ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jmpr@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Medicinal Plant Research will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
<table>
<thead>
<tr>
<th>Editors</th>
</tr>
</thead>
</table>
| **Prof. Akah Peter Achunike**
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria |
| **Associate Editors** |
| **Dr. Ugur Cakilcioglu**
Elazig Directorate of National Education
Turkey. |
| **Dr. Jianxin Chen**
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China. |
| **Dr. Hassan Sher**
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia. |
| **Dr. Jin Tao**
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R. China. |
| **Prof. Parveen Bansal**
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India. |
| **Dr. Ravichandran Veerasamy**
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia. |
| **Dr. Sayeed Ahmad**
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062,
India. |
| **Dr. Cheng Tan**
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province,
China. 210029 |
| **Dr. Naseem Ahmad**
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India. |
| **Dr. Isiaka A. Ogunwande**
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos
Nigeria. |
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Prof Swati Sen Mandi
Division of Plant Biology, Bose Institute, India.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India.

Dr. Arash Kheradmand
Lorestan University, Iran.

Prof Dr. Cemşit Karakurt
Pediatrics and Pediatric Cardiology, Inonu University Faculty of Medicine, Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center, Cairo, Egypt.
ARTICLES

Research Articles

Arbuscular Mycorrhizal Fungi Increase Gallic Acid Production In Leaves Of Field Grown Libidibia Ferrea (Mart. Ex Tul.) L. P. Queiroz
Ronicely Pereira Rocha, Evandro de Castro Melo, Luiz Cláudio Almeida Barbosa, Ricardo Henrique Silva dos Santos, Paulo Roberto Cecon, Rivanildo Dallacort and Adalberto Santi

Phytochemical screening and study of antioxidant and analgesic potentials of ethanolic extract of Stephania japonica Linn
Influence of plant age on the content and composition of essential oil of *Cymbopogon citratus* (DC.) Stapf.

Ronicely Pereira Rocha1*, Evandro de Castro Melo2, Luiz Cláudio Almeida Barbosa3, Ricardo Henrique Silva dos Santos4, Paulo Roberto Cecon5, Rivanildo Dallacort1 and Adalberto Santi1

1Departamento de Agronomia, Universidade do Estado de Mato Grosso, 78300-000 Tangará da Serra - MT, Brazil.
2Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, 36570-000 Viçosa - MG, Brazil.
3Departamento de Química, Universidade Federal de Viçosa, 36570-000 Viçosa - MG, Brazil.
4Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-000 Viçosa - MG, Brazil.
5Departamento de Estatística, Universidade Federal de Viçosa, 36570-000 Viçosa - MG, Brazil.

Received 3 September, 2014; Accepted 29 September, 2014

An experiment was carried out in Viçosa, Brazil to evaluate the influence of plant age (3, 6, 9 and 12 months) on the content and chemical composition of essential oils from lemon grass, using a completely randomized design with three replications. The plants were harvested between 7:00 and 8:30 a.m., and harvesting cut made at 20 cm height from the base of the leaf. The collected material was immediately taken to the laboratory where the leaves were selected, and subsequent determination of moisture content and other chemical analysis done. The essential oil extraction was carried out by hydrodistillation. The identification of the chemical components of the lemon grass volatile oil was performed by gas chromatography and mass spectrometry (GC-MS). The quantification of the chemical composition of essential oils was made by the gas chromatograph in conjunction with a flame ionization detector (GC-FID). Based on the results obtained, it can be concluded that plant age did not influence statistically, the essential oil content extracted from the lemongrass leaves. However this provided significant changes in its chemical composition.

Key words: Medicinal plants, lemongrass, volatile oils, monoterpenes.

INTRODUCTION

Cymbopogon citratus (D.C) Stapf is a native plant species from India and is widely distributed around the globe in tropical areas, including Brazil, where it has different popular names: lemongrass, holy-grass, catinga-grass, cidrão-grass, cidilho-grass, cidro-grass and ciri-grass. It belongs to the family Poaceae, also known as Gramineae, which includes approximately 668 genera and about 9,500 species distributed universally, with some of them of great economic importance. Brazil is one of the countries where this plant is perfectly acclimatized (Negrelle and Gomes, 2007).

Tea from its leaves is used popularly in Brazil as an...
antispasmodic, analgesic, anti-inflammatory, antipyretic, diuretic and sedative and its essential oil is widely used for perfumes and cosmetics (Carlini et al., 1986). Its sedative and antispasmodic actions are attributed to the monoterpenic citral, while the analgesic activity is due to myrcene. Currently, the essential oil of lemongrass has been the focus of research in fighting cancer and AIDS (Puatanachokchai et al., 2002; Wright et al., 2009). The oil from C. citratus were also found to possess antimicrobial, antifungal, insect repellent and antioxidative action (Velluti et al., 2004; Khatri et al., 2010; Singh et al., 2010; Sonker et al., 2014). For these numerous applications, the essential oil of lemongrass has demand in domestic and international markets, and their prices are considered extremely rewarding.

The most important component of the essential oil of C. citratus is citral (40 to 80%), while β-myrcene and geraniol compound make up the majority of the remaining percentage. Citral is a mixture of the isomers geranial (α-citral) and neral (β-citral) (Lewinsohn et al., 1998).

