ABOUT AJB

The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals.

African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajb@academicjournals.org.

With questions or concerns, please contact the Editorial Office at ajb@academicjournals.org.
Editorial Board

Prof. Sagadevan G. Mundree
Department of Molecular and Cell Biology
University of Cape Town
Private Bag Rondebosch 7701
South Africa

Dr. Martin Fregene
Centro Internacional de Agricultura Tropical (CIAT)
Km 17 Cali-Palmira Recta
AA6713, Cali, Colombia

Prof. O. A. Ogunseitan
Laboratory for Molecular Ecology
Department of Environmental Analysis and Design
University of California, Irvine, CA 92697-7070. USA

Dr. Ibrahima Ndoye
UCAD, Faculte des Sciences et Techniques
Departement de Biologie Vegetale
BP 5005, Dakar, Senegal.
Laboratoire Commun de Microbiologie
IRD/ISRA/UCAD
BP 1386, Dakar

Dr. Bamidele A. Iwalokun
Biochemistry Department
Lagos State University
P.M.B. 1087. Apapa – Lagos, Nigeria

Dr. Jacob Hodeba Mignouna
Associate Professor, Biotechnology
Virginia State University
Agricultural Research Station Box 9061
Petersburg, VA 23806, USA

Dr. Bright Ogheneovo Agindotan
Plant, Soil and Entomological Sciences Dept
University of Idaho, Moscow
ID 83843, USA

Dr. A.P. Njukeng
Département de Biologie Végétale
Faculté des Sciences
B.P. 67 Dschang
Université de Dschang
Rep. du CAMEROUN

Dr. E. Olatunde Farombi
Drug Metabolism and Toxicology Unit
Department of Biochemistry
University of Ibadan, Ibadan, Nigeria

Dr. Stephen Bakiamoh
Michigan Biotechnology Institute International
3900 Collins Road
Lansing, MI 48909, USA

Dr. N. A. Amusa
Institute of Agricultural Research and Training
Obafemi Awolowo University
Moor Plantation, P.M.B 5029, Ibadan, Nigeria

Dr. Desouky Abd-El-Haleem
Environmental Biotechnology Department & Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Mubarak City for Scientific Research and Technology Applications, New Burg-Elarab City, Alexandria, Egypt.

Dr. Simeon Oloni Kotchoni
Department of Plant Molecular Biology
Institute of Botany, Kirschallee 1, University of Bonn, D-53115 Germany.

Dr. Eriola Betiku
German Research Centre for Biotechnology, Biochemical Engineering Division, Mascheroder Weg 1, D-38124, Braunschweig, Germany

Dr. Daniel Masiga
International Centre of Insect Physiology and Ecology, Nairobi, Kenya

Dr. Essam A. Zaki
Genetic Engineering and Biotechnology Research Institute, GEBRI, Research Area, Borg El Arab, Post Code 21934, Alexandria Egypt
Dr. Alfred Dixon
International Institute of Tropical Agriculture (IITA)
PMB 5320, Ibadan
Oyo State, Nigeria

Dr. Sankale Shompole
Dept. of Microbiology, Molecular Biology and Biochemistry,
University of Idaho, Moscow,
ID 83844, USA.

Dr. Mathew M. Abang
Germplasm Program
International Center for Agricultural Research in the Dry Areas (ICARDA)
P.O. Box 5466, Aleppo, SYRIA.

Dr. Solomon Olawale Odemuyiwa
Pulmonary Research Group
Department of Medicine
550 Heritage Medical Research Centre
University of Alberta
Edmonton
Canada T6G 2S2

Prof. Anna-Maria Botha-Oberholster
Plant Molecular Genetics
Department of Genetics
Forestry and Agricultural Biotechnology Institute
Faculty of Agricultural and Natural Sciences
University of Pretoria
ZA-0002 Pretoria, South Africa

Dr. O. U. Ezeronye
Department of Biological Science
Michael Okpara University of Agriculture
Umudike, Abia State, Nigeria.

Dr. Joseph Hounhouigan
Maître de Conférence
Sciences et technologies des aliments
Faculté des Sciences Agronomiques
Université d’Abomey-Calavi
01 BP 526 Cotonou
République du Bénin

Prof. Christine Rey
Dept. of Molecular and Cell Biology,
University of the Witwatersand,
Private Bag 3, WITS 2050, Johannesburg, South Africa

Dr. Kamel Ahmed Abd-Elsalam
Molecular Markers Lab. (MML)
Plant Pathology Research Institute (PPathRI)
Agricultural Research Center, 9-Gamma St., Orman,
12619,
Giza, Egypt

Dr. Jones Lemchi
International Institute of Tropical Agriculture (IITA)
Onne, Nigeria

Prof. Greg Blatch
Head of Biochemistry & Senior Wellcome Trust Fellow
Department of Biochemistry, Microbiology & Biotechnology
Rhodes University
Grahamstown 6140
South Africa

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Dr. Jackie Hughes
Research-for-Development
International Institute of Tropical Agriculture (IITA)
Ibadan, Nigeria

Dr. Robert L. Brown
Southern Regional Research Center,
U.S. Department of Agriculture,
Agricultural Research Service,
New Orleans, LA 70179.

Dr. Deborah Rayfield
Physiology and Anatomy
Bowie State University
Department of Natural Sciences
Crawford Building, Room 003C
Bowie MD 20715, USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Marlene Shehata</td>
<td>University of Ottawa Heart Institute</td>
</tr>
<tr>
<td></td>
<td>Genetics of Cardiovascular Diseases</td>
</tr>
<tr>
<td></td>
<td>40 Ruskin Street</td>
</tr>
<tr>
<td></td>
<td>K1Y-4W7, Ottawa, ON, CANADA</td>
</tr>
<tr>
<td>Dr. Hany Sayed Hafez</td>
<td>The American University in Cairo, Egypt</td>
</tr>
<tr>
<td>Dr. Clement O. Adebooye</td>
<td>Department of Plant Science</td>
</tr>
<tr>
<td></td>
<td>Obafemi Awolowo University, Ile-Ife</td>
</tr>
<tr>
<td>Dr. Ali Demir Sezer</td>
<td>Marmara Üniversitesi Eczacilik Fakültesi,</td>
</tr>
<tr>
<td></td>
<td>Tibbiye cad. No: 49, 34668, Haydarpasa, Istanbul, Turkey</td>
</tr>
<tr>
<td>Dr. Ali Gazanchain</td>
<td>P.O. Box: 91735-1148, Mashhad, Iran</td>
</tr>
<tr>
<td>Dr. Anant B. Patel</td>
<td>Centre for Cellular and Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>Uppal Road, Hyderabad 500007</td>
</tr>
<tr>
<td>Prof. Arne Elofsson</td>
<td>Department of Biophysics and Biochemistry</td>
</tr>
<tr>
<td></td>
<td>Bioinformatics at Stockholm University, Sweden</td>
</tr>
<tr>
<td>Prof. Bahram Goliaei</td>
<td>Departments of Biophysics and Bioinformatics</td>
</tr>
<tr>
<td></td>
<td>Laboratory of Biophysics and Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>University of Tehran, Institute of Biochemistry and</td>
</tr>
<tr>
<td></td>
<td>Biophysics</td>
</tr>
<tr>
<td>Dr. Nora Babudri</td>
<td>Dipartimento di Biologia cellulare e ambientale</td>
</tr>
<tr>
<td></td>
<td>Università di Perugia</td>
</tr>
<tr>
<td></td>
<td>Via Pascoli</td>
</tr>
<tr>
<td>Dr. S. Adesola Ajayi</td>
<td>Seed Science Laboratory</td>
</tr>
<tr>
<td></td>
<td>Department of Plant Science</td>
</tr>
<tr>
<td></td>
<td>Faculty of Agriculture</td>
</tr>
<tr>
<td></td>
<td>Obafemi Awolowo University, Ile-Ife 220005, Nigeria</td>
</tr>
<tr>
<td>Dr. Yee-Joo TAN</td>
<td>Department of Microbiology</td>
</tr>
<tr>
<td></td>
<td>Yong Loo Lin School of Medicine,</td>
</tr>
<tr>
<td></td>
<td>National University Health System (NUHS),</td>
</tr>
<tr>
<td></td>
<td>National University of Singapore</td>
</tr>
<tr>
<td></td>
<td>MD4, 5 Science Drive 2,</td>
</tr>
<tr>
<td></td>
<td>Singapore 117597</td>
</tr>
<tr>
<td>Prof. Hidetaka Hori</td>
<td>Laboratories of Food and Life Science,</td>
</tr>
<tr>
<td></td>
<td>Graduate School of Science and Technology,</td>
</tr>
<tr>
<td></td>
<td>Niigata University,</td>
</tr>
<tr>
<td></td>
<td>Niigata 950-2181,</td>
</tr>
<tr>
<td>Prof. Thomas R. DeGregori</td>
<td>University of Houston,</td>
</tr>
<tr>
<td></td>
<td>Texas 77204 5019,</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Wolfgang Ernst Bernhard Jelkmann</td>
<td>Medical Faculty, University of Lübeck, Armenia</td>
</tr>
<tr>
<td>Dr. Moktar Hamdi</td>
<td>Department of Biochemical Engineering,</td>
</tr>
<tr>
<td></td>
<td>Laboratory of Ecology and Microbial Technology</td>
</tr>
<tr>
<td></td>
<td>National Institute of Applied Sciences and Technology,</td>
</tr>
<tr>
<td></td>
<td>BP: 676. 1080, Tunisa</td>
</tr>
<tr>
<td>Dr. Salvador Ventura</td>
<td>Department de Bioquímica i Biologia Molecular</td>
</tr>
<tr>
<td></td>
<td>Institut de Biotecnologia i de Biomedicina</td>
</tr>
<tr>
<td></td>
<td>Universitat Autònoma de Barcelona</td>
</tr>
<tr>
<td></td>
<td>Bellaterra-08193</td>
</tr>
<tr>
<td>Dr. Claudio A. Hetz</td>
<td>Faculty of Medicine, University of Chile</td>
</tr>
<tr>
<td></td>
<td>Independencia 1027</td>
</tr>
<tr>
<td></td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td>Prof. Felix Dapare Dakora</td>
<td>Research Development and Technology Promotion</td>
</tr>
<tr>
<td></td>
<td>Cape Peninsula University of Technology,</td>
</tr>
<tr>
<td></td>
<td>Room 2.8 Admin. Bldg. Keizersgracht, P.O. 652,</td>
</tr>
<tr>
<td></td>
<td>Cape Town 8000, South Africa</td>
</tr>
<tr>
<td>Prof. Felix Dapare Dakora</td>
<td>Research Development and Technology Promotion</td>
</tr>
<tr>
<td></td>
<td>Cape Peninsula University of Technology,</td>
</tr>
<tr>
<td></td>
<td>Room 2.8 Admin. Bldg. Keizersgracht, P.O. 652,</td>
</tr>
<tr>
<td></td>
<td>Cape Town 8000, South Africa</td>
</tr>
</tbody>
</table>
Dr. Geremew Bultosa
Department of Food Science and Post harvest Technology
Haramaya University
Personal Box 22, Haramaya University Campus
Dire Dawa, Ethiopia

Dr. José Eduardo Garcia
Londrina State University
Brazil

Prof. Nirbhay Kumar
Malaria Research Institute
Department of Molecular Microbiology and Immunology
Johns Hopkins Bloomberg School of Public Health
E5144, 615 N. Wolfe Street
Baltimore, MD 21205

Prof. M. A. Awal
Department of Anatomy and Histplogy, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh

Prof. Christian Zwieb
Department of Molecular Biology
University of Texas Health Science Center at Tyler
11937 US Highway 271
Tyler, Texas 75708-3154
USA

Prof. Danilo López-Hernández
Instituto de Zoología Tropical, Facultad de Ciencias, Universidad Central de Venezuela.
Institute of Research for the Development (IRD), Montpellier, France

Prof. Donald Arthur Cowan
Department of Biotechnology, University of the Western Cape Bellville 7535 Cape Town, South Africa

Dr. Ekhaise Osaro Frederick
University Of Benin, Faculty of Life Science Department of Microbiology
P. M. B. 1154, Benin City, Edo State, Nigeria.

Dr. Luísa Maria de Sousa Mesquita Pereira
IPATIMUP R. Dr. Roberto Frias, s/n 4200-465 Porto Portugal

Dr. Min Lin
Animal Diseases Research Institute Canadian Food Inspection Agency
Ottawa, Ontario, Canada K2H 8P9

Prof. Nobuyoshi Shimizu
Department of Molecular Biology, Center for Genomic Medicine
Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku
Tokyo 160-8582, Japan

Dr. Adewunmi Babatunde Idowu
Department of Biological Sciences University of Agriculture Abia
Abia State, Nigeria

Dr. Yifan Dai
Associate Director of Research Revivicor Inc.
100 Technology Drive, Suite 414
Pittsburgh, PA 15219
USA

Dr. Zhongming Zhao
Department of Psychiatry, PO Box 980126, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0126, USA

Prof. Giuseppe Novelli
Human Genetics, Department of Biopathology, Tor Vergata University, Rome, Italy

Dr. Moji Mohammadi
402-28 Upper Canada Drive
Toronto, ON, M2P 1R9 (416) 512-7795
Canada
Prof. Jean-Marc Sabatier
Directeur de Recherche Laboratoire ERT-62
Ingénierie des Peptides à Visée Thérapeutique,
Université de la Méditerranée-Ambrilia Biopharma inc.,
Faculté de Médecine Nord, Bd Pierre Dramard,
13916, Marseille cédex 20.
France

Dr. Fabian Hoti
PneumoCarr Project
Department of Vaccines
National Public Health Institute
Finland

Prof. Irina-Draga Caruntu
Department of Histology
Gr. T. Popa University of Medicine and Pharmacy
16, Universitatii Street, Iasi,
Romania

Dr. Dieudonné Nwaga
Soil Microbiology Laboratory,
Biotechnology Center. PO Box 812,
Plant Biology Department,
University of Yaoundé I, Yaoundé,
Cameroon

Dr. Gerardo Armando Aguado-Santacruz
Biotechnology CINVESTAV-Unidad Irapuato
Departamento Biotecnología
Km 9.6 Libramiento norte Carretera Irapuato-León Irapuato,
Guanajuato 36500
Mexico

Dr. Abdolkaim H. Chehregani
Department of Biology
Faculty of Science
Bu-Ali Sina University
Hamedan,
Iran

Dr. Abir Adel Saad
Molecular oncology
Department of Biotechnology
Institute of graduate Studies and Research
Alexandria University,
Egypt

Dr. Azizul Baten
Department of Statistics
Shah Jalal University of Science and Technology
Sylhet-3114, Bangladesh

Dr. Bayden R. Wood
Australian Synchrotron Program
Research Fellow and Monash Synchroscopy
School of Chemistry Monash University Wellington Rd. Clayton,
3800 Victoria,
Australia

Dr. G. Reza Balali
Molecular Mycology and Plant Pthology
Department of Biology
University of Isfahan
Isfahan
Iran

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Prof. H. Sunny Sun
Institute of Molecular Medicine
National Cheng Kung University Medical College
1 University road Tainan 70101,
Taiwan

Prof. Ima Nirwana Soelaiman
Department of Pharmacology
Faculty of Medicine
Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur,
Malaysia

Prof. Tunde Ogunsanwo
Faculty of Science,
Olabisi Onabanjo University,
Ago-Iwoye.
Nigeria

Dr. Evans C. Egwim
Federal Polytechnic,
Bida Science Laboratory Technology Department,
PMB 55, Bida, Niger State,
Nigeria
Prof. George N. Goulielmos
Medical School,
University of Crete
Voutes, 715 00 Heraklion, Crete,
Greece

Dr. Uttam Krishna
Cadila Pharmaceuticals limited,
India 1389, Tarsad Road,
Dholka, Dist: Ahmedabad, Gujarat,
India

Prof. Mohamed Attia El-Tayeb Ibrahim
Botany Department, Faculty of Science at Qena,
South Valley University, Qena 83523,
Egypt

Dr. Nelson K. Ojjio Olang’o
Department of Food Science & Technology,
JKUAT P. O. Box 62000, 00200, Nairobi,
Kenya

Dr. Pablo Marco Veras Peixoto
University of New York NYU College of Dentistry
345 E. 24th Street, New York, NY 10010
USA

Prof. T E Cloete
University of Pretoria Department of
Microbiology and Plant Pathology,
University of Pretoria,
Pretoria,
South Africa

Prof. Djamel Saidi
Laboratoire de Physiologie de la Nutrition et de Sécurité
Alimentaire Département de Biologie,
Faculté des Sciences,
Université d’Oran, 31000 - Algérie
Algeria

Dr. Tomohide Uno
Department of Biofunctional chemistry,
Faculty of Agriculture Nada-ku,
Kobe., Hyogo, 657-8501,
Japan

Dr. Ulises Urzúa
Faculty of Medicine,
University of Chile Independencia 1027, Santiago,
Chile

Dr. Aritua Valentine
National Agricultural Biotechnology Center,
Kawanda
Agricultural Research Institute (KARI)
P.O. Box, 7065, Kampala,
Uganda

Prof. Yee-Joo Tan
Institute of Molecular and Cell Biology 61 Biopolis
Drive,
Proteos, Singapore 138673
Singapore

Prof. Viroj Wiwanitkit
Department of Laboratory Medicine,
Faculty of Medicine, Chulalongkorn University,
Bangkok
Thailand

Dr. Thomas Silou
Universit of Brazzaville BP 389
Congo

Prof. Burtram Clinton Fielding
University of the Western Cape
Western Cape,
South Africa

Dr. Brnčić (Brncic) Mladen
Faculty of Food Technology and Biotechnology,
Pierottijeva 6,
10000 Zagreb,
Croatia.

Dr. Meltem Sesli
College of Tobacco Expertise,
Turkish Republic, Celal Bayar University 45210,
Akhisar, Manisa,
Turkey.

Dr. Idress Hamad Attitalla
Omar El-Mukhtar University,
Faculty of Science,
Botany Department,
El-Beida, Libya.

Dr. Linga R. Gutha
Washington State University at Prosser,
24106 N Bunn Road,
Prosser WA 99350-8694.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Helal Ragab Moussa</td>
<td>Bahnay, Al-bagour, Menoufia, Egypt.</td>
</tr>
<tr>
<td>Dr VIPUL GOHEL</td>
<td>DuPont Industrial Biosciences Danisco (India) Pvt Ltd 5th Floor, Block 4B, DLF Corporate Park DLF Phase III Gurgaon 122 002 Haryana (INDIA)</td>
</tr>
<tr>
<td>Dr. Sang-Han Lee</td>
<td>Department of Food Science & Biotechnology, Kyungpook National University Daegu 702-701, Korea.</td>
</tr>
<tr>
<td>Dr. Bhaskar Dutta</td>
<td>DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI) U.S. Army Medical Research and Materiel Command 2405 Whittier Drive Frederick, MD 21702</td>
</tr>
<tr>
<td>Dr. Muhammad Akram</td>
<td>Faculty of Eastern Medicine and Surgery, Hamdard Al-Majeed College of Eastern Medicine, Hamdard University, Karachi.</td>
</tr>
<tr>
<td>Dr. M. Muruganandam</td>
<td>Department of Biotechnology St. Michael College of Engineering & Technology, Kalayarkoil, India.</td>
</tr>
<tr>
<td>Dr. Gökhan Aydin</td>
<td>Suleyman Demirel University, Atabey Vocational School, Isparta-Türkiye,</td>
</tr>
<tr>
<td>Dr. Rajib Roychowdhury</td>
<td>Centre for Biotechnology (CBT), Visva Bharati, West-Bengal, India.</td>
</tr>
<tr>
<td>Dr Takuji Ohyama</td>
<td>Faculty of Agriculture, Niigata University</td>
</tr>
<tr>
<td>Dr Mehdi Vasfi Marandi</td>
<td>University of Tehran</td>
</tr>
<tr>
<td>Dr Fügen DURLU-ÖZKAYA</td>
<td>Gazi University, Tourism Faculty, Dept. of Gastronomy and Culinary Art</td>
</tr>
<tr>
<td>Dr. Reza Yari</td>
<td>Islamic Azad University, Boroujerd Branch</td>
</tr>
<tr>
<td>Dr Zahra Tahmasebi Fard</td>
<td>Roudehen branche, Islamic Azad University</td>
</tr>
<tr>
<td>Dr Albert Magri</td>
<td>Giro Technological Centre</td>
</tr>
<tr>
<td>Dr Ping ZHENG</td>
<td>Zhejiang University, Hangzhou, China</td>
</tr>
<tr>
<td>Dr. Kgomotso P. Sibeko</td>
<td>University of Pretoria</td>
</tr>
<tr>
<td>Dr Greg Spear</td>
<td>Rush University Medical Center</td>
</tr>
<tr>
<td>Prof. Pilar Morata</td>
<td>University of Malaga</td>
</tr>
<tr>
<td>Dr Jian Wu</td>
<td>Harbin medical university, China</td>
</tr>
<tr>
<td>Dr Hsiu-Chi Cheng</td>
<td>National Cheng Kung University and Hospital.</td>
</tr>
<tr>
<td>Prof. Pavel Kalac</td>
<td>University of South Bohemia, Czech Republic</td>
</tr>
<tr>
<td>Dr Kürsat Korkmaz</td>
<td>Ordu University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition</td>
</tr>
<tr>
<td>Dr Shuyang Yu</td>
<td>Department of Microbiology, University of Iowa Address: 51 newton road, 3-730B BSB bldg. Iowa City, IA, 52246, USA</td>
</tr>
<tr>
<td>Dr. Binxing Li</td>
<td></td>
</tr>
</tbody>
</table>
Dr. Mousavi Khaneghah
*College of Applied Science and Technology -
Applied Food Science, Tehran, Iran.*

Dr. Qing Zhou
*Department of Biochemistry and Molecular Biology,
Oregon Health and Sciences University Portland.*

Dr Legesse Adane Bahiru
*Department of Chemistry,
Jimma University,
Ethiopia.*

Dr James John
*School Of Life Sciences,
Pondicherry University,
Kolapet, Pondicherry*
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc. should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $650 handling fee. Publication of an article in the African Journal of Biotechnology is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJB, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
African Journal of Biotechnology

Table of Contents: Volume 13 Number 45, 5 November, 2014

ARTICLES

Cellulase Activity Of Filamentous Fungi Induced By Rice Husk
Diego Fernando Oliveros, Nathalie Guarnizo, Elizabeth Murillo Perea, and Walter Murillo Arango

Chitinolytic Assay For Trichoderma Species Isolated From Different Geographical Locations Of Uttar Pradesh
Sonika Pandey, Mohammad Shahid, Mukesh Srivastava, Antima Sharma, Anuradha Singh, Vipul Kumar and Shyam Jee Gupta

Comparative Acute Toxicity And Oxidative Stress Responses In Tadpoles Of Amietophrynus Regularis Exposed To Refined Petroleum Products, Unused And Spent Engine Oils
Amaeze, Nnamdi Henry, Onadeko, Abiodun and Nwosu, Chinwendu Comfort

Statistical Optimization Of Lactic Acid Production By Lactococcus Lactis Strain, Using The Central Composite Experimental Design
Omar Hassaine, Halima Zadi-Karam and Nour-Eddine Karam

Somatic Embryogenesis And Plant Regeneration From Leaf Explants Of Rumex Vesicarius L.
Lavanya Kakarla, Chakravarthy Rama, Mahendran Botlagunta, Krishna M. S. R and Pardha Saradhi Mathi

Noble Silver Nanoparticles (AgNPs) Synthesis And Characterization Of Fig Ficus Carica (Fig) Leaf Extract And Its Antimicrobial Effect Against Clinical Isolates From Corneal Ulcer
Yousef H. Aldebsi, Salah Mesalhy Aly, Riazunnisa Khateef and Habeeb Khadri

A Novel Polymerase Chain Reaction (PCR) For Rapid Isolation Of A New RbcS Gene From Lemna Minor
Youru Wang
Full Length Research Paper

Cellulase activity of filamentous fungi induced by rice husk

Diego Fernando Oliveros1*, Nathalie Guarnizo1, Elizabeth Murillo Perea1,2 and Walter Murillo Arango1,2

1Research Group on Natural Products, University of Tolima, Barrio Santa Elena. A.A 546, Ibagué, Tolima, Colombia.
2Department of Chemistry, Faculty of Science, University of Tolima, Barrio Santa Elena. A.A 546, Ibagué, Tolima, Colombia.

Received 9 February, 2014; Accepted 16 October, 2014

The objective of this study was to determine the potential of different filamentous fungi to degrade cellulose in rice husk pre-treated with steam explosion or alkaline hydrolysis. A preliminary test performed with carboxymethyl cellulose and nine fungi (Trichoderma 1, 2, 3, 4, 5; Trichoderma reesei; Aspergillus niger; Rhizopus oryzae and an isolated fungus from rice husk) allowed the selection of the fungi that can degrade cellulose the most. Subsequently, the fastest growing fungi on the substrate (carboxymethyl cellulose) were subjected to a fermentation bioreactor (18 mL of the fungus with 2 mL of conidial suspension at a concentration of 5 x 10^6 conidia mL^-1). Their potential to degrade cellulose was determined. This was done by measuring the amount of total carbohydrate and reducing sugars using the anthrone method and 3,5 dinitrosalicylic acid respectively. On the other hand, the endoglucanase, exoglucanase and β-glucosidase activity of the two most promising fungus (Trichoderma sp. 1 and Aspergillus sp.) was evaluated. Statistical analysis revealed no significant differences; however, the rice husk pre-treated with steam explosion before the fungal strains had the greatest amount of total carbohydrates; it produces 2.9 and 1.4 times more than those not treated with alkaline hydrolysis. Moreover, fungi Trichoderma sp. 1 and Aspergillus sp. had higher number of total released carbohydrate and reducing respectively, which demonstrated the difference in the enzyme system of the two microorganisms. Endoglucanase and exoglucanase activities had similar performance for Aspergillus sp., and Trichoderma sp. 1, during the 288 h of the test. Likewise, β-glucosidase activity was similar. After 192 h, values of 0.150 and 0.140 IU mL^-1 were obtained for Aspergillus sp. and Trichoderma sp. 1, respectively. Finally, the applicability of rice husk in agribusiness as a raw material for subsequent fermentation and for obtaining added-value compounds is shown.

Key words: Enzymatic activity, rice husk, fermentable sugar, agroindustrial wastes, filamentous fungi.

INTRODUCTION

The use of agro-industrial byproducts as raw materials for the production of high added-value products such as biofuels, compost, xylitol, enzymes and compounds for human and animal consumption, among others, has become increasingly important (Sánchez, 2009). In Colombia, rice farming is a major component of the agricultural sector, with a semiannual output of 1,376,385 t (Dane-Fedearroz, 2013), from which about 50% of rice husk can be obtained (Ahumada and Rodríguez-Páez, 2006). Due to its recalcitrant structure (Yu et al., 2009), abrasive nature, low nutri-
Different physical and chemical treatments are used to transform cellulosic wastes (Sun and Cheng, 2002). As a clean alternative, the industry uses enzymes that convert the constituent polymers of the plant cell wall (lignin, cellulose and hemicellulose) into simple sugars (Pérez et al., 2002), but the high cost of these processes is an obstacle for their usage (Biswa et al., 2006). Consequently, the use of microorganisms is gaining relevance because of their ability to degrade polymers such as cellulose and starch which are the major constituents of plant biomass (Ramírez and Coha, 2003). Moreover, it is important to highlight the role of microorganisms in the degradation of agro-products, for two main reasons: 1) the cost of producing the enzymes for the process is 50% (Galbe and Zacchi, 2002), and 2) the decrease in the inhibitory effect on fermentation processes caused by the preservatives and stabilizers that accompany the use of commercial enzymes (Fujita et al., 2004; Goliás et al., 2000).

Different strains of fungi are used in agro-industrial waste degradation, especially those that have exhibited activity on cellulosic substrates. The Trichoderma genus was analyzed because of its ability to produce high cellulolytic enzymes activity (Miettinen-Oinonen and Suominen, 2002), that allows the transformation of plant cell-wall constituents or wastes, such as husk, into simple sugars that may become alcohols after the fermentation process. This leads to the conservation of non-renewable resources (Valverde et al., 2007). Therefore, ethanol production becomes relevant, given the possibility of producing 0.25 L of 96°GL alcohol per Kg of husk, which, according to the per liter price Colombia (USD 0.91), could represent an additional income source for producers (Rojas and Cabanillas, 2008). The use of Penicillium echnidum on sugarcane bagasse yields 1.60, 0.21 and 1.49 U mL⁻¹ for endoglucanase, β-glucosidase and xylanase, respectively; for control cellulose, values of 1.20, 0.20 and 1.46 U mL⁻¹ were obtained (Camassola and Dillon, 2009). Also, Aspergillus niger cellulases, cross linked by glutaraldehyde, maintain their degrading activity during a longer period of time, and hence, further degradation of rice husk at lower cost can be obtained (Sohail et al., 2009).

Therefore, the search for native microorganisms from substrates could be an alternative for obtaining fungal strains with high potential for a cleaner conversion of lignocellulosic materials, and the use of physical and chemical pretreatments will generate cleaner, cheaper processes and without demanding specialized infrastructure.

(Miacza and Castellanos, 2012; Martínez-Anaya et al., 2008). In this regard, the objective of this study is to compare the cellulolytic activity of fungal reference strains against those isolated from rice husk, identifying the potential of converting this residue into fermentable sugars.

MATERIALS AND METHODS

Plant material

Rice husk was obtained in rice mills located in El Espinal - Tolima Department, Colombia, during the second half of 2011 and was subsequently treated in an electric mill to obtain a size of 1-2 mm. Then, a bromatologica was performed to determine humidity, crude fiber, ether extract, cinder, protein, nitrogen, potassium, phosphorus, cooper, zinc, iron, manganese, bore, sulfur, sodium, calcium, and magnesium was done using the methods of AOAC (2012). Analysis was performed in order to determine the percentages of cellulose, hemicellulose, lignin and some oligoelements that could influence fungal growth and cellulase activity.

Biological material

Fungi isolation and identification

Untreated samples (rice husk) were introduced into sterile Petri dishes with potato dextrose agar (PDA, Oxoid) and incubated 8 days at 25°C to allow the growth of microorganisms. Later, subcultures were made in order to separate and individualize each fungus. Preliminary identification was performed on a microscope (Advanced Optical, Model XS-402) after staining the fungi with blue-lactophenol; and through taxonomic keys, genera identification was possible.

Preliminary evaluation of cellulolytic capacity

With some modifications, the methodology proposed by Mikán and Castellanos-Suárez (2004) was used. Strains of Rhizopus oryzae, Aspergillus niger, Trichoderma reesei and Trichoderma sp. (five strains) were obtained from the microbiology laboratory of the Research Group of Natural Products of University of Tolima – Colombia. They were identified as follows: T.1, T.2, T.3, T.4, and T.5 and determined for their cellulolytic potential. Also, a strain isolated from rice husk was used. These fungi were placed into a solid culture medium that contained agar-agar and CMC (1 and 2% w/v). Inoculation was performed by placing the fungal mycelium in the CMC agar center a 5 mm diameter disk of potato dextrose agar (PDA, Oxoid) that was previously inoculated with fungal mycelium. Growth kinetics measurement was performed by triplicate, incubating the microorganisms at 25°C, until the growth of the control samples was observed in the entire 9 mm Petri dish. The degradation activity was manifested through the presence of yellow or unstained areas after the application of Congo red solution (Merck).

Pre-treatment

Steam explosion (SE)

The methodology proposed by Sun and Cheng (2002) was used,
Finally, rice husk was washed with distilled water three times. For this assay, the methodology described by Sun and Cheng (2002) was used. 100 g of the rice husk was treated with saturated solution of calcium hydroxide diluted (2 L) in 1:20 ratio, at 60°C for 24 h. Finally, rice husk was washed with distilled water three times.

Alkaline hydrolysis (LIME)

For this assay, the methodology described by Sun and Cheng (2002) was used. 100 g of the rice husk was treated with saturated solution of calcium hydroxide diluted (2 L) in 1:20 ratio, at 60°C for 24 h. Finally, rice husk was washed with distilled water three times.

Fermentation

The material was exposed to a fermentation that included a pre-treatment (SE or LIME) coupled with the subsequent degradation of one of the fungal strains used. The total number of treatments was 6, with 3 replicates for each one, wherein blank was included (rise husk without pre-treatment).

The fermentation process of 3 fungi [Trichoderma sp., Aspergillus sp. (isolated from rice husk) and Rhizopus oryzae] with the best performance from the CMC assay was developed in bioreactors of 500 mL, containing 10 g of husk, 18 mL of sterile water and 2 mL of enzyme solution (leachate filter) and assayed at 50°C for 30 min. DNS reagent (1%) was added and the reducing sugar concentration was measured. Exoglucanase activity was calculated according to the equation proposed by Afolabi (1997).

Quantification of carbohydrates

Total carbohydrates were quantified by a spectrophotometer (UV-V Thermo Scientific Helios Gamma UVG154501 model), using the anthrone method described by Witham et al. (1971). Moreover, reducing sugars were quantified by the 3,5-dinitrosalicylic method, described by Miller (1959). Calibration curves were made from 10 to 100 µg mL⁻¹ for DNS method and 120-2000 µg mL⁻¹ for anthrone method, and validated according to Quattrocchi et al. (1992).

Cellulose activity

Endoglucanase activity

The methodology used for this purpose was the one proposed by Gunjikar et al. (2001) and Berghem and Pettersson (1973). A CMC solution (1%) was prepared in sodium acetate buffer (0.05 M, pH 5) and one (1) mL of this solution was incubated with 0.28 mL of the enzyme solution (leachate filter) and assayed at 50°C for 30 min. After reaction completion, DNS reagent (1%) was added. The reducing sugars concentration produced by the enzyme reaction was measured according to the equation proposed by Eveleigh et al. (2009) and Gunjikar et al. (2001): \[\text{Endoglucanase activity} \ (\text{U mL}^{-1}) = \frac{\text{reducing sugars released} \ (\text{mg})}{0.66} \]

Exoglucanase activity

In this assay, the methodology used was the one proposed by Gunjikar et al. (2001) and Berghem and Pettersson (1973). One (1) mL of tested enzyme solution (leachate filter) was added to 50 mg of filter paper previously dipped in Buffer sodium acetate (0.05 M, pH 5). After 30 min of incubation at 40°C, DNS reagent (1%) was added and the reducing sugar concentration was measured. Exoglucanase activity was calculated according to the equation proposed by Afolabi (1997) for β-glucosidase activity (U mL⁻¹): \[\text{Exoglucanase activity} \ (\text{U mL}^{-1}) = \frac{\text{reducing sugars released} \ (\text{mg})}{0.185} \]

β-Glucosidase activity (cellobiose)

The methodology used was the one proposed by Klesov (1981). Three test tubes were used: the first blank contained 1 mL of each solution (cellobiose 15 mM, citrate buffer at pH 4.8, and water), the second blank contained 1 mL of the sample (filter leachate) and 2 mL of water, and the third blank contained 1 mL of cellobiose solution, buffer and test sample. All tubes were mixed and incubated at 50°C for 30 min. DNS reagent (1%) was added and the reducing sugars concentration (glucose) was measured by the DNS method. The concentration measurement was obtained by subtracting the absorbance sample from that of the sample blank and cellobiose blank. The β-glucosidase activity was determined according to the equation of Afolabi (1997): \[\text{β-glucosidase activity} \ (\text{U mL}^{-1}) = \frac{\text{Glucose liberation} \ (\text{mg})}{0.0926} \]

All tests were made with leachates extracted from a submerged culture assay as described above. But in this case only Trichoderma sp.1 and Aspergillus sp. were used; moreover, a kinetics analysis was performed every 48 h reaching 196 h.

Statistical analysis

All variables were subjected to a Kolmogorov-Smirnov test, in order to obtain a normal data distribution. Then a one-way variance analysis (ANOVA) and a LSD test (p ≤ 0.05) were made using the Info Stat program (free version) (Di Rienzo et al., 2011). Treatments abbreviations are described in Table 1, which were employed in subsequent graphs.

RESULTS AND DISCUSSION

As a result of the bromatological test applied, percentages of cellulose, hemicellulose and lignin were determined

<table>
<thead>
<tr>
<th>Pre-treatment</th>
<th>Trichoderma sp.</th>
<th>Aspergillus sp.</th>
<th>Rhizopus oryzae</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>T.SE</td>
<td>A.SE</td>
<td>R.SE</td>
</tr>
<tr>
<td>LIME</td>
<td>T.LIME</td>
<td>A.LIME</td>
<td>R.LIME</td>
</tr>
<tr>
<td>BLANCK</td>
<td>T.WT</td>
<td>A.WT</td>
<td>R.WT</td>
</tr>
</tbody>
</table>

SE: Steam explosion; LIME: Alkaline hydrolysis; Blank: rise husk without pre-treatment.
The fungus growth. Husk degradation tests were done with those Trichoderma sp.1 as the ones with the highest speed probably for its capacity to grow in different substrates. Some of the fungal strains (R. oryzae, T. reesei, 1, 2, 3, 4, 5) were present in the microbiology laboratory and Aspergillus sp. was recovered from waste. Growth assay on one material cellulosic like CMC allowed the identification of the cellulolytic activity from the strains used as shown in Figure 1. This allowed the identification of R. oryzae, Aspergillus sp. and Trichoderma sp.1 as the ones with the highest speed growth. Husk degradation tests were done with those strains. The fungus R. oryzae filled Petri dish in just 48 h, probably for its capacity to grow in different substrates.

Quantification of carbohydrates

The statistical analysis showed that there is no significant difference between the applied pretreatments; however, the best performance was the one showed by steam explosion. This treatment released 878.26 µg of total carbohydrates, generating 2.9 (304.44 µg) and 1.4 (643.44 µg) more than those released from the treated (LIME) and untreated husk, respectively. Regarding reducing sugars, the untreated material was the top performer: it released 509.56 µg, generating 1.5 (343.15 µg) and 1.3 (387.49 µg) more than those released with the LIME and steam explosion pre-treatments respectively (Figure 2).

As shown in Figures 2 and 3, the steam explosion pre-treatment favored carbohydrate release. Probably this effect is due to the physical and chemical changes that may occur in this process, such as depolymerisation and breakage of fiber and links with the subsequent release of oligosaccharides; processes that have been previously described by Sun and Cheng (2002). Nonetheless, the performance of reducing sugar release was significantly lower, probably due to other factors such as substrate fungal colonization and their enzymatic efficiency.

Likewise, between the two most efficient fungi (Aspergillus sp., and Trichoderma sp.1) statistically significant differences were observed. Aspergillus sp. released more reducing sugars and Trichoderma sp. 1 produced the largest amount of total carbohydrates (probably related to the β-glucosidases production, responsible for monomeric sugars release). This performance was also observed in Trichoderma reesei strains as previously reported by Sánchez (2009) and Valverde et al. (2007). This will be clarified later in the enzymatic activity discussion.

Table 2. Bromatological test results from rice husk.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose (%)</td>
<td>37.63</td>
</tr>
<tr>
<td>Hemicellulose (%)</td>
<td>10.23</td>
</tr>
<tr>
<td>Lignin (%)</td>
<td>12.5</td>
</tr>
<tr>
<td>Humidity (%)</td>
<td>11</td>
</tr>
<tr>
<td>Cinder (%)</td>
<td>19</td>
</tr>
<tr>
<td>Crude Protein (%)</td>
<td>1.7</td>
</tr>
<tr>
<td>Ether extract (%)</td>
<td>2.6</td>
</tr>
<tr>
<td>Brute protein (%)</td>
<td>34</td>
</tr>
<tr>
<td>Nitrogen (%)</td>
<td>0.27</td>
</tr>
<tr>
<td>Potassium (%K)</td>
<td>0.31</td>
</tr>
<tr>
<td>Phosphorus (%P)</td>
<td>0.56</td>
</tr>
<tr>
<td>Cooper (mg Kg⁻¹ Cu)</td>
<td>1.2</td>
</tr>
<tr>
<td>Zinc (mg Kg⁻¹ Zn)</td>
<td>18</td>
</tr>
<tr>
<td>Iron (mg Kg⁻¹ Fe)</td>
<td>12</td>
</tr>
<tr>
<td>Manganese (mg Kg⁻¹ Mn)</td>
<td>39</td>
</tr>
<tr>
<td>Bore</td>
<td>ND</td>
</tr>
<tr>
<td>Sulfur (%S)</td>
<td>0.20</td>
</tr>
<tr>
<td>Sodium (mg Kg⁻¹ NA)</td>
<td>46</td>
</tr>
</tbody>
</table>

These results were used in the calculation of the material conversion into total carbohydrates and reducing sugars. These findings were compared with reports from other authors regarding the same waste (rice husk), and similar results to those reported were obtained by Sánchez (2009) and Valverde et al. (2007).

The ash (19%) indicated the presence of minerals, such as manganese (39 mg kg⁻¹), iron (12 mg kg⁻¹) and zinc (18 mg kg⁻¹). Likewise, other minerals were found, but in smaller proportions. It is noteworthy that some of the minerals (manganese, iron and zinc) are part of the most widely culture media used in cellulose degradation studies.

Growth kinetics

Some of the fungal strains (R. oryzae, T. reesei and Trichoderma 1, 2, 3, 4, 5) were present in the microbiology laboratory and Aspergillus sp. was recovered from waste. Growth assay on one material cellulosic like CMC allowed the identification of the cellulolytic activity from the strains used as shown in Figure 1. This allowed the identification of R. oryzae, Aspergillus sp. and Trichoderma sp.1 as the ones with the highest speed growth. Husk degradation tests were done with those strains. The fungus R. oryzae filled Petri dish in just 48 h, probably for its capacity to grow in different substrates.

Cellulase activity

Endoglucanase activity Strains of Aspergillus sp. and Trichoderma sp. 1 showed similar performance during...
Figure 1. Growth kinetics from strains used in agar CMC (2%). T. 1, *Trichoderma* sp 1; T. 2, *Trichoderma* sp 2; T. 3, *Trichoderma* sp 3; T. 4, *Trichoderma* sp 4; T. 5, *Trichoderma* sp 5; T. reseei, *Trichoderma reesei*; A. sp (Asl), *Aspergillus* sp; A. niger, *Aspergillus niger*; R. oryzae, *Rhizopus oryzae*.

Figure 2. Least significant difference (LSD) of treatments. LIME, Rhizopus-LIME; A.LIME, Aspergillus-LIME; T.LIME, Trichoderma-LIME; R.WT, Rhizopus-Without treatment; A.WT, Aspergillus-Without treatment; T.WT, Trichoderma-Without treatment; R.SE, Rhizopus-steam explosion; A.SE, Aspergillus steam-explosion; T.SE, Trichoderma steam-explosion.
Figure 3. Least significant difference (LSD) treatments. T.LIME (Trichoderma-LIME), R.LIME (Rhizopus-LIME), A.LIME (Aspergillus-LIME), T.SE (Trichoderma steam-explosion), R.SE (Rhizopus-steam explosion), R.WT (Rhizopus-Without treatment), A.SE (Aspergillus steam-explosion), T.WT (Trichoderma-Without treatment), A.WT (Aspergillus-Without treatment) in the release of reducing sugars.

Figure 4. Kinetics of total carbohydrates released by the treatment used. R.LIME, Rhizopus-LIME; A.LIME, Aspergillus-LIME; T.LIME, Trichoderma-LIME; R.WT, Rhizopus-Without treatment; A.WT, Aspergillus-Without treatment; T.WT, Trichoderma-Without treatment; R.SE, Rhizopus-steam explosion; A.SE, Aspergillus steam-explosion; T.SE, Trichoderma steam-explosion.
monitoring, with a unique difference at 240 h wherein *Trichoderma* sp.1 showed higher endoglucanase activity. This result contrasts with previous reports, which indicate that the activity of *Aspergillus* genus has been greater than that of *Trichoderma*. In the present study, at day 10, *Trichoderma* sp.1 showed the highest activity, with 0.350 IU mL\(^{-1}\) followed by *Aspergillus* sp. with a production of 0.225 IU mL\(^{-1}\), as shown in Figure 6. Furthermore, the fungal endoglucanases from the strains assessed, proved to have a production comparable with others enzymes from different investigations performed on different substrates (Ahamed and Vermette, 2010).

Exoglucanase activity

The exoglucanase activity showed no significant differences among the used fungi (Figure 7), emphasizing that the activity is the same on this substrate. However, different performances are observed in the literature when compared strains from the same genus are placed on filter paper substrates (Fang et al., 2010). This indicates the importance of studying the performance of several strains on different substrates and under different culture conditions.

β-Glucosidase activity

Regarding this activity, there was a similarity between *Aspergillus* sp. and *Trichoderma* sp.1 with maximum values of 0.150 and 0.140 IU mL\(^{-1}\) at 192 and 288 h, respectively (Figure 8). The β-glucosidase activity in *Trichoderma* sp.1 was lower than the one of *Aspergillus* sp.. This is contrary to the reports of Manjarrés et al. (2011), Fang et al. (2010) and Flachner et al. (1999), wherein an inverse performance is pointed, compared with the one found in the present study. Finally, the enzymatic assay allowed the relating of the endoglucanases production, the greater release of total carbohydrates in *Trichoderma* sp. 1 as well as the greater production of reducing sugars and β-glucosidase in *Aspergillus* sp.

Conclusions

The study presented here showed the efficiency of using filamentous fungi for splitting rice husk. It allows the production of significant amounts of fermentable sugars, which can be subsequently used to produce various added-value compounds, including ethanol. Native fungal
Figure 6. Enzyme kinetics of two fungal endoglucanase activity with increased release of total carbohydrate and reducing sugars (*Trichoderma* sp 1 and *Aspergillus* spp).

Figure 7. Enzyme kinetics of two fungal exoglucanase activity with increased release of total carbohydrate and reducing sugars (*Trichoderma* sp 1 and *Aspergillus* spp).
strains from husk, such as *Aspergillus* sp., offer a potential comparable with that of fungi widely used for similar purposes, and hence, may be used in the cellulosic materials degradation processes.

Conflict of Interests

The author(s) have not declared any conflict of interest.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the Research and Development office of University of Tolima for funding the study presented here.

REFERENCES

Chitinolytic assay for *Trichoderma* species isolated from different geographical locations of Uttar Pradesh

Sonika Pandey*, Mohammad Shahid, Mukesh Srivastava, Antima Sharma, Anuradha Singh, Vipul Kumar and Shyam Jee Gupta

Biocontrol Laboratory, Department of Plant Pathology, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, U.P. India.

Received 15 August, 2014; Accepted 13 October, 2014

Chitin is the most commonly available polymer on the earth. Cell walls of most of the fungi are made up of chitin. As we all know that *Trichoderma* produces a wide variety of cell wall degrading enzymes (CWDEs) such as chitinase, xylanase, glucanase and cellulase. Out of these CWDEs chitinase is of prime importance as it is the building block of fungal cell walls. For the detection of chitinase activity we used a simple and sensitive method. We supplemented the chitinase detection media with colloidal chitin as a carbon source and bromocresol purple as pH indicator dye. This method is easy, sensitive, reproducible and economical. Colloidal chitin derived from sea-shells and commercial chitin is supplemented as carbon source in chitinase broth and solid media for the detection of chitinolytic and exochitinase activity. The chitinolytic activities were ranged from 6.2 to 3.9 and 4.8 to 1.8 mg/ml and exochitinase activities ranged from 0.0133×10^{-3} to 0.0076×10^{-3} and 0.00609 to 0.0055×10^{-3} U/ml, respectively, with colloidal chitin derived from commercial chitin and sea-shells.

Key words: Bromocresol purple, chitin, N-acetyl-β-D-glucosamine, p-nitrophenol, *trichoderma*, volume activity.

INTRODUCTION

Chitin is an unbranched polymer of 1,4-β-linked N-acetyl-D-glucosamine (NAGA). Chitin is the building block of fungal cell walls. Chitinase are enzyme that degrade the chitin by breaking the β-1,4 linkages. Chitinases occur in a wide variety of microorganisms including bacteria, fungi, insects etc. In fungi, chitinases are believed to have autolytic, nutritional and morphogenetic roles. In mycoparasitic fungi, chitinases are associated with the degradation of cell walls. *Trichoderma* spp. is the most commonly used biocontrol agents against several soil-borne fungal plant pathogens such as *Sclerotium rolfsii*, *Rhizoctonia solani* and *Pythium* spp. Etc Bhattachrya et al., 2007). Members of the fungal genus *Trichoderma* spp. produce cell wall degrading enzymes such as glucanase, chitinase xylanase etc., that are involved in the mycoparasitic action. Chitinase enzymes are of great importance as compared to other CWDEs, as fungal cell wall is made up of chitin that is why chitinolytic enzyme degrade phytopathogenic fungi easily (González et al., 2012). *Trichoderma* spp. employ different strategies of defense against phytopathogens such...
as: competition for space and nutrients, secretion of cell wall degrading enzymes, induction of resistance etc. (Rifat et al. 2013). *Trichoderma* inhibit the hyphal growth of phytopathogens by coiling, it uses hooks to penetrate the fungal cell walls with the help of cell wall degrading enzymes such as xylanase, chitinase, cellulase etc., among the different mechanisms used by *Trichoderma* spp. parasitism, competition and antibiosis are the main mechanisms which are involved in mycoparasitic action. Cell wall degrading enzymes are the key factors which involved in the cell wall destruction of pathogen (Kowsari et al., 2014).

MATERIALS AND METHODS

Isolation and maintenance of fungal isolates

Trichoderma strains were isolated from soil samples collected from the different geographical locations of U.P. and were maintained on potato dextrose agar (PDA) plates. Colloidal chitin used as a carbon source was derived from sea-shell and commercial chitin (CDH). For colloidal chitin preparation, acid hydrolysis was done by conc. HCl during acid hydrolysis of which the flasks were kept in constant stirring using magnetic stirrer for 24 h. After 24 h, this chitin and acid mixture was kept at 4°C and left for overnight. After incubation period the acid mixture is treated with 2000 ml of ice cold 95% ethanol and kept at 26°C for overnight. After incubation period, the acid mixture was kept at 4°C and left for overnight. After incubation period the acid mixture is treated with 2000 ml of ice cold 95% ethanol and kept at 26°C for overnight. After incubation period, it was centrifuged at 3000 rpm for 20 min at 4°C. After centrifugation the supernatant was discarded while pellet is washed with distilled water by centrifugation at 3000 rpm for 5 min, till the smell of alcohol is removed (Saraswathi et al. 2013). The colloidal chitin thus obtained has a soft and white consistency with 90 to 95% moisture and stored at 4°C till use (Roberts and Selitrennikoff, 1988).

Agar medium for detection of chitinase-positive microorganisms

Chitinase detection medium supplemented with colloidal chitin as carbon source was used for the chitinase plate assay (Shahidi et al., 2005). Lukewarm media was poured into the Petri plates and allowed to solidify; after solidification, fresh culture plugs of the *Trichoderma* spp. tested for chitinase activity were placed in the middle of the plate. Plates were incubated at 25±2°C and were observed for purple colour zone formation. Chitinase activity exhibited by seven *Trichoderma* spp. was determined by measuring the diameter of purple color zone after three to seven days of incubation (Agrawal and Kotasthane, 2012) (Figures 1 to 4).

Total chitinolytic activity

Total chitinolytic activity was calculated by measuring the release of reducing saccharised from carbon source (colloidal chitin). A reaction mixture was prepared containing 1 ml culture supernatant and 0.3 ml of sodium acetate buffer (pH 4.6); to this mixture, 0.2 ml of colloidal chitin was added and incubated for 20 h at 40°C. After incubation, the contents of the tube were centrifuged at 13000 rpm for 5 min at 5°C. After centrifugation 0.75 ml of supernatant was taken and 0.25 ml of 1% salicylic acid was added to the mixture 1 ml of 0.7 M NaOH and 10 M NaOH were added and heated at 100°C for 5 min. OD of the reaction mixture was taken at 582 nm. Reference curve was made with N-acetyl-β-D-glucosamine (NAGA). Chitinolytic activity was expressed in terms of mg/ml (Muzzarelli et al 1997).

Exochitinase activity

Exochitinase activity was measured by the release of p-nitrophenol (pNP) from p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNPg). A reaction mixture was prepared containing 25 ul of culture filtrate and 0.2 ml of p-nitrophenol solution, to this reaction mixture 1 ml of 0.1 M sodium acetate buffer was added. This reaction mixture was incubated at 40°C for 20 h. After incubation period, contents of the tube were centrifuged at 13000 rpm. After centrifugation, 0.125 M sodium tertaborate- sodium hydroxide buffer was added to the 0.6 ml of supernatant. OD was taken at 400 nm.

RESULTS AND DISCUSSION

When *Trichoderma* strains were inoculated on chitinase media containing colloidal chitin (carbon source) and bromocresol purple (pH indicator dye) breakdown of
chitin occurs into N-acetyl glucosamine which causes a change in pH (acidic to alkaline). This change in pH is indicated by the change in colour of media from yellow to purple zone surrounding the inoculated culture plug area.

Chitinase activity exhibited by the seven strains of *Trichoderma* was evaluated through the formation of purple coloured zone after three and seven days of incubation. No complicated protocols were adopted for the evaluation of chitinase activity (Gomez et al., 2004). Total chitinolytic activity was assayed by measuring the release of reducing saccharides from colloidal chitin (Table 1).

Standard curve generated by the use of NAGA is used to evaluate the reducing saccharide conc. The observations were in close resemblance with those De la Cruz et al. (1992) and Lorito et al. (1994). Production of hydrolytic enzymes is greatly affected by the cultural conditions. For exochitinase activity, release of p-nitrophenol (pNP) from p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNPg) was measured. The volume activity

Figure 2. Chitinase activity observed after 3 days of inoculation in chitinase detection media supplemented with seashell chitin (Set-1).

Figure 3. Chitinase activity observed after 7 days of inoculation in chitinase detection media supplemented with seashell chitin (Set-2).
Figure 4. Chitinase activity observed after 7 days of inoculation in chitinase detection media supplemented with colloidal chitin (Set-1).

Table 1. Chitinolytic and exochitinase activity of *Trichoderma* species.

<table>
<thead>
<tr>
<th>Isolate name</th>
<th>Total chitinolytic activity (mg/ml)</th>
<th>Exochitinase activity (U/ml X 10^-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Colloidal chitin</td>
<td>Seashell chitin</td>
</tr>
<tr>
<td>T. viride</td>
<td>6.0</td>
<td>4.3</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>6.2</td>
<td>4.8</td>
</tr>
<tr>
<td>T. asperellum</td>
<td>5.4</td>
<td>3.3</td>
</tr>
<tr>
<td>T. koningii</td>
<td>5.5</td>
<td>2</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>3.9</td>
<td>3.3</td>
</tr>
<tr>
<td>T. longibrachiatum</td>
<td>5.6</td>
<td>3.1</td>
</tr>
<tr>
<td>T. virens</td>
<td>5.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

of pNP ranged from 0.0125 to 0.0076 × 10^-3 U/ml and 0.0069 to 0.0055 × 10^-3 U/ml in commercial chitin and sea shell derived colloidal chitins, respectively.

Conclusion

Based on the results of above observations, it is clear that for choosing an effective biocontrol agent, it is essential to provide the optimum cultural conditions. The medium used here for chitinase assay was very effective and economical. The medium used here is very friendly and sensitive. Formation of the purple color zone was found to be the easier alternative method for the selection of chitinolytic strains of *Trichoderma* species.

Conflict of Interests

The author(s) have not declared any conflict of interest.

REFERENCES

Rifat Hamid, Minhaj A. Khan, Mahboob Ahmad, Malik Mobeen Ahmad, Malik Zainul Abdin, Javed Musarrat, Saleem Javed (2013). Chitinases:

Comparative acute toxicity and oxidative stress responses in tadpoles of *Amietophrynus regularis* exposed to refined petroleum products, unused and spent engine oils

Amaeze, Nnamdi Henry*, Onadeko, Abiodun and Nwosu, Chinwendu Comfort

Ecotoxicology Laboratory, Department of Zoology, University of Lagos. Akoka-Yaba, Lagos, Nigeria.

The relative acute toxicity of refined petroleum (diesel, kerosene and petrol), unused and spent engine oils as well as their abilities to alter the activities of superoxide dismutase (SOD) and cause lipid peroxidation in tadpoles of the common African toad, *Amietophrynus regularis* were evaluated. After 48 h of exposures, kerosene was found to be the most toxic (LC$_{50}$ = 4930 mg/L) while the least toxic was unused engine oil (LC$_{50}$ = 7777 mg/L). However, by 96 h of exposure, spent engine oil was found to be the most toxic (LC$_{50}$ = 2915 mg/L) while unused engine oil remained the least toxic (LC$_{50}$ = 7353 mg/L). Further, assessment of oxidative stress markers was conducted using sub lethal concentrations of the test compounds (1/100th 96 h LC$_{50}$). There was significant inhibition of SOD in exposed tadpoles compared to the control (P<0.05) with the least activity recorded in tadpoles exposed to petrol, while unused engine oil recorded the highest. The results of the lipid peroxidation assay, determined by measuring the levels of malondialdehyde (MDA) indicated significantly higher levels in the exposed individuals compared to the control. Unused engine oil caused the highest level of MDA production while diesel induced the least level. Tadpoles exposed to diesel, kerosene, petrol and spent engine oil exhibited consistent responses among the three test parameters, however inconsistent responses were observed in tadpoles exposed to unused engine oils. The relevance of the comparisons in biomarker selection and ecotoxicology were discussed.

Key words: Petroleum products, toxicity indices, tadpoles, oxidative stress.

INTRODUCTION

Crude oil refining, transportation and use according to Pacheco and Santos (2001), is associated with spillage of petroleum products which is one of the most important pollutant of concern in aquatic ecotoxicology. Their

*Corresponding author. E-mail: nnamdiamaeze@gmail.com. Tel: +2347066302345.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
toxicological effects have been evaluated in a number of fish species (Sunmonu and Oloyede, 2007; Simonato et al., 2008; Jahanbakhshi and Hedayati, 2012) given the inevitability of contact and possible uptake once they enter aquatic ecosystems.

In Nigeria, petroleum product spills apart from those occurring during refining of crude oil may also result during transfers at the jetty, accidents involving tankers, dispensing of products to vehicles as well as vehicular and generator repairs. Since, the advent of crude oil exploration in the country in 1956 (Akpofofe et al., 2000) spillages of crude and petroleum products have been commonplace, raising concerns regarding their polluting effects in aquatic ecosystems (Kadafa, 2012). Petroleum products are a mixture of hydrocarbons and additives which could produce free radicals (Achuba and Osakwe, 2003). Free radicals are one of the major precursors to oxidative stress, binding with the unsaturated fatty acids of the phospholipids of cell membranes, resulting in lipid peroxidation damage (Timbrell, 2000).

Exposure of animals to pollutants such as hydrocarbons in their natural environment and laboratory conditions has been reported to result in oxidative stress (Esiegelbe et al., 2012). Oxidative stress is a state in which the balance between the production of reactive oxygen species (ROS) and their removal by antioxidant defences before they can cause damage is upset (Collins, 2009). Although biological systems, are constantly exposed to free radicals and ROS, there exist a repertoire of antioxidative stress enzymes which naturally serve to minimize oxidative damage to cells (Azqueta et al., 2009).

High concentrations of toxicants or chronic expo-sures may overwhelm the anti-oxidative stress mecha-nisms resulting in oxidative stress (Reznick et al., 1998). Oxidative damage to cell membranes leads to the release of by-products such as alkanes, ketones and aldehydes including 4-hydroxy-2-nonenal, 4-hydroxy-2-hexenal and malondialdehyde (MDA) (Zielinski and Portner, 2000). The presence and activities of enzymes such as superoxide dismutase, catalase and glutathione constit-utes a formidable defence system against oxidative stress (Brucka-Jastrzębska, 2010). Superoxide dismu-tase (SOD) catalytically breaks down super oxide radicals generated in peroxisomes and mitochondria into oxygen and hydrogen peroxides (Li et al., 1995) making them less lipid soluble and more liable to biochemical action.

The consistency in reports regarding the link between exposures to pollutants and subsequent lipid peroxidation damage (Sreejai and Jaya, 2010; Brucka-Jastrzębska, 2010; Esiegelbe et al., 2012) implies that they could be suitable candidates for use as biomarkers. Given the simplistic nature of overall measured responses in making toxicological deductions, the use of biomarkers has become commonplace.

This study investigates the acute toxicity and level of oxidative damage in tadpoles of the African common toad, *Amietophrynus regularis* (Reuss, 1833) following exposures to acute and sub-lethal concentrations of petroleum products (diesel, kerosene and petrol) and engine oils (spent and unused) to explain the possible mechanism of toxic action as a continuation of the discourse on potential biomarkers for environmental pollution monitoring. *A. regularis* is a common tadpole in the rainforests and mangrove swamps of southern Nigeria (Onadeko, and Rodel, 2009). Urbanization and forest clearance destroys their natural habitats and brings them closer to sites of human activities which further threaten their survival. Amphibians worldwide are reported to be on the decline and the drivers have been reported to include global warming (Houilihan, 2000), disease (Kiesecker, 2001) and in some cases aquatic pollution (Ezemonye and Tongo, 2010). It is com-monplace to sight their tadpoles in ponds and open gutters which are receptacles and easy dumping sites for split petroleum products and spent engine oils. This therefore justifies a study evaluating the toxicities of these products to the tadpoles as well as the indicators of oxidative stress so as to ascertain the extent to which they pose threats to their survival. The enzyme, SOD together with levels of some metabolites, such as MDA are used as biomarkers of oxidative stress (Idowu et al., 2014). Thus, their levels in fishes exposed to petroleum products and engine oils would give an indication of the stress levels in the exposed toads.

MATERIALS AND METHODS

Collection and acclimatization of tadpoles

Tadpoles of African common toad, *A. regularis* (Approximate Average length =0.80±0.15 cm), which are commonly found in ponds and gutters were collected from an undisturbed pond (N 6° 31‘ 1.5960” E 3° 23‘ 59.7840”) at the University of Lagos campus, Lagos, Nigeria, during the breeding season (July 2013), 1 to 2 days after hatching. Hand nets were used in the collection of the tadpoles and care was taken not to agitate them during the process. The tadpoles were transferred into plastic cans containing their habitat water collected from the same pond before transporting to the Ecotoxicology laboratory about 50 m away. The natural pond water was also used during the acclimatization of tadpoles in the laboratory. They were kept in large plastic tanks (L x w x h = 60 cm x 35 cm x 30 cm), half-filled with water and aerated with a 220 v air pump so as to maintain dissolved oxygen levels in the tank. They were left to acclimatize to laboratory conditions (temperature, 26 to 28°C; humidity, 65 to 75%; Light: dark, 8:14 h) for a minimum of 72 h before using them in bioassays. Only tadpoles in tanks having mortality of less than 1% were employed for the study.

Test compounds

Refined petroleum products (Diesel (Automotive Gas Oil-AGO), kerosene (Dual Purpose Kerosene- DPK), petrol (Premium Motor Spirit- PMS) approved for use in automobiles in Nigeria by the Department of Petroleum Resources (DPR) and engine oils (Motor
Oils- SAE 40: unused and spent) were used for this study. The petroleum products and unused engine oil were of the global grade imported for use in Nigeria. Their specific gravities were diesel: 990 mg, kerosene: 1000 mg, petrol: 990 mg, unused engine oil: 1010 mg and for spent engine oil, 1100 mg. They were purchased in plastic kegs from a filling station at Bariga, near the University of Lagos campus. The spent engine (fuel) oil was collected in 1 L plastic keg from an Auto mechanic workshop also at Bariga. The collected petroleum products and engine oils were stored in the laboratory at room temperature of 26 - 28°C prior to use.

Acute toxicity bioassay

Preliminary tests were carried out to determine suitable range of bioassay concentrations for the study in an initial test which lasted for 96 h. The range of bioassay concentrations selected for the definitive tests were as follows: diesel: 2970, 4950, 7425, 9900 mg/L and untreated control; kerosene: 1500, 3000, 5000, 6000, 7000 mg/L and untreated control; petrol: 2970, 4950, 6930, 9900 mg/L and untreated control; unused engine oil: 7070, 7575, 8080, 10100 mg/L and untreated control; used engine oil: 1100, 3300, 5500, 7700, 8800 mg/L and untreated control. Four active tadpoles (7 to 12 days old) were randomly selected into an experimental tank (L x W x H = 13.5 x 11 x 7 cm) containing 500 ml of their natural habitat water contaminated with the respective concentrations of toxicants. Each experiment was replicated twice to make a total of 16 tadpoles per concentration. Mortality assessments was carried out every 24 h over a 96 h period and tadpoles were considered dead if there were no body movements or they become turned upside down and did not respond to repeated gentle prodding with the blunt end of forceps. Bioassay conditions were same as for acclimatization.

Assessment of sub lethal effect

The tadpoles were further exposed to concentrations equivalent to 1/100th of the calculated LC50 for 28 days. Given the limitation of size, whole tadpoles were used for the determination of the activities of SOD and levels of MDA. The whole body was homogenised (9% w/v) in 100% methanol and centrifuged at 10,000 rpm for 15 min at 4°C using the technique of Hermes-Lima et al. (1995) as described in King et al. (2012) and the supernatant was used for the assays.

Measurement of superoxide dismutase activity

The SOD enzyme activity was measured by its ability to inhibit the antioxidation of epinephrine (that is, determining the difference in the level of superoxide anion production and decomposition) at an absorbance of 450 nm, using the method of Sun and Zigma (1978). The concentrations so determined were expressed as unit/mg protein, of which one unit is defined as the amount of enzyme needed to inhibit 50% epinephrine reduction per minute and per mg of protein at 25°C and pH 7.8.

Lipid peroxidation assay

The thiobarbituric acid reaction (TBARS) assay was used to determine the level of lipid peroxidation in the supernatant of the tissue homogenates. Specifically, MDA, the measure of lipid peroxidation damage was determined by measuring absorbance at 535 nm in a spectrophotomer (Yagi, 1998).

Results

The results show that the SOD activity was significantly
Table 1. Relative 48 h acute toxicity (mg/L) of kerosene, diesel, petrol, spent engine oil, and engine oil acting singly against tadpole (*Amietophrynus regularis*).

<table>
<thead>
<tr>
<th>Test compounds (ml/L)</th>
<th>LC5 (confidence interval)</th>
<th>LC50 (confidence interval)</th>
<th>LC95 (confidence interval)</th>
<th>SE</th>
<th>DF</th>
<th>Probit line equation</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerosene</td>
<td>2850 (1030-3720)</td>
<td>4930 (3830-5960)</td>
<td>8530 (6750-20230)</td>
<td>2.20</td>
<td>2</td>
<td>y=1.59+3.01x</td>
<td>1</td>
</tr>
<tr>
<td>Diesel</td>
<td>1881 (0-3445)</td>
<td>7286 (4455-129650)</td>
<td>29957.4 (13186-1156062)</td>
<td>1.28</td>
<td>2</td>
<td>y=1.03+2.25x</td>
<td>1.5</td>
</tr>
<tr>
<td>Petrol</td>
<td>2693 (426-3990)</td>
<td>6702 (4059-10949)</td>
<td>16682 (10474-163657)</td>
<td>1.46</td>
<td>2</td>
<td>y=1.17+2.95x</td>
<td>1.4</td>
</tr>
<tr>
<td>Unused engine oil</td>
<td>5555 (1071-6626)</td>
<td>7777 (6252-8878)</td>
<td>10898 (9282-46904)</td>
<td>4.70</td>
<td>2</td>
<td>y=4.23+2.36x</td>
<td>1.6</td>
</tr>
<tr>
<td>Spent engine oil</td>
<td>2761 (22-4301)</td>
<td>7524 (5478-24673)</td>
<td>20515 (11506-19283242)</td>
<td>1.65</td>
<td>2</td>
<td>y=1.28+2.46x</td>
<td>1.4</td>
</tr>
</tbody>
</table>

SE = Standard error; DF = degree of freedom; TF= toxicity factor.

Table 2. Relative 96 h acute toxicity (mg/L) of kerosene, diesel, petrol, spent engine oil, and engine oil acting singly against tadpole (*Amietophrynus regularis*).

<table>
<thead>
<tr>
<th>Test compounds (ml/L)</th>
<th>LC5 (Confidence interval)</th>
<th>LC50 (Confidence interval)</th>
<th>LC95 (Confidence interval)</th>
<th>SE</th>
<th>DF</th>
<th>Probit line equation</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerosene</td>
<td>1120 (70-1990)</td>
<td>3880 (2400-6610)</td>
<td>13480 (7430-258180)</td>
<td>1.08</td>
<td>2</td>
<td>y=0.67+2.69x</td>
<td>1.3</td>
</tr>
<tr>
<td>Diesel</td>
<td>2456 (653-3495)</td>
<td>5207 (3703-5801)</td>
<td>11207 (8088-34046)</td>
<td>1.51</td>
<td>2</td>
<td>y=1.17+3.07x</td>
<td>1.8</td>
</tr>
<tr>
<td>Petrol</td>
<td>1436 (39.6-2564)</td>
<td>3871 (1535-5267)</td>
<td>10454 (7019-100713)</td>
<td>1.45</td>
<td>2</td>
<td>y=1.05+2.16x</td>
<td>1.3</td>
</tr>
<tr>
<td>Unused engine oil</td>
<td>6020 (111-6777)</td>
<td>7353 (4050-7929)</td>
<td>8969 (8161-171983)</td>
<td>9.16</td>
<td>2</td>
<td>y=8.03+2.04x</td>
<td>2.5</td>
</tr>
<tr>
<td>Spent engine oil</td>
<td>1023 (198-1727)</td>
<td>2915 (1727-4202)</td>
<td>8294 (5401-27973)</td>
<td>1.03</td>
<td>2</td>
<td>y=0.58+2.62x</td>
<td>1.0</td>
</tr>
</tbody>
</table>

SE = Standard error; DF = degree of freedom; TF= toxicity factor.

Figure 1. Comparison of the level of lipid peroxidation (MDA) in *Amietophrynus regularis* exposed to 1/100th of the respective LC50 of the petroleum products and engine oils.
Amaeze et al. 4255

Figure 2. Comparison of the superoxide dismutase (SOD) activity in *Amietophrynus regularis* exposed to 1/100th of the respective LC₅₀ of the petroleum products and engine oils.

Table 3. Assessment of relationship between toxicity of the petroleum products, superoxide dismutase (SOD) activity and lipid peroxidation product (MDA- Malondialdehyde) in *Amietophrynus regularis*.

<table>
<thead>
<tr>
<th>Petroleum products</th>
<th>96 h LC₅₀</th>
<th>SOD activity</th>
<th>MDA</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>(lowest)</td>
</tr>
<tr>
<td>Kerosene</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>Very consistent</td>
</tr>
<tr>
<td>Petrol</td>
<td>3</td>
<td>5 (lowest)</td>
<td>4</td>
<td>Consistent</td>
</tr>
<tr>
<td>Spent engine oil</td>
<td>1 (most toxic)</td>
<td>2</td>
<td>3</td>
<td>Consistent</td>
</tr>
<tr>
<td>Unused engine oil</td>
<td>5 (least toxic)</td>
<td>1 (highest)</td>
<td>1 (highest)</td>
<td>Inconsistent</td>
</tr>
</tbody>
</table>

N.B, Similar alphabets implies no significant relationship (P>0.05).

inhibited (P<0.05) in the tadpoles exposed to sub lethal concentrations (1/100th LC₅₀) of the petroleum products and engine oils compared to the control after the 28 days period (Figure 2). Among those exposed to the petroleum products, petrol recorded the least activity, followed by diesel, kerosene and spent engine oil while unused engine oil had the highest activity. There was no significant difference (P>0.05) in SOD activity among the exposed tadpoles. Overall, the assessment of the relationship between the toxicity of the petroleum procts and engine oils with their respective SOD activities as well as MDA levels by way of ranking (1-5; 1= highest, 5= least/lowest) indicated that there were no significant difference (P>0.05) between all three parameters. Summarily, the results indicated that diesel and kerosene showed very consistent relationships, petrol and kerosene showed consistent relationship while unused engine oil which had the least toxicity but the highest levels of SOD activity and MDA was designated inconsistent (Table 3). The overall comparison of the ranks for the 96 h LC₅₀ with the respective antioxidative stress markers (that is, SOD and MDA) using independent sample t test indicated that there was no significant difference (P>0.05) between each pair. However, there was a strong positive correlation (r=0.8) between the SOD and MDA ranks for the test groups.

DISCUSSION

Continued reliance of motor vehicles, generating sets, and other equipments fuelled by petroleum products make the potential for spills a continued environmental risk. There is, therefore a need for constant investigation...
Amietophrynus regularis are acutely toxic to the tadpoles of the common African (diesel, kerosene, petrol), unused and spent engine oil amphibians. This study shows that petroleum products of their toxic effects on sensitive wildlife species such as early life stages of catfishes and hermit crabs. Lipohilic pollutants such as petroleum hydrocarbons may easily diffuse through their skin, resulting in toxicity to the tadpoles reported in this study. Ayoola and Akaeze (2012) however reported 96 h LC50 value of 562 ml/L in catfishes exposed to spent oil, a value which is over 200 times less than that observed for tadpoles in this study. Besides differences in species susceptibility, this may be due to the wide variation in the constituents of the spent engine oils and other practices in the automobile workshops from where they were collected. Thus, the difficulty in comparing responses between species as well as used/spent engine oils is hereby noted.

The assessment of MDA, the by-product of oxidative damage to the phospholipids of cell membranes indicated significant harm to cells in tadpoles exposed to the petroleum products relative to the control individuals. Lipid peroxidation damage is one of the first indicators of damage to cells by toxicants and represents a key biomarker of oxidative stress (Cini et al., 1994). Much of the work on lipid peroxidation resulting from petroleum products and their components in Nigeria have been focused on fishes (Achuba and Osakwe, 2003; Avci et al., 2005; Doherty, 2014). Avci et al. (2005) have earlier reported lipid peroxidation in the muscles and liver of fishes obtained from a river contaminated petroleum products from a nearby refiner. This study therefore provides an opportunity to extend the knowledge of the oxidative stress impacts of petroleum products on tadpoles of the common African toad.

The results from the biochemical assays indicated that there was inhibition of SOD activities in the exposed tadpoles relative to the control. Inhibition of SOD activities have been reported in the African sharp tooth catfish (Clarias gariepinus) exposed to polycyclic aromatic hydrocarbons (Otitoloju and Olagoke, 2011). This gives credence to the possibility of oxidative stress resulting from the hydrocarbon fractions of the petroleum products and confirms results from the lipid peroxidation assay in this study. Specific petroleum hydrocarbons such as benzene, ethylbenzene, toluene and xylene have been also found to induce oxidative stress at sub lethal concentrations, in Clarias gariepinus (Doherty, 2014). SOD, though involved in the protection of biological systems from the actions of free radicals and may be overwhelmed in the event of excessive toxic onslaught, resulting in oxidative stress, a condition that may be characterized by its eventual inhibition. This therefore justifies its use as a biomarker for assessing the toxic effects and responses to toxicants in this study.

Conclusion

The findings from this study points to a largely consistent relationship between the toxicity of petroleum products and spent engine oils and their respective SOD activity and MDA levels. This conclusion is based on the fact that
rank differences between the three parameters did not exceed 1 (one) for all toxicants except for unused engine oil. The relatively consistent relationship between SOD and MDA reported in this study was also consistent with the findings of Brucka-Jastrzębska (2010) who reported inhibition of SOD which was simultaneously associated with increase in MDA in catfishes exposed to heavy metals, lead and cadmium. The importance of antioxidative enzymes as sensitive biomarkers in monitoring environmental pollution therefore cannot be downplayed owing to the large number of investigators who have demonstrated this in a variety of animal groups as documented by Otitoloju and Olagoke (2011).

This study therefore justifies the use of MDA levels and SOD activity as suitable compliments for monitoring oxidative stress resulting from exposure to petroleum products. The consistent relationship between these biomarkers and 96 h LC₅₀ values for some of the tested products is noteworthy and presents an opportunity for more investigative studies so as to understanding the mechanisms of action and make a case for their use in routine assessments of impacts of such spills in the environment.

Conflict of Interests

The author(s) have not declared any conflict of interest.

ACKNOWLEDGEMENT

We acknowledge the assistance of Late Mr. E. A. Faton, who made efforts and gave advice regarding collection of tadpoles for this study.

REFERENCES

Statistical optimization of lactic acid production by *Lactococcus lactis* strain, using the central composite experimental design

Omar Hassaïne*, Halima Zadi-Karam and Nour-Eddine Karam

Laboratoire de Biologie des Microorganismes et Biotechnologie, Department of Biotechnology, Faculty of Nature and Life Sciences, Oran University (Es-Senia), BP, 1524 El M’Naouer (31000), Oran, Algeria.

Received 19 January, 2014; Accepted 6 October, 2014

The individual and interactive effects of a total inoculums size (% v/v), fermentation temperature and skim milk dry matter added (% w/v) on the lactic acid production by *Lactococcus lactis* LCL strain were studied by quadratic response surface methodology. The central composite design (CCD) was employed to determine maximum lactic acid production at optimum values for process variables and a satisfactory fit model was realized. The mathematical relationship of the lactic acid production on the three significant independent variables can be approximated by a nonlinear polynomial model. Predicted values were found to be in a good agreement with experimental values (R^2 of 96.7% and $R^2(adj)$ of 92.1% for response Y). The result of optimization predicted by the model has shown that the maximal result for lactic acid production revolved around 92°D at the optimal condition with 2% of inoculums size, temperature at 30°C and skim milk dry matter added at a central point of 2% (w/v).

Key words: Central composite design, *Lactococcus lactis*, lactic acid production, inoculum size, temperature, skim milk dry matter.

INTRODUCTION

The manufacture of fermented foods has a long tradition. At first, there was a purely empirical principle without the connection between metabolic activity of microorganisms (so-called “house flora”) and desired changes in the product (Geisen et al., 1992). The fermentation process was used to improve shelf-life and safety of foods enabling people in moderate and cold regions to survive winter seasons and drought periods (Holzapfel, 1997). Spontaneous fermentation of foods is characterized by the participation of lactic acid bacteria, Gram-positive, catalase-positive cocci, yeasts and moulds (Buckenhüskes, 1993). Fermented milks are the most common products from which other products are also made (Thapa, 2000). Starter culture organisms used in

*Corresponding author. E-mail: omar.hassaine@hotmail.com. Tel: +213 (0)41 44 36 39. Fax: +213 (0)41 44 17 85, +213 (0)41 43 35 22.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abbreviations: RSM, Response surface method; CCD, central composite design; BBD, box-behnken design; IDF, international dairy federation; DOE, design of experiment.
fermentations belongs to a family of bacteria collectively known as the lactic acid bacteria (LAB). Fermented milks are products prepared by controlled fermentation of milk to produce acidity and flavor to desired level. Modern starter cultures are selected either as single or multiple strains, specifically due to their adaptation to the substrate or raw material (Holzapfel, 2002). The inoculation of milks with a starter culture composed of selected lactic acid bacteria that improves quality, safety, properties of standardization, including flavor and color, and shortening in the ripening time (Leroy et al., 2006; Rantsiou et al., 2005). On a technological standpoint, these bacteria are invited to play the technological part to which they were selected, namely; the production of lactic acid, aromatic compounds, and production of CO₂, bacteriocins, resistance to phages, proteolytic activity and autolytic potential (Gibbs, 1987; Frey, 1993; Huang et al., 1994; Albenzino et al., 2001; Beresford et al., 2001; Hassaine et al., 2007).

One of the most sought technological properties in lactic acid bacteria, is undoubtedly the production of lactic acid, because this activity is essential in the early stages of product processing and thereafter is mainly responsible for microbial stability of the final product through the pH decrease (Drosinos et al., 2007). This acid is widely employed as bacterial biopreservative in foods (Ray and Sandine, 1992) and recently, as monomer for the plastic acid bacteria, is undoubtedly the production of lactic acid, aromatic compounds, and production of CO₂, bacteriocins, resistance to phages, proteolytic activity and autolytic potential (Gibbs, 1987; Frey, 1993; Huang et al., 1994; Albenzino et al., 2001; Beresford et al., 2001; Hassaine et al., 2007).

These last years, the lactic acid production has received increased attention sanctioned by a considerable number of publications (Yu et al., 1997; Lei et al., 2008; Plessas et al., 2008; Yu et al., 2008; Adesokan et al., 2009; Cristian et al., 2009; de Lima et al., 2009; Yao et al., 2009; Cristian et al., 2010; de Lima et al., 2010; Abdel-Rahman et al., 2011; Coelho et al., 2011; Kostov et al., 2011; Leite et al., 2012; Dwivedi et al., 2012; Tanyildizi et al., 2012; Ghaffar et al., 2014). In these studies, wide varieties of products and raw materials from the food and/or agriculture industries have been employed for microorganism growth due to their considerable availability and low cost. Examples include cheese whey, corn steep liquor, corn syrup, distillery yeast and molasses (Lei et al., 2008; Mussatto et al., 2008; Yu et al., 2008; Ben-Kun et al., 2009; Yao et al., 2009; Abdel-Rahman et al., 2011; Gowdhaman et al., 2012).

Biotechnological processes for the production of lactic acid usually include lactic acid fermentation. There have been numerous investigations on the development of biotechnological processes for lactic acid production, with the ultimate objectives to enable the process to be more efficient and economical by using strategies for optimization, based mainly on the modeling methodology (Yu et al., 2008; Cristian et al., 2009; Yao et al., 2009; de Lima et al., 2009; Cristian et al., 2010; de Lima et al., 2010; Muthuvelayudham and Viruthagiri, 2010; Coelho et al., 2011; Kostov et al., 2011; Dwivedi et al., 2012; Gowdhaman et al., 2012; Tanyildizi et al., 2012; Saravanan et al., 2012; Leite et al., 2012). On the other hand, an indispensable tool for the optimization, control, design and analysis of the combined production of lactic acid to industrial scale derived the development of mathematical robust models, formulated with parameters of clear biological significance and statistically consistent which can be easily implemented in miscellaneous applications. Compared with conventional methods, the response surface method, commonly called a “RSM”, is a time and labor saving method, which also reveals the interaction between the components of a reacted medium and seek the physical and chemical optimum levels (Ghadge and Raheman, 2006; Tang et al., 2004). RSM mainly consisted of the central composite design, the box-behnken design, the one factor design, the D-optimal design, the user-defined design, and the historical data design. The central composite design (CCD) and the box-behnken design (BBD) were the most used response surface design methods, which had 5 and 3 levels, respectively for one numeric factor. Central composite design (CCD) (Box and Wilson, 1951) is an experimental strategy for seeking the optimum conditions for a multivariable system, and it is an efficient technique for optimization.

The method was used to evaluate the coefficients in a quadratic mathematical model. The main purpose of this study was to perform the CCD in order to investigate the effect of total inoculums size (% v/v), fermentation temperature and skimmed milk dry matter added (% w/v) on the lactic acid production and for optimization of these parameters.

MATERIALS AND METHODS

Bacterial strain and growth conditions

Lactococcus lactis LCL strain, used throughout this work belonged to the collection of “Laboratoire de Biologie des Microorganismes et Biotechnologie” of Oran University (Algeria). This strain was maintained on M17 broth or 10% (w/v) skim milk and deep-frozen at -20°C. As required, this culture was thawed and reactivated by two transfers in 10% (w/v) skim milk (30°C, 24 h).

Acidification activity

The lactic acid concentration was measured according to the International Dairy Federation (IDF, 1995). After subculturing in M17 Broth and 10% (w/v) skim milk in succession at 30°C for 24 h, the microbial culture was inoculated in reconstituted sterile non-fat dry milk 10% (w/v) at a level described in CCD tables (Tables 1 and 2). Titrable acidity was determined after 7 h of incubation; it is expressed the acidity concentration was measured according to the Dornic acidity that expressed the acidity development of the medium by transformation of lactose into lactic acid. Experiments were carried out in triplicate.

Design of experiment (DOE)

Experiment was conducted at “Laboratoire de Biologie des
Table 1. Experimental factors and levels investigated on the lactic acid production.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Range and level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lowest</td>
</tr>
<tr>
<td>Total inoculums size (% v/v) (I)</td>
<td>x_1</td>
<td>0.32</td>
</tr>
<tr>
<td>Fermentation temperature (°C) (T)</td>
<td>x_2</td>
<td>21.6</td>
</tr>
<tr>
<td>Skim milk dry matter added (% w/v) (DM)</td>
<td>x_3</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Table 2. Central composite design (CCD) for optimization of three variables (each on five levels) in mathematically predicted and experimental values for the production of lactic acid by Lactococcus lactis LCL strain.

<table>
<thead>
<tr>
<th>Test number</th>
<th>Coded level of variables</th>
<th>Actual level of variables</th>
<th>Lactic acid production (D°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>6</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>8</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>9</td>
<td>-α</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>+α</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-α</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>+α</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>-α</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>+α</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Microorganisms et Biotechnologie” and was designed by central composite design (CCD). It was chosen to show the statistical significance of the effects of total inoculums size (% v/v), fermentation temperature and skimmed milk dry matter added (% w/v) on the lactic acid production by L. lactis LCL strain. The experiments were designed by using the STATISTICA v.7.0 software package (StatSoft, USA).

CCD allows estimating the second degree polynomial of the relationships between the factors and the dependent variable and gives information about interaction between variables (factors). The lowest and the highest levels of variables are shown in Table 1. A 2^3 factorial central composite design with eight star points, and three replicates at the center points leading to 17 runs were employed for the optimization of the culture conditions. The variables were coded according to the following equation (Equation 1).

$$x_i = \frac{(X_i - X_0)}{\Delta X} \quad i = 1, 2, \ldots, k$$

Where, x_i is the dimensionless value of a variable, X_i the real value of a variable, X_0 the value of X_i at the center point, and ΔX the step change. The central composite design including the factors, their levels and the result from each test, is shown in Table 2. The second-order polynomial equation, which includes all interaction terms were used to calculate the predicted response (Equation 2).

$$y_i = \beta_0 + \sum_{i=1}^{3} \beta_i x_i + \sum_{i=1}^{3} \beta_{ii} x_i^2 + \sum_{i=1}^{3} \sum_{j=1}^{3} \beta_{ij} x_i x_j$$

Where, y_i is the predicted response, x_i and x_j the input variables, the intercept term, β_0 the linear effects, β_i the squared effects and β_{ij} the interaction term. The design expert software has been used for regression and graphical analysis of the obtained data. The optimum levels of total inoculums size (% v/v), fermentation temperature and skimmed milk dry matter added (% w/v) were obtained by solving the regression equation and also analysis of the response surface contour plots.

Statistical data analysis

STATISTICA v.7.0 software package (StatSoft, USA) was used for the experimental design matrix, data analysis and quadratic model.
The application of multiple regression analysis methods yielded the following regression (Equation 3) for the verification experiment was 93.00 °D (as seen in run 15). The highest lactic acid production achieved in the system was increased in the system. The same is observed with the squared variables \((x_1^2, x_2^2, x_3^2)\) and the interaction term \(x_2 x_3\); the negative signs revealed a reduction in lactic acid production when its concentration led to an increased yield. The same is modified to reduce the fitted model (Equation 4).

The quadratic model in Equation 3, with nine terms, contains three linear terms, three quadratic terms and three factorial interactions, in which \(\gamma\) is the predicted response, that is, lactic acid concentration and \(x_1, x_2\) and \(x_3\) are the coded values of the test variables inoculum size, temperature and skim milk dry matter added, respectively.

The statistical significance of Equation 4 was checked by an F-test and the analysis of variance (ANOVA) for the quadratic response surface model is summarized in Table 4. The model F-value of 23.35 with a very low residual error, as indicated by the low standard error of \(\delta = 0.000093\) for the second-order polynomial model.

RESULTS AND DISCUSSION

The central composite design matrix of the studied variables: inoculum size \((x_1)\), temperature \((x_2)\) and skim milk dry matter added \((x_3)\) using the isolated \(L.\ lactis\ LCL.\) is summarized in Table 2. Among these, insignificant terms (on the basis of \(P\)-values greater than 0.05) are neglected, that is, the case of the independent variable \(x_3\) was not significant within the range of this study. The Equation 3 model was modified to reduce the fitted model \(\gamma = 92.2345 + 18.3806 x_1 + 22.4730 x_2 + 0.4984 x_3 - 27.7883 x_1^2 - 32.7486 x_2^2 - 15.3875 x_3^2 - 2.2500 x_1 x_2 - 10.7500 x_2 x_3\) (Equation 4).

\[\gamma = 92.2345 + 18.3806 x_1 + 22.4730 x_2 + 0.4984 x_3 - 27.7883 x_1^2 - 32.7486 x_2^2 - 15.3875 x_3^2 - 2.2500 x_1 x_2 - 10.7500 x_2 x_3\]

(3)

The statistical significance of Equation 4 was checked by an F-test and the analysis of variance (ANOVA) for the quadratic response surface model is summarized in Table 4. The model F-value of 23.35 with a very low residual error, as indicated by the low standard error of \(\delta = 0.000093\) for the second-order polynomial model.
probability value (P-value = 0.0005) indicated that the model was highly significant. Experimental results and the predicted values obtained by using model (Equation 4) are shown in Figure 1. As it can be seen, the predicted values match the experimental values reasonably well with R^2 of 0.957 and adjusted R^2 of 0.921. The high R-value (0.983) demonstrates strong agreement between the experimental observations and predicted values. This correlation is also confirmed by the plot predicted versus experimental values of lactic acid production in Figure 1, as all points cluster around the diagonal line, demonstrating that no significant violations of the model were found. The goodness of the model was checked by the determination coefficient (R^2). In this case, the R^2-value (0.967) for Equation 4 indicating that 96.7% of the variability in the response could be explained by the model. Normally, a regression model with an R^2-value greater than 0.9 is considered as having a very high correlation (Rao et al., 2006). The value of the adjusted determination coefficient (adjusted $R^2 = 0.0.921$) was also satisfactory for confirming the good significance of the model. The high R-value (0.983) demonstrates a high degree of agreement between the experimental observations and predicted values.

The 3D response surface plot is a graphical representation of the regression equation. It is plotted to explain interaction of the variables and locate the optimal level of each variable for maximal response (Figures 2, 3 and 4). Each response surface plotted for lactic acid production represents the different combinations of two test variables at one time while maintaining the other variable at the zero level. These 3D plots and its respective contour plots provide a visual interpretation of the interaction between two factors and facilitate the determination of optimum experimental conditions.

The convex response surfaces suggest that there are well-defined optimal solutions. If the surfaces are rather symmetric and flat near the optimum, the optimized values may not vary widely from single variable conditions (Rao et al., 2006). Interactions between variables can be inferred from the shapes of the contour plots. Circular contour plots indicate that interactions between variables are negligible, as shown in Figure 2. In contrast, elliptical plots indicate interactions, as it is shown in Figures 3 and 4 (Muralidhar et al., 2003). The inoculum size and the fermentation temperature seem to be dominant variables in lactic acid production model (Figures 2 and 3). Whereas, the skim milk dry matter added (on linear term) does not seem to have a notable effect on this production (Figures 3 and 4). The maximal lactic acid production occurred when inoculum size and temperature were in the neighborhood of 2% (v/v) and 30°C, respectively.

The area of optimum lactic acid production levels of the tested variables is located close to the central point, and they were represented in desirability charts (Figure 5) and isoresponse plot (Figure 6), constructed using response surface regression in STATISTICA software. The point of maximal lactic acid production was determined through canonical analysis of the adjusted

![Figure 1. Relation between experimental (observed) and predicted value of lactic acid production using equation 4.](image-url)
Figure 2. Response surface plot showing the effect of inoculums size and temperature on lactic acid production. The value of the variable skim milk dry matter added was fixed at the central point.

Figure 3. Response surface plot showing the effect of skim milk dry matter added and temperature on lactic acid production. The value of the variable inoculums size was fixed at the central point.
Figure 4. Response surface plot showing the effect of skim milk dry matter added and inoculums size on lactic acid production. The value of the variable temperature was fixed at the central point.

Figure 5. Desirability charts of variables for maximum response (lactic acid production).
model. A study was carried out to identify the nature of the stationary point (maximal point or low response or still of a saddle point). These levels were as follows: inoculum size 2% (v/v), temperature 30°C and skim milk dry matter added to 2% (w/v) for 92.24 °D predicted value of lactic acid production. To confirm the adequacy of the model for predicting maximal lactic acid production, three additional experiments were also conducted at these predicted optimum levels. The mean value of lactic acid concentration obtained is 92 ± 0.5 °D, which is an excellent agreement with the predicted value.

Conclusion

It is possible to affirm that the controlled inoculums size, the temperature of fermentation and skim milk dry matter added influenced the predictive model for maximal lactic acid production by *L. lactis* LCL strain by using the central composite design method and response surface analysis. The optimization of the analyzed responses demonstrate that the best result for lactic acid production revolves around of 92 °D was obtained with 2% (v/v) of inoculums size, temperature at 30°C and skim milk dry matter added at a central point 2% (w/v).

Conflict of Interests

The author(s) have not declared any conflict of interests.
Somatic embryogenesis and plant regeneration from leaf explants of *Rumex vesicarius* L.

Lavanya Kakarla, Chakravarthy Rama*, Mahendran Botlagunta, Krishna M. S. R and Pardha Saradhi Mathi

Department of Biotechnology, K L University (Koneru Lakshmaiah Education Foundation) Vaddeswaram, Guntur 522502, Andhra Pradesh, India.

Received 19 July, 2014; Accepted 13 October, 2014

An attempt was made to study the somatic embryogenesis and plant regeneration from the *in vitro* leaf explants of *Rumex vesicarius* L. a renowned medicinal plant, which belongs to polygonaceae family. Effective *in vitro* regeneration of *R. vesicarius* was achieved via young leaf derived somatic embryo cultures. Embryogenic callus was induced from leaf explants on Schenk and Hildebrandt (SH) medium supplemented with various concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D) (0.5 to 3.0 mg/l) along with Kinetin (Kn) (0.5 mg/l). High frequency of somatic embryogenesis was effective on SH medium with 2, 4-D (2.5 mg/l) + Kn (0.5 mg/l) from leaf explants. Secondary somatic embryogenesis was also observed when primary somatic embryos were subculture on the same somatic embryo induction medium. Well developed cotyledonary shaped embryos regenerate 80% of shoots on media containing 2,4-D 0.5 mg/l + 2.0 mg/l BA. The regenerated shoots transferred to rooting media containing Indole-3-butyric acid (IBA). Efficient rooting of 90% was noted on SH media with 1.0 mg/l IBA. Finally, these *in vitro* regenerated plantlets were hardened, acclimatized and successfully transferred to the field. The post transplantation survival rate of these regenerated plants was 65 to 70%. The *in vitro* regenerated plants and flowers were similar to mother plants. This protocol will be useful for genetic transformation experiments in *R. vesicarius* L.

Key words: *Rumex vesicarius* L, 2,4-dichlorophenoxy acetic acid (2,4-D), kinetin (Kn), Benzyl adenine (BA), Indole-3-butyric acid (IBA).

INTRODUCTION

Somatic embryogenesis (SE) is the ultimate developmental pathway by which somatic cells develop into structures that resemble zygotic embryos (that is, bipolar and without vascular connection to the parental tissue) through an orderly series of characteristic embryological stages without fusion of gametes (Jimenez, 2005). SE has been traditionally divided into two main stages, namely induction and expression. In the former, somatic cells acquire embryogenic characteristics by means of gene expression (Feher et al., 2002). The ontogeny,
physiological, biochemical and media properties are required for somatic embryogenesis (Victor, 2001). Typical globular, heart, torpedo and cotyledonal stages of somatic embryos are different from various kinds of explants. True-to-type nature of the somatic embryo derived plantlets has been reported (Tokuhara and Mii, 2001). As a result any plant which needs to be altered by genetic engineering and transgenesis requires a pre developed protocol for successful regeneration through somatic embryogenesis (Birch, 1997; Thangavel et al., 2014). Developing a protocol for plant regeneration through somatic embryogenesis will immensely benefit the plant conservation programs too as it is a shorter and viable method for producing a large number of plantlets.

The genus Rumex belongs to family Polygonaceae that comprises about 150 species widely distributed around the World. The main chemical constituents of Rumex are anthraquinones and flavanoids (Cunningham, 1993). Rumex vesicarius L. (English: bladder dock, Hindi: Chooka, Sanskrit: Amlavetasa, Telugu: Chukkakura) a common green leafy vegetable is also used in herbal and ayurvedic formulations. It is a branched succulent herb and is distributed throughout India (Alam, 2012). The plant extract have been used to reduce cholesterol levels, biliary disorders (Rechinger, 1984; Mona et al., 2013) and also it showed significant effect on antioxidant (Palani and Ramakrishnan, 2011; 2012; Sakkir et al., 2012) and antimicrobial activities (Al Akeel et al., 2014; Ramesh and Asha, 2013).

In vitro regeneration of R. vesicarius L. has been achieved by researchers using explants like shoot tips, nodal explants, leaves and callus (Panduraju et al., 2009; Abo El-soud et al., 2012; Nandini et al., 2013; Lavanya et al., 2013). However, there is no report on the induction of somatic embryogenesis. This is an alternative method for plant propagation over regeneration via organogenesis. The plants regenerate via somatic embryogenesis is of single cell origin with true-to-type and are produced in large numbers within a short period (Ammirato et al., 1983; Lavanya et al., 2014).

Many researchers have emphasized that somatic embryogenesis is preferred method for rapid in vitro multiplication of plants (Moon et al., 2013), production of artificially synthetic seeds (Ravi and Anand, 2012), Agro bacterium mediated genetic transformation studies and regeneration of transgenic plants (Satyanarayana et al., 2012). In the present study we made an attempt to establish a reliable and efficient protocol for the induction of somatic embryogenesis and plant regeneration from leaf explants of R. vesicarius L.

MATERIALS AND METHODS

Culture medium and conditions

The seeds of R. vesicarius were collected from the plants grown in the research field of Department of Biotechnology, K L University. They were soaked in sterile distilled water for 24 h, later cleaned with 5% tween-20 (w/v) and thoroughly washed in running tap water 3 to 4 times. Subsequently, they were surface sterilized with 0.1% w/v HgCl₂ for 2 to 3 min followed by rinsing with sterile distilled water for 2 to 3 times and germinated aseptically on SH medium (Schenk and Hildebrandt, 1972). Finally, these seeds were flame sterilized with Whatman filter paper and supplemented on the surface of the nutrient culture medium SH without growth regulators. Effective plantlets developed from these seeds within one week. After two weeks, leaves were taken as explants for callus induction. We found that compared to ex vitro, the in vitro leaf explants was found to be appropriate as it was responding well under in vitro conditions.

Embryo germination and plantlet formation

For germination and plantlet formation cotyledonal stage somatic embryos were transferred to SH medium supplemented with 0.5 mg/l 2,4-D + 0.5 to 3.0 mg/l BA.

Culture conditions

SH media were supplemented with 3% (w/v) sucrose and solidified with 0.8% (w/v) agar (Himedia). After adding all the growth regulators, the pH of the medium was adjusted to 5.6 with 1 N NaOH or 1 N HCL and autoclaved at 121°C with 15 p.s.i pressure for 15-20 min. All the cultures were incubated at 25±2°C under a 16 h photoperiod. Light intensity of 40 to 50 µmolm⁻²s⁻¹ was provided by using cool white fluorescent tubes. The cultures were transferred to fresh medium after an interval of four weeks. For each hormonal treatment 20 replicates were raised and the experiments repeated at least twice. Data on somatic embryogenesis and germination were statistically analyzed using Turkey’s HSD test at p=0.05 with SPSS ver.13.0. The results are expressed as Mean ± SE of two experiments.

Acclimatization

The plants were taken out from the cultured tubes and washed with sterile distilled water under aseptic conditions to remove agar medium. They were shifted to plastic pots containing sterile vermiculuate: soil (1:1), covered with polythene bags in order to maintain 80 to 85% relative humidity and kept in culture room for 3 weeks. Later, they were transferred to earthen pots containing garden soil and maintained in the research field.

RESULTS AND DISCUSSION

The in vitro leaf explants were spliced at the terminal ends using scalpels and inoculated on SH medium containing different concentrations of 2,4-D (0.5 to 3.0 mg/l) in combination with Kn (0.5 mg/l). Highly differentiated, friable callus was induced from these explants in one week (Figure 1a). Within 10 to 15 days of culture inoculation greenish friable callus was observed (Figure 1b). Green nodular embryogenic callus was noticed after three weeks of culture inoculation from these explants (Figure 1c). When the explants of embryogenic callus was cut into fragments and cultured on the same induction medium for an extended period of three to four months, secondary somatic embryos with different shapes such as globular, heart, torpedo and cotyledonal...
Figure 1. *In vitro* regeneration via Somatic embryogenesis in leaf explant cultures of *Rumex vesicarius* L. (a). Initiation of callus from leaf explant. (b). Profuse, greenish and friable callus formed from leaf explants. (c). A type of embryogenic callus after 3 weeks in culture, the callus was green and nodular with the presence of abundant somatic embryos.

Figure 2. *In vitro* regeneration via somatic embryogenesis in leaf explant cultures of *Rumex vesicarius* L. showing somatic embryogenesis in *Rumex vesicarius* L. 1. Initiation of spherical shaped globular embryoids from leaf explants in *R. vesicarius* L. 2. Transformation of globular embryoids into heart shaped embryo. 3. Modification of heart shaped embryo into torpedo shaped embryonic form. 4. Development of cotyledonary shaped embryonic buds. 5. Nodule, shoot buds regeneration from cotyledonary buds.

Embryoids were observed after four to six weeks of culture inoculation (Figure 2).

Somatic embryos proliferation occurred in two ways such as direct somatic embryos formation from explants and indirect from repetitive organogenesis. SH medium with 0.5 mg/l 2,4-D + 0.5 mg/l Kn showed 30% of somatic embryoids induction. At 1.0 mg/l 2,4-D + 0.5 mg/l Kn 45% of embryoids were observed. 60% of somatic embryoids
Table 1. Effect of various concentrations of 2,4-D and 0.5 mg/l Kn on Somatic embryogenesis in leaf explants of *R. vesicarius* L.

<table>
<thead>
<tr>
<th>Growth regulators mg/l 2,4-D+Kn</th>
<th>Percentage of response for somatic embryo formation</th>
<th>Average number of somatic embryos/explants (Mean ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5+0.5</td>
<td>30</td>
<td>8.66(^a) ± 0.930</td>
</tr>
<tr>
<td>1.0+0.5</td>
<td>45</td>
<td>9.44(^a) ± 1.125</td>
</tr>
<tr>
<td>1.5+0.5</td>
<td>60</td>
<td>16.33(^b) ± 1.873</td>
</tr>
<tr>
<td>2.0+0.5</td>
<td>75</td>
<td>24.20(^c) ± 2.464</td>
</tr>
<tr>
<td>2.5+0.5</td>
<td>85</td>
<td>36.0(^d) ± 3.120</td>
</tr>
<tr>
<td>3.0+0.5</td>
<td>65</td>
<td>18.46(^b) ± 2.036</td>
</tr>
</tbody>
</table>

was observed at 1.5 mg/l 2,4-D + 0.5 mg/l Kn. Among the various concentrations of 2,4-D tested in combination with 0.5 mg/L Kn, the percentage of explants responded for somatic embryo formation was found to be higher at 2.5 mg/l 2,4-D + 0.5 mg/l Kn in leaf explants with maximum of 36.0 ± 3.12 somatic embryo production. However, at the concentration of 2,4-D higher than 2.5 mg/l the percentage of somatic embryo induction was lower (Table 1). The development of somatic embryos was asynchronous. As a result, various stages of embryo development could be observed in the same cluster of embryos originally from the explants. When these embryos with different developmental stages were transferred to the same medium, further germination in them was not observed.

Embryo germination and plantlet formation

The cotyledonary embryos proliferated to nodular buds with synthesis of shoot bud initiation effectively on 2,4-D 0.5 mg/l + 2.0 mg/l BA when compared to other hormonal concentrations. Highest shoot bud initiation was found to be 80% at 2,4-D 0.5 mg/l + 2.0 mg/l BA, 65% of germination was observed in 2,4-D 0.5 mg/l + 1.0 mg/l BA, 55% at 2,4-D 0.5 mg/l + 3.0 mg/l BA and 40% at 2,4-D 0.5 mg/l + 3.0 mg/l BA. Hence, it was observed that the increase in the growth hormone concentration showed gradual decrease in germination of shoots. Therefore, SH medium with 2,4-D 0.5 mg/l + 2.0 mg/l BA is proven to be effective for germination of maximum number of shoots 16.875 ± 1.90 from cotyledonary embryoids in *R. vesicarius* (Table 2, Figure 3a and b). Later, the *in vitro* regenerated shoots were separated from the embryogenic callus and sub cultured on to fresh media containing 2.0 mg/l BA. These plantlets elongated and produced multiple shoots within two weeks (Figure 4a and b).

After elongation, the *in vitro* regenerated shoots were transferred onto rooting media containing IBA (0.5 to 2.0 mg/L). The highest rooting (90%) was noted on SH medium containing 1.0 mg/L IBA with average number of roots (6.38 ± 0.687) (Table 3, Figure 4c). Increasing or decreasing the concentrations of IBA resulted in lower rooting. Later, these *in vitro* regenerated plantlets were transferred to plastic pots containing sterile vermiculite: soil (1:1) mixture. Finally, they were shifted to earthen pots after hardening in the culture room and maintained in the research field under shady conditions. The survival percentage of plants was found to be 70 to 80%. The plants were normal; morphological and floral characters were found to be similar to the donor plants (Figure 4d).

In the present investigation, the results on somatic embryogenesis have shown that auxin, such as 2,4-D along with cytokinin BA are essential for inducing the somatic embryogenesis from leaf explants of *R. vesicarius*. The auxin/auxin in combination with cytokinin used in the medium can greatly influence the frequency of induction and also on maturation of somatic embryos. The requirement of cytokinin in addition to auxin was observed in *Solanum surattense* (Rama swamy et al., 2005) whereas, somatic embryogenesis was reported on...
Figure 3. *In vitro* regeneration via Somatic embryogenesis in leaf explant cultures of *Rumex vesicarius* L. (a and b): Regeneration of shoots from cotyledonary stage embryos in media containing 0.5 mg/l 2,4-D + 2.0 mg/l BA.

Figure 4. *In vitro* regeneration via Somatic embryogenesis in leaf explant cultures of *Rumex vesicarius* L. (a and b). Elongation and multiplication of shoots regenerated from somatic embryos in *Rumex vesicarius* L. (c). Rooting from *in vitro* regenerated shoots in media containing 1.0 mg/l BA. (d). Acclimatization of plantlet.

Table 3. Effect of IBA on induction of roots from shoots in *R. vesicarius* L.

<table>
<thead>
<tr>
<th>Growth regulators mg/l IBA</th>
<th>Percentage of rooting</th>
<th>Average number of roots from in vitro shoots (Mean ± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>60</td>
<td>3.33 ± 0.423</td>
</tr>
<tr>
<td>1.0</td>
<td>90</td>
<td>6.38 ± 0.687</td>
</tr>
<tr>
<td>2.0</td>
<td>75</td>
<td>4.6 ± 0.554</td>
</tr>
</tbody>
</table>

Values are expressed as mean± SE (n=10 in replicate). Mean followed by same letters do not differ significantly at p≥ 0.05 by Tukey’s HSD test.
medium containing 2,4-D alone in *Capsicum annuum* L. (Marla et al., 1996). Direct somatic embryogenesis was also reported by adding Kn to the medium and also the number of embryos further increased by enriching the medium with 2,4-D in leaf explants of *Cicer arietinum* L. (Dinesh et al., 1994).

New gene products are needed for the progression from the globular to the heart shaped stage and these new products are synthesized only, when exogenous auxin is removed (Zimmerman 1993). But according to our observation in *R. vesicarius* for morphogenesis of somatic embryos, auxins and cytokinins combination is required. At higher concentration of auxin, probably the population of embryogenic cells drops due to their disruption and elongation and the embryogenic potential of the culture are lost (Aboshama, 2011). Maturation process is critical step in somatic embryogenesis. Similarly, somatic embryo maturation on MS medium containing the combination of 2,4-D and Kn was observed in *Brassica oleracea* and *Oryza sativa* L (Siong et al., 2011; Verma et al., 2011).

Conclusion

For induction of *in vitro* somatic embryogenesis, the type of primary explants, choice of genotypes and hormonal concentration plays an important role (Josephina and Van Staden, 1990). During the present investigation it was found that the high concentration of auxin in combination with less concentration of cytokinin induced the somatic embryogenesis and maturation of somatic embryos in *R. vesicarius*. However, for germination of somatic embryos, low level of auxin and high concentrations of cytokinin combination is required. Secondary embryogenesis observed in *R. vesicarius* has great potential for its mass propagation and repetitive embryogenesis can also be used for synthetic seed production and genetic transformation.

Conflict of Interest

The author(s) have not declared any conflict of interest.

REFERENCES

Alam EA (2012). *In vitro* studies on *Rumex vesicarius* for the production of some active constituents, Ph.D. Thesis, Botany Department, Faculty of Science, Helwan University, Helwan, Egypt.

Noble silver nanoparticles (AgNPs) synthesis and characterization of fig *Ficus carica* (fig) leaf extract and its antimicrobial effect against clinical isolates from corneal ulcer

Yousef H. Aldebasi¹, Salah Mesalhy Aly²,³, Riazunnisa Khateef⁴ and Habeeb Khadri²*

¹Department of Optometry, College of Applied Medical Sciences, Qassim University, Kingdom of Saudi Arabia.
²Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Kingdom of Saudi Arabia.
³Department of Pathology, College of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
⁴Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh -India.

Received 27 August, 2014; Accepted 13 October, 2014

Nanotechnology is rapidly growing with nanoparticles produced and utilized in a wide range of pharmaceutical and commercial products throughout the world. In this study, fig (*Ficus carica*) leaf extracts were used for ecofriendly extracellular synthesis of stable silver nanoparticles (AgNPs) by treating an aqueous silver nitrate (1 mM) solution and using the plant *F. carica* leaf extracts as reducing agents. The bioreduced silver nanoparticles were characterized by ultra violet visible (UV-Vis) spectrophotometer, Fourier transform infra-red (FTIR) spectroscopy and transmission electron microscopy (TEM). The average particle size ranged from 5 to 40 nm. The particle size could be controlled by changing the reaction temperature, leaf broth concentration and AgNO₃ concentration. Further, these biologically synthesized nanoparticles concentration of 50 µl were found to be highly effective and exhibited maximum microbial activity with mean zone of inhibition 20.33 ±1.00 mm and 18.00±1.00 against *pseudomonas aeruginosa* and *Aspergillus fumigatus* isolated from human corneal ulcer patients. This environmentally friendly green synthesis is an eco-friendly approach to conventional chemical synthesis and can potentially be used in various areas such as food, cosmetics, and medical applications and hope the recent technology can provide next generation of anti-microbials.

Key words: *Ficus carica*, silver nanoparticles, characterization, antimicrobial activity.

INTRODUCTION

In 21st century, the development of green processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology (Raveendran et al., 2006; Armendariz et al., 2002). Today, nanometal particles especially Silver have drawn the attention of scientists because of their extensive application in the development of new technologies in the areas of material sciences, electronics, medicine and biolabelling as well as antimicrobials (Magudapathy et al., 2001; Panacek, et al., 2006). Silver has been used as an antimicrobial agent...
for centuries, the recent resurgence in interest for this element particularly focuses on the increasing threat of antibiotic resistance, caused by the abuse of antibiotics (Panaek et al., 2006; Sambhy et al., 2006). The use of environmentally benign materials like plant leaf extract, bacteria and fungi for the synthesis of silver nanoparticles offers numerous benefits of eco-friendliness and compatibility for pharmaceutical and biomedical applications as they do not use toxic chemicals in the synthesis protocols (Upendra Kumar et al., 2009). Synthesis of nanoparticles provides advancement over chemical and physical methods as it is a cost effective and environmentally friendly and in this method there is no need to use high pressure, energy, temperature and toxic chemicals (Goodsell, 2004).

Corneal ulceration continues to be one of the most important causes of ocular morbidity and blindness worldwide, bacterial keratitis is considered a leading cause of monocular blindness in the developing world (Solomon et al., 2006). The incidence of infection by specific organisms varies by region, and practitioners should be aware about the local epidemiological patterns of corneal infection. Suppurative corneal ulcers may be caused by bacteria, fungi and protozoa. Moreover, the increasing resistance of many bacteria and the side effects to the currently used antibiotics are documented (Yang et al., 2009), although there were a significant proportion of corneal ulcers reported from Saudi Arabia (Khairallah et al., 1992).

The genus Ficus constitutes about 750 species found in tropical and subtropical regions (Subramanian et al., 2013). Ficus carica, commonly called “fig” plant, is known to harbor diverse chemical compounds with proven medicinal importance figs (F. carica) are cultivated in the Kingdom of Saudi Arabia and the leaf has been reported to have health benefits including anti-diabetic property of F. carica are traditionally used to cure throat diseases, constipation, hemorrhoid and high cholesterol. Several researchers demonstrated the medicinal importance of fig plant as an antioxidant (Gond and Khadabadi, 2008), antidiabetic (Patil et al., 2010), hepatoprotective (Jeong et al., 2009), antipyretic (Rubnov et al., 2001), and antimicrobial (Aref et al., 2011). Latex of fig suppresses cancer cell proliferation and has an antiviral potential (Shankar, 2004). Several plants have been utilized for the production of silver nanoparticles (Parashar, 2009; Tripathi et al., 2009). Much attention is now required for synthesis of nanoparticles using biological sources due to limitations associated with chemical and physical methods of nanoparticle synthesis.

In the present study, reducing silver ions present in the aqueous solution of silver nitrate by the help of F. carica extract and their antibacterial assessment was performed to produce novel drugs to overcome drug resistance and adverse reaction. This research study was undertaken to determine the effect of fig leaf extract as antimicrobial against local bacterial and mycotic infectious agents in corneal ulcer, it will be helpful in planning of corneal ulcer management strategy.

MATERIALS AND METHODS

Collection of F. carica leaf

F. carica leaves were collected from Riyadh market, and the species was identified with the authenticated specimen from the Department of Agriculture, Qassim University, Kingdom of Saudi Arabia.

Preparation of fig leaf extract

The silver nitrate (AgNO₃) was purchased from Sigma-Aldrich chemicals and the fresh leaf extract used for the reduction of Ag⁺ ions to Ag⁰ was prepared by taking 20 g of thoroughly washed finely cut leaves in 500 ml Erlenmeyer flask along with 100 ml of distilled water and then boiling the mixture for 5 min before decanting it. Further, the extract was filtered with Whatman No. 1 filter paper and stored at 4°C and used for further experiments.

Synthesis of silver nanoparticles

In a typical experiment, F. carica leaf extract (0.5 ml) was added to 10 ml of 1 mM AgNO₃ aqueous solution. The bioreduced aqueous component (0.5 ml) was used to measuring UV-Vis spectra of the solution. The particle suspension was diluted 10 times with distilled water to avoid the errors due to high optical density of the solution.

UV-Vis spectral analysis

Synthesized silver nanoparticles was confirmed by sampling the aqueous component of different time intervals and the absorption maxima was scanned by UV-Vis spectrophotometer at the wavelength of 300 to 800 nm on Perkin-Elmer Lambda 25 spectrophotometer.

FTIR spectral analysis

The bioreduced silver nitrate solution was centrifuged at 10,000 rpm for 15 min and the dried samples were grinded with KBr pellets used for FTIR measurements. The spectrum was recorded in the range of 400 to 4000 cm⁻¹ using Thermo Nicolet Nexus 670 spectrometer in the diffuse reflectance mode operating at resolution of 4 cm⁻¹.

Abbreviations: UV-Vis, Ultra-violet visible; FTIR, Fourier transform infra-red; TEM, transmission electron microscopy.
TEM analysis of silver nanoparticles

Morphology and size of the silver nanoparticles were investigated by TEM images using Phillips, TECHNIAI FE 12 instrument. Thin film of the sample was prepared on a carbon coated copper grid by just dropping a very small amount of the sample on the grid and drying under lamp.

In-vitro antibacterial and fungal activity of silver nanoparticles

Test microorganisms

Microbial cultures of six different strains from bacterial and fungal isolates were used for determination of antimicrobial activity. Gram-positive: *Staphylococcus aureus, Streptococcus pneumoniae*, Gram-negative: *Pseudomonas aeruginosa, Proteus vulgaris* as well as *Aspergillus fumigates* and *Fusarium* spp. clinical isolates were used. All the strains were sub-cultured at 37°C on Mueller-Hinton agar and potato dextrose agar (Oxoid, Hampshire, UK) every 15 days and stored at 4°C. The isolates were obtained during parallel studies from clinical cases suffered corneal infections and have been subjected to several hospitals at Qassim region during 2012. Sampling, culturing, isolation and identification were done in the Department Medical Laboratories, Qassim University, Kingdom of Saudi Arabia.

Antibiotic susceptibility testing

The test microorganisms were also tested for their sensitivity against the bacterial and fungal drugs Ciprofloxacin (5 μg) and Ketaconazole (30 μg). The cultures were enriched in sterile Mueller-hinton broth for 6 to 8 h at 37°C. Using sterile cotton swabs, the cultures were aseptically swabbed on the surface of sterile Mueller-hinton agar plates and potato dextrose agar (Guzmán et al., 2008). Using an ethanol dipped and flamed forceps, the antibiotic discs were aseptically placed over the seeded agar plates sufficiently separated from each other to avoid overlapping of inhibition zones. The plates were incubated at 37°C for 24 h for bacteria and seven days for fungi the diameter of the inhibition zones was measured in mm. All media used in the present investigation were obtained from Oxoid, Hampshire, UK.

Antibacterial activity by well diffusion method

Antibacterial activity of AgNPs was carried out by agar well diffusion method. Each microorganisms were grown overnight at 37°C in Mueller-Hinton Broth. 100 μl of standardized inoculum (0.5 Mac-Farland) of each test bacterium were inoculated on molten Mueller-Hinton agar, homogenized and poured into sterile Petri dishes. The Petri dishes were allowed to solidify inside the laminar hood. Standard cork borer of 16 mm in diameter were used to make uniform wells into which was added (50 μl) synthesized silver nanoparticles. Zones of inhibition for control, AgNPs and silver nitrate were measured. The experiments were repeated thrice and mean values of zone diameter were presented.

Antifungal activity by well diffusion method

Potato dextrose agar plates were prepared, sterilized and solidified. After solidification, fungal cultures were swabbed on these plates. Three cavities were made using a cork borer (10 mm diameter) at an equal distance and were filled with the Silver nanoparticle solution (50 μl), then were incubated at 37°C. After seven days zone of inhibition was measured, the formation of a clear zone (restricted growth) around the cavity is an indication of antifungal activity.

RESULTS AND DISCUSSION

Synthesis of silver nanoparticles (AgNP’s)

After the addition of the extract to the silver nitrate solution, the solution changed from colourless to pale yellow within 2 min, the final colour deepening to brown within 30 min. Figure 1 shows the *F. carica* leaf extract with silver nitrate at initial point of time and after 30 min reaction end point, similar results were reported (Balaji et al., 2008). The brown colour indicated surface plasmon vibrations, typical of silver nanoparticles (Saxena et al., 2010).

Characterization of silver nanoparticles (AgNP’s)

UV-vis is the most widely used technique for the structural characterization of nanoparticles, so the sizes of the synthesized nanoparticles were provisionally predicted on the basis of UV-vis spectrum in the range of 200 to 00 nm. A distinct peak with smooth shoulder was observed at 432 nm (Figure 2). Thus, the UV-vis absorption spectrum reveals the formation of nanoparticles by showing surface Plasmon absorption maxima at 432 nm. Plasmon resonance in nanoparticles is strongly depends on the shape, size and dielectric constant. Noble silver nanoparticles exhibit a strong absorption band in the visible region and giving specific color to the solution (Khandelwal et al., 2010).

Fourier transform infrared spectroscopy (FTIR) measurements are carried out to identify the possible biomolecules responsible for the reduction of the Ag⁺ ions and capping of the bio-reduced AgNP’s synthesized by *F. carica* leaf extract. The FTIR spectra of *F. carica* leaf extract and biosynthesized nanosilver are depicted in Figure 3. The appearance of peaks in the amide I and amide II regions is the characteristic of proteins/enzymes that have been found to be responsible for the reduction of metal ions. FTIR analyses confirm that the larger size of the nanoparticles might be due to the capping of nanoparticles by proteins (Warisnoicharoen et al., 2011).

Antibacterial and antifungal analysis

The antimicrobial activity of synthesized silver nanoparticles was investigated using the well diffusion method against different bacterial and fungal such as *S. aureus, S. pneumoniae, P. aeruginosa, P. vulgaris, A. fumigates* and *Fusarium spp* these pathogens are treated with 50 μl of AgNP.

Determination of mean zone of inhibition

The mean zone of antibacterial activity of AgNP is
Figure 1. The colour change of plant extracts after addition of silver nitrate (a) 1 mM silver nitrate (b) plant extract (c) silver nanoparticles.

Figure 2. UV absorption spectra of silver nanoparticles. A peak was observed at 419 nm.

presented in Table 1. *P. aeruginosa*, *S. aureus* and *Aspergillus* sps. exhibited highest rate of sensitivity to aqueous extract with mean zone of inhibition of 20.33 ± 1.00, 19.00 ± 1.00 and 15.33 ± 0.57 mm, respectively, at the test concentration of 50 μl, which was comparable to standard antibiotic (Ciprofloxacin 5 μg/disc). The AgNP exhibited lowest activity against *P. vulgaris* and *Fusarium* spp. with mean inhibition zone of, 15.33 ± 0.57 and 14.66 ± 0.57 mm, respectively. The biologically synthesized silver nanoparticles were found to be highly effective against different bacteria and fungi of selected species. It shows that, they have great potential in biomedical applications. Similar observation was found in *Allium cepa* (Shahverdi, et al., 2007), indication that the silver nanoparticles have an ability to interfere with metabolic pathways. The result shows the potential biocidal effect
Figure 3. FTIR Spectra of nanoparticles synthesized from *Ficus carica* leaf extract.

Table 1. Mean zone of inhibition (mm) of silver nanoparticles against bacterial and fungal isolates in comparison with standard antibiotic.

<table>
<thead>
<tr>
<th>Fungus</th>
<th>Mean zone of inhibition (mm) (mean ± SD)</th>
<th>Silver nanoparticles (50 µl)</th>
<th>Standard antibiotic (ciprofloxacin 5 µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>19.00± 1.00</td>
<td>27.33±0.57</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>15.33± 0.57</td>
<td>28.66± 1.52</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>17.00± 1.00</td>
<td>30.33± 1.52</td>
<td></td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>15.33± 0.57</td>
<td>26.00± 1.52</td>
<td></td>
</tr>
<tr>
<td>Aspergillus fumigates</td>
<td>18.00± 1.00</td>
<td>27.66± 0.57</td>
<td></td>
</tr>
<tr>
<td>Fusarium spp.</td>
<td>14.66± 0.57</td>
<td>28.33± 1.52</td>
<td></td>
</tr>
</tbody>
</table>

Transmission electron microscope (TEM) analysis

TEM image of silver nanoparticles derived from *F. carica* leaf extract is shown in Figure 4. The morphology of the nanoparticles was spherical in nature. Under careful observation, it is evident that the silver nanoparticles are surrounded by a faint thin layer of other materials, which we suppose are capping organic material from *F. carica* leaf broth. The obtained nanoparticles are in the range of sizes approximately 5 to 40 nm and few particles are agglomerated. Figure 5 shows the histogram of silver nanoparticles, it is evident that there is variation in particle sizes and the average size estimated 9.5 nm. It may be noted that, the size of the silver nanoparticle obtained from TEM is similar with the size obtained from the FTIR determination. Same phenomenon was reported for the silver nanoparticles synthesized using *P. graveolens* leaf broth.

Conclusion

Simple, efficient and stable silver nanoparticles were synthesized by using *F. carica* leaf extract. These particles are of uniform size and shape has the potential to kill a broad range of bacteria and fungi. The bioreduced silver nanoparticles were characterized using UV-Vis, FTIR, and TEM techniques and estimated approximately as 5 to 40 nm. These particles may be useful in pharmaceutical area with potential of future development in nano preparations.

Conflict of Interests

The author(s) have not declared any conflict of interest.
REFERENCES

A novel polymerase chain reaction (PCR) for rapid isolation of a new rbcS gene from *Lemna minor*

Youru Wang¹, ², ³

¹Hubei Key Laboratory of Edible Wild Plant Conservation and Utilization, Huangshi, Hubei, 435002, China.
²Hubei Key Laboratory of pollutant Analysis and Reuse Technology, Huangshi, Hubei, 435002, China.
³Life Science College, Hubei Normal University, Huangshi, Hubei, 435002, China.

Received 14 December, 2012; Accepted 22 September, 2014

This study developed a novel polymerase chain reaction (PCR) method, ligation-mediated self-formed panhandle PCR, for gene or chromosome walking. It combined the advantages of ligation-mediated PCR in its specificity and of panhandle PCR in its efficiency. Self-formed panhandle PCR was used for a new rbcS gene walking to isolate 3’ downstream and 5’ upstream sequence; 1292 bp DNA rbcS gene was obtained via 3’ walking of *Lemna minor* gemonic DNA and 5’ upstream sequence of the new rbcS gene with a length of 1543 bp was isolated from *L. minor* via self-formed panhandle PCR. A novel rbcS gene with the size of 2835 bp, which was confirmed by nested-PCR, was obtained by ligation-mediated self-formed panhandle PCR. Ligation-mediated self-formed panhandle PCR was simple and efficient and should have broad applications in the isolation of unknown sequences in genomes.

Key words: Chromosome walking, *Lemna minor*, polymerase chain reaction (PCR), rbcS gene, self-formed panhandle.

INTRODUCTION

Over the past years, several strategies have been developed that aimed at identifying genomic fragments adjacent to known DNA sequences, without going through the process of screening genomic libraries (Wang and Guo, 2010). Polymerase chain reaction (PCR)-based methods have increasingly been applied for gene on chromosome walking. Several PCR methods were available for this purpose: i. Inverse PCR (Uchiyama and Watanabe, 2006; Huang and Chen, 2006; Liu et al., 2004; Keim et al., 2004); ii. Ligation-mediated PCR (LM-PCR) (Tonooka et al., 2008; Villalobos et al., 2006; Ren et al., 2005; Yuanxin et al., 2003; Dai et al., 2000); randomly primed PCR (RP-PCR) (Tanabe et al., 2003).

We report here a simplified and effective PCR method, ligation-mediated self-formed panhandle PCR (SEFP-PCR). SEFP-PCR strategy is based on these principles: i. Restriction sites disperse throughout the genomes of double strand DNA in organisms are natural candidacy for panhandle adaptor pairing; ii. A panhandle adaptor can be a combination of a 3’ end pairing with the bases of selected restriction sites in genomic DNA to self-form panhandle, and to limit non-specific amplifications, two-round PCR amplifications were employed in the SEFP-PCR protocol: amplify the target template by using a specific primer and panhandle primer to accumulate the
Figure 1. Self-formed panhandle PCR procedures for 5'walking.

Step 1. *LmrbcS* gene contained *HindIII* site, and *L.minor* genomic DNA was digested with *HindIII*. **Step 2.** production of the sticky blunt end of *HindIII* by PCR; **Step 3.** Add panhandle adaptor to DNA polymerase/dNTPs mixture and form panhandle template. **Step 4.** primary PCR using primers PAP1 and GSP1; **Step 5.** isolation of 5'flanking region of *LmrbcS* gene by nested PCR using primers PAP2 and GSP2.

MATERIALS AND METHODS

Plant materials and genomic DNA

L.minor was cultured aseptically in SH liquid medium supplemented with 1% sucrose and maintained in a growth chamber at 25°C under cool white fluorescent lighting (90-100 µmol
Table 1. Cycling conditions used for self-formed panhandle PCR

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Step</th>
<th>Primer</th>
<th>Cycles</th>
<th>Cycling conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-formed</td>
<td>2</td>
<td>1 µl of 5 µM</td>
<td>1</td>
<td>(a) 70°C (3 min);</td>
</tr>
<tr>
<td>panhandle</td>
<td></td>
<td>panhandle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>(a) 94°C (3 min);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b) 25°C (3 min),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>then ramping to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70°C at 0.2°C per</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>second;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(c) 72°C (4 min);</td>
</tr>
<tr>
<td>Primary</td>
<td>4</td>
<td>3 µl of 5 µM</td>
<td>15</td>
<td>(a) 94°C (2 min);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAP1 and GSP1</td>
<td></td>
<td>94°C (1 min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b) 60-50°C (1 min),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>touch down</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(c) 72°C (3 min);</td>
</tr>
<tr>
<td>Secondary</td>
<td>5</td>
<td>3 µl of 5 µM</td>
<td>20</td>
<td>(a) 94°C (2 min);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PAP2 and GSP2</td>
<td></td>
<td>94°C (1 min)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b) 60-50°C (1 min),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>touch down</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(c) 72°C (3 min);</td>
</tr>
</tbody>
</table>

Table 2. Primers used for cloning of rbcS gene from L. minor.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primers sequence (5' to 3')</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF1</td>
<td>MGATAAGRTGTAATCCW</td>
<td>cloning of rbcS gene</td>
</tr>
<tr>
<td>PR1</td>
<td>TGGAAAGCCATCATGACGAAGCCAT</td>
<td>from L. minor</td>
</tr>
<tr>
<td>PAP 1</td>
<td>CACGACACGCTACTCAACAC</td>
<td>Adaptor primer</td>
</tr>
<tr>
<td>PAP 2</td>
<td>CTCACACCAACACCTCGC</td>
<td>Adaptor primer</td>
</tr>
<tr>
<td>3GSP1</td>
<td>GCTTCGTCGATGATGCTTCACCACG</td>
<td>3'-walking</td>
</tr>
<tr>
<td>3 GSP 2</td>
<td>CGGCGAGCGAGGAGCTAAGCTCTCTGT</td>
<td>3'-walking</td>
</tr>
<tr>
<td>5 GSP 1</td>
<td>CCGACCTCAGCCCGTTGAAGGTTGC</td>
<td>5'-walking</td>
</tr>
<tr>
<td>5 GSP 2</td>
<td>ACGCTGGCCAGCCGCGGCGTGGAGC</td>
<td>5'-walking</td>
</tr>
</tbody>
</table>

Isolation of the partial rbcS gene from L. minor

Based on the known L. minor rbcS gene sequences, degeneracy primer pairs (5'- MGATAAGRTGTAATCCW-3') and (5'-TGGAAAGCCATCATGACGAAGCCAT-3') were designed to amplify a new partial rbcS gene by PCR. About 400 bp DNA fragment was obtained by PCR. This DNA fragment was cloned into the pMD18-T vector (TakaRa) for sequencing. Sequence analysis of this DNA fragment revealed that it shared 82-85% identity with the known L. minor rbcS gene, which indicated that the 400 bp DNA fragment was partial rbcS gene.

Self-formed panhandle PCR

According to the sequence of new rbcS gene, primers were designed for self-formed panhandle PCR (Table 2). The steps of self-formed panhandle PCR (SEFP-PCR) for 5’walking are summarized in Figure 1, and the steps of SEFP-PCR for 3’walking were the same as those for 5’walking except that genomic DNA was digested with BamHI; panhandle adaptor sequences and primer sequences are shown in Table 2.
Step 1: Digest genomic DNA with HindIII

5 µg genomic DNA was digested with 20 units of HindIII (Takara) at 37°C for 2 h. The digested DNA between 2 and 5 kb was purified using DNA extraction kit (Sigma) and resuspended in ddH₂O for DNA template.

Step 2: Make the sticky end of HindIII blunt by PCR

The PCR mixture included 4 µL of 10°C long Taq DNA polymerase buffer, 2 µL of mixed dNTP solution (2.5 mM each of dATP, dTTP, dCTP, and dGTP), 1.5 U of long Taq DNA polymerase (Takara), 20 µL (10-200 ng) template DNA. PCR cycle was run, the detailed thermal cycling conditions for PCR was listed (Table 1).

Step 3: Add panhandle adaptor to DNA polymerase/dNTPs mixture and form panhandle template

Then 1 µL of 5 µM handle adaptor (CACGACACGCTACTCAACACACCACCTCGCACA GCAGTCCNNNNNGGATCC) was added to the PCR mixture, and then PCR cycles were run. The detailed thermal cycling conditions for PCR was listed (Table 1).

Step 4: Add primers PAP1 and GSP1

After heating the reaction mixture at 80°C for 5 min, primers PAP1 and GSP1 were added. Each final 30 µL PCR reaction mixture (30 µL final volume) was the same as that for step 2 except for the template and primers: 0.1 µL of the above PCR product (or diluted 10 times) and 3 µL of 5 µM PAP1 and GSP1 were added to the reaction mixture, then the PCR was run for 35 cycles (Table 1).

Step 5: Add primers PAP2 and GSP2 for nested PCR

Nested PCR was performed after preheating a 29 µL PCR mixture containing all of the reagents except the DNA to 80°C for 5 min to prevent nonspecific priming, and then 1 µL of the diluted PCR products (1000 ×) was added from Step 4 as template. PCR mixture contained 25 µM dNTPs, 5 U of long Taq polymerase, 3 µL of 5µM of gene specific primer (GSP2) and panhandle adaptor primer (PAP2) nested PCR conditions were listed (Table 1).

Cloning and sequencing of PCR products

The nested PCR products were separated on 1.2% agarose gels, then the specific product was purified by PCR purification kit (Sigma) and cloned to T-vector(Takara), and the positive clones were selected for sequencing (Shanghai Baosheng Biotechnology Co. Ltd, China).

Sequence analysis of the 5' flanking region of LmrbcS gene

DNA sequence analyses were carried out using the BLAST program (http://ncbi.nlm.nih.gov). The location and distribution of cis-regulatory sequence elements in the LmrbcS promoter were analyzed by a signal scan search in the PLACE database (http://www.dna.affrc.go.jp/htdocs/PLACE/signalscan.html). The closest homologues to the RBCS promoter were identified by a homology-based search in the PLACE database. The identified RBCS homologous fragments were aligned to the L. minor RBCS gene promoter using the software program MegAlign and subsequently manually improved.

RESULTS

Cloning of 3’unknown region of LmrbcS gene from duckweed by SEFP-PCR

Based on the known rbcS gene sequence (GenBank accession No. X17231.1, X17230.1, X17232.1, X17235.1, X17234.1, X17233.1, and X00137.1) from L. minor, degeneracy primers were designed to obtain a partial rbcS gene with a length of 400 bp (Figure 2). Blast analysis showed that this rbcS gene (termed LmrbcS) shared 80% identity with the known rbcS genes from L. minor. Another 922 bp DNA fragment was obtained from 3’ flanking region of LmrbcS via SEFP-PCR (Figure 3). Blast analysis LmrbcS gene with the length of 1292 bp was a new L. minor rbcS gene since it shared 95% identity with the known rbcS genes from L. minor.

Identification of 5’ flanking region of LmrbcS from L. minor by SEFP-PCR

In order to allow chromosome walking into the unknown 5’flanking region of LmrbcS sequences, according to the DNA sequence of L.minor LmrbcS gene, gene-specific primers in nested positions close to the 5’ end of the coding regions were designed and synthesized. After two rounds of SEFP-PCR, about 2000 bp fragment was cloned from the 5’ upstream region of LmrbcS gene by SEFP-PCR (Figure 2). The sequencing results (supplementary material) showed that the cloned product was 1870 bp in length (Figure 4) and DNA sequence analysis (Figure 5) indicated that 1543 bp, which was the
Figure 3. Cloning of 3'flanking region of \textit{LmrbcS} gene from \textit{L. minor} via SEFP-PCR. M, DNA maker; 1, negative control; 2, 2nd round SEFP-PCR; 3, 1st round SEFP-PCR.

Figure 4. Isolation of 5'flanking region of \textit{LmrbcS} gene from \textit{L. minor} by SEFP-PCR. M, Marker; 1, 1st round I-PCR; 2, nested PCR.

5' flanking region of \textit{LmrbcS}, contained several putative cis-elements, such as sugar responsive elements as well as circadian-box; all present in this \textit{LmrbcS} promoter. The integrity of the genomic DNA (2835 bp in length) was confirmed by nest PCR. Isolated 5' flanking regions were fused to \textit{gus} gene, and tested for expression in tobacco; the isolated 5' flanking regions were shown to drive reporter gene expression in green tissues (data not shown).
DISCUSSION

We have shown that the self-formed panhandle PCR (SEFP-PCR) is an effective method for DNA walking to an unknown genomic region from a known sequence. SEFP-PCR was successful to isolate 1292 bp \(rbcS \) gene and its 5'upstream sequence of 1543 bp from \(L. \) minor.

SEFP-PCR combined the advantage of ligation-mediated PCR in its specificity and the advantage of panhandle PCR in its efficiency. Compared with the other existing PCR methods for walking, Self-formed panhandle PCR has many advantages: (i) High specificity; (ii) a high positive rate of a specific band; iii) Long length of a walking step, theoretically, \(4^6 \) bp (4096 bp) fragment can be obtained by SEFP PCR; and (iv) a high success rate to walk down in one direction.

The advantages of this method are the easy implementation of the procedure, the use of common materials, the relatively few steps needed to amplify the target region, and the high level of specificity achieved in target sequence amplification.

The following aspects of Self-formed panhandle PCR that are different from normal panhandle PCR should be noted: (i) The DNA template concentration should be high to facilitate the creation of the panhandle adaptors; and (ii) Panhandle adaptor should be added at annealing temperature to improve its specificity.

For the general application of this method, it should be noted that the length and efficiency of walking to an unknown region depend on the restriction enzyme used and the frequency of restriction sites in the genomic DNA of the target organism.

Conflict of Interests

The author(s) have not declared any conflict of interests.

Figure 5. The isolated \(rbcS \) gene from \textit{Lemna minor} by SEFP PCR.
REFERENCES

