ABOUT AJMR

The African Journal of Microbiology Research (AJMR) (ISSN 1996-0808) is published Weekly (one volume per year) by Academic Journals.

African Journal of Microbiology Research (AJMR) provides rapid publication (weekly) of articles in all areas of Microbiology such as: Environmental Microbiology, Clinical Microbiology, Immunology, Virology, Bacteriology, Phycology, Mycology and Parasitology, Protozoology, Microbial Ecology, Probiotics and Prebiotics, Molecular Microbiology, Biotechnology, Food Microbiology, Industrial Microbiology, Cell Physiology, Environmental Biotechnology, Genetics, Enzymology, Molecular and Cellular Biology, Plant Pathology, Entomology, Biomedical Sciences, Botany and Plant Sciences, Soil and Environmental Sciences, Zoology, Endocrinology, Toxicology. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajmr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at ajmr@academicjournals.org.
Editors

Prof. Dr. Stefan Schmidt,
Applied and Environmental Microbiology
School of Biochemistry, Genetics and Microbiology
University of KwaZulu-Natal
Private Bag X01
Scottsville, Pietermaritzburg 3209
South Africa.

Prof. Fukai Bao
Department of Microbiology and Immunology
Kunming Medical University
Kunming 650031,
China

Dr. Jianfeng Wu
Dept. of Environmental Health Sciences,
School of Public Health,
University of Michigan
USA

Dr. Ahmet Yilmaz Coban
OMU Medical School,
Department of Medical Microbiology,
Samsun,
Turkey

Dr. Seyed Davar Siadat
Pasteur Institute of Iran,
Pasteur Square, Pasteur Avenue,
Tehran,
Iran.

Dr. J. Stefan Rokem
The Hebrew University of Jerusalem
Department of Microbiology and Molecular Genetics,
P.O.B. 12272, IL-91120 Jerusalem,
Israel

Prof. Long-Liu Lin
National Chiayi University
300 Syuefu Road,
Chiayi,
Taiwan

N. John Tonukari, Ph.D
Department of Biochemistry
Delta State University
PMB 1
Abraka, Nigeria

Dr. Thaddeus Ezeji
Assistant Professor
Fermentation and Biotechnology Unit
Department of Animal Sciences
The Ohio State University
1680 Madison Avenue
USA.

Associate Editors

Dr. Mamadou Gueye
MIRCEN/ Laboratoire commun de microbiologie
IRD-ISRA-UCAD, BP 1386,
Dakar, Senegal.

Dr. Caroline Mary Knox
Department of Biochemistry, Microbiology and Biotechnology
Rhodes University
Grahamstown 6140
South Africa.

Dr. Hesham Elsayed Mostafa
Genetic Engineering and Biotechnology Research Institute (GEBRI)
Mubarak City For Scientific Research,
Research Area, New Borg El-Arab City,
Post Code 21934, Alexandria, Egypt.

Dr. Wael Abbas El-Naggar
Head of Microbiology Department,
Faculty of Pharmacy,
Mansoura University,
Mansoura 35516, Egypt.

Dr. Abdel Nasser A. El-Moghazy
Microbiology, Molecular Biology, Genetics Engineering and Biotechnology
Dept of Microbiology and Immunology
Faculty of Pharmacy
Al-Azhar University
Nasr city,
Cairo, Egypt
Dr. Barakat S.M. Mahmoud
Food Safety/Microbiology
Experimental Seafood Processing Laboratory
Coastal Research and Extension Center
Mississippi State University
3411 Frederic Street
Pascagoula, MS 39567
USA

Prof. Mohamed Mahrous Amer
Poultry Disease (Viral Diseases of poultry)
Faculty of Veterinary Medicine,
Department of Poultry Diseases
Cairo University
Giza, Egypt

Dr. Xiaohui Zhou
Molecular Microbiology, Industrial Microbiology,
Environmental Microbiology, Pathogenesis, Antibiotic resistance, Microbial Ecology
Washington State University
Bustad Hall 402 Department of Veterinary Microbiology and Pathology, Pullman,
USA

Dr. R. Balaji Raja
Department of Biotechnology,
School of Bioengineering,
SRM University,
Chennai
India

Dr. Aly E Abo-Amer
Division of Microbiology, Botany Department, Faculty of Science, Sohag University.
Egypt.

Dr. Haoyu Mao
Department of Molecular Genetics and Microbiology
College of Medicine
University of Florida
Florida, Gainesville
USA.

Dr. Rachna Chandra
Environmental Impact Assessment Division
Environmental Sciences
Sálim Ali Center for Ornithology and Natural History (SACON),
Anaikatty (PO), Coimbatore-641108, India

Dr. Yongxu Sun
Department of Medicinal Chemistry and
Biomacromolecules
Qiqihar Medical University, Qiqihar 161006
Heilongjiang Province
P.R. China

Dr. Ramesh Chand Kasana
Institute of Himalayan Bioresource Technology
Palampur, Distt. Kangra (HP),
India

Dr. S. Meena Kumari
Department of Biosciences
Faculty of Science
University of Mauritius
Reduit

Dr. T. Ramesh
Assistant Professor
Marine Microbiology
CAS in Marine Biology
Faculty of Marine Sciences
Annamalai University
Parangipettai - 608 502
Cuddalore Dist. Tamilnadu,
India

Dr. Pagano Marcela Claudia
Post doctoral fellowship at Department of Biology,
Federal University of Ceará - UFC,
Brazil.
Dr. EL-Sayed E. Habib
Associate Professor,
Dept. of Microbiology,
Faculty of Pharmacy,
Mansoura University,
Egypt.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Warin Chamrap, Ubon Ratchathani 34190,
Thailand

Dr. Gokul Shankar Sabesan
Microbiology Unit, Faculty of Medicine,
AIMST University
Jalan Bedong, Semeling 08100,
Kedah,
Malaysia

Dr. Kwang Young Song
Department of Biological Engineering,
School of Biological and Chemical Engineering,
Yanbian Universityof Science and Technology,
Yanjiri,
China.

Dr. Kamel Belhamel
Faculty of Technology,
University of Bejaia
Algeria

Dr. Sladjana Jevremovic
Institute for Biological Research
Sinisa Stankovic,
Belgrade,
Serbia

Dr. Tamer Edirne
Dept. of Family Medicine, Univ. of Pammukale
Turkey

Dr. R. Balaji Raja M.Tech (Ph.D)
Assistant Professor,
Department of Biotechnology,
School of Bioengineering,
SRM University,
Chennai.
India

Dr. Minglei Wang
University of Illinois at Urbana-Champaign,
USA

Dr. Mohd Fuat ABD Razak
Institute for Medical Research
Malaysia

Dr. Davide Pacifico
Istituto di Virologia Vegetale – CNR
Italy

Prof. Dr. Akrum Hamdy
Faculty of Agriculture, Minia University, Egypt
Egypt

Dr. Ntobeko A. B. Ntusi
Cardiac Clinic, Department of Medicine,
University of Cape Town and
Department of Cardiovascular Medicine,
University of Oxford
South Africa and
United Kingdom

Prof. N. S. Alzoreky
Food Science & Nutrition Department,
College of Agricultural Sciences & Food,
King Faisal University,
Saudi Arabia

Dr. Chen Ding
College of Material Science and Engineering,
Hunan University,
China

Dr Svetlana Nikolić
Faculty of Technology and Metallurgy,
University of Belgrade,
Serbia

Dr. Sivakumar Swaminathan
Department of Agronomy,
College of Agriculture and Life Sciences,
Iowa State University,
Ames, Iowa 50011
USA

Dr. Alfredo J. Anceno
School of Environment, Resources and Development (SERD),
Asian Institute of Technology,
Thailand

Dr. Iqbal Ahmad
Aligarh Muslim University,
Aligrah
India
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/University</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Josephine Nketsia-Tabiri</td>
<td>Ghana Atomic Energy Commission</td>
<td>Ghana</td>
</tr>
<tr>
<td>Dr. Juliane Elisa Welke</td>
<td>UFRGS – Universidade Federal do Rio Grande do Sul</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Mohammad Nazrul Islam</td>
<td>NIMR; IPH-Bangalore & NIUM</td>
<td>Bangladesh</td>
</tr>
<tr>
<td>Dr. Okonko, Iheanyi Omezuruike</td>
<td>Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Dr. Giuliana Noratto</td>
<td>Texas A&M University</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Phanikanth Venkata Turlapati</td>
<td>Washington State University</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Khaleel I. Z. Jawasrehe</td>
<td>National Centre for Agricultural Research and Extension, NCARE</td>
<td>Jordan</td>
</tr>
<tr>
<td>Dr. Babak Mostafazadeh, MD</td>
<td>Shaheed Beheshty University of Medical Sciences</td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. S. Meena Kumari</td>
<td>Department of Biosciences</td>
<td>Mauritius</td>
</tr>
<tr>
<td>Dr. S. Anju</td>
<td>Department of Biotechnology</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Mustafa Maroufpor</td>
<td></td>
<td>Iran</td>
</tr>
<tr>
<td>Prof. Dong Zhichun</td>
<td>Professor, Department of Animal Sciences and Veterinary Medicine, Yunnan Agriculture University, China</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Mehdi Azami</td>
<td>Parasitology & Mycology Dept, Baghaeei Lab., Shams Abadi St.</td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Anderson de Souza Sant’Ana</td>
<td>University of São Paulo.</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Juliane Elisa Welke</td>
<td>UFRGS – Universidade Federal do Rio Grande do Sul</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Paul Shapshak</td>
<td>USF Health, Depts. Medicine (Div. Infect. Disease & Internat Med) and Psychiatry & Beh Med.</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Jorge Reinheimer</td>
<td>Universidad Nacional del Litoral (Santa Fe)</td>
<td>Argentina</td>
</tr>
<tr>
<td>Dr. Qin Liu</td>
<td>East China University of Science and Technology</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Xiao-Qing Hu</td>
<td>State Key Lab of Food Science and Technology</td>
<td>China</td>
</tr>
<tr>
<td>Prof. Branislava Kocic</td>
<td>Specialist of Microbiology and Parasitology University of Nis, School of Medicine Institute for Public Health Nis, Bul. Z. Djindjica 50, 18000 Nis</td>
<td>Serbia</td>
</tr>
<tr>
<td>Dr. Rafel Socias</td>
<td>CITA de Aragón,</td>
<td>Spain</td>
</tr>
</tbody>
</table>
Prof. Kamal I. Mohamed
State University of New York at Oswego

Dr. Adriano Cruz
Faculty of Food Engineering-FEA
University of Campinas (UNICAMP)

Dr. Mike Agenbag (Michael Hermanus Albertus)
Manager Municipal Health Services,
Joe Gqabi District Municipality

Dr. D. V. L. Sarada
Department of Biotechnology,
SRM University, Chennai-603203

Dr. Samuel K Ameyaw
Civista Medical Center
United States of America

Prof. Huaizhi Wang
Institute of Hepatopancreatobiliary Surgery of PLA Southwest Hospital,
Third Military Medical University
Chongqing400038

Prof. Bakhiet AO
College of Veterinary Medicine, Sudan
University of Science and Technology
Sudan

Dr. Saba F. Hussain
Community, Orthodontics and Pediatric Dentistry Department
Faculty of Dentistry
Universiti Teknologi MARA
40450 Shah Alam, Selangor

Prof. Dr. Zohair I.F.Rahemo
State Key Lab of Food Science and Technology
Jiangnan University

Dr. Afework Kassu
University of Gondar
Ethiopia

Prof. Isidro A. T. Savillo
ISCOF

Dr. How-Yee Lai
Taylor’s University College

Dr. Nidheesh Dadheech
MS. University of Baroda, Vadodara, Gujarat, India.

Dr. Omitoyin Siyanbola
Bowen University, Iwo

Dr. Franco Mutinelli
Istituto Zooprofilattico Sperimentale delle Venezie

Dr. Chanpen Chanchao
Department of Biology,
Faculty of Science,
Chulalongkorn University

Dr. Tsuyoshi Kasama
Division of Rheumatology,
Showa University

Dr. Kuender D. Yang, MD.
Chang Gung Memorial Hospital

Dr. Liane Raluca Stan
University Politehnica of Bucharest,
Department of Organic Chemistry “C.Nenitzescu”

Dr. Muhamed Osman
Senior Lecturer of Pathology & Consultant Immunopathologist
Department of Pathology,
Faculty of Medicine,
Universiti Teknologi MARA,
40450 Shah Alam, Selangor

Dr. Mohammad Feizabadi
Tehran University of medical Sciences

Dr. Mohammad Feizabadi
Tehran University of medical Sciences
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ahmed H Mitwalli</td>
<td>State Key Lab of Food Science and Technology, Jiangnan University, P. R. China</td>
</tr>
<tr>
<td>Dr. Mazyar Yazdani</td>
<td>Department of Biology, University of Oslo, Blindern, Oslo, Norway</td>
</tr>
<tr>
<td>Dr. Ms. Jemimah Gesare Onsare</td>
<td>Ministry of Higher, Education Science and Technology, Kenya</td>
</tr>
<tr>
<td>Dr. Babak Khalili Hadad</td>
<td>Department of Biological Sciences, Roudehen Branch, Islamic Azad University, Roudehen, Iran</td>
</tr>
<tr>
<td>Dr. Ehsan Sari</td>
<td>Department of Plan Pathology, Iranian Research Institute of Plant Protection, Tehran, Iran</td>
</tr>
<tr>
<td>Dr. Snjezana Zidovec Lepej</td>
<td>University Hospital for Infectious Diseases, Zagreb, Croatia</td>
</tr>
<tr>
<td>Dr. Dilshad Ahmad</td>
<td>King Saud University, Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Adriano Gomes da Cruz</td>
<td>University of Campinas (UNICAMP), Brazil</td>
</tr>
<tr>
<td>Dr. Hsin-Mei Ku</td>
<td>Agronomy Dept. NCHU 250 Kuo, Kuang Rd, Taichung, Taiwan</td>
</tr>
<tr>
<td>Dr. Fereshteh Naderi</td>
<td>Physical chemist, Islamic Azad University, Shahre Ghods Branch, Iran</td>
</tr>
<tr>
<td>Dr. Adibe Maxwell Ogochukwu</td>
<td>Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, Nigeria</td>
</tr>
<tr>
<td>Dr. William M. Shafer</td>
<td>Emory University School of Medicine, USA</td>
</tr>
<tr>
<td>Dr. Michelle Bull</td>
<td>CSIRO Food and Nutritional Sciences, Australia</td>
</tr>
<tr>
<td>Prof. Dr. Márcio Garcia Ribeiro (DVM, PhD)</td>
<td>School of Veterinary Medicine and Animal Science-UNESP, Dept. Veterinary Hygiene and Public Health, State of Sao Paulo, Brazil</td>
</tr>
<tr>
<td>Prof. Dr. Sheila Nathan</td>
<td>National University of Malaysia (UKM), Malaysia</td>
</tr>
<tr>
<td>Prof. Ebiamadon Andi Brisibe</td>
<td>University of Calabar, Calabar, Nigeria</td>
</tr>
<tr>
<td>Dr. Julie Wang</td>
<td>Burnet Institute, Australia</td>
</tr>
<tr>
<td>Dr. Jean-Marc Chobert</td>
<td>INRA- BIA, FIPL, France</td>
</tr>
<tr>
<td>Dr. Zhilong Yang, PhD</td>
<td>Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health</td>
</tr>
<tr>
<td>Dr. Dele Raheem</td>
<td>University of Helsinki, Finland</td>
</tr>
<tr>
<td>Dr. Li Sun</td>
<td>PLA Centre for the treatment of infectious diseases, Tangdu Hospital, Fourth Military Medical University, China</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Dr. Biljana Miljkovic-Selimovic</td>
<td>School of Medicine, University in Nis, Serbia; Referent laboratory for Campylobacter and Helicobacter, Center for Microbiology, Institute for Public Health, Nis Serbia</td>
</tr>
<tr>
<td>Dr. Xinan Jiao</td>
<td>Yangzhou University, China</td>
</tr>
<tr>
<td>Dr. Endang Sri Lestari, MD.</td>
<td>Department of Clinical Microbiology, Medical Faculty, Diponegoro University/Dr. Kariadi Teaching Hospital, Semarang, Indonesia</td>
</tr>
<tr>
<td>Dr. Hojin Shin</td>
<td>Pusan National University Hospital, South Korea</td>
</tr>
<tr>
<td>Dr. Yi Wang</td>
<td>Center for Vector Biology, 180 Jones Avenue, Rutgers University, New Brunswick, NJ 08901-8536 USA</td>
</tr>
<tr>
<td>Dr. Heping Zhang</td>
<td>The Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, China</td>
</tr>
<tr>
<td>Prof. Natasha Potgieter</td>
<td>University of Venda, South Africa</td>
</tr>
<tr>
<td>Dr. Alemzadeh</td>
<td>Sharif University, Iran</td>
</tr>
<tr>
<td>Dr. Sonia Arriaga</td>
<td>Instituto Potosino de Investigación Científica Tecnológica/División de Ciencias Ambientales, Mexico</td>
</tr>
<tr>
<td>Dr. Armando Gonzalez-Sanchez</td>
<td>Universidad Autonoma Metropolitana Cuajimalpa, Mexico</td>
</tr>
<tr>
<td>Dr. Pradeep Parihar</td>
<td>Lovely Professional University, Phagwara, Punjab, India</td>
</tr>
<tr>
<td>Dr. William H Roldán</td>
<td>Department of Medical Microbiology, Faculty of Medicine, Peru</td>
</tr>
<tr>
<td>Dr. Kanzaki, L I B</td>
<td>Laboratory of Bioprospection, University of Brasilia, Brazil</td>
</tr>
<tr>
<td>Prof. Philippe Dorchies</td>
<td>Laboratory of Bioprospection, University of Brasilia, Brazil</td>
</tr>
<tr>
<td>Dr. C. Ganesh Kumar</td>
<td>Indian Institute of Chemical Technology, Hyderabad, India</td>
</tr>
<tr>
<td>Dr. Farid Che Ghazali</td>
<td>Universiti Sains Malaysia (USM), Malaysia</td>
</tr>
<tr>
<td>Dr. Samira Bouhdid</td>
<td>Abdelmalek Essaadi University, Tetouan, Morocco</td>
</tr>
<tr>
<td>Dr. Zainab Z. Ismail</td>
<td>Department of Environmental Engineering, University of Baghdad, Iraq</td>
</tr>
<tr>
<td>Dr. Ary Fernandes Junior</td>
<td>Universidade Estadual Paulista (UNESP), Brasil</td>
</tr>
<tr>
<td>Dr. Papaevangelou Vassiliki</td>
<td>Athens University Medical School, Greece</td>
</tr>
<tr>
<td>Dr. Fangyou Yu</td>
<td>The first Affiliated Hospital of Wenzhou Medical College, China</td>
</tr>
<tr>
<td>Dr. Galba Maria de Campos Takaki</td>
<td>Catholic University of Pernambuco, Brazil</td>
</tr>
</tbody>
</table>
Dr. Kwabena Ofori-Kwakye
Department of Pharmaceutics,
Kwame Nkrumah University of Science & Technology,
KUMASI
Ghana

Prof. Dr. Liesel Brenda Gende
Arthropods Laboratory, School of Natural and Exact Sciences, National University of Mar del Plata
Buenos Aires,
Argentina.

Dr. Adeshina Gbonjubola
Ahmadu Bello University,
Zaria.
Nigeria

Prof. Dr. Stylianos Chatzipanagiotou
University of Athens – Medical School
Greece

Dr. Dongqing BAI
Department of Fishery Science,
Tianjin Agricultural College,
Tianjin 300384
P. R. China

Dr. Dingqiang Lu
Nanjing University of Technology
P.R. China

Dr. L. B. Sukla
Scientist – G & Head, Biominerals Department,
IMMT, Bhubaneswar
India

Dr. Hakan Parlakpinar
MD. Inonu University, Medical Faculty, Department of Pharmacology, Malatya
Turkey

Dr. Pack-Lam Yu
Massey University
New Zealand

Dr. Percy Chimwamurombe
University of Namibia
Namibia

Dr. Euclésio Simionatto
State University of Mato Grosso do Sul-UEMS
Brazil

Dr. Hans-Jürg Monstein
Clinical Microbiology, Molecular Biology Laboratory,
University Hospital, Faculty of Health Sciences, S-581 85 Linköping
Sweden

Dr. Ajith, T. A
Associate Professor Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur, Kerala-680 555
India

Dr. Feng-Chia Hsieh
Biopesticides Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture
Taiwan

Prof. Dra. Suzan Pantaroto de Vasconcellos
Universidade Federal de São Paulo
Rua Prof. Artur Riedel, 275 Jd. Eldorado, Diadema, SP
CEP 09972-270
Brasil

Dr. Maria Leonor Ribeiro Casimiro Lopes Assad
Universidade Federal de São Carlos - Centro de Ciências Agrárias - CCA/UFSCar
Departamento de Recursos Naturais e Proteção Ambiental
Rodovia Anhanguera, km 174 - SP-330
Araras - São Paulo
Brasil

Dr. Pierangeli G. Vital
Institute of Biology, College of Science, University of the Philippines
Philippines

Prof. Roland Ndip
University of Fort Hare, Alice
South Africa

Dr. Shawn Carraher
University of Fort Hare, Alice
South Africa

Dr. José Eduardo Marques Pessanha
Observatório de Saúde Urbana de Belo Horizonte/Faculdade de Medicina da Universidade Federal de Minas Gerais
Brasil
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Yuanshu Qian</td>
<td>Department of Pharmacology, Shantou University Medical College China</td>
</tr>
<tr>
<td>Dr. Helen Treichel</td>
<td>URI-Campus de Erechim Brazil</td>
</tr>
<tr>
<td>Dr. Xiao-Qing Hu</td>
<td>State Key Lab of Food Science and Technology Jiangnan University P. R. China</td>
</tr>
<tr>
<td>Dr. Olli H. Tuovinen</td>
<td>Ohio State University, Columbus, Ohio USA</td>
</tr>
<tr>
<td>Prof. Stoyan Groudev</td>
<td>University of Mining and Geology “Saint Ivan Rilski” Sofia Bulgaria</td>
</tr>
<tr>
<td>Dr. G. Thirumurugan</td>
<td>Research lab, GIET School of Pharmacy, NH-5, Chaitanya nagar, Rajahmundry-533294, India</td>
</tr>
<tr>
<td>Dr. Charu Gomber</td>
<td>Thapar University India</td>
</tr>
<tr>
<td>Dr. Jan Kuever</td>
<td>Bremen Institute for Materials Testing, Department of Microbiology, Paul-Feller-Str. 1, 28199 Bremen Germany</td>
</tr>
<tr>
<td>Dr. Nicola S. Flanagan</td>
<td>Universidad Javeriana, Cali Colombia</td>
</tr>
<tr>
<td>Dr. André Luiz C. M. de A. Santiago</td>
<td>Universidade Federal Rural de Pernambuco Brazil</td>
</tr>
<tr>
<td>Dr. Dhruva Kumar Jha</td>
<td>Microbial Ecology Laboratory, Department of Botany, Gauhati University, Guwahati 781 014, Assam India</td>
</tr>
<tr>
<td>Dr. N Saleem Basha</td>
<td>M. Pharm (Pharmaceutical Biotechnology) Eritrea (North East Africa)</td>
</tr>
<tr>
<td>Prof. Dr. João Lúcio de Azevedo</td>
<td>Dept. Genetics-University of São Paulo-Faculty of Agriculture- Piracicaba, 13400-970 Brasil</td>
</tr>
<tr>
<td>Dr. Julia Inés Fariña</td>
<td>PROIMI-CONICET Argentina</td>
</tr>
<tr>
<td>Dr. Yutaka Ito</td>
<td>Kyoto University Japan</td>
</tr>
<tr>
<td>Dr. Cheruiyot K. Ronald</td>
<td>Biomedical Laboratory Technologist Kenya</td>
</tr>
<tr>
<td>Prof. Dr. Ata Akcil</td>
<td>S. D. University Turkey</td>
</tr>
<tr>
<td>Dr. Adhar Manna</td>
<td>The University of South Dakota USA</td>
</tr>
<tr>
<td>Dr. Cícero Flávio Soares Aragão</td>
<td>Federal University of Rio Grande do Norte Brazil</td>
</tr>
<tr>
<td>Dr. Gunnar Dahlen</td>
<td>Institute of odontology, Sahlgrenska Academy at University of Gothenburg Sweden</td>
</tr>
<tr>
<td>Dr. Pankaj Kumar Mishra</td>
<td>Vivekananda Institute of Hill Agriculture, (I.C.A.R.), ALMORA-263601, Uttarakhand India</td>
</tr>
<tr>
<td>Dr. Benjamas W. Thanomsub</td>
<td>Srinakharinwiroth University Thailand</td>
</tr>
<tr>
<td>Dr. Maria José Borrego</td>
<td>National Institute of Health – Department of Infectious Diseases Portugal</td>
</tr>
</tbody>
</table>
Dr. Catherine Carrillo
Health Canada, Bureau of Microbial Hazards
Canada

Dr. Marcotty Tanguy
Institute of Tropical Medicine
Belgium

Dr. Han-Bo Zhang
Laboratory of Conservation and Utilization for Bio-resources
Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091. School of Life Science, Yunnan University, Kunming, Yunnan Province 650091. China

Dr. Ali Mohammed Somily
King Saud University
Saudi Arabia

Dr. Nicole Wolter
National Institute for Communicable Diseases and University of the Witwatersrand, Johannesburg
South Africa

Dr. Marco Antonio Nogueira
Universidade Estadual de Londrina
CCB/Depto. De microbiologia
Laboratório de Microbiologia Ambiental
Caixa Postal 6001
86051-980 Londrina. Brazil

Dr. Bruno Pavoni
Department of Environmental Sciences University of Venice
Italy

Dr. Shih-Chieh Lee
Da-Yeh University
Taiwan

Dr. Satoru Shimizu
Horonobe Research Institute for the Subsurface Environment, Northern Advancement Center for Science & Technology
Japan

Dr. Tang Ming
College of Forestry, Northwest A&F University, Yangling
China

Dr. Olga Gortzi
Department of Food Technology, T.E.I. of Larissa
Greece

Dr. Mark Tarnopolsky
Mcmaster University
Canada

Dr. Sami A. Zabin
Al Baha University
Saudi Arabia

Dr. Julia W. Pridgeon
Aquatic Animal Health Research Unit, USDA, ARS
USA

Dr. Lim Yau Yan
Monash University Sunway Campus
Malaysia

Prof. Rosemeire C. L. R. Pietro
Faculdade de Ciências Farmacêuticas de Araraquara, Univ Estadual Paulista, UNESP
Brazil

Dr. Nazime Mercan Dogan
PAU Faculty of Arts and Science, Denizli
Turkey

Dr Ian Edwin Cock
Biomolecular and Physical Sciences
Griffith University
Australia

Prof. N K Dubey
Banaras Hindu University
India

Dr. S. Hemalatha
Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi. 221005
India

Dr. J. Santos Garcia A.
Universidad A. de Nuevo Leon
Mexico India
Dr. Somboon Tanasupawat
Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330 Thailand

Dr. Vivekananda Mandal
Post Graduate Department of Botany, Darjeeling Government College, Darjeeling – 734101. India

Dr. Shihua Wang
College of Life Sciences, Fujian Agriculture and Forestry University China

Dr. Victor Manuel Fernandes Galhano
CITAB-Centre for Research and Technology of Agro-Environment and Biological Sciences, Integrative Biology and Quality Research Group, University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real Portugal

Dr. Maria Cristina Maldonado
Instituto de Biotecnologia. Universidad Nacional de Tucuman Argentina

Dr. Alex Soltermann
Institute for Surgical Pathology, University Hospital Zürich Switzerland

Dr. Dagmara Sirova
Department of Ecosystem Biology, Faculty Of Science, University of South Bohemia, Branisovska 37, Ceske Budejovice, 37001 Czech Republic

Dr. E. O Igbinosa
Department of Microbiology, Ambrose Alli University, Ekpoma, Edo State, Nigeria.

Dr. Hodaka Suzuki
National Institute of Health Sciences Japan

Dr. Mick Bosilevac
US Meat Animal Research Center USA

Dr. Nora Lía Padola
Imunoquímica y Biotecnología- Fac Cs Vet-UNCPBA Argentina

Dr. Maria Madalena Vieira-Pinto
Universidade de Trás-os-Montes e Alto Douro Portugal

Dr. Stefano Morandi
CNR-Istituto di Scienze delle Produzioni Alimentari (ISPA), Sez. Milano Italy

Dr Line Thorsen
Copenhagen University, Faculty of Life Sciences Denmark

Dr. Ana Lucia Falavigna-Guilherme
Universidade Estadual de Maringá Brazil

Dr. Baoqiang Liao
Dept. of Chem. Eng., Lakehead University, 955 Oliver Road, Thunder Bay, Ontario Canada

Dr. Quyang Jinping
Patho-Physiology department, Faculty of Medicine of Wuhan University China

Dr. John Sorensen
University of Manitoba Canada

Dr. Andrew Williams
University of Oxford United Kingdom

Dr. Chi-Chiang Yang
Chung Shan Medical University Taiwan, R.O.C.

Dr. Quanming Zou
Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University China
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/University</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ashok Kumar</td>
<td>School of Biotechnology, Banaras Hindu University, Varanasi</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Chung-Ming Chen</td>
<td>Department of Pediatrics, Taipei Medical University Hospital, Taipei</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Dr. Jennifer Furin</td>
<td>Harvard Medical School</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Julia W. Pridgeon</td>
<td>Aquatic Animal Health Research Unit, USDA, ARS</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Alireza Seidavi</td>
<td>Islamic Azad University, Rasht Branch</td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Thore Rohwerder</td>
<td>Helmholtz Centre for Environmental Research UFZ</td>
<td>Germany</td>
</tr>
<tr>
<td>Dr. Daniela Billi</td>
<td>University of Rome Tor Vergat</td>
<td>Italy</td>
</tr>
<tr>
<td>Dr. Ivana Karabegovic</td>
<td>Faculty of Technology, Leskovac, University of Nis</td>
<td>Serbia</td>
</tr>
<tr>
<td>Dr. Flaviana Andrade Faria</td>
<td>IBILCE/UNESP</td>
<td>Brazil</td>
</tr>
<tr>
<td>Prof. Margareth Linde Athayde</td>
<td>Federal University of Santa Maria</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Guadalupe Virginia Nevarez Moorillon</td>
<td>Universidad Autonoma de Chihuahua</td>
<td>Mexico</td>
</tr>
<tr>
<td>Dr. Tatiana de Sousa Fiuza</td>
<td>Federal University of Goias</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Indrani B. Das Sarma</td>
<td>Jhulel Institute of Technology, Nagpur</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Guanghua Wang</td>
<td>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Renata Vadkertiova</td>
<td>Institute of Chemistry, Slovak Academy of Science</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Dr. Charles Hocart</td>
<td>The Australian National University</td>
<td>Australia</td>
</tr>
<tr>
<td>Dr. Guoqiang Zhu</td>
<td>University of Yangzhou College of Veterinary Medicine</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Guilherme Augusto Marietto Gonçalves</td>
<td>São Paulo State University</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Mohammad Ali Faramarzi</td>
<td>Tehran University of Medical Sciences</td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Suppasil Maneerat</td>
<td>Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90112</td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Francisco Javier Las heras Vazquez</td>
<td>Almeria University</td>
<td>Spain</td>
</tr>
<tr>
<td>Dr. Cheng-Hsun Chiu</td>
<td>Chang Gung memorial Hospital, Chang Gung University</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Dr. Ajay Singh</td>
<td>DDU Gorakhpur University, Gorakhpur-273009 (U.P.)</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Karabo Shale</td>
<td>Central University of Technology, Free State</td>
<td>South Africa</td>
</tr>
<tr>
<td>Dr. Lourdes Zélia Zanoni</td>
<td>Department of Pediatrics, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul</td>
<td>Brazil</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Department</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Dr. Tulin Askun</td>
<td>Balikesir University, Turkey</td>
<td></td>
</tr>
<tr>
<td>Dr. Marija Stankovic</td>
<td>Institute of Molecular Genetics and Genetic Engineering, Republic of Serbia</td>
<td></td>
</tr>
<tr>
<td>Dr. Scott Weese</td>
<td>University of Guelph, Dept. of Pathobiology, Ontario Veterinary College, Guelph, Ontario</td>
<td></td>
</tr>
<tr>
<td>Dr. Sabiha Essack</td>
<td>School of Health Sciences, South African Committee of Health Sciences, University of KwaZulu-Natal</td>
<td></td>
</tr>
<tr>
<td>Dr. Hare Krishna</td>
<td>Central Institute for Arid Horticulture, Beechwal, Bikaner-334 006, Rajasthan, India</td>
<td></td>
</tr>
<tr>
<td>Dr. Anna Mensuali</td>
<td>Dept. of Life Science, Scuola Superiore, Sant’Anna</td>
<td></td>
</tr>
<tr>
<td>Dr. Ghada Sameh Hafez Hassan</td>
<td>Pharmaceutical Chemistry Department, Faculty of Pharmacy, Mansoura University, Egypt</td>
<td></td>
</tr>
<tr>
<td>Dr. Kátia Flávia Fernandes</td>
<td>Biochemistry and Molecular Biology, Universidade Federal de Goiás, Brasil</td>
<td></td>
</tr>
<tr>
<td>Dr. Abdel-Hady El-Gilany</td>
<td>Public Health & Community Medicine, Faculty of Medicine, Mansoura University, Egypt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Hongxiong Guo</td>
<td>STD and HIV/AIDS Control and Prevention, Jiangsu provincial CDC, China</td>
</tr>
<tr>
<td>Dr. Konstantina Tsaousi</td>
<td>Life and Health Sciences, School of Biomedical Sciences, University of Ulster</td>
</tr>
<tr>
<td>Dr. Bhavnaben Gowan Gordhan</td>
<td>DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand and National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa</td>
</tr>
<tr>
<td>Dr. Ernest Kuchar</td>
<td>Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw Teaching Hospital, Poland</td>
</tr>
<tr>
<td>Dr. Hongxiong Guo</td>
<td>STD and HIV/AIDS Control and Prevention, Jiangsu provincial CDC, China</td>
</tr>
<tr>
<td>Dr. Mar Rodriguez Jovita</td>
<td>Food Hygiene and Safety, Faculty of Veterinary Science, University of Extremadura, Spain</td>
</tr>
<tr>
<td>Dr. Jes Gitz Holler</td>
<td>Hospital Pharmacy, Aalesund. Central Norway Pharmaceutical Trust, Professor Brochs gt. 6. 7030 Trondheim, Norway</td>
</tr>
<tr>
<td>Prof. Chengxiang FANG</td>
<td>College of Life Sciences, Wuhan University, Wuhan 430072, P.R.China</td>
</tr>
<tr>
<td>Dr. Anchalee Tungtrongchitr</td>
<td>Siriraj Dust Mite Center for Services and Research, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, 10700, Thailand</td>
</tr>
</tbody>
</table>
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the Journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJMR to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the African Journal of Microbiology Research is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJMR, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Changes of nucleotide-binding oligomerization domains (NODs) signaling pathway in the incidence and development of invasive pulmonary aspergillosis
MA Guangqiang, WU Su-fang, LUO Hong-dan, XIE Wei-hua, LONG KAI, SU Ming-sheng and XIE Xiao-mei

Challenges in predicting Staphylococcus spp. β-lactamic resistance in pet animals
Ingrid Annes Pereira, Cássia Couto da Motta, Anna Carolina Coelho Marín Rojas, Irene da Silva Coelho, Shana de Mattos de Oliveira Coelho and Miliane Moreira Soares de Souza

Virulence factors and antibiotic resistance patterns of uropathogenic Escherichia coli
Joshua Mbanga and Raymond Mudzana

Extended-spectrum β-lactamase production and antimicrobial resistance in Klebsiella pneumoniae and Escherichia coli among inpatients and outpatients of Jimma University Specialized Hospital, South-West, Ethiopia
Shewki Moga Siraj, Solomon Ali and Beyene Wondafrash

Regeneration of cumin (Cuminum cyminum L.) plants from callus and establishment of dual culture of host and parasite (Alternaria burnsii)
Deepak, Parmeshwar Lal Saran and Ravish Choudhary
Full Length Research Paper

Changes of nucleotide-binding oligomerization domains (NODs) signaling pathway in the incidence and development of invasive pulmonary aspergillosis

MA Guangqiang¹, WU Su-fang², LUO Hong-dan¹, XIE Wei-hua¹, LONG KAI¹, SU Ming-sheng¹ and XIE Xiao-mei¹*

¹Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China.
²Jiangxi Nursing Vocational and Technical College, Nanchang, Jiangxi, 330201, China.

Received 20 May, 2014; Accepted 8 September, 2014

This study investigates the effect of nucleotide-binding oligomerization domains (NODs) signal pathway in invasive pulmonary aspergillosis. Mice were randomly divided into three groups: 1) normal mice (control group), 2) normal mice infected with Aspergillus fumigates, 3) normal mice treated with immunosuppressant and inoculated with A. fumigatus (IPA Model). Mice were sacrificed at different time points after inhaling A. fumigatus spores by nose. Their lungs were extracted under sterile condition, and were used to count the fungal colonies; and also the pathological sections of lungs were observed by HE staining. RT-PCR was used to detect the expression of the NOD1, NOD2 and RIP2 mRNA of mice lung. Western blot was used to detect the expression of TNF-α. 72 h after inhaling A. fumigatus spores, a large number of hyphae and severe inflammation were found in the lung of IPA model mice group; and the lung burden of IPA mice were more than that of normal+A. fumigatus group at each time points. When compared with normal+A. fumigatus group, the expressions of NOD1 and RIP2 mRNA were persistently descending in IPA model mice group; the expression of NOD2 mRNA was abnormally raised in early stage of infection (24 h), then decreased in the later stage. However, in normal+A. fumigatus group, proinflammatory cytokine TNF-α exhibited high expression at the early stages of infection, and the highest expression levels appeared at 48 or 72 h, then decreased and returned to normal level. In the group of the IPA mouse, proinflammatory cytokines TNF-α were released at slow and low level. Persistently low expression of NOD1 and RIP2, was seen in early excessive activation.

Key words: Invasive pulmonary aspergillosis (IPA), nucleotide-binding oligomerization domains (NODs), RIP2, pathogenesis.

INTRODUCTION

Invasive pulmonary aspergillosis (IPA) is an increasingly common opportunistic fungal infection usually occurring in patients with neutropenia and/or corticosteroid exposure. The lungs are involved in about 85% of cases...
of invasive aspergillosis. *Aspergillus fumigatus* is a common saprophytic fungus in the air. It has a small diameter and can be passively inhaled into the respiratory tract. *A. fumigatus* conidia in hosts with impaired immunity can cause a severe infectious disease called IPA. It is also responsible for some autoimmune diseases, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, psoriasis and psoriatic arthritis (Arnold et al., 2009; Tsiodras et al., 2009; Nedel et al., 2009). The mortality rate of IPA has ranged from 60 to 94% (Tomee, 2001; Singh and Paterson, 2005). Hitherto, the pathogenesis of IPA is not clear.

Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are two major pattern-recognition receptors (PRRs) involved in the early host defense against pathogen invasion (Akira et al., 2006; Li, 2010). Activation of NOD1 by *A. fumigatus* conidia ligand elicited inflammatory cytokines such as TNF-α and IL-10 and stimulated NOD1-induced immune responses (Li, 2010). NOD2 can sense the components of peptidoglycan derived from bacteria, such as muramylidipeptide (MDP), in the host cytosol. Stimulation of NOD2 by ligand recognition stimulates the NF-κB pathway (Chatrora et al., 2013; Hasegawa et al., 2008; Nabatov et al., 2013).

All these studies showed that NODs play important roles in anti-infectious disease IPA. But there are few studies on the field.

Therefore, we established IPA model of wild type mouse and dynamic investigation of the expression levels of NOD1 and NOD2 mRNA by RT-PCR method, the levels of inflammatory cytokines TNF-α in pulmonary tissues by western blot, with evaluation of the *A. fumigatus* dosage, and the lung pathology; we elucidated the functions of NODs signaling pathway in invasive pulmonary aspergillosis. This study provides an insight into the pathogenesis of IPA.

MATERIALS AND METHODS

Experimental animals and grouping

BALB/cSPF mice (Certificate of Conformity: SCXK 2003-0002, male, 6 to 8 weeks old, 20~25 g) were provided by Shanghai SINO-BRITISH SIPPR / BKLAB animal center. Mice were divided into 3 groups randomly, 10 rats in each group: (1) Normal Group (normal mice); (2) Normal mice with infection (N+A. fumigates); (3) IPA Model Group (normal mice treated with immunosuppressant and inoculated with *A. fumigates*).

Strain and culture medium

A. fumigates (clinical isolates, Separate No. 3910): was purchased from the Fungal Culture Collection of Chinese Medicine Centre (Nanjing). Cells were cultured in Czapek's medium at 26°C. Spores were collected at the concentration of 10^7/mL and stored at 4°C.

Main reagents

Cyclophosphamide (CY, NO.: 06060521) was purchased from Jiangsu Hengrui Medicine Co., Ltd.; Trizol reagent was from invitrogen company; TaKaRa RNA PCR Kit 3.0 (AMV) was purchased from Dalian TaKaRa Biotechnology Co., Ltd.; antibodies (Rabbit anti-NF-κB p65, Rabbit anti-IL-1β, Goat anti-rabbit HRP secondary antibodies) were purchased from Santa Cruz Biotechnology (Beijing, China); PCR primers were designed in our lab and from Shanghai Biological Engineering company; ultrapure water (UPW, NO.: 07020201) was from U.S. MIUIORE Inc.

IPA model of mice

According to the literature, the method was as follows: BALB/c mice were injected intraperitoneally with 100 mg·kg⁻¹·d⁻¹ of CY within 2 days. Thereafter, mice were administered intranasally with 50 μL (concentration: 10⁷/mL) spore suspension of *A. fumigates*. In order to maintain the effect of immunosuppression, mice were given additional CY (100 mg·kg⁻¹·d⁻¹) when inoculated with *A. fumigates* at 96h (Luo et al., 2008; Tang et al., 1995).

Collection and processing of specimen

Mice with nose inhalation of *A. fumigates* conidia were sacrificed at different time points of 24, 48, 72, 120 and 144 h (2 mice at each time point), then lung tissue was isolated in sterile manner, and conserved in -80°C refrigerator.

A. fumigates colony counting of lung tissue

100 mg of lung tissue were took and made into 10% homogenate, then 0.1 ml of it was inoculated on Czapek's medium after diluting with 10 times, and counting colony after 5 days.

Lung tissue pathology

Histological injury and spor germination was observed after all the mice produced paraffin sections of lung tissue and conventional HE staining.

Detection of the target genes expression of lung tissue by RT-PCR

Primers and PCR reaction conditions are listed in Table 1.

Detection of the target proteins expression of lung tissue by Western blot

First, nuclear protein and total protein were extracted from 100 mg lung tissue; Second, SDS-PAGE electrophoresis was carried out and transferred to semi-dry membrane; once again, it was incubated with the corresponding primary antibody (1:250) and secondary antibodies (1:8000) at 37°C for 1 h; finally, the film was exposed to X-ray after colouring with ECL (a kind of lighting substrate used in west blot detection, Pierce Biotechnology PO Box).

Statistical methods

The values of optical density scanning of target band were read which was measured in the agarose gel and X-ray film by image analysis software Bandscan. Afterwards, the expression of its corresponding target gene and protein were respectively...
Table 1. Primer sequences and PCR reactive conditions.

<table>
<thead>
<tr>
<th>Aim gene</th>
<th>Primers (5′>3′)</th>
<th>Annealing temperature (°C)</th>
<th>Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Actin</td>
<td>reverse anti-reverse ACGGCCAGGTCATCCTATT TAACGTCCGCTAGAAGCA</td>
<td>59.3</td>
<td>409</td>
</tr>
<tr>
<td>NOD1</td>
<td>reverse anti-reverse CAACAGGGAACATCTGGTCA GAAGGGGAAGCCAATTTC</td>
<td>67.7</td>
<td>261</td>
</tr>
<tr>
<td>NOD2</td>
<td>reverse anti-reverse CCGTGTCTGTAACTTTTG AGGATCGCAGGTACATGTC</td>
<td>59.3</td>
<td>438</td>
</tr>
<tr>
<td>RIP2</td>
<td>reverse anti-reverse GCCATTGTGAGCCAGATGA ATTTGAAGGCGGTGCTTTG</td>
<td>59.3</td>
<td>264</td>
</tr>
</tbody>
</table>

Figure 1. Results of HE staining of the lungs. A−E: N+A. fumigates group: 24, 48, 72, 120, 144 h; F−J: IPA group: 24, 48, 72, 120, 144 h.

RESULTS

Morphological analysis of lung pathology

There were few lung abscess, hemorrhage and mycelium in lung tissue in the first 48 h after inoculation with A. fumigates; 72 h later, when compared with normal mice, the alveolus space in normal mice with infection enlarged, accompanied with inflammatory responses including inflammatory cell infiltration and hemorrhage injury. As a comparison, IPA group had a lung abscess and severe hemorrhage. In addition, airway epithelial desquamation and mycelium formation were also observed in the IPA group (Figure 1).

Assessment of A. fumigates load in pulmonary tissue

The CFU assay indicated, when compared with normal mice with infection, pulmonary tissue from the IPA group had heavy A. fumigates load (P<0.05) (Figure 2). In contrast, normal mice without A. fumigates inoculation showed negative signal in this assay.

standardized by scanning values in each group of β-tublin and β-actin bands. Here, each experiment was repeated three times, and results were indicated as $\bar{x} \pm S$. $P<0.05$ was used as a standard of significant difference by applying Statistical software SPSS 10.0 to conduct t-test analysis.
Investigating the expression levels of NOD1 mRNA in mice pulmonary tissue

The mRNA levels of NOD1 were tested with RT-PCR by time course (Figure 3). Twenty-four hours after inoculation with *A. fumigatus*, the expression of NOD1 protein of normal group (N+Af) had a sharp elevation, got to peak at 48 h and then decreased to normal levels after 72 h. IPA mice of NOD1 protein gradually increased after 24 h. It peaked at 72 h, followed by a decline in a level lower than normal mice with infection (*P*<0.05) (Figure 3).

Investigating the expression levels of NOD2 mRNA in mice pulmonary tissue

The mRNA levels of NOD2 were tested with RT-PCR by time course (Figure 4). Twenty-four hours after inoculation with *A. fumigatus*, the expression of NOD2 protein of normal group (N+Af) had a sharp elevation, got to peak at 48 h and had a little decline, and then kept to high levels after 72 h. IPA mice of NOD2 protein gradually increased after 24 h. It peaked at 48 h, followed by a slowly decline, and finally at 120 h, got back to normal.
Investigating the expression levels of RIP2 mRNA in mice pulmonary tissue

The mRNA levels of RIP2 were tested with RT-PCR by time course (Figure 5). Twenty-four hours after inoculation with *A. fumigates*, the expression of RIP2 protein of normal group (N+Af) had a sharp elevation, got to peak at 48 h; then had a quick decline, and then got back to normal levels at 72 h; it had another peak at 120 h; and then decline to normal level. IPA mice of RIP2 protein gradually increased after 24 h; and got to lowest point at 120 h, followed by a sharp increase, and finally got back to normal level (*P*<0.05) (Figure 5).

Analyzing the expression levels of NOD1, NOD2, RIP2 mRNA and the expression of TNF-α at the same time point for each group

The mRNA levels of NOD1, NOD2 and RIP2 were compared at the same time point for each group. The expression of NOD1 protein of normal group (N+Af) are higher than normal group at each time course (*P*<0.05). The expression of NOD2 protein of normal group (N+Af)
are more than normal groups at 48, 72 and 144 h (P<0.05). RIP2 is higher than normal group at 48 and 72 h after incubation with A. fumigates (P<0.05). When compared with normal group, the expression of NOD1 protein of IPA group is lower at 48, 120 and 144 h (P<0.05); NOD2 are less at all the time point; RIP2 are lower at 24, 48 and 120 h (P<0.05) (Figure 7).

The expression of TNF-α protein in mouse pulmonary tissues was also compared at the same time point for each group. When compared with normal group, TNF-α protein of normal group (N+Af) is higher at all the time point except at 144 h (P<0.05); TNF-α protein of IPA group is lower at 48, 72 and 120 h (P<0.05) (Figure 7D).

DISCUSSION

Since conidia of A. fumigates widely exist in the environment, people usually inhale hundreds of them per day. The inspiratory conidia seldom induce disease in hosts with intact immune system. High risk factors for clinical IPA usually are due to severe neutropenia, long-term antibiotic treatment, steroid therapy, hematopoietic malignancies, organ transplantation, AIDS, autoimmune diseases, etc. Animal experiments showed: after high dose inoculation with A. fumigates in normal mice, the pathogens would be eliminated within several hours, and the elimination curve was in accordance with first order kinetics; whereas immuno-deficient mice easily suffered from aspergillosis and IPA induced by systemic infection (Schneemann and Schaffner, 1999; Grazziutti et al., 1997; Duong et al., 1998). Thus, healthiness of immune system plays pivotal roles in resistance to A. fumigates infection.

Effective innate immunity is the first line of defense. Phagocytosis of the alveolar macrophages kills inhalational conidia and prevents the formation of hyphae, which can colonize in the host and are associated with lethal infection. Once the conidia escape from phagocytosis and develop into hyphae, neutrophils
will take over the defense line. At the same time, macrophages and lung dendritic cells phagocytize conidia and hyphae, present antigens and initiate T cell immune response. Innate immunity not only confers the first line of defense in resistance to \textit{A. fumigates} infection, but also provides specific signals for initiation of adaptive immunity (de Repentigny et al., 1993; Schaffner et al., 1982). However, the mechanism of innate immunity against the infection of \textit{A. fumigates} is still largely unknown.

To activate host defense and eliminate invasive pathogens, innate immune response is initiated by pattern recognition, a conserved and pathogen-specific molecular recognition pattern mediated by a series of PRRs that widely express in macrophages and various cell types (Medzhitov and Janeway, 1997a, b). The NODs family, which was newly discovered, is one of the most important PRRs (Philpott and Girardin, 2004). Most evidence proved that NOD1 and NOD2 play important role in anti-infectious in innate immune response (Boughan et al., 2006; Kobayashi et al., 2005; Chamaillard et al., 2004; Barton et al., 2007). Innate immunity not only confers the first line of defense in resistance to \textit{A. fumigates} infection, but also provides specific signals for initiation of adaptive immunity (Mambula et al., 2002; Kaisho and Akira, 2001). However, the mechanism of innate immunity against the infection of \textit{A. fumigates} is still largely unknown.

Here, in order to systematically mimic patient IPA, the dynamic alternations of NODs, PIR2 and TNF-acytokines in both normal and immunodeficient mice were evaluated during infection of \textit{A. fumigates}. Cyclophosphamide was used to induce immunosuppression of mice used as model animals. And, the pathological alternation of pulmonary tissues and culture of \textit{A. fumigates} in normal mice with those in immunosuppressive mice after nose inhalation of \textit{A. fumigates} conidia were compared.

Lung pathology analysis showed that normal mice infected with \textit{A. fumigates} displayed obvious inflammatory responses in the early stage (24 to 48 h) of infection; hyperemia and hemorrhage gradually declined at 72 h, and nearly disappeared at 144 h. IPA group had mild inflammatory responses in the early stage of infection. The severe hyperemia and hemorrhage occurred after 72 h. At the same time, lung abscess and enlargement of alveolus space, together with airway epithelial desquamation and mycelium formation, were observed. After 144 h, mesothelial hyperplasia became remarkable in the lung tissues of IPA mice.

Data from analysis of \textit{A. fumigates} load in pulmonary tissues showed that normal infected mouse lung displayed a positive signal in CFU assay between 24 and 48 h, but the signal reduced dramatically after 48 h; whereas positive signal was detected at 24 h in IPA group, and the strong signal could be detected even at 144 h. The number of colonies in IPA group was higher than those in normal mice with infection at all-time points ($P<0.05$).

The above results showed immunosuppressed mice with nose inhalation of \textit{A. fumigates} presented pathological alternations similar to clinical IPA cases, indicating the successful establishment of mouse IPA model. Analysis of pulmonary histology combined with CFU assay reminded us that immunosuppressive mice were not able to effectively initiate immune responses, which caused late inflammatory reactions in the early stage for elimination of conidia and suppression of hyphae growth. On the contrary, overreacted inflammatory responses in the late stage of infection led to severe damage of lung tissues.

NODs signaling is the important network for the regulation of inflammatory and immune response, and also the major pathway for resistance to infection. In this study, we discovered the different dynamic expression pattern of NOD1 and NOD2 mRNA between IPA group and normal mice with infection. NODs and RIP2 mRNA in the three groups was slowly increased in the early stage of \textit{A. fumigates} infection. These results indicated that the receptors of NODs and RIP2 were activated after \textit{A. fumigates} inoculation. The expression of NOD2 mRNA in IPA group was higher than normal group in early stage, and then got back to normal level; this indicated that NOD2 may play very important role in \textit{A. fumigates} infection.

Cytokines, an important kind of secretive immune molecules, play roles in diverse biological functions including regulation of cell physiology, mediation of inflammatory responses, involvement of immune reactions, and repair of tissues, etc. The different functions of various cytokines are closely related with the situation and progression of infectious diseases (Peck and Mellins, 2010).

We found the expression levels of cytokines (TNF-α) in mouse lung were closely correlated with pulmonary pathological impairment. Normal mice with \textit{A. fumigates} inoculation displayed high levels of proinflammatory cytokines (TNF-α) in the early stage of infection. Their expression levels peaked at 72 h, and thereafter declined to normal level. At the same time, lung pathology results showed obvious hyperemia and hemorrhage appearance before 72 h, and thereafter inflammatory responses were gradually alleviated, which indicated that secretion of proinflammatory cytokines (killing inhalational conidia and preventing the formation of hyphae) was the major inflammatory responses in the early stage of \textit{A. fumigates} infection.

Inflammation is one of the necessary parts of effective immune responses in resistance to IPA. Appropriate inflammatory responses can availably eliminate local \textit{A. fumigates}, whereas improper or overreacted inflammatory responses will cause IPA and associated lung injury (Romani and Puccetti, 2007). Effective inflammatory responses depend on the mutual cooperation or restriction between diverse immunocytes, which ultimately help the host eliminate exotic antigens.
as well as protect its own tissues by the regulation of the secretions and functions of diverse cytokines. Recognition of pathogens by PRRs is the key to innate and adaptive immunities. Multiple regulations ensure complicate but appropriate activation of signaling pathways. Abnormal activation of upstream and midstream molecules in signaling pathways will affect their downstream networks, and finally cause inflammatory diseases (Medvedev et al., 2006).

The results indicates that the NODs signaling pathway in the immunosuppressed mice with A. fumigates inoculation causes the loss of balance between proinflammatory and anti-inflammatory cytokines and eventually leads to the incidence and development of invasive aspergillosis.

Conflict of Interest

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENT

This study was supported by the National Natural Science Foundation of China (No. 30560147 and No. 30760236).

REFERENCES

Full Length Research Paper

Challenges in predicting *Staphylococcus* spp. β-lactamic resistance in pet animals

Ingrid Annes Pereira¹, Cássia Couto da Motta², Anna Carolina Coelho Marin Rojas², Irene da Silva Coelho², Shana de Mattos de Oliveira Coelho² and Miliane Moreira Soares de Souza²*

¹Universidade Severino Sombra, Centro de Ciências da Saúde/Vassouras, Rio de Janeiro, Brasil.
²Universidade Federal Rural do Rio de Janeiro, Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária /UFRRJ, Seropédica, Rio de Janeiro, Brasil.

Received 12 July, 2014; Accepted 13 October, 2014

The present work evaluated the species distribution associated with the antimicrobial susceptibility pattern by phenotypic analysis and *mec* and *bla* gene detection in 100 *Staphylococcus* strains from 219 clinical samples from cats and dogs in the state of Rio de Janeiro, Brazil. Oxacillin susceptibility profiles were detected by the Clinical and Laboratory Standards Institute (CLSI) recommended tests. The amplification of the *mecA* gene was positive in 25% of the *Staphylococcus* spp. The whole *mec* complex (*meca*-mecI-mecR1) was detected in four phenotypically oxacillin-resistant isolates. The CLSI recommended nitrocefin-based test detected 38% (38/100) β-lactamase producers *Staphylococcus* strains. Also, 32% (32/100) *Staphylococcus* spp. strains tested positive for *bla* genes. The whole *bla* gene complex, *blaZ-blaI-blaR1*, was detected in 7.8% (3/38) of the nitrocefinase-positive isolates. β-Lactamases was well spread among the samples and it seems to be a prevalent mechanism in resistant staphylococci strains from pet animals. The *mec* and *bla* gene regulatory systems can interfere in expression of resistance mediated by PBPs and β-lactamases, conferring the heterogeneous oxacillin-resistance in *Staphylococcus* spp. detected by phenotypic tests.

Key words: *Staphylococcus* spp., oxacillin, β-lactamase, *mecA*, pet animals.

INTRODUCTION

In veterinary medicine, *Staphylococcus* spp. are important agents of infectious diseases of several animal species. Besides *Staphylococcus aureus*, other coagulase-positive staphylococci (CoPS) have been reported to be important pathogens. The reclassification of *Staphylococcus intermedius*, a coagulase-positive species firstly described in 1976, was proposed by Devriese et al. (2005), creating the *S. intermedius* group (SIG) including *S. intermedius*, the new species *S. pseudintermedius* and *S. delphini*. This proposal was based in the high genotypic diversity observed in the formerly considered *S. intermedius* strains (Bannoehr and Guardabassi, 2012).

Like *S. aureus*, the *S. intermedius* strains isolated from...
animals have been reported to produce an array of virulence factors, including leukotoxin, enterotoxin, and hemolysins, together with elements essential for biofilm formation (Hanselmann et al., 2008). Nowadays, several CoPS species, such as S. aureus, S. pseudintermedius, S. schleiferi subsp. coagulans, and also coagulase-negative Staphylococcus spp. (CoNS), are implicated in the etiology of animal diseases, such as suppurative disease, mastitis, arthritis and urinary tract infection, due to their virulence factors (Futagawa-Saito et al., 2006; Silva et al., 2003). Staphylococcus species are usually resistant to β-lactams, aminoglycosides and macrolides. The emergence and dissemination of antimicrobial resistance among staphylococci is an important problem in human and veterinary medicine worldwide because therapeutic options are becoming limited. Dogs and cats are an important source of the spread of this resistance due to the extensive use of antimicrobials and the contact with their owners (Frank and Loeffler, 2012; McCarthy et al., 2012; Morgan, 2008).

Oxacillin resistance is of particular relevance because it is conferred by different mechanisms and acts as a resistance marker for overall beta-lactam resistance. The most-studied mechanism is related to the presence of the mecA gene, located on a staphylococcal chromosomal cassette (SCmec) (Ito et al., 2001). Jansen et al. (2009) sequenced and typed SCmec of animal origin (Jansen et al., 2009). This resistance is conferred by the production of an altered penicillin binding protein (PBP2a) with low affinity for all β-lactam antimicrobials. The mecA gene expression and therefore PBP2a production is regulated by the mecR1-mecI gene system. The mecI gene codifies a repressive protein and mecR1 a signal transmembrane protein inducible by β-lactam antimicrobials (Petrinaki et al., 2001). Whether these genes are expressed or not, they can confer heterogeneous phenotypes, possibly leading to misidentification by laboratory practitioners. Usually the SCmec contains additional genetic material, such as Tn554, pUB110 and pT181, which encode resistance to multiple classes of antimicrobials frequently applied in hospitals (Hanselmann et al., 2008; Katayama et al., 2001).

Also, oxacillin-resistant Staphylococcus may constitute or inductively produce β-lactamases enzymes that cleave the β-lactam ring and inactivate the antibiotic (Li et al., 2007). β-lactamase enzymes interfere in oxacillin resistance by the action of the blaz gene complex, which includes a regulatory system composed of blaz, blar1 and blal genes (Rosato et al., 2003). These genes are located on Tn552, a transposon completely sequenced and inserted in SCmec (Rowland and Dyke, 1990). More than 90% of staphylococcal isolates that produce β-lactamase codified by the blaz gene contain a blaz regulatory system (blal and blar1) similar in sequence and function to mecA regulators (meca-mecR1-mecI, promoter-operator-repressor system) (Mckinney et al., 2001).

The Clinical and Laboratory Standards Institute (CLSI) has standardized phenotypic testing for detection of oxacillin resistance considering the use of the cefoxitin/oxacillin disk diffusion test according to Staphylococcus species. In its latest version (CLSI, 2013), mecA gene detection is not considered a gold standard anymore, since the multiplicity of oxacillin-resistance factors requires careful investigation including detection of different resistance genetic markers for correct interpretation of heterogeneous phenotypes expressed by Staphylococcus spp. strains. The present study evaluated staphylococci species distribution in 100 strains from cats and dogs obtained from veterinary clinics in the state of Rio de Janeiro, Brazil. Also, their antimicrobial resistance pattern was established based on phenotypic characteristics and mecA and bla gene detection.

MATERIALS AND METHODS

Sampling

Clinical specimens from 185 dogs and 34 cats were harvested from distinct infectious sites, during routine care in a small animal veterinary clinic of Federal Rural University of Rio de Janeiro (HRV-UFRRJ) and veterinary care units from different regions of Rio de Janeiro state, Brazil, between 2006 and 2010. The samples were obtained from canine external otitis, skin lesions, urinary and respiratory tract infections, pyometra, periodontitis and conjunctivitis. Bacterial identification and antimicrobial susceptibility assays were performed at the Veterinary Bacteriology Laboratory of Federal Rural University of Rio de Janeiro (LABAC-VET/UFRRJ). Results were sent back to the attending veterinarians to help in diagnosis and therapeutic procedures.

Staphylococcus spp. identification

Samples were inoculated primarily in blood agar (blood agar base enriched with 5% sheep blood) and incubated at 35°C for 24 h. Then the isolates were submitted to the routine microbiological diagnostics, including inoculation in selective medium for analysis of cultural properties, catalase and coagulase production, hemolysis pattern, maltose and D-mannitol fermentation, acetoin production and nitrate reduction (Winn et al., 2006). After phenotypic identification, isolates were submitted to polymerase chain reaction for 16S rRNA to confirm the presence of Staphylococcus spp. (Zhang et al., 2004). Furthermore, PCR amplification of endonuclease genes (nuc1 and nuc2) was performed to identify S. hyicus. Strains of S. pseudintermedius and S. aureus were characterized by the amplification of nuc3 and nuc4 genes and 23S rDNA, respectively (Sazaki et al., 2010; Silva et al., 2003). The following standard strains were used as controls: ATCC 29213 S. aureus, ATCC 29663 S. intermedius, S. hyicus 5368 and S. schleiferi 3975.

Disk diffusion test

Assays were performed using the method and interpretation criteria according to CLSI standards (CLSI, 2011), after overnight incubation at 35°C followed by measurement of inhibition zone diameters. Staphylococcus spp. antimicrobial susceptibility was
Table 1. Distribution of Staphylococcus species per sites of infection.

<table>
<thead>
<tr>
<th>Staphylococcus species</th>
<th>Sites of infection* (number of isolates)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>Total species</td>
<td></td>
</tr>
<tr>
<td>S. intermedius</td>
<td>13</td>
</tr>
<tr>
<td>S. aureus spp. aureus</td>
<td>11</td>
</tr>
<tr>
<td>S. hyicus</td>
<td>11</td>
</tr>
<tr>
<td>S. aureus spp. anaerobius</td>
<td>-</td>
</tr>
<tr>
<td>S. schleiferi spp. coagulans</td>
<td>2</td>
</tr>
<tr>
<td>CPS**</td>
<td>1</td>
</tr>
<tr>
<td>S. xylosus</td>
<td>4</td>
</tr>
<tr>
<td>S. hominis</td>
<td>-</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>-</td>
</tr>
</tbody>
</table>

*CO, Canine otitis; SI, skin infection; UTI, urinary tract infection; RTI, respiratory tract infection; PY, pyometra; OMI, oral mucosal infection; CMI, conjunctive mucosal infection; GI, gastrointestinal infection; OM, osteomyelitis. **CPS, coagulase-positive Staphylococcus spp. not genetic defined.

Oxacillin susceptibility tests

Resistance to oxacillin was determined according to phenotypic tests recommended by the CLSI (2013). The disk diffusion test was applied using oxacillin (1 μg) and cefoxitin (30 μg) disks (Sensifar-Cefar®), in an agar screen plate containing 6 μg/ml of oxacillin with Müller Hinton agar supplemented with NaCl (4% w/v; 0.68 mol/L). S. aureus ATCC29213 was used as quality control.

β-lactamase production

The nitrocefin disk test was applied to detect Staphylococcus spp. strains that produce chromogenic β-lactamase, in accordance with the CLSI standard (CLSI, 2013). S. aureus ATCC29213 was used as quality control.

DNA extraction and PCR analysis

A 1.5-ml overnight culture of a single Staphylococcus colony was centrifuged for 30 s at 14,000 rpm, washed twice in 1 mL TE buffer (10 mM Tris HCl, pH 8.0; 1 mM EDTA; 100 mM NaCl). The resulting pellet was resuspended in 400 μL of TE buffer including 5 μL of lysozyme (stock concentration 1 μg/mL; Sigma-Aldrich) and incubated for 30 min at 37°C. Lysis was completed by 10 min of water incubation at 100°C. PCR assays of mec and bla gene complexes were performed using the primers and respective program previously described (Petinaki et al., 2001). The reaction was performed in a final volume of 20 μL of mixture containing PCR buffer (10 mM TrisHCl, pH 9.0; 50 mM KCl, and 0.1% Triton X-100), 3.5 mM MgCl₂, 250 μM of each of the deoxynucleoside triphosphates, 3.0 μM of each gene-specific primer, 2.5 U of Taq DNA polymerase (Promega, Madison, WI) and 5 μL of template. Amplicons were detected by 1.5% agarose gel, stained with ethidium bromide solution (0.5 mg/mL) and examined under a UV transilluminator (UvTrans). S. aureus ATCC43300 was used as quality control.

RESULTS AND DISCUSSION

A total of 100 Staphylococcus spp. isolates were phenotypically characterized, as the following species: S. aureus spp. aureus (n=24), S. pseudintermedius (n=44), S. aureus spp. anaerobius, (n=1), Staphylococcus schleiferi spp. coagulans (n=6) and coagulase-negative Staphylococcus spp. (CoNS) (n=12), represented by S. xylosus, S. epidermidis and S. hominis. PCR amplification of endonuclease genes (nuc1 and nuc2) identified 13% (13/100) S. hyicus. Also 35% S. pseudintermedius (35/100) and 24% S. aureus (24/100) were genetically characterized by PCR amplification of nuc3 and nuc4 genes and 23S rDNA, respectively. Table 1 presents Staphylococcus species distribution considering the different sites of infection.

These results suggest widespread distribution of staphylococci species in pet animals’ infectious sites and corroborate the importance of correct microbiological identification. In veterinary medicine, other CoPS have frequently been misidentified as S. aureus strains, due to their common phenotypic traits.

Unfortunately, there has been no reliable phenotypic method to distinguish among CoPS species in veterinary clinical laboratories. In the present study, we used PCR of the thermonuclease (nuc) genes to improve the identification of staphylococcal species, as recommended by Sasaki et al. (2010).

Empirical treatment based on Staphylococcus aureus as the traditional staphylococci pathogen leads to therapeutic failures and antimicrobial resistance development. As a matter of fact, the latest report from CLSI (2013) established different criteria for oxacillin-
resistance evaluation for S. aureus and S. pseudintermedius due to their importance in clinical therapy.

In the present study, the disk diffusion test was performed to form a resistance panel for the most used antimicrobial class in staphylococci infections. We detected a low level of resistance to the associations between ampicillin and sulbactam (2%) and amoxicillin and clavulanic acid (5%). This was also true for the antibiotics with restricted use due to high cost, such as imipenem (2%) and linezolid (7%) (Table 2). Tenover et al. (2007) comparing the most commonly used susceptibility testing methods challenged with linezolid-non susceptible staphylococci, concluded that generally the problem was much greater in the non-detection of resistance rather than a possible overcalling of resistance. For this study, the criterium adopted to report linezolid resistance followed CLSI standards that consider any discernible growth within the zone of inhibition as indicative of resistance to linezolid. The highest level of resistance was recorded for β-lactam antimicrobials, such as penicillin (78%), ampicillin (66%) and ceftriaxone (64%). For the other compounds tested, the resistance was intermediate.

Despite the well-known reduction in β-lactam efficacy, this class of antimicrobials remains widely used, mainly because of the low treatment cost. Most β-lactam bacterial resistance mechanisms, such as β-lactamases production and transmembrane permeability reduction can interfere in the activity of other antimicrobial classes when staphylococci species are involved in the infection's etiology, justifying the importance of adopting a susceptibility test before prescribing the drug treatment regimen. Table 2 presents an antimicrobial resistance panel for the antimicrobial classes used to treat staphylococci infections.

All Staphylococcus spp. isolates were submitted to oxacillin and cefoxitin disk diffusion tests. Resistances of 37% (37/100) and 53% (53/100) were detected, respectively. The oxacillin agar screen test detected 57% (57/100) resistance. The evaluation of phenotypic tests linked to mecA gene complex detection yielded 15 different oxacillin-susceptibility profiles (Table 3), confirming Staphylococcus spp. as a heterogeneous resistance phenotype. Because of this disparity and the difficulty to establish reliable parameters, the CLSI standard procedures are under constant revision. For the prediction of phenotypic oxacillin resistance, some important new recommendations were recently published (CLSI, 2013). The cefoxitin disk test should be performed for S. aureus and CoNS and diffusion zones larger than 21 and 24 mm, respectively, should be reported as oxacillin-resistant. Oxacillin disk diffusion is considered the best way to detect mecA mediated resistance in S. pseudintermedius and should be performed instead of cefoxitin diffusion, which is not considered predictive for mecA mediated resistance in this species anymore (CLSI, 2013).

The detection of the mecA gene used to be considered a gold standard for the prediction of oxacillin resistance in Staphylococcus spp. Recently, the CLSI (2013) changed this criterion, considering the different mechanisms underlying this resistance. In this study, from all isolates tested by PCR assay, just 25% (25/100) were positive for this gene. Among Staphylococcus species, a total of 36% (8/22) were Staphylococcus aureus mecA +. Other mecA+ isolates corresponded to 23% (8/35) S. intermedius and 23% (3/13) S. hyicus. Coagulase-negative Staphylococcus spp. presented a total of 50% (6/12) mecA-positive isolates, and the species were: S. xylosus (3/6), S. epidermidis (2/6) and S. hominis (1/6). Results of the mec regulatory system assays are presented in Table 2. It was possible to detect the whole mec genic complex, mecA-mecI-mecR1, in 16% (4/25) of mecA+ staphylococcus spp. In this study, the strains presenting the whole regulatory complex were phenotypically oxacillin-resistant in all performed assays. In contrast, 16% (4/25) of Staphylococcus isolates that tested positive to mecA-mecI genes presented an oxacillin-susceptible pattern. This might be related to the strong repressive activity exerted by mecI in the mecA gene. Seven isolates (28%) tested positive to mecA-mecR1 genes and were also phenotypically oxacillin-resistant, probably due to mecR1 repression in the mecI gene. Mckinney et al. (2001) remarked that the mecR1 gene is correlated to a membrane signal transduction system which recognizes the extracellular presence of a β-lactam antimicrobial and induces the transcription of the mecA gene. Ten (10/25) Staphylococcus spp. isolates tested positive only for the mecA gene and were phenotypically oxacillin-resistant, as expected by the expression of constitutive PBP2A (Li et al., 2007). These divergent results in the detection of the mec complex can be related to gene mutation or deletion, as described by Katayama and Hiramatsu (2001). It is possible that rare but significant differences in primer annealing sites causes impairment of whole mec gene complex detection as observed by Melo et al. (2014) in bovine isolates.

The mecA gene is also associated with the multidrug resistance phenotype. In this study, we considered as multidrug resistant the strains that presented resistance to at least three different antimicrobial classes, such as beta-lactamics, quinolones, cephalosporins, macrolides, lincosamide and aminoglicosyde. This profile was detected in 68% (17/25) of mecA + isolates. Among these multiresistant isolates, 41% (7/17) were S. aureus, 35% (6/17) S. intermedius and 24% (4/17) CNS (Table 3). The spread of multiresistant Staphylococcus spp. strains among animals has been investigated worldwide in recent decades and has been blamed on selective pressure exerted by indiscriminate antimicrobial use in veterinary medicine. This resistance provides a selective advantage for Staphylococcus spp. infection and colonization, limiting the efficacy of the antimicrobials.
Table 2. Resistance panel to antimicrobial classes used in staphylococcus infections.

<table>
<thead>
<tr>
<th>Antimicrobial class</th>
<th>% (n) Resistant isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams</td>
<td></td>
</tr>
<tr>
<td>Ampicillin (10 μg)</td>
<td>66% (66/100)</td>
</tr>
<tr>
<td>Penicillin (10 UI)</td>
<td>78% (78/100)</td>
</tr>
<tr>
<td>Oxacillin (1 μg)</td>
<td>37% (37/100)</td>
</tr>
<tr>
<td>β-lactams + β-lactamase inhibitor</td>
<td></td>
</tr>
<tr>
<td>Ampicillin + Sulbactam (10/10 μg)</td>
<td>2% (2/100)</td>
</tr>
<tr>
<td>Amoxicillin + Clavulanic (20/10 μg)</td>
<td>5% (5/100)</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
</tr>
<tr>
<td>Cefoxitin (30 μg)</td>
<td>53% (53/100)</td>
</tr>
<tr>
<td>Cefalotin (30 μg)</td>
<td>28% (28/100)</td>
</tr>
<tr>
<td>Ceftriaxone (30 μg)</td>
<td>64% (64/100)</td>
</tr>
<tr>
<td>Carbapenem</td>
<td></td>
</tr>
<tr>
<td>Imipenem (10 μg)</td>
<td>2% (2/100)</td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
</tr>
<tr>
<td>Azithromycin (15 μg)</td>
<td>53% (53/100)</td>
</tr>
<tr>
<td>Erythromycin (15 μg)</td>
<td>48% (48/100)</td>
</tr>
<tr>
<td>Lincosamide</td>
<td></td>
</tr>
<tr>
<td>Clyndamicin (2 μg)</td>
<td>57% (57/100)</td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin (5 μg)</td>
<td>18% (18/100)</td>
</tr>
<tr>
<td>Enrofloxacin (10 μg)</td>
<td>15% (15/100)</td>
</tr>
<tr>
<td>Norfloxacin (10 μg)</td>
<td>12% (12/100)</td>
</tr>
<tr>
<td>Aminoglicosyde</td>
<td></td>
</tr>
<tr>
<td>Tobramycin (10 μg)</td>
<td>45% (45/100)</td>
</tr>
<tr>
<td>Gentamycin (10 μg)</td>
<td>22% (22/100)</td>
</tr>
<tr>
<td>Folate Pathway Inhibitor</td>
<td></td>
</tr>
<tr>
<td>Sulfamethoxazole-trimetoprim (1,25 μg/23,75 μg)</td>
<td>37% (37/100)</td>
</tr>
<tr>
<td>Oxazolidinone</td>
<td></td>
</tr>
<tr>
<td>Linezolid (30 μg)</td>
<td>7% (7/100)</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
</tr>
<tr>
<td>Tetracycline (30 μg)</td>
<td>30% (30/100)</td>
</tr>
<tr>
<td>Streptogramin</td>
<td></td>
</tr>
<tr>
<td>Quinupristin/dalfopristin (10 μg/10 μg)</td>
<td>57% (57/100)</td>
</tr>
</tbody>
</table>

available for therapeutic procedures (Souza et al., 2012). Table 4 displays the antimicrobial resistance profile of 25 the mecA-positive Staphylococcus strains. Interpretative antimicrobial susceptibility tests can provide clues to the mechanism underlying resistance. Beta-lactamic resistance due to beta-lactamases
production is easily noticed when the resistant strain presents a susceptible pattern to oxacillin and to the association of antimicrobial plus beta-lactamase inhibitors, such as clavulanic acid or sulbactam. The CLSI (2011) recommends the nitrocefin-based test, which detected that 38% (38/100) of Staphylococcus spp. were

Table 3. Oxacillin resistance and mec genes detection profiles among 100 Staphylococcus isolates.

<table>
<thead>
<tr>
<th>Profile (n isolates)</th>
<th>ODD</th>
<th>AS</th>
<th>CFO</th>
<th>mecA</th>
<th>mecI</th>
<th>mecR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus mec+ isolates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(18)</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2(14)</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3(14)</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4(20)</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5(6)</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Staphylococcus mec+ isolates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6(5)</td>
<td>SCN (n=3), S.int. (n=1), S.hy.(n=1)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7(5)</td>
<td>S.int. (n=4), S.hy.(n=1)</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8(5)</td>
<td>S.int. (n=3), S.hy.(n=1)</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>9(4)</td>
<td>S. au.(n=4)</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10(2)</td>
<td>S. au.(n=1), SCN (n=1)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>11(2)</td>
<td>S.int. (n=2)</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12(1)</td>
<td>SCN (n=1)</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13(1)</td>
<td>S. au.(n=1)</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>14(1)</td>
<td>S. au.(n=1)</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>15(2)</td>
<td>S. au.(n=1), SCN (n=1)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

ODD, Oxacillin disk diffusion; AS, Agar screen; CFO, Cefoxitin disk diffusion; SCN, Coagulase-negative Staphylococcus spp.; S. au., Staphylococcus aureus; S.int., Staphylococcus intermedius; S.hy., Staphylococcus hyicus.

Table 4. Antimicrobial resistance profile of 25 mecA-positive Staphylococcus spp.

| Profile (n) | mecA | OXA | CFO | PENG | ASB | AMP | CIP | ENO | ERI | AZI | CLI | GEN | LNZ |
|------------|------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1(6) | + | R | R | R | S | R | S | R | R | R | R | S | S |
| 2(4) | + | R | R | R | R | R | R | R | R | R | R | S | S |
| 3(2) | + | S | R | S | R | S | S | S | S | S | S | S | S |
| 4(2) | + | S | R | R | R | S | S | S | S | R | R | S | S |
| 5(1) | + | R | R | R | S | R | S | S | S | R | R | S | S |
| 6(1) | + | R | R | R | S | R | S | S | S | R | R | S | S |
| 7(1) | + | R | R | R | R | S | R | S | S | R | R | S | S |
| 8(1) | + | S | S | R | S | R | S | S | R | R | R | S |
| 9(1) | + | R | R | R | S | S | S | S | S | S | S | S | S |
| 10(1) | + | S | R | R | R | R | S | S | S | S | S | S | S |
| 11(1) | + | R | R | R | S | S | S | R | R | R | S | S | S |
| 12(1) | + | S | S | R | S | S | S | S | S | S | S | S | S |
| 13(1) | + | R | R | R | S | S | S | S | S | S | S | S | S |
| 14(1) | + | S | R | R | R | R | S | S | S | S | S | S | S |
| 15(1) | + | S | R | R | R | S | S | S | S | S | S | S | S |

OXA, oxacillin; CFO, cefoxitin; PENG, penicillin G; ASB, ampicillin+ sulbactam; AMP, ampicillin; CIP, ciprofloxacin; ENO, enrofloxacin; ERI, eritromycin; AZI, azithromycin; CLI, clindamycin; GEN, gentamycin; LNZ, linezolide; n= number of isolates.
Table 5. Pheno and genotypic profile of 32 Staphylococcus spp. positive to bla genes.

<table>
<thead>
<tr>
<th>Profile (n isolates)</th>
<th>Nitrocefin test</th>
<th>blaZ</th>
<th>blal</th>
<th>blarI</th>
<th>mecA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(7)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3(2)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4(7)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>8(7)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11(5)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12(3)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>13(1)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

β-lactamase producers. As expected, these isolates were resistant to β-lactamic antibiotics, such as penicillin, ampicillin and amoxicillin, whereas they were sensitive to the β-lactamic plus β-lactamase inhibitor associations, such as ampicillin+sulbactam and amoxicillin+clavulanate. Also, 32% (32/100) Staphylococcus spp. tested positive for bla genes (Table 5). β-lactamases is widespread among animals and it seems to be a prevalent mechanism in resistant staphylococci strains (Mckinney et al., 2001).

Among nitrocefinase producing isolates, nine (9/38) Staphylococcus spp. were positive only for the blaZ operator gene. Seven (7/9) were blaZ-positive-meca-negative Staphylococcus spp. and phenotypically oxacillin resistant, suggesting that β-lactamase production was responsible for the observed phenotype. Two isolates tested blaZ-meca+, being able to express both β-lactamase and PBP2a. The whole bla gene complex, blaZ-blaI-blaRI, was detected in 7.8% (3/38) of the nitrocefinase-positive isolates. These isolates were oxacillin resistant but mecA negative, pointing to the involvement of β-lactamase in this resistance. The extracellular presence of β-lactamic antimicrobial triggers a transduction signal system constituted by BlaRI transmembrane protein, which signals removal of the blaI repressive component that is located between blaRI and blaZ genes, starting blaZ transcription and consequently β-lactamase production, meaning a resistant phenotype (Mckinney et al., 2001). The blaZ-blaI genes were detected in 36.8% (14/38) of Staphylococcus spp. isolates. From these 14 isolates, 28.5% (4/14) tested negative for mecA and nitrocefinase, and presented an oxacillin-susceptible profile, confirming the inhibitory activity of the blaI gene in β-lactamase production. In contrast, 42.8% (6/14) tested positive for mecA and were also oxacillin susceptible. Mckinney et al. (2001) reported homology of the mecA gene to the upstream sequence of the blaZ gene. So, distinct mechanisms of oxacillin resistance can also be controlled by the blaI-blaRI regulatory system and the blaI gene regulates the BlaI membrane system as well as β-lactamase and PBP2a synthesis inhibition. Nine Staphylococcus spp. isolates that were blaZ-blaI-positive tested negative for mecA and presented resistance to oxacillin. This suggests the existence of other resistance mechanisms, such as different classes of PBPs (PB P3 and PBP4). Because of this heterogeneity, the most recent CLSI revision (CLSI, 2013) established new parameters and recommended oxacillin and cefoxitin disk diffusion plus oxacillin agar screen tests to evaluate mecA-mediated resistance. Also, tests should be performed to detect beta-lactamase production. It is no longer possible to consider mecA as a gold standard test in β-lactamic resistance detection.

Conclusion

The widespread distribution of staphylococcus species in pet animal infection sites indicates the importance of correct microbiological identification. Staphylococcus strains have potential ability to develop different mechanisms of oxacillin resistance, resulting in a heterogeneous phenotype profile. The oxacillin resistance detected in this study is associated with the existence of different regulatory systems, such as mec and bla genic complexes, which can either be present or absent in the Staphylococcus spp. chromosome and can act in amplified (synergetic) or divergent (non-cumulative) ways. These resistance mechanisms were detected among Staphylococcus spp. strains isolated from pet animal infection sites, contributing to reduction of antimicrobial therapeutic efficacy and spread of resistance. Nevertheless, it seems that the action of β-lactamases is a prevalent mechanism in the development of resistant staphylococcus strains.

Conflict of Interest

The author(s) have not declared any conflict of interests.

ACKNOWLEDGMENTS

This study was supported by CNPq (National Council for Scientific and Technological Research) and FAPERJ (Rio de Janeiro State Research Foundation /Proc.E-26/171.366/2006).

REFERENCES

CLSI document VET01-A4. Wayne, PA, USA.

Virulence factors and antibiotic resistance patterns of uropathogenic *Escherichia coli*

Joshua Mbanga* and Raymond Mudzana

Department of Applied Biology and Biochemistry, National University of Science and Technology, P.O Box AC 939 Ascot, Bulawayo 00263, Zimbabwe.

Received 25 July, 2014; Accepted 29 September, 2014

Urinary tract infections (UTIs) are one of the most common infections in humans and the commonest cause is uropathogenic *Escherichia coli* (UPEC). UPEC possess various virulence factors which enable them to survive and grow in urine and other extra-intestinal environments. Similarly, avian pathogenic *E. coli* (APEC) are known for their ability to cause extra-intestinal diseases in birds. Since APEC and UPEC may encounter similar challenges when establishing infection in these locations, they may share a similar content of virulence genes and capacity to cause disease. In this study, 40 UPEC isolates were obtained from patients with suspected UTIs. Multiplex polymerase chain reaction (PCR) was then used to screen the 40 UPEC isolates for 12 virulence genes usually associated with APEC isolates. The *iutA* (35%), *fimH* (32.5%), *vat* (17.5%), *sitA* (17.5%), *sitD* (15%), *hlyF* (12.5%), *pstB* (10%) and *frz* (7.5%) genes were detected. None of the isolates had the *kpsM*, *ompT*, *uvrY* and *sopB* genes. Antibiotic resistance patterns were also determined for all 40 isolates. A high resistance to ampicillin (90%) and tetracycline (75%) accompanied by a high sensitivity to gentamycin (82.5%) and nitrofurantoin (62.5%) was observed. Eleven multi-drug resistance patterns were observed in 65% (26/40) of the isolates. The studied UPEC isolates were shown to possess APEC associated virulence genes at low percentage frequencies suggesting a slight overlap in virulence genotypes. Antibiotic resistance patterns suggest surveillance programs to monitor drug resistance should be put in place.

Key words: Uropathogenic *Escherichia coli*, virulence genes, multiplex polymerase chain reaction (PCR), antibiotic resistance, Zimbabwe.

INTRODUCTION

Pathogenic strains of *Escherichia coli* are responsible for urinary tract infections (UTIs) in humans. Despite the great wealth of knowledge on *E. coli*, it is still the commonest urinary tract pathogen causing 60–90% of infections (Cheesbrough, 2006; Barati et al., 2011; Perera et al., 2012).

In order to colonize and establish a UTI, uropathogenic *E. coli* strains take advantage of an assortment of virulence properties (Slavchev et al., 2009). By definition, virulence genes/factors (VF)s refer to the properties (gene products) that enable a microorganism to establish itself...
on or within a host of a particular species and enhance it’s potential to cause disease (Johnson, 1991). VF’s include bacterial toxins, cell surface proteins that mediate bacterial attachment, cell surface carbohydrates and proteins that protect a bacterium and hydrolytic enzymes that may contribute to the pathogenicity of the bacterium (Momtaz et al., 2013).

Recently, work on E. coli has sought to investigate the relationship between extra-intestinal pathogenic E. coli (ExPEC) strains (Ewers et al., 2007; Moulin-Schouleur et al., 2007; Johnson et al., 2008). These include mainly avian pathogenic E. coli (APEC) which causes colibacillosis in poultry, UPEC and neonatal meningitis E. coli (NMEC). Comparisons of these isolates have generally revealed that some overlaps exist in serogroups, virulence genotypes and abilities to cause disease in certain animal models (Rodriguez-Siek et al., 2005; Ewers et al., 2007; Moulin-Schouleur et al., 2007).

Work on virulence genes in the western world and most of Asia is on the rise, but in Africa very little information seems to be available (van der Westhuizen and Bragg, 2012; Randall et al., 2012). This study was undertaken to screen for avian-related virulence genes in UPEC. Use of the avian-related virulence genes was meant to allow us to compare virulence genes found in E. coli responsible for human UTIs to APEC in diseased chicken.

The 12 virulence genes that were used for molecular characterization of uropathogenic E. coli in the present study included the frz operon (Rouquet et al., 2009); vacuolating autotransporter toxin, vat (Parreira and Gyles, 2003); type 1 fimbrial adhesion gene, fimH (Mellata et al., 2003); capsule formation transporter gene, kpsM (Pavelka et al., 1991); the gene ompT (Cavard and Lazdunski, 1990); the sitA and sitD genes which are part of the sitABCD system (Runyen-Janecky et al., 2003); a putative avian haemolysin gene, hlyF; an aerobactin siderophore receptor gene, iutA (Williams and Warner, 1980; Morales et al., 2004); a transcriptional regulator of iron uptake gene in APEC, uvrY (Li et al., 2004); the gene pstB (Lamarche et al., 2005) and the plasmid partitioning protein encoded by sopB which is common in various plasmids.

Antibiotic resistance/sensitivity patterns are important in the selection of antibiotics that can be used as combinations in the treatment of urinary tract infections. In a recent report by the World Health Organisation (WHO) it was mentioned how we are headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades will once again kill. The report draws on data from 114 countries, and focuses on antibiotic resistance in bacteria that cause common but serious diseases such as sepsis, diarrhea, pneumonia, urinary tract infections and gonorrhoea (WHO, 2014). Because of the lack of an effective vaccine to combat UTIs, antimicrobial therapy remains crucial for the control of urinary tract infections. Another major objective of this study was to provide current antibiotic resistance patterns of UPEC isolates from Zimbabwe.

METHODOLOGY

Sample collection

Between the months of July and August 2013, 86 urine samples were obtained from patients visiting a leading diagnostic Medical Laboratory in Harare. These samples were from both symptomatic and asymptomatic patients being tested for UTIs. Of the 86 urines samples, only 13 were found to have E. coli as the cause of bacteriuria. Over a period of three months (October-December 2013) 27 E. coli isolates were obtained from a leading diagnostic Medical Laboratory in Bulawayo, these were also from suspected UTIs cases. A total of 40 E. coli isolates were used in this study, 13 from Harare and 27 from Bulawayo.

Isolation and identification of E. coli

Samples were cultured on cysteine lysine electrolyte deficient agar (CLED agar), blood agar and MacConkey agar (Oxoid, England) and then incubated aerobically at 37°C for 24 h. Biochemical tests were carried out including the Gram stain and the indole, citrate and methyl red test.

Antimicrobial susceptibility testing

The disc diffusion method was used to determine antibiotic susceptibility of the isolates on Mueller Hinton agar (Oxoid, UK). Each isolate was tested for antibiotic susceptibility using a panel of the following antibiotics: nitrofurantoin (50 µg), ampicillin (25 µg), nalidixic acid (30 µg), tetracycline (30 µg), ciprofloxacin (5 µg) and gentamycin (10 µg). All antibiotic disks were from Oxoid, United Kingdom. The plates were incubated at 37°C for 24 h, and inhibition zones were measured. Interpretation of results followed criteria recommended by the Clinical Laboratory Standard Institute (CLSI, 2009).

DNA isolation

Bacterial strains were subcultured at 37°C overnight in Luria-Bertani (LB) broth (Oxoid, Basingstoke, Hampshire, UK) and genomic DNA was extracted using a standard Phenol-Chloroform method (Sambrook and Russell, 2001). To check for purity, DNA was run along a 1% ethidium bromide stained agarose gel (Sigma-Aldrich, St Louis, USA) with a 1 kb DNA ladder (Thermo Scientific, USA) in TBE buffer for 1 h at 100 V and then viewed using a Uvipro-Silver Gel Documentation System (Uvitec, UK). The concentration of DNA was estimated by comparing the band light intensity to the band intensity on the 1 kb ladder on the Uvipro-Silver Gel Documentation System. DNA concentration of samples ranged from 75 ng/0.5 µg – 100 ng/0.5 µg.

Multiplex PCR for virulence genes

The presence of genes encoding virulence factors was detected using multiplex PCR amplification. Four multiplex PCR assays were used to detect 12 virulence genes (Table 1). The multiplex design was done according to that reported by van der Westhuizen and Bragg (2012) with slight changes in the primer and final magnesium chloride concentrations. The affected changes were done using primer concentrations of 0.5 µM for the frz, sitD, fimH, ompT, iutA, pstB and sopB genes and adjusting the final MgCl2 concentration to
RESULTS

All 40 isolates obtained from the two leading diagnostic laboratories in Harare and Bulawayo were positively identified and confirmed to be *E. coli* through culturing and biochemical tests. After successful DNA isolation and quantification, the DNA of each of the 40 UPEC isolates was subjected to 4 different multiplex PCRs. Each multiplex reaction amplified three virulence gene regions. This was done in order to screen the UPEC isolates for 12 APEC associated virulence genes. The percentage frequency of each gene was then determined and the results are shown in Table 2. The *iutA* gene had the highest presence rate of 35%, followed by *fimH* (32.5%), *vat* (17.5%) and *sitA* (17.5%) and *sitD* (15%). The data obtained from electrophoresis agarose gels was used to assign virulence gene profiles to each UPEC isolate, this is summarized in Table 3.

Antibiotic susceptibility testing was done for all 40 UPEC isolates. The isolates were assayed against a panel of six antibiotics. The results shown in Table 4 suggest a high resistance of UPEC to ampicillin (90%) and tetracycline (75%) whilst a high sensitivity to gentamycin (82.5%) and nitrofurantoin (62.5%) was observed. The prevalence of antibiotic resistance phenotypes of all *E. coli* isolates is presented in Table 5. Sixty five percent of the isolates showed resistance to at least 3 antibiotics, and 11 different antibiotic resistance patterns were observed. The most common resistance pattern, exhibited by 10 isolates, was resistance to ampicillin, nalidixic acid, ciprofloxacin and tetracycline (pattern D). This study was sanctioned by the NUST ethical committee and no names were recorded during the study.

Table 1. Final primer concentrations used in the different multiplex PCRs.

<table>
<thead>
<tr>
<th>Multiplex</th>
<th>Primer set</th>
<th>Conc (µM)</th>
<th>Primer set</th>
<th>Conc (µM)</th>
<th>Primer set</th>
<th>Conc (µM)</th>
<th>Additional MgCl₂ (mM)</th>
<th>Final MgCl₂ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>frz</td>
<td>0.5</td>
<td>sitD</td>
<td>0.5</td>
<td>fimH</td>
<td>0.5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>sitA</td>
<td>2.0</td>
<td>kpsM</td>
<td>1.0</td>
<td>vat</td>
<td>0.5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ompT</td>
<td>0.5</td>
<td>iutA</td>
<td>0.5</td>
<td>pstB</td>
<td>0.5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>sopB</td>
<td>0.5</td>
<td>uvrY</td>
<td>1.0</td>
<td>hlyF</td>
<td>0.5</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2. Frequency of 12 virulence genes in 40 uropathogenic *E. coli* isolates.

<table>
<thead>
<tr>
<th>Name of gene</th>
<th>Primer name</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobactinsiderophore receptor</td>
<td>iutA</td>
<td>35</td>
</tr>
<tr>
<td>Type 1 fimbrial adhesin</td>
<td>fimH</td>
<td>32.5</td>
</tr>
<tr>
<td>Vacuolating autotransporter toxin</td>
<td>vat</td>
<td>17.5</td>
</tr>
<tr>
<td>SitABCD system</td>
<td>sitA</td>
<td>17.5</td>
</tr>
<tr>
<td>SitABCD system</td>
<td>sitD</td>
<td>15</td>
</tr>
<tr>
<td>Putative avian haemolysin</td>
<td>hlyF</td>
<td>12.5</td>
</tr>
<tr>
<td>PstSCAB system</td>
<td>pstB</td>
<td>10</td>
</tr>
<tr>
<td>frz operon</td>
<td>frz</td>
<td>7.5</td>
</tr>
<tr>
<td>APEC virulence regulator</td>
<td>uvrY</td>
<td>0</td>
</tr>
<tr>
<td>Capsule-protein transport of polysaccharides</td>
<td>kpsM</td>
<td>0</td>
</tr>
<tr>
<td>Episomal outer membrane protease</td>
<td>ompT</td>
<td>0</td>
</tr>
<tr>
<td>Plasmid partitioning protein</td>
<td>sopB</td>
<td>0</td>
</tr>
</tbody>
</table>

3 mM for all multiplex reactions. The primers used in our study are listed in Table S1 in the supplementary material. All primers used were obtained from Inqaba Biotech, South Africa. Three microliters of each of the DNA samples were mixed with all necessary components for amplification in a 0.2 ml PCR tube (Perkin-Elmer, USA) in a 25 µl reaction. The reaction mixture included 2.5 µl of x10 PCR Dream Taq buffer (Thermo scientific, USA), 2 µl of dNTPs, 10 mM; 0.25 µl of Dream Taq polymerase (Thermoscientific, USA), 5 U/µl nuclease free water to maintain a total volume of 25 µl. The appropriate primers were added to a maximum primer concentration of 2 µM and the MgCl₂ concentration was adjusted to a final concentration of 3 mM as shown in Table 1. Negative controls comprised of a water control. An Applied Biosystems GeneAmp® PCR System 9700 was used for the PCR thermal cycling conditions with an initial denaturation step at 94°C for 5 min, 35 cycles (denaturation 94°C for 30 s, annealing at 63°C for 45 s, extension 72°C for 1 min and 45 s and a final elongation step at 72°C for 10 min. The amplified products were then run along a 1% ethidium bromide stained agarose gel with a 100 bp DNA ladder (Thermo scientific, USA) in TBE buffer for 1 h at 100 V and then viewed using a Uvipro-Silver Gel Documentation System (Uvitec, UK).

The multiplex PCRs described were used to screen for the presence of 12 virulence genes in the UPEC isolates in duplicate. The frequency of each virulence gene was then calculated (Table 2).
DISCUSSION

Virulence gene profiles

In this study 40 *E. coli* isolates were obtained from patients with suspected UTIs and screened for 12 virulence genes, some of which have been well characterized in previous studies (Karimian et al., 2012; Guiral et al., 2012; Farshad et al., 2012). The *uvrY* gene has not been used to screen for UPEC in previous studies using multiplex PCR techniques.
Similarly, the \textit{frz} and \textit{pstB} genes have been shown to contribute to virulence but are new in the diagnostic context (Li et al., 2004; Lamarche et al., 2005; Rouquet et al., 2009). The multiplex PCRs of this study have an advantage over previous studies as they include these recently discovered virulence genes.

An aerobactinsiderophore receptor gene, \textit{iutA}, which is known to contribute to iron uptake (Williams and Warner, 1980; Morales et al., 2004) was present in 35\% of UPEC isolates (Table 2). Presence of the gene in UPEC agrees with other studies (Johnson, 1991; Guiral et al., 2012) that have shown that the bacterial siderophore “aerobactin” is associated with \textit{E. coli} strains which cause pyelonephritis and cystitis. It is an iron sequestration and transport system which enables \textit{E. coli} to grow in iron poor environments such as dilute urine (Johnson et al., 2008).

The type 1 fimbrial adhesin gene, \textit{fimH}, contributes to protection from host heterophils (Mellata et al., 2003). The gene had the second highest frequency (32.5\%) and may be useful by UPEC for adhesion to uroepithelial cells. \textit{FimH} is the adhesion protein known to be responsible for binding to mannosylated glycoproteins and is located at the distal tip of the heteropolymeric type I pilus rod (Johnson, 1991; Slavchev et al., 2009). Detection of the gene in the present study agrees with most studies (Tiba et al., 2008; Johnson, 1991; Karimian et al., 2012), however values as high as 79.67\% have been reported in other studies (Karimian et al., 2012).

The \textit{sitA} and \textit{sitD} genes which are part of the SitABCD system, and are classified as a bacterial iron transporter (Runyen-Janecky et al., 2003) were also found in 17.5 and 15\% of the UPEC isolates respectively. Apart from mediating iron and manganese transport, the SitABCD operon has also been suggested to confer resistance to oxidative stress possibly required during interaction with phagocytes (Sabri et al., 2008). The presence of these genes agrees with other studies (Schouler et al., 2004; Snyder et al., 2004; Rodriguez et al., 2005) who believe that in \textit{E. coli}, SitABCD-encoding genes are associated with clinical strains isolated from extra-intestinal infections from poultry and human UTIs.

The vacuolating autotransporter toxin, \textit{vat} gene which has been shown to induce cytotoxic effects in host cells (Parreira and Gyles, 2003) was present in 17.5\% of our isolates. This disagrees with a study by Johnson et al. (2008) who found a prevalence of 62.3\% for the \textit{vat} gene in UPEC isolates. A putative avian haemolysin gene, \textit{hlyF}, responsible for iron uptake (Williams and Warner, 1980; Morales et al., 2004) was also amplified in 12.5\% of the isolates. A 50.4\% presence for \textit{hly A} was observed by Karimian et al. (2012), but our findings agree with recent studies by Farshad et al. (2012) who obtained a 15.62\% for hemolysin (\textit{hly}) in UPEC isolates. An additional study on 531 UPEC isolates, Johnson et al. (2008) found a prevalence of 5.6\% for the \textit{hlyF} gene. Also, according to Johnson (1991) the percentage frequency of genes from the \textit{hly} operon varies with the patient’s condition. \textit{HlyF} and \textit{vat} have been well documented in chickens suffering from colibacillosis (van der Westhuizen and Bragg, 2012) and very little seems to have been published on the genes in UPEC.

The \textit{pstB} gene which is part of the \textit{pstSCAB} operon, has been shown to increase resistance to polymyxin, rabbit serum and acid shock (Lamarche et al., 2005). We detected it in 10\% of the studied UPEC isolates. Some studies (Surin et al., 1985; Rao and Torriani, 1990) suggest that the gene may be responsible for mediating the uptake of phosphate from the outside to the inside of the cell. The \textit{frz} operon was present in 7.5\% of the UPEC isolates.
isolates and work by Rouquet et al. (2009) suggests that the gene products from the frz operon are used by E. coli to promote growth in serum during oxygen-restricted conditions. Urine, like serum is also oxygen-restricted, therefore UPEC may use this gene for their survival. Very little has been published on the pstB and frz operon in UPEC.

Four (uvrY, sopB, kpsM and ompT) of the twelve genes were not detected in all the 40 E. coli isolates (Table 2). Transcriptional regulator of iron uptake genes, uvrY (Li et al., 2008) together with the plasmid partitioning protein encoded by sopB known to be common in various plasmids were both absent. If a virulence gene in APEC does not have a homologue in UPEC the gene region cannot be amplified except in cases of a zoonotic infection. APEC virulence regulator (uvrY) is a VF particularly found in E. coli associated with chicken suffering from colibacillosis. Therefore, the gene’s absence in all UPEC isolates studied supports work done by Randall et al. (2012), who suggested that E. coli strains in diseased chickens are generally different from those causing disease in humans.

Another gene that was absent was the capsule formation transporter gene kps M (Pavelka et al., 1991). This finding differs from some previous studies by Momtaz et al. (2013) and Tiba et al. (2008) who indicated presence of the kpsMT gene in UPEC. The gene ompT which encodes for the episomal outer membrane protease that cleaves colicins (Cavard and Lazdunski, 1990) was also absent in the samples. These findings agree with other recent studies by Karimian et al. (2012) and Momtaz et al. (2013).

Virulence profiles were generated for each E. coli isolate used in our study (Table 3). UPEC isolates were profiled as being 75% profile A, 22.5% profile B and 2.5% profile C. None of the isolates had more than 6 virulence genes. Generally, the UPEC isolates did not possess most of the APEC virulence genes assayed for (Table 3). This suggests that UPEC isolates may have different virulence genotypes than those reported for APEC (Johnson et al., 2008). A potential bias and limitation in our study could have been the use of E. coli isolates from both symptomatic and asymptomatic patients and failure to test each isolate using in vivo animal models to determine actual virulence.

We also report that E. coli isolates which were resistant to all of the six antibiotics had none or only one of the VFs studied. This may suggest that some of the isolates were related, but it however also supports recent studies in Turkey by Giray et al. (2012) who found that E. coli strains with low numbers of virulence genes exhibit a high antibiotic resistance. A larger sample size as well as more VFs should be studied to fully investigate this relationship.

Antibiotic susceptibility profiles

The studied UPEC isolates showed a high resistance to ampicillin (90%) and tetracycline (75%) whilst showing a high sensitivity to gentamycin (82.5%) and nitrofurantoin (62.5%) (Table 4). The results agree with previous studies done in the country by Mbanga et al. (2010) who found that UPEC showed the highest resistance to ampicillin (84%) whilst showing a low resistance to nitrofurantoin (16%). Our findings are also similar to previous studies from Mexico City (Molina-Lopez et al., 2011), Sri Lanka (Perera et al., 2012), Nigeria (Okonko et al., 2009) India (Mandal et al., 2012) and Iran (Barati et al., 2011) which found a low resistance to nitrofurantoin and a high resistance to ampicillin.

UPEC strains tend to be resistant to drugs that are frequently used. However, gentamycin is inappropriate for frequent use, rather it is commonly used for severe UTIs. Our findings show that most isolates were susceptible to gentamycin (82.5%) but this differs from a study done in Iraq by Chateen et al. (2007), who found UPEC to be highly resistant to gentamycin.

E. coli isolates clearly demonstrated high resistance to most examined antibiotics (Table 5) and this has been reported in other studies (Dromigny et al., 2005). Five percent of UPEC isolates were resistant to all six antibiotics and none of the isolates were susceptible to all the antibiotics. All E. coli showed resistance to at least one or more antibiotics. Sixty five percent of the E. coli isolates were responsible for the 11 different multi-drug resistance (MDR) patterns (UPEC showing resistance to ≥3 antibiotics) as shown in Table 5. This agrees with recent findings in Iran by Farshad et al. (2012), but differs from other studies where lower levels of MDR isolates have been reported (Linder et al., 2005; Rijavec et al., 2006). The most common pattern was pattern G (Table 5).

Conclusion

Low percentage frequencies of the studied VFs were detected in UPEC causing UTIs. Half of all UPEC isolates in the present study possessed none, or only one, of the VFs characterized and, as such, it is reasonable to assume that UPEC isolates have different virulence factors than those reported for APEC. However, to fully investigate zoonosis between chicken and humans, virulence genes exclusive to chicken isolates should be used. The antibiotic resistance results show that antibiotic resistance is on the rise and nitrofurantoin should be the drug of choice in Zimbabwe.

Conflict of interest

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

Special thanks go to the International Network for the
REFERENCES

Table S1. Primers used for amplifying regions in APEC virulence genes.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Name of targeted region/gene</th>
<th>Primer Sequence (5’ – 3’)</th>
<th>Source of Sequence</th>
<th>Expected amplicon size (bp)</th>
</tr>
</thead>
</table>
| sitA-F sitA-R | SitABCD system | Forward primer: CGCAGGCGGACACAAGTCGAT
Reverse primer: CCCTGACCACGACTGG | Sabri et al. (2008) | 661 |
| sitD-F sitD-R | SitABCD system | Forward primer: CTGTGCCGCTGCTGCGGTC
Reverse primer: CGGTGTGTCAGGAGTAC | Sabri et al. (2008) | 571 |
| ompT-FP ompT-RP | Episomal outer membrane protease | Forward primer: TCATCCCAGAAGGCTCCCTCACTACTAT
Reverse primer: TAGCGTTTGCCTGCACTGTTCTGATAC | Johnson et al. (2008) | 496 |
| fimH-FP fimH-RP | Type 1 fimbrial adhesin fimH | Forward primer: GGATAAGCCGTGGCCGGTGG
Reverse primer: CTGCCTTTGCGCGGAGG | Van der Westhuizen and Bragg (2012) | 331 |
| frz-FP frz-RP | frz operon | Forward primer: GAGTCCTGGCTTGCCGCGGTT
Reverse primer: CCGCTCCATCGCAGCTGGA | Van der Westhuizen and Bragg (2012) | 843 |
| hlyF-FP hly-RP | Putative avian haemolysin | Forward primer: GCCGACAGTGCTTTAGGTTGCTTACC
Reverse primer: GCCGTTTAGGCTTCCGATCTCAG | Johnson et al. (2008) | 450 |
| iutA-FP iutA-RP | Aerobactin siderophore receptor | Forward primer: GGCTGGACATCATGGGAACCTGG
Reverse primer: CGTCGGGAAACGGGTAATCG | Johnson et al. (2008) | 302 |
| kpsM-FP kpsM-RP | Capsule-protein transport of polysaccharides | Forward primer: CAGCCTCGCGGTAGCTTCC
Reverse primer: TGCACGCGCACTGCGTGA | Van der Westhuizen and Bragg (2012) | 335 |
| vat-FP vat-RP | Vacuolating autotransporter toxin | Forward primer: CGCTTACGGTGCTGACCA
Reverse primer: AAGGGAGACGATGCGCGCC | Van der Westhuizen and Bragg (2012) | 498 |
| pstB-FP pstB-RP | PstSCAB system | Forward primer: CGCGCTCGCCATTGTCAGCA
Reverse primer: CGGAACAGCGTCGGAGG | Van der Westhuizen and Bragg (2012) | 198 |
| uvrY-FP uvrY-RP | APEC virulence regulator | Forward primer: TGAATTGCCATTGCTTGTC
Reverse primer: TCTCCGATTACACAGACCA | Herren et al. (2006) | 286 |
Extended-spectrum β-lactamase production and antimicrobial resistance in *Klebsiella pneumoniae* and *Escherichia coli* among inpatients and outpatients of Jimma University Specialized Hospital, South-West, Ethiopia

Shewki Moga Siraj¹*, Solomon Ali² and Beyene Wondafrash³

¹Ethiopian Public Health Institute (EPHI), National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia. ²Department of Medical Laboratory Science and Pathology, Jimma University, Ethiopia. ³Post Graduate Study Coordinator, Jimma University, Ethiopia.

Received 30 May, 2014; Accepted 6 October, 2014

Extended spectrum β-lactamases (ESBLs) have emerged as a major threat worldwide with limited treatment options. The prevalence of ESBL producing *Escherichia coli* and *Klebsiella pneumoniae* strains largely remain unknown in Ethiopia. The study was aimed at determining the occurrence of extended spectrum β-lactamase-producing *E. coli* and *K. pneumoniae* among inpatient and outpatient settings, their antimicrobial resistance profile and associated risk factors in Jimma University Specialized Hospital (JUSH). A total of 471 consecutive, non repetitive clinical specimens were collected among inpatients (n=314) and outpatients (n=157). Among these, 112 isolates of *K. pneumoniae* (n=27) and *E. coli* (n=85) were recovered. Overall prevalence of extended spectrum beta lactamase (ESBL) producers was 38.4% (n=43) of total isolates. Extended spectrum beta lactamases were found in 28.2% (n=24) of *E. coli* and 70.4% (n=19) of *K. pneumoniae*. Extended spectrum beta lactamase producers mediated very high resistance to both beta-lactams and non-beta-lactams, and they were significantly higher among in-patients (46.4%) than out-patients (14.3%). On Multivariate analysis, treatment with third generation cephalosporin was identified as a sole risk factor for acquisition of ESBL enzyme. Our findings confirmed that infection due to extended spectrum beta lactamase-producing *E. coli* and *K. pneumonia* is prevalent in JUSH and that exposure to third generation cephalosporin was associated with these infections. The magnitude of *E. coli* and *K. pneumoniae* infection was more in inpatients with higher levels of extended spectrum beta lactamase production than outpatients.

Key words: *Escherichia coli, Klebsiella pneumoniae*, extended spectrum β-lactamases, inpatients, outpatients.

INTRODUCTION

The problem of microbial drug resistance has achieved a global dimension and an alarming magnitude, being one of the leading unresolved problems in public health. The relentless evolution of resistance, in the face of a decrease in the development of new antimicrobial agents active against resistant pathogens, has led to an increa-
singing number of cases in which the pathogen is resistant to most, or even all, drugs available for clinical use (Rossolini and Mantengoli, 2008). β-Lactam agents such as penicillins, cephalosporins, monobactams and carbapenems are among the most frequently prescribed antibiotics worldwide (Pitout et al., 2005). β-Lactams account for approximately 50% of global antibiotic consumption (Livermore, 1998). Bacterial resistance to β-lactam antibiotics occurs by three mechanisms: failure of the β-lactam to reach the penicillin-binding proteins (PBPs), low-affinity binding to the PBPs and inactivation of the drug by β-lactamases (Holbrook and Lowy, 1998).

Among this, β-lactamases are the commonest cause of bacterial resistance to β-lactam antimicrobial agents (Livermore, 1995).

The introduction of the third-generation cephalosporins into clinical practice in the early 1980s was heralded as a major breakthrough in the fight against β-lactamase-mediated bacterial resistance to antibiotics. The first report of plasmid-encoded β-lactamases capable of hydrolyzing the extended-spectrum cephalosporins was published in 1983 in Germany (Lautenbach et al., 2001). Later these enzymes were named extended-spectrum β-lactamases (ESBLs) (Shah et al., 2004). Since then, several outbreaks have been reported in a number of European countries and the USA, and the problem has reached endemic dimensions in several places worldwide (Giamarellou, 2005).

An extended-spectrum β-lactamase is any β-lactamase that can confer resistance to the oximinocephalosporins (e.g. ceftaxime, ceftriaxone, ceftazidime) and monobactams (e.g. aztreonam), but not to the cephamycins (e.g. cefoxitin and cefotetan) and carbapenems (e.g. imipenem, meropenem, and ertapenem), and which can be inhibited by β-lactamase inhibitors such as clavulanic acid (Pitout and Laupland, 2008). ESBLs are known as extended-spectrum because they are able to hydrolyze a broader spectrum of β-lactam antibiotics than the simple parent β-lactamases from which they are derived (Al-Jasser, 2006). More than 500 variants of ESBL have been described and the majority of these belong to the Temoniera (TEM), sulphydryl variable (SHV) and Cefotaximase-Munich (CTX-M) family (http://www.lahey.org/studies/webt.htm).

K. pneumoniae and E. coli remain the major ESBL-producing organisms isolated worldwide, but these enzymes have also been identified in several other members of the Enterobacteriaceae family (Pitout and Laupland, 2008). ESBL-producing E. coli and and K. pneumoniae (ESBL-EK) pathogens are of great concern for many reasons. First, ESBL-EK isolates are often difficult to treat because they carry plasmids that confer resistance to multiple antibiotics. Second, patients with ESBL-EK infections may experience a delay in appropriate therapy because current methods of identification can leave them undetected. Third, patients with ESBL-EK infections have significantly longer hospital stays and incur greater hospital charges than do patients without these infections. Finally, patients with ESBL-EK infections have an increased risk of death when compared with patients with non-ESBL-EK infections (Bisson et al., 2002). A recent report from the Infectious Diseases Society of America listed ESBL-producing Klebsiella spp. and E. coli as one of the six drug-resistant microbes to which new therapies are urgently needed (Pitout and Laupland, 2008).

So far, no study has been conducted on ESBL production on both E. coli and K. pneumoniae simultaneously in Ethiopia. This study is aimed to determine prevalence and antibiotic susceptibility pattern of ESBL producing E. coli and K. pneumoniae from inpatients and outpatients that attend Jimma University Specialized Hospital. It also identifies possible risk factors for infections with ESBL producing E. coli and K. pneumoniae.

METHODS AND MATERIALS

Laboratory based comparative cross-sectional study design was conducted from September 2011 to February 2012 at Jimma University specialized hospital (JUSH), Ethiopia. The hospital is a 300 bedded teaching hospital which covers population of over 1 million. Sample size was estimated using Epi-info statistical software package (version 3.4.3, WHO Atlanta) for cross sectional studies of two population proportion to attain inpatient to outpatient ratio of 2:1. Patients’ demographic data, clinical diagnoses, risk factor and specimen types were recorded for all patients included during the study period by using a questionnaire. All collected specimens were inoculated on the MacConkey agar (Oxoid, England). E. coli and K. pneumoniae was identified by their characteristic colony appearance: pink or yellow to colorless colonies (due to fermentation of lactose) from MacConkey agar, Gram-staining reaction and confirmed by the pattern of biochemical profiles using standard procedures (Koneman et al., 2006). An isolate was considered as E. coli when it is indole positive, citrate negative, lysine positive, gas and acid producer, ferments mannitol, urea negative and motile. An isolate was identified as K. pneumoniae when it is indole negative, citrate positive, ferments mannitol, lysine positive, urea slow producing and non-motile. The

*Corresponding author. E-mail: shewki2002@gmail.com.

Abbreviations: BSI, Blood stream infection; CLSI, Clinical and Laboratory Standards Institute; CTX-M, Cefotaximase-Munich; DDST, double disk synergy test; ESBL, extended spectrum β-lactamase; ESBL-EK, ESBL-producing Escherichia coli and K. pneumoniae; ESBL-EC, ESBL-producing E. coli; ESBL-Kp, ESBL-producing K. pneumoniae; MDR, multi drug resistant; PBPs, penicillin-binding protein; SHV, sulphydryl variable; TEM, for Temoniera-name of a patient; TMP, trimethoprim; SMX, sulfamethoxazole; WHO, World Health Organization.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0International License
antimicrobial susceptibility was done by using Kirby-Bauer disc diffusion technique on Mueller Hinton agar (Oxoid, England) with commercially available antimicrobial discs. Strains were tested against the following antimicrobial agents: cefotaxime (30 µg), ceftazidime (30 µg), ceftriaxone (30 µg), amoxicillin-clavulanic acid (20/10 µg), cephalothin (30 µg), ampicillin (10 µg), carbenicillin (100 µg), trimethoprim-sulfamethoxazole (25 µg), chloramphenicol (30 µg), norfloxacin (10 µg), ciprofloxacin (5 µg), nitrofurantoin (300 µg), nalidixic acid (30 µg), gentamicin (10 µg), amikacin (30 µg), and tetracycline (30 µg).

All E. coli and K. pneumoniae isolates were screened for ESBL production by disk diffusion method using ceftazidime (30 µg), cefotaxime (30 µg) and ceftriaxone (30 µg) antibiotic disks (Oxoid & MAST) as recommended by Clinical and Laboratory Standards Institute (CLSI, 2005). Each disc was placed on Muller Hinton agar manually and incubated for 16-18 hours at 35°C. Isolates with reduced susceptibilities to cefotaxime (zone diameter of ≤27 mm), ceftazidime (zone diameter of ≤22 mm) and/or ceftriaxone (zone diameter of ≤25 mm) was suspected as a potential ESBL producer (Clinical and Laboratory Standard Institute, 2005). Potential ESBL producers were confirmed by double disc synergy test (DDST). A susceptibility disc containing amoxicillin-clavulanate was placed in the centre of a Mueller-Hinton agar plate, and a disc containing 30µg of ceftazidime, ceftriaxone and cefotaxime were placed 15 mm (centre to centre) from the amoxicillin-clavulanate disc. Discs were incubated at 37°C for 16-18 h. Enhancement of inhibition zone of any these of cephalosporin discs on the side facing the amoxicillin-clavulanate disc was interpreted as ESBL positive (Jarlier et al., 1988). Multidrug resistance was defined as resistance to 2 or more classes of antibiotics (quinolones, trimethoprim-sulfamethoxazole, tetracycline or aminoglycosides).

The data was processed and analyzed for descriptive statistics using SPSS statistical software, version 16.0. All variables were examined by univariate analysis using the Chi-square or Fisher's exact test, as appropriate. Multivariate analysis was performed for variables that were independently associated with ESBL-infection on univariate analysis. P-value less than 0.05 was considered statistically significant. The study was done after gaining a full approval from the Ethical Review Board of Jimma University and Jimma University Specialized Hospital.

RESULTS

Patient population and source of specimens

Overall, 471 patients were included in the study (314 inpatients and 157 outpatients). From these, 273 (58%) were females and 198 (42%) were males. The mean age of participants was 31.15 years (±16.97 SD). E. coli and K. pneumoniae were isolated from 112 (23.8%) clinical specimens, constituting 85 (18%) and 27 (5.7%) of total prevalence, respectively. These isolates were recovered from urine 46 (40.2%), vaginal swab 25 (22.3%), sputum 18 (17%), pus 14 (12.5%), eye discharge 6 (5.4%) and blood 3 (2.7%). Three-fourth (n=84) of isolates were obtained from inpatients and the remaining one-fourth (n=28) was from outpatients. ESBL producing E. coli and K. pneumoniae was detected in 43/112 (38.4%) of the isolates. The mean age of patients infected by ESBL producers was 36.79 years (±18.89 SD). The majority 31/43 (72.1%) of ESBL isolates were obtained from females and the rest 12/43 (27.9%) were isolated from males.

There was no association between ESBL production and specific sex groups (p > 0.05). Nineteen (70.4%) isolates of K. pneumoniae was found to be positive for ESBL. ESBL production was significantly higher among K. pneumoniae than E. coli isolate (p < 0.01). The prevalence of ESBL-producing E. coli and K pneumonia was 4/157 (2.5%) in outpatients and 39/314 (12.4%) in inpatients, and thus the risk of development of ESBL-production was 5 times higher in inpatients as compared to outpatients with significant difference (p < 0.05) (Table 1).

Table 1. Distribution of ESBL-production according to isolates and settings.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Total isolate N (%)</th>
<th>ESBL Producers</th>
<th>Non ESBL producers</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. pneumoniae</td>
<td>27(24.1)</td>
<td>19(70.4)</td>
<td>8(11.6)</td>
<td><.01</td>
</tr>
<tr>
<td>E. coli</td>
<td>85(75.9)</td>
<td>24(28.2)</td>
<td>61(88.4)</td>
<td></td>
</tr>
<tr>
<td>Department</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inpatient</td>
<td>84(75)</td>
<td>39(46.4)</td>
<td>45(53.6)</td>
<td>.002</td>
</tr>
<tr>
<td>Out patient</td>
<td>28(25)</td>
<td>14(41.3)</td>
<td>14(28.5)</td>
<td></td>
</tr>
</tbody>
</table>

Associated factors for ESBL-EK

All included variables were evaluated among inpatients and only five variables were analyzed among outpatients. On univariate analysis, prior exposure to antibiotic was the associated with ESBL-production among both hospitalized and non-hospitalized patients. Treatment with third generation cephalosporins, severity of illness, length of hospital stay and chronic heart failure (CHF) and medical ward admission were additionally associated with ESBL infection among hospitalized patients. On multivariate analysis, treatment with third generation cephalosporin (ceftriaxone) is the only risk factor associated with ESBL infection (Table 2a and b).

Antibiotic resistance profile of ESBL-EK

The ESBL producing E. coli and K. pneumoniae were significantly resistant to third-generation cephalosporins as compared to non-producers (p<0.05) (Table 3). Resistance conferred by ESBL producing K. pneumoniae and E. coli to ceftazidime, cefotaxime and ceftriaxone was 97.7, 100 and 100%, respectively. On the other hand, non ESBL isolates were almost susceptible to third generation cephalosporins with 91.3, 98.6 and 100% susceptibility against ceftazidime, cefotaxime and ceftriaxone, respectively. Good susceptibility was observed with amikacin in both ESBL (83.7%) and non ESBL producers (97.1%). Both ESBL producer and non-producer isolates were completely (100%) resistant to carbenicillin.
<table>
<thead>
<tr>
<th>Table 2a. Characteristics of ESBL-EK and non-ESBL-EK infected patients among outpatient settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Out-patient variable</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Previous antibiotic medication</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Previous hospital admission</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>History of ICU admission</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Severity of illness</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Recent surgery</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2b. Characteristics of ESBL-EK and non-ESBL-EK infected patients among inpatient settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>In-patient variable</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Previous antibiotic medication</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Previous hospital admission</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>History of ICU admission</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IV insertion</td>
</tr>
<tr>
<td>Severity of illness</td>
</tr>
<tr>
<td>Recent surgery</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Underlying disease</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Medical</td>
</tr>
<tr>
<td>Type of ward</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Resistance pattern between outpatient and inpatient isolates

Generally, inpatient isolates showed higher rates of resistance to most tested antibiotics, when compared with outpatient isolates. The difference in susceptibility between inpatient and outpatient isolates was statistically significant for 12 (75%) of the 16 tested antibiotics (p<0.05). However, the rates of resistance to amikacin, chloramphenicol, ampicillin and carbenicillin, were not significantly different between inpatient and outpatient isolates (Table 4).

Multi drug resistant ESBL-EK

The resistance rates of ESBL isolates to 2 or more classes
classes of antibiotics are given in Table 5, descending from the lowest to the highest resistant isolates. ESBL-EK generally showed higher rates of resistance to antibiotics tested than non-producers. About 88.4% of ESBL isolate were multi drug resistant exhibiting cross-resistance against both cotrimoxazole and tetracycline. Resistance to three non beta-lactam antibiotics was observed among 35 (81.4%) isolates; in addition approximately 70% of ESBL positive isolates were cross-resistant to four non beta-lactam antibiotics (tetracycline, cotrimoxazole, nalidixic acid and gentamycin). The coexistence of ESBL phenotypes with five, six and seven types of non beta-lactam antibiotics were 26 (60.5%), 22 (51.2%) and 9 (20.9%) respectively. Three (7%) ESBL isolates were completely resistant to all panels of antibiotics tested.

DISCUSSION

ESBLs are widespread all over the world. The prevalence and genotype of ESBLs from clinical isolates vary according to the country and even hospital at which they are isolated from (Kim et al., 2010). The overall prevalence of ESBLs in the current study was 38.4% (43/112). This frequency is higher than continental surveys conducted in Europe (11%), South America (18.1%), North America (7.5%) and Asia-Pacific (14.2%) regions (Hawser et al., 2011; Turner, 2005). The higher prevalence seen in our study as compared to developed countries might be explained by the fact that developed countries have strict infection control policies and practices, shorter average hospital stays, better nursing barriers that are known to substantially decrease the chances of acquisition and spread of ESBL producing strains.

On the other hand, the prevalence of ESBL observed in this study is lower than that of a study done in Tanzania (45.2%) conducted variably on urinary isolates (Moyo et al., 2010). The decline observed in our study can be attributed to the inclusion of various types of specimens. Regardless of such myriad variation, this finding agrees with previous reports on ESBL production done in United Arab Emirates (Al-Zarouni et al., 2008).

Although E. coli ranks higher in the number of infection occurrences than K. pneumoniae, the predominant ESBL producer in our setting is K. pneumoniae. ESBL production was significantly higher among K. pneumoniae than E. coli (p<0.01). This finding is in agreement with previous report done among K. pneumoniae and E. coli with respective prevalence of 70 and 28% in Pakistan, and 51.5 and 39.1% in Tanzania, which demonstrated predominance of ESBL production by K. pneumoniae than E. coli (Shah et al., 2003; Moyo et al., 2010). Other study had also demonstrated conquest of ESBL producing K. pneumoniae not only over E. coli but also over other group of Gram negative bacilli including the family Enterobacteriaceae (Galas et al., 2008). The predilection of ESBL production by K. pneumoniae has never been clearly explained (Mshana et al., 2009). Our observation that K. pneumoniae was significantly associated with ESBL production merely reflects local and worldwide epidemiology which clearly shows that ESBL production has been more frequently observed in these bacteria than in E. coli.

Undesirable turn of events transpired when ESBL producing E. coli were detected in the community. Three (75%) of the four ESBL producers from outpatients were E. coli. The occurrence of ESBL-producing E. coli isolates in the community is in keeping with the global trend of emergence of community-acquired infections caused by ESBL-producing strains, in particular those which harbor the CTX-M gene. These gene have been reported in Africa (Kariuki et al., 2007). A recent report from Japan showed that patients with fecal carriers of ESBL-producing E. coli contributed substantially to urinary tract infections (Niki et al., 2011). This tendency could markedly change the approach to the treatment of urinary tract infections and as well as other infections due to ESBL producing E. coli that are encountered in the outpatient setting.

The interesting point of the present study was a correlation between multiple antibacterial resistances and ESBL positive phenotypes. This finding indicates that ESBL-producing strains of K pneumoniae and E. coli are more likely to have diminished susceptibility to non-beta-lactam antibiotics when compared with non-ESBL-producing isolates, further curtailing the number of drugs useful against these bacteria. This result has been confirmed by others (Moyo et al., 2010; Mshana et al., 2009). This is mainly associated with unique property of the large ESBL plasmid which is capable of incorporating and subsequently coding for resistant determinants to non beta-lactam antimicrobial agents (Jacoby and Sutton, 1991). Thus our study results well support the fact that ESBL producers not only confer high levels of resistance to third generation cephalosporins but also to non-beta lactams like aminoglycosides, fluoroquinolones, tetracyclines and cotrimoxazole.

Table 5. The resistance rates of ESBL isolates to 2 or more classes of non-beta lactam antibiotics.

<table>
<thead>
<tr>
<th>Antibiotic combination</th>
<th>Resistance rate N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS and T</td>
<td>38 (88.4)</td>
</tr>
<tr>
<td>TS, T and NA</td>
<td>35 (81.4)</td>
</tr>
<tr>
<td>TS, T, NA and CN</td>
<td>30 (70)</td>
</tr>
<tr>
<td>TS, T, NA, CN and CIP</td>
<td>26 (60.5)</td>
</tr>
<tr>
<td>TS, T, NA, CN, CIP and CAF</td>
<td>22 (51.2)</td>
</tr>
<tr>
<td>TS, T, NA, CN, CIP, CAF and F</td>
<td>9 (20.9)</td>
</tr>
<tr>
<td>TS, T, NA, CN, CIP, CAF, F and Ak</td>
<td>3 (7)</td>
</tr>
</tbody>
</table>

T- Tetracyclin, TS- trimethoprim-sulamethoxazole, NA- nalidixic acid, CN- gentamicin, CIP- ciprofloxacin, C- chloramphenicol, F- nitrofurantoin, Ak- amikacin.
Thirty-eight (88.8%) of ESBL isolates showed multi
drug resistance from 2 to 8 types of non beta lactam
antibiotics tested. Of particular concern is that three (7%) of
ESBL producing isolates were resistant to all panels of
antibiotics used. Thus, the presence of an ESBL is a
good marker of the MDR phenotype. In the present study,
amikacin has retained good susceptibility rates due to its
absence of use as empirical therapy and nonexistence of
considerable cross-resistance with third generation
cephalosporins. Similarly, study from Egypt also showed
the high percentage of susceptibility to amikacin among
antibiotics tested (Zaki, 2007). These findings have sig-
nificant implication for empirical management of patients
infected with ESBL organisms using amikacin.

Third-generation cephalosporin specifically ceftiraxone
is one of the most commonly used classes of antibiotics
for hospitalized patients in Ethiopia, as observed during
this study, exerting predominant selective pressure for
the emergence of resistance among pathogenic micro-
organisms. On multivariable analysis, use of third gene-
ration cephalosporins was identified as the only risk
factors significantly associated with infection due to ESBL
producers. This finding is in accordance with previous
studies disclosing that indiscriminate use of third-
generation cephalosporins was related to the selection
of ESBL-producing organisms (Lautenbach et al., 2001).

Use of cephalosporins is not only associated with ESBL
infection, but also it was found to be a risk factor
for colonization with ESBL producing organisms (Levy et al.,
2010). As a result, the higher percentage of ESBL-pro-
ducing *E. coli* or *K. pneumoniae* in the current study may
be due to the greater selective pressure imposed by
extensive use of third-generation cephalosporins. This
association has been best displayed by interventional
study which demonstrated decline in the prevalence of
ESBL-EK colonization from 7.9 to 5.7% following restric-
tion of third-generation cephalosporins (Bisson et al.,
2002). In general, the association of ESBL with third-
generation cephalosporins suggests that the best way to
control these pathogens in our hospital is to reduce the
use of these antibiotics.

ESBLs occurrence was significantly higher among
isolates from inpatients than outpatients [39 (46.4%) vs.
4(14.3%)] (P =0.002). Nosocomial acquisition of ESBL
producing *E. coli* and *K. pneumoniae* bacte remia has
been reported indicating that hospital environment played
a crucial role in maintenance of ESBL producing orga-
nism (Kang et al., 2006). Furthermore higher rate of fecal
carryage of ESBL-producing organisms among inpatients
(26.1%) than among outpatients (15.4%) is documented
elsewhere in Saudi Arabia (Kader et al., 2007). This
suggests that nosocomial acquired organisms are more
likely to become ESBL producer.

More than 70% of strains isolated from both inpatient
and outpatient groups showed resistance to ampicillin,
cephalothin and carbenicillin. This may alarm the pre-
existence of the classic beta lactamase which was recog-
nized among this isolates prior to isolation of ESBL
enzymes (Livermore, 1995). In addition, marked resis-
tance to tetracycline and co-trimoxazole was observed in
the inpatient group (77.4% to tetracycline and 75% to
TMP-SMZ) and with slight decrease in the outpatient
group (51.7% to tetracycline and 48.3% to TMP-SMZ),
this may be explained by the frequent use of both
antibiotics in the community as well as in our hospital.
Therefore, the use of this drug is questionable in
suspected *E. coli* and *K. pneumoniae* infection in our
setting.

Limitation

We are familiar with the limitation of study, as noted in all
observational studies. Molecular epidemiological study
and characterization of ESBL types were not conducted.
Second, we did not assess certain clinical features such
as ICU admission and urinary catheterization as potential
risk factor for infection with ESBL producing EK due to
little number of cases which are insignificant number to
be included during study period. Third, our study was
conducted in Jimma University Specialized Hospital, and
the results may not be generalizable with other
institutions.

Conclusion

Our data provide evidence that the ESBL is prevalent in
Jimma University Specialized Hospital. Majority of ESBL
producing strains are from inpatients and only few are
community isolates. Therefore, it is very urgent to
address the problem of hospital acquired infections
caused by ESBL-producing bacteria. Use of third
generation cephalosporin was the only independent
predictor of ESBL-producing *E. coli* or *K. pneumoniae*
infection. These agents should not be used in infections
due to confirmed ESBL producers because resistance to
third-generation cephalosporin is often accompanied by
resistance to fluoroquinolones, aminoglycosides, TMP-
SMX and tetracyclines.

Conflict of interest

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENT

The authors are grateful to Jimma University Faculty of
Medical Science, Department of Medical Laboratory
Science and Pathology and all staff of Microbiology and
Parasitology Teaching Laboratory of the department. The
staffs of Jimma University Specialized Hospital are
acknowledged for their support in facilitating specimen
collection and patient information.

Full Length Research Paper

Regeneration of cumin (Cuminum cyminum L.) plants from callus and establishment of dual culture of host and parasite (Alternaria burnsii)

Deepak1*, Parmeshwar Lal Saran2 and Ravish Choudhary2

1Nusun Genetic Research Limited, Super mall-I, Infocity, Gandhinagar, Gujarat, 382007 India.
2Indian Agricultural Research Institute, Regional Station, Pusa, Samastipur (Bihar)-848 125, India.

Received 30 December, 2013; Accepted 13 October, 2014

Tissue culture technique can be used for normal callus culture and regeneration of a new clone. Nowadays the technique is used for establishment of dual culture of host and parasite, and regeneration of disease free plants. Normal callus was established and maintained on MS-medium supplemented with 6-benzylaminopurine (BAP, 1.0 mg/l) and naphthalene acetic acid (NAA, 4.0 mg/l). Efficient shoot bud and regeneration of cumin plant from callus was observed on combination of Kinetin (0.5 mg/l) + indole-3-acetic acid (IAA, 1.0 mg/l), BAP (0.1 mg/l) + NAA (1.0 mg/l) with 25 mg/l adenine sulphate (AS). Dual culture of Alternaria burnsii on cumin (Cuminum cyminum) callus was established on MS medium by using infected seeds. Dual culture was developed on MS-medium supplemented with NAA (4.0 mg/l), BAP (1.0 mg/l), biotin (1.0 mg/l), thiamine hydrochloride (1.0 mg/l), ascorbic acid (25.0 mg/l) and casein hydrolysate (1.0 mg/l). The dual culture developed from the infected seeds which were surface sterilized, indicates that the blight disease is basically seed borne in nature. Casein hydrolysate (1.0 mg/l) and ascorbic acid (25 mg/l) was found to be best for the growth of the fungus in the dual culture. It was concluded that the study can be used for disease free plants and enhance the growth of the fungus through control the nutrients from the host during disease development.

Key words: Cumin, Alternaria burnsii, callus, dual culture.

INTRODUCTION

Cumin (Cuminum cyminum L.) is one of the important seed spices and highly remunerative cash crop which is extensively grown in Rajasthan state of India. The seeds are used as a condiment or spice in the various preparations like vegetables, curries, pickles, etc. Cumin seeds also have medicinal properties. Cumin water locally called

*Corresponding author. E-mail: deepak_bijarniya@rediffmail.com.

Abbreviations: Kn, Kinetin; BAP, 6-benzylaminopurine; NAA, naphthalene acetic acid; IAA, indole-3-acetic acid; IBA, indole butyric acid; 2-4D, 2,4-dichlorophenoxy acetic acid; MS, Murashige and Skoog medium.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0International License
MATERIALS AND METHODS

Isolation and establishment of normal callus cultures and regeneration

For normal callus cultures and regeneration, the certified seeds of *Cuminum cyminum* variety RZ-19 were surface sterilized with 0.1% mercuric chloride for 3-4 min and rinsed 3-4 times with distilled water. The seeds were then germinated on water-agar medium under aseptic conditions. These cultures were kept at 2000 lux intensity light at 25±2°C. The seeds germinated within 10-12 days. The hypocotyl was cut into small pieces using a sterilized scalper and transferred to 100 ml "Erlenmeyer" flask containing 40.0 ml of solidified MS-medium (Murashige and Skoog, 1962). The stock solutions containing basal salts for the media were stored under refrigeration. Small quantities of stocks were prepared as per the need to avoid old stocks. The growth regulators that is auxins and cytokinins were used in basal MS-medium at various concentrations. For the auxins viz., indole-3-acetic acid (IAA), naphthalene acetic acid (NAA), indole butyric acid (IBA) and 2,4-dichlorophenoxy acetic acid (2,4-D), stocks were prepared by dissolving them in a few drops of absolute alcohol initially. Cytokinins viz., 6-furfuryl amino purine (kinetin) and 6-benzylaminopurine (BAP) were initially dissolved in a few drops of HCl (1 N). Final volume of all the growth regulators was made up by adding distilled water. The pH of the medium was always adjusted to 5.8 by adding 1 N NaOH or 1 N HCl. Hypocotyl derived callus was sub-cultured on MS medium supplemented with cytokinins (BAP/Kinetin/Zeatin 0.1-3.0 mg l⁻¹), auxins (IAA/NAABAP 0.5-5.0 mg l⁻¹) and adenine sulphate (15-55 mg l⁻¹) added singly and in combination. All the manipulations were done aseptically under laminar air flow bench; pre-sterilized with ultraviolet light for forty minutes. Inoculation and transfer of explants was carried out in sterilized conditions. The cultures were incubated in culture chamber at 28±2°C and 55% relative humidity in 2000 lux intensity light and 16 h photoperiod.

Dual culture of host and parasite

The callus which was derived from the hypocotyl of cumin variety RZ-19 which is susceptible to blight, was sub-cultured aseptically on MS-medium supplemented with NAA (0.4 mg l⁻¹), BAP (1.0 mg l⁻¹), ascorbic acid (5-40 mg l⁻¹) and different concentrations of biotin, thiamine hydrochloride and casein hydrolysate ranging from 0.05 mg l⁻¹ to 5.0 mg l⁻¹. The cultures were incubated in culture chamber at 30±2°C with 65%, relative humidity in complete darkness. In some of the replicates, fungus appeared on the callus. The fungus from the dual culture was examined microscopically at different time intervals during its growth period. It was stained in cotton blue and mounted in lactophenol. The slides were photographed with Nikon’s Alpha photo-trinocular microscope.

Statistical analysis

The statistical analysis of the data was carried out using Duncan’s multiple range test (DMRT) at the P < 0.05 level of probability to test the differences between the treatment means using SPSS software. All the data on shoot length and root length were analysed using one-way ANOVA.

RESULTS AND DISCUSSION

Callus induction

Normal callus initiated from hypocotyl was cultured on MS medium with different concentrations of auxins viz. 2, 4-D, NAA, IAA and IBA (1.0-5.0 mg l⁻¹ each) alone or in combination with cytokinins, that is BAP or kinetin (1.0-5.0 mg l⁻¹) (Table 1). Best growth of the callus was observed on NAA (4.0 mg l⁻¹) in combination with BAP (1.0 mg l⁻¹). The callus produced was healthy, soft, fast growing and light green in colour. This callus showed fast growth after further sub-culturing. NAA along with all tried concentrations of kinetin did not give good response (Table 2). On these combinations the growth of callus was poor and callus turned brown. Similar results have also been observed by Yadav (2003), Shukla et al. (1996) and Soorni et al. (2012) in *Cuminum cyminum*.
Table 1. Callus induction in hypocotyl explants of *Cuminum cyminum* inoculated on MS supplemented with different concentration of various growth hormones.

Medium:	MS + sucrose (30%) + auxins viz., 2,4-D, NAA, IAA (1.0-5.0 mg/l)
Incubation:	At 26±2°C and 16 h photoperiod (2000 lux) upto 4 weeks.
Inoculum:	Hypocotyl of germinated seeds.

<table>
<thead>
<tr>
<th>Auxin/s concentration (mg/l)</th>
<th>Response</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>MS without auxin</td>
<td>Nil</td>
</tr>
<tr>
<td>1.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>+++</td>
<td>Callus was fast growing, fragile and whitish in colour.</td>
</tr>
<tr>
<td>4.0</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>IAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>IBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= No callus; + = Moderate callus; ++ = Good callus; +++ = profuse callus.

Regeneration and complete plant formation

Efficient shoot morphogenesis (>20%) was observed in callus cultures and sub-cultures with the combination of kinetin (0.5 mg/l) + IAA (1.0 mg/l), BAP (0.1 mg/l) + NAA (1.0 mg/l) with 25 mg/l adenine sulphate (AS). The reproducibility of this morphogenesis was very high (Tables 3 and 4). Callus only proliferated further, getting a semi-compact nature when ratio of the cytokinin to auxin was high and remained parenchymatous on high auxin to cytokinin ratio.

Multiple shoots induced at above mentioned media when separated and sub-cultured on MS medium supplemented with 0.1 -1.0 mg/l IAA + 0.3-1.0 mg/l Kinetin. Maximum roots were observed at the base on 0.3 mg/l kinetin +0.1 mg/l IAA and complete plant was obtained. These plants grew well under *in-vitro* conditions and flowered profusely but seed setting was not observed (Figure 1). Regenerated plants were put to hardening for transplant into soil. For hardening, healthy plantlets were transferred to plastic cups filled with sterilized soil rite. Plantlets were covered with moist polythene bags and kept in environmental chamber maintained at 25±2°C. Inside the environmental chamber the lightening was provided with florescent light for 14 h a day. The plantlets were irrigated with MS salt solution at 1/4 strength. However, the plantlets survived to a maximum of 10 days.

Valizadeh et al. (2007) observed that the B5 medium containing 2 mg/l NAA and 2 mg/l Kinetin was the best treatment for callus and root induction and regeneration simultaneously. Kahrizi and Soorni (2013) reported that 0.1 mg/l NAA plus 0.4 mg/l BAP and 0.1 mg/l NAA plus 1 mg/l BAP combinations were determined as the highest level for indirect shoot regeneration (with 25.83 % and 25 %, respectively).

Dual culture of host and parasite

Some fungal growth was observed on callus after 15-20
Table 2. Effect of different plant growth regulators on callus growth of calli induced on MS medium containing NAA (4.0 mg l⁻¹).

<table>
<thead>
<tr>
<th>Medium</th>
<th>MS + sucrose (3.0%) + NAA (4.0 mg l⁻¹) + BAP/Kinetin (1.0-5.0 mg l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation</td>
<td>At 26±2°C and 16 h photoperiod (2000 lux) upto 4 weeks</td>
</tr>
<tr>
<td>Inoculum</td>
<td>Hypocotyl of germinated seeds</td>
</tr>
<tr>
<td>BAP</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>+++</td>
</tr>
<tr>
<td>2.0</td>
<td>++</td>
</tr>
<tr>
<td>3.0</td>
<td>++</td>
</tr>
<tr>
<td>4.0</td>
<td>+</td>
</tr>
<tr>
<td>5.0</td>
<td>+</td>
</tr>
<tr>
<td>1.0</td>
<td>++</td>
</tr>
<tr>
<td>2.0</td>
<td>+</td>
</tr>
<tr>
<td>Kinetin</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>–</td>
</tr>
<tr>
<td>4.0</td>
<td>–</td>
</tr>
<tr>
<td>5.0</td>
<td>–</td>
</tr>
</tbody>
</table>

Callus was healthy, soft, fast growing on further sub culturing and light green in colour.

= No callus; + = Moderate callus; ++ = Good callus; +++ = profuse callus

Table 3. Shoot morphogenesis in callus cultures of cumin on various concentrations of growth regulators and Adenine sulphate.

<table>
<thead>
<tr>
<th>BAP/Kinetin (mg l⁻¹)</th>
<th>Adenine sulphate (mg l⁻¹)</th>
<th>IAA/NAA (mg l⁻¹)</th>
<th>Shoot length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>15</td>
<td>0.5</td>
<td>+</td>
</tr>
<tr>
<td>0.5</td>
<td>25</td>
<td>0.5</td>
<td>+</td>
</tr>
<tr>
<td>1.0</td>
<td>35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.0</td>
<td>45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.0</td>
<td>55</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

= Callus proliferation; + = Poor shoot morphogenesis (< 15 %); ++ = Good shoot morphogenesis (>20 %). Means with the same letter (superscript) in the columns showing shoot length do not significantly differ (P = 0.05) based on Duncan Multiple Range Test.

days of inoculation as brownish black mycelium (Table 5 and Figure 2A and B). The callus was brown in colour. Later on growth of callus was retarded and the fungus covered most of its surface. The callus did not grow further. Results showed that biotin enhanced the growth of fungus in culture at all concentrations. 1.0 mg l⁻¹ biotin was found to be optimum for fungal growth. However, on increasing biotin concentration the growth of callus and fungus was found to be poor. Ascorbic acid along with biotin (1.0 mg l⁻¹) enhanced the growth of fungus in dual culture and 25.0 mg l⁻¹ ascorbic acid was found optimal. Absence of ascorbic acid in the medium and its higher concentrations were found inhibitory for the growth of fungus. Casein hydrolysate 1.0 mg l⁻¹ along with thiamine hydrochloride (1.0 mg l⁻¹), ascorbic acid (25 mg l⁻¹) and biotin (1.0 mg l⁻¹) were found to be the best for growth of fungus in dual culture. The technique can be used for development of disease free plant and it is very useful in plant pathologist to develop a disease free clones. Similarly, use of interactions in dual cultures in vitro to evaluate the pathogenicity of fungi and susceptibility of host plant genotypes were also reported by Chorabik (2013) in different perennial plants.

Morphological studies of the fungus from diseased callus

Microscopic examination after 15-20 days of culture revealed that fungal hyphae proliferated freely over the callus surface. The conidia were formed at the tip of conidiophores. Conidiophores were septate, light olive in colour and gave rise to chains of conidia (Figure 2C). Diseased callus cultures were raised on combination of NAA (4.0 mg l⁻¹), BAP (1.0 mg l⁻¹), ascorbic acid (25.0 mg l⁻¹), biotin (1.0 mg l⁻¹), thiamine hydrochloride (1.0 mg l⁻¹) and casein hydrolysate (1.0 mg l⁻¹) on MS-medium and resulted in good growth of fungus (Alternaria burnsii) on the callus. Earlier, Goyal (1990) raised diseased callus culture from infected inflorescence axis explant...
Table 4. Effect of combinations of Cytokinins (Kinetin) and Auxins (IAA/NAA) on Shoot and root length of *Cuminum cyminum* var. RZ-19.

<table>
<thead>
<tr>
<th>Growth regulators(mgl$^{-1}$)</th>
<th>Shoot length(cm)</th>
<th>Root length(cm)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP + IAA (mgl$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 + 0.1</td>
<td>3.7defg</td>
<td>2.0ab</td>
<td></td>
</tr>
<tr>
<td>0.3 + 1.0</td>
<td>3.8defg</td>
<td>2.1a</td>
<td></td>
</tr>
<tr>
<td>1.0 + 0.1</td>
<td>3.0h</td>
<td>1.9abc</td>
<td></td>
</tr>
<tr>
<td>1.0 + 1.0</td>
<td>3.1h</td>
<td>1.7cde</td>
<td></td>
</tr>
<tr>
<td>BAP + NAA (mgl$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 + 0.1</td>
<td>3.5cdef</td>
<td>1.8bcd</td>
<td></td>
</tr>
<tr>
<td>0.3 + 1.0</td>
<td>4.0bcde</td>
<td>2.1a</td>
<td></td>
</tr>
<tr>
<td>1.0 + 0.1</td>
<td>3.5g</td>
<td>1.7cde</td>
<td></td>
</tr>
<tr>
<td>1.0 + 1.0</td>
<td>4.1abde</td>
<td>1.9abc</td>
<td></td>
</tr>
<tr>
<td>Kinetin + IAA (mgl$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 + 0.1</td>
<td>4.3ab</td>
<td>2.0ab</td>
<td>Best media for root initiation and shoot initiation</td>
</tr>
<tr>
<td>0.3 + 1.0</td>
<td>4.4a</td>
<td>1.6de</td>
<td></td>
</tr>
<tr>
<td>1.0 + 0.1</td>
<td>3.6g</td>
<td>2.1a</td>
<td></td>
</tr>
<tr>
<td>1.0 + 1.0</td>
<td>3.7efg</td>
<td>1.5e</td>
<td></td>
</tr>
<tr>
<td>Kinetin + NAA (mgl$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 + 0.1</td>
<td>4.2abc</td>
<td>1.7cde</td>
<td></td>
</tr>
<tr>
<td>0.3 + 1.0</td>
<td>4.4a</td>
<td>1.9abc</td>
<td></td>
</tr>
<tr>
<td>1.0 + 0.1</td>
<td>4.0bcde</td>
<td>1.8bcd</td>
<td></td>
</tr>
<tr>
<td>1.0 + 1.0</td>
<td>3.9cdef</td>
<td>2.0ab</td>
<td></td>
</tr>
</tbody>
</table>

Means with the same letter (superscript) in the columns showing shoot length and root length do not significantly differ ($P = 0.05$) based on Duncan Multiple Range Test.

Figure 1. A. Callus induction from hypocotyls on MS+NAA (4.0 mgl$^{-1}$) and BAP (1.0 mgl$^{-1}$). B. Stock callus. C and D. Shoot bud initiation on MS + Kinetin (0.5 mgl$^{-1}$) + IAA (1.0 mgl$^{-1}$) + BAP (0.1 mgl$^{-1}$) + NAA (1.0 mgl$^{-1}$) + AS (25 mgl$^{-1}$). E. Shoot initiation. F. Shoot elongation on MS + Kinetin (0.5 mgl$^{-1}$) + IAA (1.0 mgl$^{-1}$) + BAP (0.1 mgl$^{-1}$) + NAA (1.0 mgl$^{-1}$) + AS (25 mgl$^{-1}$) and root induction on MS + 0.3 mgl$^{-1}$ Kinetin + 0.1 mgl$^{-1}$ IAA. G. Complete plant formation.
Figure 2. A. Initiation of dual culture on MS-medium + NAA (4 mg l⁻¹) + BAP (1.0 mg l⁻¹) + Biotin (1.0 mg l⁻¹) + Thiamine hydrochloride (1.0 mg l⁻¹) + Casein hydrolysate (1.0 mg l⁻¹) + Ascorbic acid (25 mg l⁻¹). B. 30 days old dual culture. C. Microphotograph of cells of dual culture showing mycelium and conidia.

Table 5. Effect of biotin, ascorbic acid, thiamin hydrochloride and casein hydrolysate on dual culture of *Cuminum cyminum* and *Alternaria burnsidei* on modified MS-medium supplemented with NAA (4 mg l⁻¹) and BAP (1.0 mg l⁻¹).

<table>
<thead>
<tr>
<th>Ascorbic acid (mg l⁻¹)</th>
<th>Biotin (mg l⁻¹)</th>
<th>Thiamin hydrochloride (mg l⁻¹)</th>
<th>Casein hydrolysate</th>
<th>Growth characteristics of fungus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No fungal growth</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Poor fungal growth</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No fungal growth</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>Poor fungal growth</td>
</tr>
<tr>
<td>20</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>Moderate fungal growth</td>
</tr>
<tr>
<td>25</td>
<td>+++</td>
<td>++++</td>
<td>++</td>
<td>Good fungal growth</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>Poor fungal growth</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>No fungal growth</td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No fungal growth</td>
</tr>
</tbody>
</table>

= No response; + = poor fungal growth; ++ = moderate fungal growth; +++ = good fungal growth.

(Brassica juncea and Albugo candida) on MS-medium supplemented with IBA (10.0 mg l⁻¹) and kinetin (0.5 mg l⁻¹). Plant tissues which contain higher concentrations of this ascorbic acid are more resistant to pathogens.
Conflict of interest

The author(s) have not declared any conflict of interests.

REFERENCES

African Journal of Microbiology Research

Related Journals Published by Academic Journals

- African Journal of Biotechnology
- African Journal of Biochemistry Research
- Journal of Bacteriology Research
- Journal of Evolutionary Biology Research
- Journal of Yeast and Fungal Research
- Journal of Brewing and Distilling