According to the United Nations Comtrade statistics, fragrance and flavor market was estimated at US$ 24 billion in 2011, growing at an annual rate of 10%. The major consumers in the multi-billion dollar global essential oils market are United States (40%), Western Europe (30%) and Japan (7%), with trade in essential oils and related products increasing at about 10% per year. Brazil has a prominent place in the production of essential oil, along with India, China and Indonesia. Brazil's position is largely due to her production of the essential oils of citrus (orange, lemon and lime), which are byproducts of the juice industry (Bizzo et al., 2009).

The essential oil production in medicinal plants can be affected by several factors such as plant spacing, cutting height, season, age, harvest time and drying method. These factors may influence directly the essential oil production and, therefore, its pharmacological properties. Some studies have stated the influence of these factors in medicinal plants like Cymbopogon citratus (Blank et al., 2007), Juniperus excelsa (Shanjani et al., 2010) and Mikania Glomerata (Rocha et al., 2014). However, studies on plant age of C. citratus are still rare. The plant age should be determined not only because of the plant mass to be harvested, but also because of the active ingredients content, without which the product attracts lower prices from end-users.

The objective of this study, therefore, was to evaluate the influence of different harvest dates on the quantity and quality of essential oil from lemongrass.

MATERIALS AND METHODS

Site selection and C. citratus cultivation

C. citratus leaves from plantations located in the experimental irrigation and drainage section of the Federal University of Viçosa, Viçosa-MG, Brazil, were used. The cultivation was carried out in a greenhouse measuring 52.5 m². The seedlings were propagated by cuttings and transplanted in spacing of 0.30 m between rows and 0.30 m between plants as recommended by Blank et al. (2007). The greenhouse cover was constructed in semicircular shape, with 7.5 m length, 7 m width and a central height of 5 m and covered with low density polyethylene film of 150 μm.

Irrigation

Different irrigation treatments were used. The treatments were:

1. Treatment 1 (T1) = 50% of ETc;
2. Treatment 2 (T2) = 75% of ETc;
3. Treatment 3 (T3) = 100% of ETc;
4. Treatment 4 (T4) = 125% of ETc.

Where ETc = crop evapotranspiration

All treatments were irrigated twice a week. The applied irrigation were calculated by the software IRRIPPLUS® with the registration of daily data through a weather station, installed inside the greenhouse. The data obtained from weather station were relative humidity, maximum, average and minimum temperature, air velocity and solar radiation. Through these data, the daily evapotranspiration, the irrigation to be applied in each treatment and the time of irrigation were calculated. This was subjected to chemical analysis, but for only treatment 2 (T2 = 75%) because it obtained the greatest essential oil content. For this treatment of irrigation (T2 = 75%) the effect of plant age (3, 6, 9 and 12 months) in the content and quality of the essential oil was evaluated.

Statistical analyses

The design was completely randomized with three replications and results subjected to analysis of variance (P ≤ 0.05). The treatment means were compared by Tukey test at 5% probability.

Sample collection

The species to be used were collected between 7:00 and 8:30 am and the cutting height was set at 20 cm from the basal end of the leaf. After harvesting, the fresh materials were transported to the appropriate laboratory where the leaves were selected, removing diseased and damaged parts and other extraneous plant parts. Three samples were randomly selected to evaluate the moisture content and perform the chemical analysis. Because of non-availability of a standard methodology for the determination of medicinal and aromatic plants in Brazil, the determination of moisture content was performed by gravimetric method as proposed by the ASAE (2000) for forage and similar plants. This was done by placing 25 g of the in natura leaves in a stove with forced air circulation at 103 + 2°C for 24 h, each done in triplicate.

Extraction procedures, analyses and identification

The extraction and analysis of chemical components of the essential oil of lemongrass were performed at the Laboratory of Analysis and Synthesis of Agrochemicals (LASA), located in the Department of Chemistry, Federal University of Viçosa. The essential oil was extracted by hydrodistillation utilizing clevenger equipment (modified). The flask was loaded with 90 g of in natura leaves of lemongrass. One litter of distilled water was added, which was the volume sufficient to cover the material. To facilitate the extraction, the leaves in natura were transversely cut every 2 cm. The extraction time was 90 min, counted from the moment of boiling, as determined in preliminary tests. The analysis of the chemical
chemical components of the essential oil of lemongrass consisted of identifying and quantifying the active ingredients of essential oil and followed the methodology described in Adams (1995).

The essential oil components of lemongrass was identified using a gaseous chromatograph system coupled to a mass spectrometer (Shimadzu GC-EM, GC-17A/QP-5000) and equipped with a capillary column DB-5 (30 m x 0.25 mm (ID) x 0.25 μm film). Helium was used as the carrier gas at a flow rate of 1.8 ml/min, split ratio of 1:5 and the solvent cutting time of 5 min. The temperature of the injector was 220°C and that of the detector, 240°C. Initial temperature in the oven was kept at 40°C for 2 min, and was increased at a rate of 3°C per minute until 178°C. This temperature was maintained for 2 min, with total time of analysis of 50 min. Only ions at charge mass (m/z) ratios between 30 and 700 were detected by the mass spectrometer. The sample volume injected was 1 μl, at a concentration of 10,000 ppm with hexane as a solvent.

The identification of components was conducted by comparing mass spectrometer obtained experimentally with those from the equipment database and comparison of the Kovats index for each component. Calculating this index required the injection of a mixture of hydrocarbons (C8 to C24), using the retention times of these as base for the calculation of Kovats index of the components of essential oils. For quantification of constituents of essential oils of lemongrass, we used the gas chromatograph coupled to a flame ionization detector (GC-FID), manufactured by Shimadzu, model QP 5000 and SPB-5 column of 0.25 mm thick, 30 m long, 0.25 mm internal diameter. Nitrogen was used as carrier gas at a flow rate of 1.8 ml min⁻¹, split ratio of 1:30, the solvent cutting time 5 min, injector temperature of 220°C and temperature in the flame ionization detector 240°C. The temperature of the column was programmed to start at 40°C and remain for 2 min, after an increase of 3°C per minute up to 178°C, when again it was maintained for 2 min, with a total analysis time of 50 min. The volume of sample injected was 1 μl at a concentration of 10,000 ppm, using hexane as the solvent. The chemical constituents present in the essential oil were quantified based on normalization method. The calculations were computer programmed and connected to the GC-FID.

RESULTS

Essential oil content

Figure 1 shows the percentages of essential oil and the statistical analysis obtained in different plant ages. It appears that plant age did not significantly influence the amount of essential oil extracted from the leaves of lemongrass.

Quality of the essential oil

Identification and quantification of the main chemical components of the essential oil from the leaves of lemon-grass was performed to evaluate the influence of plant age on the quality of this oil. Figure 2 shows only one chromatogram of essential oil from lemon grass leaves, because no variation was observed in the presence of the chemical components identified in the oil, only variations in the concentrations of same. Table 1 presents the retention times and Kovats Index (KI) calculated and tabulated of the main chemical components of the essential oil from the leaves in natura of lemongrass. Statistical analysis of the main components of the essential oil of lemongrass for the plant age is show in Table 2.
Table 1. Main components of the essential oil from the leaves in natura of *Cymbopogon citratus*, with their retention times and Kovats indexes calculated and tabulated.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Components</th>
<th>Retention time (min)</th>
<th>Kovats Index (calculated)</th>
<th>Kovats Index (tabulated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Myrcene</td>
<td>12.53</td>
<td>988</td>
<td>991</td>
</tr>
<tr>
<td>02</td>
<td>Neral</td>
<td>25.01</td>
<td>1242</td>
<td>1240</td>
</tr>
<tr>
<td>03</td>
<td>Geranial</td>
<td>26.43</td>
<td>1272</td>
<td>1270</td>
</tr>
</tbody>
</table>

Table 2. Concentration of main chemical constituents of the essential oil extracted from in natura leaves of *Cymbopogon citratus*, depending on the plant age.

<table>
<thead>
<tr>
<th>Plant age (months)</th>
<th>Components of essential oil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Myrcene</td>
</tr>
<tr>
<td>3</td>
<td>14.15<sup>b</sup></td>
</tr>
<tr>
<td>6</td>
<td>7.80<sup>a</sup></td>
</tr>
<tr>
<td>9</td>
<td>9.98<sup>a</sup></td>
</tr>
<tr>
<td>12</td>
<td>9.59<sup>a</sup></td>
</tr>
</tbody>
</table>

Means followed by different lowercase letters in the same column differ significantly by Tukey test at 5% probability.

DISCUSSION

Essential oil content

Opposite results were found by Leal et al. (2003) who observed gradual decrease in oil content of lemongrass with increasing plant age. Koshima et al. (2006) while evaluating different plant ages (6, 9, 12 and 15 months) on the amount of essential oil extracted from the leaves of the same medicinal species noted that the harvest, when the plant age was 12 months, produced the least amount of essential oil. On the other hand, at 6 and 15 months, greater quantities of essential oils were produced. The authors were of the view that increased production of essential oil at 6 and 15 months was due to lower rainfall in samples taken in winter and autumn.

Most probably, irrigation was one of the reasons the results of the present study were different from those reported by Koshima et al. (2006). This study was conducted in a greenhouse with the same irrigation provided
Quality of the essential oil

It can be observed in Table 2, that at the age of 3 months, the mycerne component was significantly higher compared to the other treatments. However, for the major component, citral (geranial + nerall), the plants aged 6, 9 and 12 months showed higher concentrations compared to younger plants (3 months). Possibly the plant age influences the quality of the essential oil of medicinal plants because they have a higher concentration of active ingredients in certain periods of the year. The increase over the harvest dates may be due to the aroximation of such a period. This variation can be also attributed to physiological and environmental factors. These results indicate that for the range of 1 year after the transplanting of lemongrass seedling, the ideal age to plant to harvest in order to produce the most important component of the essential oil of this species (citral) may vary between 6 to 12 months for growing conditions studied. According to Koshima et al. (2006), the concentration of citral essential oil of lemongrass varied depending on plant age (6, 9, 12 and 15 months), and is produced in higher concentrations at 6 and 15 months of age. Similar results were observed by Bezerra et al. (2008), who noted changes in the chemical composition of the essential oil of *Egletes viscosa* according to the plant age. Santos et al. (2012) studied the plant age (3, 6, 9 and 12 months) on the chemical composition of the essential oil of *A. zerumbet* and verified variations in chemical composition of this oil between six and nine months. However, May et al. (2010) evaluated the quality of the essential oil of *R. officinalis*, and concluded that the concentrations of active ingredients of essential oil of this species were not affected by the plant age.

Conclusion

The content of essential oil extracted from the leaves of *C. citratus* did not change significantly when measured at different harvest times, but there were statistical changes in its chemical composition.

ACKNOWLEDGMENTS

The authors thank JL Pereira for the technical support provided by the qualitative analysis of essential oil and CNPq and FAPEMIG for financial support.

Conflict of Interest

Authors have not declared any conflict of interest.

REFERENCES

Throughout the year.

The appropriate plant age varies according to the plant organ, stage of development and the time of year. Analyzing the effects of two plant age on the content of essential oil from the leaves of *Melissa officinalis*, Meira et al. (2011) found that the essential oil content showed no significant difference between the periods evaluated, and the average oil content in the two cuts was 0.018%. Similarly, May et al. (2010), while evaluating the production of essential oil of *Rosmarinus officinalis* at different plant ages, found that the yield of essential oil was not affected over time. The variation in oil content depending on the age of the plant appears to be a factor that varies with the species. In a study of two plant ages (60 and 120 days after transplanting) of *L. alba*, Santos et al. (2004) reported that the most essential oil production occurred at 120 days. However for *C. citratus* a reduction in oil content with plant age was observed (Leal et al., 2003). Mint Innecco et al. (2003) have also observed that essential oil increased between 80 and 95 days after planting.

Phytochemical screening and study of antioxidant and analgesic potentials of ethanolic extract of Stephania japonica Linn.

S. M. Naim Uddin¹, Mohammad Nurul Amin¹*, A. F. M. Shahid-Ud-Daula¹,², Hemayet Hossain³, Md. Mahmodul Haque¹, Md. Saifur Rahman¹ and Md. Abdul Kader¹

¹Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali-3814, Bangladesh.
²Faculty of Science, University Brunei Darussalam, Brunei BE141, Bangladesh.
³BCSIR Laboratories, Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205, Bangladesh.

Received 9 April, 2014; Accepted 29 September, 2014

The present study was conducted to evaluate the possible phytochemicals present, antioxidant activity and analgesic potential of ethanolic extract of leaves of Stephania japonica (Linn.). For investigating the antioxidant activity, four complementary test systems, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, reducing power assay, Fe²⁺ ion chelating ability and total phenolic content were used. Analgesic activity of the extract was evaluated using acetic acid-induced writhing model of pain in mice. In DPPH free radical scavenging test, IC₅₀ value for ethanolic crude extract was found moderate (18.57 ± 0.079 μg/ml) while compared to the IC₅₀ values of the reference standards ascorbic acid and BHA (1.93 ± 0.027 and 4.10 ± 0.035 μg/ml), respectively. In reducing power assay, the maximum absorbance for ethanolic crude extract was found to be 2.013 ± 0.024 at 100 μg/ml, compared to 2.811 ± 0.013 and 2.031 ± 0.019 for standard ascorbic acid and butylated hydroxyanisole (BHA), respectively. The IC₅₀ value of the extract as % Fe²⁺ ion chelating ability was determined as 18.68 ± 0.029, where ethylenediaminetetraacetic acid (EDTA) showed 8.87 ± 0.035. The total phenolic amount was also calculated as moderate in ethanolic crude extract (237.71 ± 0.57 mg/g of gallic acid equivalent). At the dose of 500 mg/kg body weight, the extract showed significant analgesic potential in acetic acid induced writhing in mice, showing 41.47% inhibition (P < 0.001) comparable to that produced by diclofenac Na (45.02%) used as standard drug. These results show that ethanolic extract of leaves of S. japonica (Linn.) has moderate antioxidant and potent analgesic activity. These activities increase with the increase of concentrations. The potency of the extract may be due to the presence of phytochemicals like tannins, flavonoids, phenolics etc.

Key words: Antioxidant, analgesic, phytochemicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH), total phenolic content, reducing power assay, Stephania japonica, Menispermiaceae.

INTRODUCTION

Recently, focus on plant research has increased throughout the world to show immense potential of medicinal plants used in various traditional systems and already more than 13,000 plants have been studied during the last 5 year period (Bensky et al., 2004). Probably, the history of plants being used for medicinal purpose is as old as the history of mankind (Riaz et al., 2013). Our traditional system of medicine and folklore...
usually uses the whole medicinal plant or a part of it for the treatment of all types of diseases successfully (Imran et al., 2014). The medicinal plant *Stephania japonica* Linn. (Family - Menispermaceae) is a slender wiry climber or twining shrub (Senthamarai et al., 2012). The family Menispermaceae is a family of about 65 genera and 350 species, distributed in warmer parts of the world. The members of this family are commonly herbs or shrubs but rarely trees. The plants of the genus *Stephania* have recognized medicinal values and traditionally have been used for the treatment of asthma, tuberculosis, dysentery, hyperglycemia, cancer, fever, intestinal complaints, sleep disturbances and inflammation (Chopra et al., 1958; Kirlikar et al., 1987). The leaves and roots are bitter and astringent and used in the treatment of fevers, diarrhea, dyspepsia and urinary disease (Ghani, 2003). The present study focuses on screening of phytochemicals, antioxidant activities and analgesic effect of ethanolic extract of *S. japonica* Linn.

Phytochemicals are well known to show a variety of pharmacological actions in human body (Akinmoladun et al., 2007). Antioxidants are molecules which are capable of preventing or inhibiting oxidation by counteracting reactive oxygen species (ROS) (Zia-ul-Haq et al., 2013a). ROS which are produced during cellular metabolism mediate many acute and chronic diseases. So the balance between antioxidation and oxidation is essential for proper maintaining of a healthy biological system (Amin et al., 2013). By acting in the central nervous system (CNS) or on the peripheral pain mechanism analgesics relieve pain as a symptom without affecting its cause (Riaz et al., 2014).

MATERIALS AND METHODS

Plant

The fresh leaves of *S. japonica* Linn. for the proposed study were collected from Karamjal, Sundarban, Bangladesh on January, 2010. The plant was identified and authenticated by expert botanist of Bangladesh National Herbarium, Mirpur, Dhaka, where the voucher specimen has been deposited for future reference. Its DACB Accession No. is 34527.

Preparation of plant extract

The plant material was shade dried with occasional shifting, powdered mechanically with a mechanical grinder and stored in a tight container. About 500 g of powered material was taken in a clean, sterilized flat-bottomed glass container and soaked in 1500 ml of 80% ethanol (Merck KGaA, Darmstadt, Germany). The container with its contents was sealed and kept for a period of 14 days accompanying occasional shaking and stirring. The whole mixture then underwent a coarse filtration by a piece of clean, white cotton material. Then it was filtered through whatman filter paper (Bibby RE200, Sterilin Ltd., UK). The resultant filtrate was then evaporated in water bath maintained 40°C to dryness. It rendered a gummy concentrate of reddish black color. The gummy concentrate was designated as crude extract of Ethanol (Zia-ul-Haq et al., 2013b).

Test animals and drug

For the screening of analgesic potential of crude ethanolic extract of *S. japonica* leaves, young Swiss-albino mice aged 4 to 5 weeks (either sex), average weight 20 to 25 g were used. They were collected from the animal Research Branch of the International Center for Diarrheal Disease and Research, Bangladesh (ICDDRB). Animals were kept in favorable condition for one week for adaptation and fed rodent food and water *ad libitum* formulated by ICDDR.B. They were maintained carefully under standard environmental conditions (temperature: 24.0 ± 1.0°C, relative humidity: 55 to 65% and 12 h light/dark cycle) and had free access to feed and water *ad libitum*. All protocols for animal experiment were approved by the animal ethical committee of Noakhali Science and Technology University (NSTU) research cell. In this analgesic experiment, as standard, diclofenac sodium (donated by Opsonin Pharma Ltd., Bangladesh) was used. Tween 80 and acetic acid used were of analytical grade (Merck KGaA, Darmstadt, Germany).

Chemicals for antioxidant assay

1,1-Diphenyl-2-picryl hydrazyl (DPPH), trichloro acetic acid (TCA), L-ascorbic acid, butylated hydroxy anisole (BHA), gallic acid, folic acid, phenol reagent, phosphate buffer (pH 6.6), potassium ferricyanide [K₃Fe(CN)₆] (1%), distilled water, EDTA, ferrozine, FeCl₂ and FeCl₃ (0.1%) were of analytical grade and purchased from Merck KGaA, Darmstadt, Germany.

Pharmacological evaluation

Phytochemical screening

The freshly prepared crude ethanolic extract was qualitatively tested for the presence of chemical constituents. Phytochemical screening of the extract was performed using the following reagents and chemicals: Alkaloids with Dragendorff’s reagent and Mayer’s reagent, flavonoids with the use of Mg and HCl; tannins with ferric chloride and potassium dichromate solutions and saponins with ability to produce stable foam and steroids with Libermann-Burchard reagent, reducing sugars with Benedict’s reagent and Fehling’s reagent. These were carefully identified by characteristic color changes using standard procedures (Ghani, 2003; Amin et al., 2013; Evans, 1989).

Antioxidant activity

Here four complementary test methods namely DPPH free radical scavenging, reducing power assay, ferrous ion chelating ability and total phenolic content were used to determine the antioxidant properties of plant extract.
Determination of DPPH-free radical scavenging activity

The stable DPPH free radical scavenging activity was measured using a slightly modified method described by Chang et al. (2001). Stock solution (1 mg/ml) of the ethanol extract of the leaves of *S. japonica* was prepared in ethanol from which serial dilutions were carried out to obtain the concentrations of 5, 10, 20, 40, 60, 80, 100 μg/ml. In this assay, 2 ml of 0.1 mM ethanol DPPH solution was mixed to 2 ml of extract solution at different concentrations and the contents were stirred vigorously for 15 s. Then, the solutions were allowed to stand at dark place at room temperature for almost 30 min for reaction to occur. Thereafter absorbance was measured against a blank at 517 nm with a double beam UV spectrophotometer (UV-1800, UV-Vis spectrophotometer, Shimadzu, Japan). The percentage of DPPH free radical scavenging activity of each plant extract was calculated as:

\[
\text{DPPH radical-scavenging activity (I %) = } \left(\frac{A_0 - A}{A_0} \right) \times 100
\]

Where \(A_0\) is the absorbance of the control solution containing all reagents except plant extracts. \(A\) is the absorbance of the DPPH solution containing plant extract. Finally, the concentration of sample required to scavenge 50% DPPH free radical \((I_{50})\) was calculated from the plot of inhibition (%) against the concentration of the extract. Ascorbic acid and BHA were used as positive control standard for this experiment.

Reducing power assay

The reducing power assay of *S. japonica* was determined according to the method reported by Oyaizu (1986), with slight modifications. Here 1 ml of extract solution of different concentrations (5, 10, 20, 40, 60, 80, 100 μg/ml) was mixed with 2.5 ml of phosphate buffer (0.2 M, pH 6.6) and 2.5 ml of potassium ferricyanide \([K_3Fe(CN)_6]\) (1% w/v). The mixture was incubated at 50°C for almost 30 min. Thereafter, the reaction was terminated by adding 2.5 ml of trichloroacetic acid (10%, w/v), then the mixture was centrifuged at 3000 rpm for 10 min. The supernatant solution (2.5 ml) was mixed carefully with distilled water (2.5 ml) and ferric chloride \((0.5 \text{ ml}, 0.1\% \text{ w/v})\), and the absorbance was measured at 562 nm in a spectrophotometer, wherein the Fe²⁺/Fe³⁺ complex formation was monitored by measuring the absorbance value of the reaction mixture indicates increased reducing power. Three replicates were made for each test sample and average data was recorded. Ascorbic acid and BHA were used as positive control standard too.

Ferrous ion chelating ability

The ferrous ions chelating activity of ethanolic extract of the leaves of *S. japonica* and standards was investigated according to the method of Dinis et al. (1994). Briefly, ethanol extracts (5 ml) was mixed to 0.1 ml solution of 2 mM FeCl₃ and ethanol. The reaction was initiated by the addition of 0.2 ml of 5 mM ferrozone and mixture was shaken vigorously and left standing at room temperature for 10 min. After the mixture had reached equilibrium, the absorbance of the solution was then recorded spectrophotometrically at 562 nm in UV spectrophotometer, wherein the Fe²⁺ chelating ability of extracts was monitored by measuring the ferrous ion-ferrozone complex. The percentage of inhibition of ferrozone-Fe²⁺ complex formation was calculated as:

\[
\text{Ferrous ions chelating ability } (\%) = \left(\frac{A_0 - A}{A_0} \right) \times 100
\]

Here, \(A_0\) is the absorbance of the control solution (containing all reagents except plant extract). \(A\) is the absorbance in the presence of the sample of plant extracts. Three replicates were made for each test sample and average data was noted where EDTA was used as positive control standard.

Determination of total phenolic content

The total phenolic contents of the extract were determined by the modified Folin-Ciocalteu method (Wolfe et al., 2003). 0.5 ml of each extract (1 mg/ml) was added with 5 ml Folin-Ciocalteu reagent (1:10 v/v distilled water) and 4 ml (75 g/L) of sodium carbonate. The mixture was vortexed for 15 s and allowed to stand for almost 30 min at 40°C for color development. The absorbance was measured at 765 nm with a spectrophotometer (UV-1800, Shimadzu, Japan). Finally total phenolic content was determined as mg of gallic acid equivalent per gram using the equation obtained from a standard gallic acid calibration curve \((y = 6.9103x - 0.0937, R^2 = 0.0936)\).

Analgesic potential

Analgesic potential of the ethanolic extract of *S. japonica* leaves was tested using the model of acetic acid induced writhing in mice (Ahmed et al., 2004; Whittle, 1964). Briefly, experimental animals \((n = 5)\) were randomly selected and divided into four groups denoted as group-I, group-II, group-III, group-IV. Each mouse was weighed carefully and the doses of the test samples and control materials were adjusted accordingly. Here each group received a particular treatment, that is, control, positive control (standard Diclofenac Na) and two doses (250 and 500 mg/kg body weight) of the extract solution. Positive control group was administered at the dose of 25 mg/kg body weight and control group was treated properly with 1%Tween 80 in water at the dose of 15 mg/kg body weight. Test samples, standard drug and vehicle were administered orally almost 30 min before intraperitoneal administration of 0.7% acetic acid. After an interval of 5 to 10 min, the mice were observed for specific contraction of the body referred to as ‘writhing’ (contraction of abdomen, turning of trunk and extension of hind legs) for the next 10 min.

Statistical analysis

For antioxidant determination, data were presented as mean ± standard deviation (SD). Statistical analysis for animal experiment was carried out using one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparisons using SPSS 16.0 for Windows®. The results obtained were compared with the control group. \(P\)-values < 0.05 were considered to be statistically significant.

RESULTS

Phytochemical screening

Phytochemical analysis of the crude extract revealed the presence of alkaloid, tannin, gum, flavonoid and saponin (Table 1).

Antioxidant activity

DPPH free radical scavenging activity

The DPPH radical scavenging activity of ethanolic extract of the leaves of *S. japonica* was found to increase with
Table 1. Phytochemical screening of the crude ethanolic extract *S. japonica*.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Chemical constituent</th>
<th>Test</th>
<th>Extract</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test for reducing sugar</td>
<td>Benedict’s test</td>
<td>Ethanolic</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fehling’s test</td>
<td>Ethanolic</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alpha napthol solution test</td>
<td>Ethanol</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Test for tannins</td>
<td>Ferric chloride test</td>
<td>Ethanolic</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium dichromate test</td>
<td>Ethanolic</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Test for flavonoids</td>
<td>Hydrochloric acid test</td>
<td>Ethanol</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Test for saponins</td>
<td>Foam test</td>
<td>Ethanol</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Test for gums</td>
<td>Molish test</td>
<td>Ethanol</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Test for steroids</td>
<td>Libermann-burchard test</td>
<td>Ethanol</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulphuric acid test</td>
<td>Ethanol</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mayer’s test</td>
<td>Ethanol</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wagner’s test</td>
<td>Ethanol</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dragendroff’s test</td>
<td>Ethanol</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hager’s test</td>
<td>Ethanol</td>
<td>++</td>
</tr>
</tbody>
</table>

+ = Presence - = Absence ++ = significantly present.

Table 2. Comparative DPPH radical scavenging activity of ethanol extract of the leaves of *Stephania japonica* and standards of ascorbic acid and butylated hydroxy anisole (BHA).

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>% Inhibition of different solvent extract and standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stephania japonica</td>
</tr>
<tr>
<td>5</td>
<td>30.61 ± 0.013</td>
</tr>
<tr>
<td>10</td>
<td>44.72 ± 0.018</td>
</tr>
<tr>
<td>20</td>
<td>57.94 ± 0.024</td>
</tr>
<tr>
<td>40</td>
<td>64.65 ± 0.016</td>
</tr>
<tr>
<td>60</td>
<td>70.38 ± 0.011</td>
</tr>
<tr>
<td>80</td>
<td>80.19 ± 0.019</td>
</tr>
<tr>
<td>100</td>
<td>84.11 ± 0.016</td>
</tr>
<tr>
<td>IC50 (µg/ml)</td>
<td>18.57 ± 0.079</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD (n = 3).

Reducing power assay

Reducing power of ethanol extract of *S. japonica* was found to increase with the increasing concentration. Maximum absorbance 2.013 ± 0.024 was observed at 100 µg/ml concentration. On the other hand, ascorbic acid and BHA which were used as positive control showed maximum absorbance 2.811 ± 0.013 and 2.031 ± 0.019, respectively at the same concentration (Table 3).

Fe²⁺ ion chelating ability

Ferrous ion chelating ability of the extract was found to increase with the increasing concentration. Maximum chelating (%) ability 86.11 ± 0.022 was observed at 100 µg/ml concentration and the IC50 value was determined as 18.68 ± 0.029. EDTA which was used as standard...
Table 3. Comparative of reducing power assay of ethanol extract of leaves of *Stephania japonica* and standard.

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>% Inhibition of different solvent extract and Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stephania japonica</td>
</tr>
<tr>
<td>5</td>
<td>0.431 ± 0.023</td>
</tr>
<tr>
<td>10</td>
<td>0.573 ± 0.018</td>
</tr>
<tr>
<td>20</td>
<td>0.891 ± 0.026</td>
</tr>
<tr>
<td>40</td>
<td>1.016 ± 0.015</td>
</tr>
<tr>
<td>60</td>
<td>1.379 ± 0.019</td>
</tr>
<tr>
<td>80</td>
<td>1.682 ± 0.021</td>
</tr>
<tr>
<td>100</td>
<td>2.013 ± 0.024</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD (n = 3).

Table 4. Comparative data of Fe$^{2+}$ ion chelating ability of ethanol extract of leaves of *Stephania japonica* and standard.

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>% Chelating ability of different solvent extract and standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethanol extract of Stephania japonica</td>
</tr>
<tr>
<td>5</td>
<td>32.86 ± 0.019</td>
</tr>
<tr>
<td>10</td>
<td>41.42 ± 0.023</td>
</tr>
<tr>
<td>20</td>
<td>57.84 ± 0.015</td>
</tr>
<tr>
<td>40</td>
<td>69.35 ± 0.017</td>
</tr>
<tr>
<td>60</td>
<td>74.75 ± 0.029</td>
</tr>
<tr>
<td>80</td>
<td>83.42 ± 0.025</td>
</tr>
<tr>
<td>100</td>
<td>86.11 ± 0.022</td>
</tr>
<tr>
<td>IC$_{50}$ (µg/ml)</td>
<td>18.68 ± 0.029</td>
</tr>
</tbody>
</table>

 Values are expressed as mean ± SD (n = 3).

Table 5. Total phenolic content determination of ethanolic extract of leaves of *Stephania japonica*.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Avg. absorbance at 765 nm</th>
<th>Total phenolic content of ethanolic extract of Stephania japonica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol extract of Stephania japonica</td>
<td>1.18±0.077</td>
<td>237.71±0.57 mg gallic acid equivalent (GAE) per gram of dry extract</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD (n = 3).

compound showed maximum chelating (%) ability of 99.75 ± 0.011 at 100 µg/ml, and 50% inhibition was found at 8.87 ± 0.035 (Table 4).

Determination of total phenolic content

Based on the absorbance values of the extract solutions, the colorimetric analysis of the total phenolics of extracts were determined and compared with that of standard solution of gallic acid equivalents. The amount of total phenolic content was determined in the ethanolic crude extract of *S. japonica* as 279.05 ± 0.73 mg/g of gallic acid equivalent (Table 5).

Analgesic potential

The results of the test showed that the 500 mg/kg ethanolic extract leaves of *S. japonica* leaves exhibit highly significant (P < 0.001) inhibition of writhing reflex by 41.47% while the standard drug diclofenac sodium inhibition was found to be 45.02% at a dose of 25 mg/kg body weight (Table 6).

DISCUSSION

Medicinal plants have a long history of serving people in many regions of the world and about 80% of the world
population still uses plants for various medical purposes (Schulz et al., 2001; Kong et al., 2003), because medicinal plants contain various types of phytochemicals and these phytochemicals are well known to show a variety of pharmacological actions in human body (Akinmoladun et al., 2007). In our study, preliminary phytochemical screening showed the presence of various phytochemicals.

Polyphenolic compounds like flavonoids, tannins and phenolic acids, commonly found in plants which contain multiple biological effects, including antioxidant activity (Brown et al., 1998; Vinson et al., 1995; Gil et al., 1999; Kahkonen et al., 1999). In this investigation, the extract showed moderate antioxidant activities with an IC\textsubscript{50} which were compared with the values of standard drugs used. Antioxidant effect of this study could be attributed to the presence of tannin found with the plant extract. Antioxidant activities of ethanolic extract of the leaves of \textit{S. japonica} was found to increase with the increasing concentration. The effect of antioxidants on DPPH is thought to be due to their hydrogen donating ability (Shirwaikar et al., 2006). DPPH\textsuperscript* is a stable free radical which accepts an electron or hydrogen radical and thus become a stable diamagnetic molecule (Nakayama et al., 1993) and is generally used as a substrate for evaluating the antioxidant activity of a compound (Chang et al., 2002).

Based on the data obtained from this study, DPPH radical scavenging activity of extract of \textit{S. japonica} was moderate. The reducing power assay of \textit{S. japonica} extract was also determined. The reducing properties are normally associated with the presence of reductones, which are responsible to exert antioxidant action by breaking the free radical chain by donating a hydrogen atom (Duh, 1994). Ferrous ion chelating ability of extract was also evaluated to determine the antioxidant activity and this chelating ability was found to increase with the increasing concentration. Phytochemical compounds, mainly phenolic compounds (such as flavonoids, phenyl propanoids, phenolic acids, tannins etc.) are very important components for the free radical scavenging and antioxidant activities of plants. Phenolic compounds react as hydrogen donors and thus neutralize the free radicals (Kulisc et al., 2004; Tanaka et al., 1988). In the present study, the total amount of phenolic compounds was calculated as moderate in the ethanol extract of \textit{S. japonica} leaves. Phenols are important components of plants which may contribute directly to antioxidant effect of the system (Duh, 1994).

Analgesic potential of the ethanolic extract of \textit{S. japonica} leaves was tested using the model of acetic acid induced writhing in mice. This acetic acid induced writhing response is a sensitive procedure to evaluate peripherally acting analgesics and represents pain sensation by triggering localized inflammatory response (Ahmed et al., 2006). It is known that non-steroidal anti-inflammatory and analgesic drugs reduce the inflammatory pain by inhibiting the formation of pain mediators at the peripheral target sites, where prostaglandins and bradykinin are proposed to play a significant role in the pain process (Hirose et al., 1984). The oral administration of doses of \textit{S. japonica} extract significantly (\textit{p} < 0.001) inhibited writhing response induced by acetic acid in a dose dependent manner. It is likely that the plant extract might have exerted its peripheral antinociceptive action by interfering with the local reaction caused by the irritant or by inhibiting the synthesis, release and/or antagonizing the action of pain mediators at the target sites. Interestingly, compounds like flavonoids (Kim et al., 2004) and steroids, triterpenes in part, have been shown to possess anti-inflammatory and analgesic activity (Pritam et al., 2001). Besides, tannins are also found to have a nice contribution in antinociceptive activity (Ramprasath et al., 2006).

Table 6. Effect of Ethanolic extract of leaves of \textit{Stephania japonica} (Gaertin) on acetic acid induced writhing mice.

<table>
<thead>
<tr>
<th>Animal group (n=5)</th>
<th>Treatment</th>
<th>Writhing count (mean ± SEM) (% writhing)</th>
<th>% Writhing inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. (Control)</td>
<td>1% tween-80 solution in water I.P</td>
<td>10.95 ± 0.31 (100)</td>
<td>-</td>
</tr>
<tr>
<td>II. (Positive control)</td>
<td>Diclofenac sodium (25 mg/kg) orally</td>
<td>7.12 ± 0.57 a (54.98)</td>
<td>45.02</td>
</tr>
<tr>
<td>III. (Test group)</td>
<td>Ethanol extract (250 mg/kg) orally</td>
<td>10.01 ± 0.81 a (77.29)</td>
<td>22.71</td>
</tr>
<tr>
<td>IV. (Test group)</td>
<td>Ethanol extract (500 mg/kg) orally</td>
<td>7.58 ± 0.73 a (58.53)</td>
<td>41.47</td>
</tr>
</tbody>
</table>

\textit{N}=number of mice, S.E.M = standard error of mean, \textit{a}\textit{P}<0.001; \textit{b}\textit{P}<0.01. Values are expressed as mean ± SEM.

Conclusion

In the context of the discussion, it can be concluded that the ethanolic extract of \textit{S. japonica} possesses moderate antioxidant and potent analgesic activity. These activities increase with the increasing of concentrations. The potency of the extract may be due to the presence of phytochemicals like tannins, flavonoids, phenolics etc. However, extensive researches are necessary to find out the active principles responsible for these activities.

ACKNOWLEDGEMENT

The authors are grateful to Opsonin Pharma Ltd.,
Bangladesh for their generous donation of medicine and BNH to identify the plant. The authors are also thankful to the authority and Senior Scientific Officer Hemayet Hossain of BCSIR (Bangladesh Council of Scientific and Industrial Research) Laboratories, Dhaka to use their lab.

Conflict of interest

All authors have none to declare

REFERENCES

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences