaded Magnetic Microspheres As A New Drug Delivery System To Cancer Patients
Satinder Kakar and Ramandeep Singh 786

Effect Of Date Palm Pollen On Serum Testosterone And Intra-Testicular Environment In Male Albino Rats
Yasir Arfat, Nasir Mahmood, Munazza Ahmad, Muhammad Tayyab, Fan Zhao, Di-Jie Li, Chen Zhihao, Chong Yin, Peng Shang and Ai-Rong Qian 793
Full Length Research Paper

6-Thioguanine loaded magnetic microspheres as a new drug delivery system to cancer patients

Satinder Kakar* and Ramandeep Singh

Department of Pharmacy, Himachal Institute of Pharmacy, Paonta Sahib, H.P., India.

Received 3 May, 2014; Accepted 20 August, 2014

Magnetic microspheres of 6-thioguanine were prepared by continuous solvent evaporation technique. An attempt was made to target the magnetic microspheres to the cancerous site. Poly lactic acid-polyethylene glycol copolyester (PLA-co-PEG) was used as a polymer. Microspheres were characterized in terms of percentage practical yield, micromeritic properties, particle size, swelling kinetics, magnetic responsiveness, magnetite content and in vitro drug release study. Phosphate buffer pH 7.4 was used for in vitro release study. Microspheres were found to give sustained release pattern. Reticuloendothelial clearance can be minimized and target site specificity can be increased.

Key words: 6-Thioguanine, magnetic, reticuloendothelial, anticancer.

INTRODUCTION

6-Thioguanine is a purine antagonist and is a highly effective anticancer drug. In the body, 6-thioguanine is converted to corresponding monoribonucleotides which inhibit the conversion of ionosine monophosphate to adenine and guanine nucleotides. It is highly useful in childhood acute leukemia, choriocarcinoma and solid tumors (Jharap et al., 2011). Mercaptopurine however can be employed as purine antagonist but it causes more nausea and vomiting than 6-thioguanine. Magnetic microspheres, as delivery system, are very much important which localizes the drug to the disease site. In this larger amount the freely circulating drug can be replaced by smaller amount of drug (Tripathi, 2008). The different types of therapeutic magnetic microspheres are:

1. These are used to deliver chemotherapeutic agent to liver tumors.
2. Drugs like proteins and peptides can also be targeted through this system.
3. Diagnostic microspheres can be used for imaging liver metastases and also can be used to distinguish bowel loops from other abdominal structures by forming nano size particles supramagnetic iron oxides.

Magnetic microspheres have potential use as magnetic seeds for drug delivery. Magnetic fields are believed to be harmless to the biological systems and adaptable to any part of the body. Magnetic microspheres ensure that the maximum amount of dose can be deposited and released in a controlled manner in selected non–RES organs. The range of control over matter allows noninvasive surgery and the ability to pass through tissue and even cell walls instead of lysing them to obtain internal access to the material. The above advantages make the magnetic microspheres an ideal candidate for controlled and targeted drug delivery system. Magnetic microspheres are most stable; also they are recyclable.

*Corresponding author. E-mail: satinderk599@gmail.com.
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
and reusable (Kakar and Singh, 2014).

MATERIALS AND METHODS

6-Thioguanine was obtained from Sigma Aldrich. Poly lactic acid-polyethylene glycol (PLA-co-PEG) copolyester was synthesized from oligomer of L-lactic acid and poly ethylene glycol (PEG) using stannous octoate as catalyst. 6-Thioguanine containing poly lactic acid-polyethylene glycol copolyester (PLA-co-PEG) magnetic microspheres were prepared via continuous solvent-evaporation method. The morphologies of prepared magnetic microspheres were evaluated by scanning electron microscopy (SEM). Drug release was observed in phosphate buffer saline (pH 7.4).

Preparation of magnetite

1. Nitrogen gas was flushed through the flask charged with 8.9 g of goethite, 9.94 g of FeCl₃ 4H₂O along with 250 ml of distilled water and 50 ml of 2 M sodium hydroxide while stirring vigorously
2. Reaction mixture was heated to reflux. During transformation the pH of the reaction mixture fell to 8.
3. Black colored precipitates were formed.
4. Precipitates were filtered and dried at room temperature (Mukherjee, 2012).

Preparation of magnetic microspheres

1. Drug and polymer were dissolved in appropriate volatile organic solvent and then magnetite is added to this solution along with stirring in order to form a homogeneous suspension.
2. The suspension was added to an immiscible auxiliary solution along with vigorous stirring.
3. Volatile organic solvent was evaporated slowly at 22 to 30°C to form microspheres (Dejagar et al., 2003).
4. Microspheres were centrifuged and freeze dried and stored at 4°C (Dhananjay and Nilofar, 2010; Corrigen and Helay 2003).

Evaluation of magnetic microspheres

Determination of percentage yield of microspheres

Thoroughly dried microspheres were collected and weighed accurately. The percentage yield was calculated using formula:

\[
\text{Percentage yield} = \left(\frac{\text{Practical yield}}{\text{Theoretical yield}} \right) \times 100
\]

82.64 was the percentage yield of the microspheres recovered.

Micromeritic properties

Accurately weighed microspheres were poured gently through a glass funnel into a graduated cylinder exactly to 10 ml mark. Initial volume was noted. Bulk density and tapped density were noted using tapping method using 10 ml measuring cylinder (Kakar et al., 2013). Angle of repose (θ), Hausner’s ratio (H) and Carr’s index (%C) were calculated to study the flow properties of microspheres by using the following formulas:

\[
\theta = \tan^{-1} \frac{h}{r}
\]

Where, h is height and r is radius of the pile, respectively.

\[
H = \frac{D_t}{D_b}
\]

% C = \left(\frac{D_t - D_b}{D_t} \right) \times 100

Where, Dt is tapped and Db is bulk density, respectively. Table 1 shows standards for flow properties (as per USP30-NF25 specifications). Figure 1 shows flow properties of prepared magnetic microspheres of 6-Thioguanine. Flow properties of prepared magnetic microspheres of 6-Thioguanine were found to be excellent with Carr’s index (9.89%), Hausner ratio (1.11) and angle of repose (29.5).

Particle size

Particle size was determined by SEM. Scanning electron micrographs of formulation was used to determine the average particle size of magnetic microspheres of 6-thioguanine. Average particle size was found to be 20 µm. Particles were found to be nearly spherical in shape. Figure 2 shows the SEM image of 6-thioguanine loaded microspheres.

Measurement of swelling kinetics of magnetic microspheres

Dried microspheres were immersed in distilled water at different predetermined time. Then the sample was removed from distilled water and was frequently weighed after trapped with a filter paper to remove excess water on the surface. Thus, the wet weight of the microspheres was recorded during the swelling period at regular time intervals (Prasanth et al., 2011). Swelling ratio was found to be more during day 2 and day 3 as compared to day 1. Figure 3 shows the swelling ratio of prepared 6-TG magnetic microspheres.

Magnetic responsiveness of 6-thioguanine loaded microspheres

The apparatus consist of a pump (aerator), which pumped air into the flask containing normal saline (Zhang et al., 2007).
Microspheres content of the collected samples were then evaluated using UV-Vis spectrophotometer at 342 nm. Figure 4 shows the apparatus for measuring magnetic responsiveness of 6-TG magnetic microspheres. Prior to injection, microspheres (25 mg/ml) were dispersed in normal saline containing 0.1% w/v Tween 80 and a stock solution was prepared. A flow of 0.5 cm/s of normal saline, resembling the blood flow rate passing through the capillaries, were established. A 1 ml aliquot of the microspheres suspension in the test vehicle was then injected into the injection site. The 8000 G magnetic field was established for 15 min and one sample was collected every minute. The magnetic field was then removed and samples collected for a further 5 min. Microspheres content of the collected samples were then evaluated using UV-Vis spectrophotometer (Shimadzu 1800; Vimal et al., 2007) at 342 nm wavelength. Tables 2 and 3 shows microsphere content (%) retained in presence and absence of magnetic field, respectively. Figures 5 and 6 shows microsphere content (%) retained in presence and absence of magnetic field, respectively.

Determination of magnetite content

Determination of magnetite content in prepared magnetic microspheres was conducted by employing a conventional titrimetric method using thiosulphate and potassium iodide for quantitative analysis (Vyas et al., 2013). Each ml of 0.1 N sodium thiosulphate ≡ 0.005585 g of ferric ion. Percentage magnetite content entrapped was found to be 53.
Figure 3. Graphical representation of swelling ratio of magnetic microspheres.

Figure 4. Apparatus for measuring magnetic responsivity of magnetic microspheres.

1. Aerator for pumping
2. Thermometer for recording temperature
3. Normal saline solution
4. Injection site
5. Magnets
6. Collected sample
Figure 5. Graphical representation of microsphere content (%) retained in presence of magnetic field.

Figure 6. Graphical representation of microsphere content (%) retained in absence of magnetic field.

Table 2. Magnetic responsiveness of 6-thioguanine loaded microspheres in the presence of magnetic field

<table>
<thead>
<tr>
<th>Time(min)</th>
<th>Microsphere content (%) retained in presence of magnetic field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8.692</td>
</tr>
<tr>
<td>2</td>
<td>16.388</td>
</tr>
<tr>
<td>3</td>
<td>16.388</td>
</tr>
<tr>
<td>4</td>
<td>31.8</td>
</tr>
<tr>
<td>5</td>
<td>31.8</td>
</tr>
<tr>
<td>6</td>
<td>39.5</td>
</tr>
<tr>
<td>7</td>
<td>39.5</td>
</tr>
<tr>
<td>8</td>
<td>39.5</td>
</tr>
<tr>
<td>9</td>
<td>47.16</td>
</tr>
<tr>
<td>10</td>
<td>47.16</td>
</tr>
<tr>
<td>11</td>
<td>47.16</td>
</tr>
<tr>
<td>12</td>
<td>54.70</td>
</tr>
<tr>
<td>13</td>
<td>54.70</td>
</tr>
<tr>
<td>14</td>
<td>54.70</td>
</tr>
<tr>
<td>15</td>
<td>54.70</td>
</tr>
</tbody>
</table>

In vitro drug release study of magnetic microspheres

In vitro drug release study was performed by using dialysis bag diffusion method using phosphate buffer (pH 7.4) as dissolution media (Saravanana et al., 2004). Table 4 and Figure 7 show *in vitro* release of magnetic microspheres.
RESULTS AND DISCUSSION

1. Percentage practical yield of the formulation was found to be 80.64%.
2. Microspheres were found to have excellent flow properties.
3. Microspheres were found to be spherical in shape with average particle size of 20 µm.
4. Swelling ratio of magnetic microspheres was found to be increased with time.
5. Magnetic responsiveness of the microspheres was found to be more in the presence of magnetic field.
6. Magnetic microspheres were found to be magnetically responsive. Percentage magnetite content entrapped in 6-TG loaded magnetic microspheres was found to be 53.
7. Percentage drug release of magnetic microspheres was found to increase with time.

Conclusion

Particle size of magnetic microspheres was found to be 20 µm. It is considered that particles with size range of 10 to 100 nm are considered to be optimum for the drug delivery because they can easily escape the reticuloendothelial system. Microspheres are more stable as compared to other drug delivery systems such as nanoparticles, liposomes etc. However if they are made magnetic than they are, it is more advantageous as reticuloendothelial clearance can be minimized and target site specificity can be increased. Therefore the magnetic microspheres we have synthesized are promising candidates for successful drug loading and delivery to patients suffering from cancer. The drug release rates are also suitable for the drug delivery application. The main...
advantage of this technique is the reduction in the dose and side effects of the drug. It is a challenging area for future research.

REFERENCES

Full Length Research Paper

Effect of date palm pollen on serum testosterone and intra-testicular environment in male albino rats

Yasir Arfat1,4*, Nasir Mahmood2, Munazza Ahmad3, Muhammad Tayyab4, Fan Zhao1, Di-Jie Li1, Chen Zhihao1, Chong Yin1, Peng Shang1 and Ai-Rong Qian1

1Key Laboratory for Space Biosciences \\& Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University Xi’an 710072, China.

2School of Management and Engineering, Northwestern Polytechnical University Xi’an, China.

3Lahore Medical and Dental College, Lahore, Pakistan.

4University of Veterinary and Animal Sciences, Lahore, Pakistan.

Received 5 April, 2014; Accepted 20 August, 2014

Date palm pollen (DPP) is suggested to increase the concentration of serum testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH) in rats. Intra-testicular testosterone (ITT) is thought to play a key role in the control of spermatogenesis but is rarely measured. We therefore planned this study to examine its effect on intra-testicular testosterone levels and serum testosterone in male albino rats. Adult rats were divided into two groups, control and experimental, with 12 rats in each. Blood samples were drawn for analysis from tail vein at day 0, 12, 24 and 35. The experimental group was given DPP suspension in a single oral dosage of 120 mg/kg daily, starting at day 1, for 35 days (dose was confirmed by a pilot study). At the end of the experimental period, the rats were dissected and the testes were removed and weighed. Testes were minced in phosphate buffer solution at a proportion of 1:10. The tissue homogenate obtained was cold centrifuged. The supernatant was taken for the estimation of ITT levels. There was a statistically significant increase in serum testosterone levels at day 24 which increased from (mean ± SD) 1.81 ± 0.05 to 2.12 ± 0.13 and from 1.82 ± 0.05 to 3.09 ± 0.22 on day 35, and ITT levels were raised from 76.48 ± 2.4 to 129.90 ± 9.66 on day 35 in experimental groups as compared to control group. The results of the present study demonstrate that date palm pollen is involved in the increased reproductive activity and serum levels of testosterone and intra-testicular testosterone.

Key words: Date palm pollen, serum testosterone, intra-testicular testosterone, infertility.

INTRODUCTION

Infertility affects 13 to 18\% of married couples. Growing evidence exists from clinical and epidemiological studies, suggesting an increasing incidence in male reproductive problems (Koletis, 2003; Nayernia et al., 2004). Male factors are thought to play 50% role in the etiology of infertility (Amelar and Dubin, 1977). The hormonal control

*Corresponding author. E-mail: yasir@mail.nwpu.edu.cn. Tel: 0086-13022970072.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
of spermatogenesis is based on the action of the pituitary gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH) on the testis. LH stimulates the Leydig cells in the testes to produce testosterone. Intra-testicular testosterone (ITT) mediates its effects within the testes through the androgen receptor that is found in Leydig cells, Sertoli cells and peritubular cells (McLachlan et al., 2002). ITT is believed to stimulate spermatogenesis directly in rats (Zirkin et al., 1989) and men (Matsumoto and Bremner, 1985). Nevertheless, ITT is thought to play a key role in the control of spermatogenesis but is rarely measured (Coviello et al., 2004). Studies in rats have shown that the ITT concentration is much higher, approximately 30-fold, than serum testosterone (Turner et al., 1984). Additionally, exogenous testosterone administration has shown to restore spermatogenesis in rats with gonadotropin suppression (Awoniyi et al., 1992; Zirkin and Santulli, 1989). Various parts of date palm plant have been known to enhance growth, an action that has been ascribed to increase in the plasma level of estrogen and testosterone (Ali et al., 1999). Suspension of *Phoenix dactylifera* (date palm pollen, DPP) is a herbal mixture that is widely used as a folk remedy for curing male infertility in traditional medicine (Zargari, 1990). The present study is therefore designed to see the effect of DPP on the plasma and intra-testicular testosterone levels of male adult rats with the hopes to add a valuable contribution in advancement to treatment of infertility.

MATERIALS AND METHODS

The rats were procured from National Institute of Health, Islamabad, Pakistan and were kept for two weeks in experimental research laboratory of University of veterinary and animal sciences, Lahore, Pakistan for acclimatization. This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals. All experimental procedures followed the principle of laboratory animal care and were carried out according to a protocol approved by the local animal ethics committee and performed in accordance with the National Institutes of Health (NIH, USA) guidelines for the use of experimental animals. Dissections were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. Local anesthetic was applied before drawing blood from rat tail.

Preparation of the herbal cocktails

The date palm pollen powder was imported from Saudia Arabia, it was mixed with distilled water to form a homogenized suspension. The dose was adjusted daily according to the body weight of the rats during the course of treatment and administered by oral gavage.

Control and experimental animals

A total of 24 adult male albino rats, weighing 156 to 167 g, were randomly divided into control and experimental groups containing 12 rats each. All animals were fed normal rat chow and water *ad libitum*. Experimental rats were provided herbal cocktails daily according to the body weight.

Parameters studied

Body weight

It is suggested that DPP has some androgenic activity and testosterone is known to increase the lean body mass and weight, thus body weight of the experimental and control animals were monitored.

Weights of paired testes

Weights of paired testes after removal were measured to determine the effect of DPP on testes.

Serum testosterone level

Due to proposed androgenic activity of DPP, serum testosterone level was measured.

Intra-testicular testosterone level

It was measured to evaluate the effect of DPP on the intra-testicular environment.

Experimental procedure

As mentioned earlier, male albino rats were randomly divided into two groups of control and experimental, each containing 12 male rats. Each group was kept at controlled room temperature (22 ± 2°C) and humidity of 55 ± 10%. They were kept under natural light and dark cycle. All animals were fed on normal rat chow and water *ad libitum*.

Control group: Distill water was given to control group daily for 35 days starting at day 1.

Experimental group: DPP suspension was given to the experimental group of rats by 120mg/kg body weight as a single oral dose daily for 35 days, starting at day 1 (Bahmanpour et al., 2006). The rats of control and experimental groups were weighed and their blood was drawn on day 0, 12, 24 and 35 through tail vein.

Preparation of rats for collection of blood and testicular tissue

At the beginning of the experimental period, that is, day 0, weight of each rat from control and experimental groups was recorded. Local anesthetic cream was then applied on the surface of the tail 30 min before the procedure. A 23G needle was inserted into the blood vessel and blood was collected using a syringe. Having completed blood collection, pressure was applied to stop the bleeding (Parasuraman et al., 2010). The blood was allowed to stand for one hour and then was centrifuged at a speed of 3000 rpm (Eppendorf 5810R, Germany) for 10 min to get clear serum. Serum was separated into the sterilized eppendorf tube and was stored at -80°C until further analysis. The same procedure was repeated on day 12, 24 and 35. At the end of the experiment, that is, day 35, the
rats were dissected and the testes of both control and experimental groups were removed. Their weights were measured and preserved at -80°C.

Intra-testicular and serum testosterone quantitation

Testes were thawed, decapsulated and were subsequently homogenized in phosphate buffer solution of pH 7.4 at a ratio of 1:10 with a polytron homogenizer (PT 2100). Samples were vortexed vigorously for 1 min. The tissue homogenate obtained was cold centrifuged at 800 g for 10 min and the supernatant was obtained in a sterilized disposable Eppendorf tube. Samples were preserved at -80°C (Ultra-freezer SANYO, Japan) until the estimation of intra-testicular testosterone levels was quantified by enzyme-linked immunoassorbent assay (ELISA) (Vijay et al., 2009). No androgen was detected in blank samples processed through the extraction protocol, indicating that neither solvent residues nor buffers interfered with the ELISA. The serum and intra-testicular testosterone levels were measured by using commercially available testosterone ELISA kit (BioCheck, USA). The concentrations of testosterone were determined by semi-automated ELISA analyzer (ELIZA plate reader 680, Biorad). About 50 µl of calibrators and tissue homogenate sample were added into appropriate wells of strips. About 200 µl of horseradish peroxidase–testosterone conjugate was added to each well in sequence. Mixture was incubated for 2 h at 37°C without covering the plate, after which the solution was discarded. The wells were rinsed thrice with washing solution (TWEEN 20) and amphotericin–B (2.5 µg/ml) in citrate-borate buffer and the residual fluid was removed. Immediately, 100 µl of chromogen substrate mixture (0.26 mg/ml of 3,3′,5,5′-tetramethyl benzidine) and 0.01% (w/v) of hydrogen peroxide in citrate buffer) was added to the wells and incubated for 15 min at room temperature, avoiding exposure to sunlight. Reaction was stopped by pipetting 100 µl of the stop solution (sulfuric acid - 0.3 mol/l) into the wells. Absorption was read in ELISA at 450 nm within 1 h from the addition of stop solution, as per manufacturer’s instructions.

Statistical analyses

Statistically significant differences were determined using t-test in Prism statistical software (GraphPad Software, San Diego, CA, USA). A P < 0.05 was considered significant in all cases. Data was reported as mean ± SD.

RESULTS

Body weight

There was no difference in the body weight of both control and experimental group at day 0 and 12. However, there was a significant difference in control and experimental rats on day 24 and 35 of experiment, respectively, with p-values < 0.05 (Table 1 and Figure 1).

Measurement of serum testosterone levels

There was no significant difference between the serum testosterone levels among the control and the experimental group at day 0 and 12. However, on day 24 and 35, a significant increase was observed in experimental group with p-values < 0.05 (Table 2 and Figure 2).

Weight of paired testes

The paired testes were weighed at the end of experiment after 35 days of treatment of DPP suspension. Weight of paired testes, in the control group varied from 1.52 to 1.78 g, with an average of 1.65 ± 0.09 g. In the treated group, it ranged from 1.78 to 2.50 g, with the average of 2.26 ± 0.28 g. Difference in the weight of paired testes of animals in control group and experimental group after 35 days of therapy was statistically significant p < 0.01 (Table 3 and Figure 3).

Intra-testicular testosterone levels

In the control group, intra-testicular testosterone levels of albino male rats varied from 72.80 to 80.41 ng/ml, with an average of 76.48 ± 2.4 ng/ml. In the treated group, it ranged from 116.20 to 145.29 ng/ml, with the average of 129.90 ± 9.66 ng/ml. Difference in the intra-testicular testosterone levels of albino male rats in control group and experimental group was statistically significant p < 0.01 (Table 3), as shown in Figure 4.

The scatter diagram for (Figure 5) suggests, there is a positive linear relationship between these two variables. These are serum and intra-testicular testosterone, the logarithmically increased level after 35 days of DPP treatment.

DISCUSSION

The current study has shown that rats exposed to DPP suspension at levels comparable to control exhibit significant changes in developmental profiles in terms of increased body weight and also increase in serum testosterone levels after 24 and 35 days of treatment. There was a significant increase in the weight of testes at day 35 along with an increase in intra-testicular testosterone. These findings support those of previous studies and suggest that 120 mg/kg of DPP suspension can influence the endocrine regulation of male reproductive function in rats.

In this study, different parameters analyzed were assessed to see the effect of DPP suspension (120 mg/kg) given orally for 35 days in adult male albino rats. The data collected showed that up to 24 days, treatment with date palm pollen suspension did not have statistically significant effect on serum testosterone levels and body weight. Treatment with DPP took somewhere between 24 and 35 days to produce its effects. This agrees with the study carried out by (Bahmanpour and Talaei, 2006).
Table 1. Body weight of control and experimental rats.

<table>
<thead>
<tr>
<th>Body weight</th>
<th>Control group</th>
<th>Experimental group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>160.33±7.03</td>
<td>161.17±7.12</td>
<td>0.776</td>
</tr>
<tr>
<td>Day 12</td>
<td>160.67±6.44</td>
<td>161.58±6.65</td>
<td>0.735</td>
</tr>
<tr>
<td>Day 24</td>
<td>163.42±6.14</td>
<td>172.58±5.85</td>
<td>0.001</td>
</tr>
<tr>
<td>Day 35</td>
<td>165.83±5.65</td>
<td>191.83±7.54</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Each value represents the mean ± SD for 12 mice with p-value (P < 0.05).

Table 2. Effect of DPP on serum testosterone level (ng/ml) in control and experimental rats.

<table>
<thead>
<tr>
<th>Serum testosterone level</th>
<th>Control group</th>
<th>Experimental group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>1.81±0.05</td>
<td>1.82±0.06</td>
<td>0.717</td>
</tr>
<tr>
<td>Day 12</td>
<td>1.81±0.06</td>
<td>1.84±0.06</td>
<td>0.277</td>
</tr>
<tr>
<td>Day 24</td>
<td>1.82±0.05</td>
<td>2.12±0.13</td>
<td>0.001</td>
</tr>
<tr>
<td>Day 35</td>
<td>1.82±0.05</td>
<td>3.09±0.22</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Each value represents the mean ± SD for 12 mice with p-value (P < 0.05).

Table 3. Comparison of mean weight of paired testes and mean intra-testicular testosterone levels (ng/ml) of albino male rats among experimental and control groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group</th>
<th>Experimental group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>Weight of paired testes</td>
<td>1.65±0.09</td>
<td>2.26±0.28</td>
<td>0.001</td>
</tr>
<tr>
<td>Intra-testicular testosterone</td>
<td>76.48±2.4</td>
<td>129.90±9.66</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Each value represents the mean ± SD for 12 mice with p-value (P < 0.05).

where they observed the effect of DPP on sperm parameters and reproductive system of adult male rat after 35 days of treatment. Significant increase observed in the body weight and serum testosterone, served as evidence that increase in the body weight, weight of paired testes, serum testosterone levels and intra-testicular testosterone levels in experimental group might be due to the presence of gonadotropin like substances in the DPP (Azooz et al., 2001).

A comparison of body weight between control and experimental animals was made. The weight gain in the experimental group may partly be attributed to the androgenic effects of increased testosterone levels. This is in concert with the study carried out by Gauthaman where they maintained that androgens have a major role in the growth and differentiation of many tissues in addition to the organs of reproduction. Testosterone is the main hormone having nitrogen retaining (anabolic) properties which increases lean body mass and body weight (Gauthaman et al., 2002).

Similarly, when a comparison of testicular weight and intra-testicular testosterone levels was made, an increase of 1.4 times in the weight of testes and 1.7 times in the intra-testicular testosterone was observed. It is suggested that this improvement in both parameters is attributed to the ability of DPP to increase the testosterone levels. These results agree with the findings of Gauthaman who studied aphrodisiac properties of the puncture vine extract (protodioscin) in normal and castrated rats. They concluded that treatment of castrated rats with their extract resulted in increased body weight and weight of testes with increase in the testosterone levels in rats due to protodioscin content (Gauthaman and Adaikan, 2002).

The scatter plot between serum and intra-testicular testosterone showed that there is positive correlation between these two parameters when treated with DPP for 35 days. It is suggested that DPP, through its complex mechanism, may increase both serum and intra-testicular...
Figure 1. Body weight comparison of control and experimental rats. Values represent the mean ± SD of 12 rats in each group. Each value represents the mean ± SD for 12 mice with p-value (P < 0.05).

Figure 2. Serum testosterone levels (ng/ml) in control and experimental rats (treated with DPP suspension). Testosterone levels were noted on day 0, 12, 24 and at 35 days with DPP treatment. Each value represents the mean ± SD for 12 mice with p-value (P < 0.05).
Figure 3. Weight of paired testes (g) in control and experimental rats (treated with DPP suspension).
Each value represents the mean ± SD for 12 mice with p-value (P < 0.05).

Figure 4. Comparison of intra-testicular testosterone levels (ng/ml) of control and experimental male albino rats.
Each value represents the mean ± SD for 12 mice with p-value (P < 0.05).
testosterone levels without causing any feedback inhibition. The results of this study are of significance since rats given DPP suspension in experimental group exhibited increasing body weight, testis weight, serum testosterone and intra-testicular testosterone levels at 24 and 35 days of exposure. The increase in both serum and intra-testicular testosterone levels indicates that DPP suspension altered Leydig cell steroidogenesis. However, the exact mechanism of this action is not known. According to Guyton and Hall (2006), estradiol has a direct impact on the production and maturation of sperms. Future research will address the mechanisms responsible for the increase in androgen levels caused by DPP. Our results validate its utilization in the male factor infertility as an adjuvant therapy.

ACKNOWLEDGEMENT

This work was supported by the Natural Science Foundation of China (No. 31370845), the National Basic Research Program of China (2011CB710903), and the New Century Excellent Talents in University (NCET-12-0469).

Conflict of interest statements

Authors declare that they have no conflicts of interest.

REFERENCES

contraceptive. J. Androl. 23:149-162.
African Journal of Pharmacy and Pharmacology

Related Journals Published by Academic Journals

- Journal of Medicinal Plant Research
- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences