ABOUT AJMR

The African Journal of Microbiology Research (AJMR) (ISSN 1996-0808) is published Weekly (one volume per year) by Academic Journals.

African Journal of Microbiology Research (AJMR) provides rapid publication (weekly) of articles in all areas of Microbiology such as: Environmental Microbiology, Clinical Microbiology, Immunology, Virology, Bacteriology, Phycology, Mycology and Parasitology, Protozoology, Microbial Ecology, Probiotics and Prebiotics, Molecular Microbiology, Biotechnology, Food Microbiology, Industrial Microbiology, Cell Physiology, Environmental Biotechnology, Genetics, Enzymology, Molecular and Cellular Biology, Plant Pathology, Entomology, Biomedical Sciences, Botany and Plant Sciences, Soil and Environmental Sciences, Zoology, Endocrinology, Toxicology. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajmr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at ajmr@academicjournals.org.
Dr. Barakat S.M. Mahmoud
Food Safety/Microbiology
Experimental Seafood Processing Laboratory
Coastal Research and Extension Center
Mississippi State University
3411 Frederic Street
Pascagoula, MS 39567
USA

Prof. Mohamed Mahrous Amer
Poultry Disease (Viral Diseases of poultry)
Faculty of Veterinary Medicine, Department of Poultry Diseases
Cairo University
Giza, Egypt

Dr. Xiaohui Zhou
Molecular Microbiology, Industrial Microbiology, Environmental Microbiology, Pathogenesis, Antibiotic resistance, Microbial Ecology
Washington State University
Bustad Hall 402 Department of Veterinary Microbiology and Pathology, Pullman, USA

Dr. R. Balaji Raja
Department of Biotechnology, School of Bioengineering, SRM University, Chennai
India

Dr. Aly E Abo-Amer
Division of Microbiology, Botany Department, Faculty of Science, Sohag University
Egypt

Dr. Haoyu Mao
Department of Molecular Genetics and Microbiology
College of Medicine
University of Florida
Florida, Gainesville
USA

Dr. Rachna Chandra
Environmental Impact Assessment Division
Environmental Sciences
Sálim Ali Center for Ornithology and Natural History (SACON), Anaikatty (PO), Coimbatore-641108, India

Dr. Yongxu Sun
Department of Medicinal Chemistry and Biomacromolecules
Qiqihar Medical University, Qiqihar 161006
Heilongjiang Province
P.R. China

Dr. Ramesh Chand Kasana
Institute of Himalayan Bioresource Technology
Palampur, Distt. Kangra (HP), India

Dr. S. Meena Kumari
Department of Biosciences
Faculty of Science
University of Mauritius
Reeduit

Dr. T. Ramesh
Assistant Professor
Marine Microbiology
CAS in Marine Biology
Faculty of Marine Sciences
Annamalai University
Parangipettai - 608 502
Cuddalore Dist. Tamilnadu, India

Dr. Pagano Marcela Claudia
Post doctoral fellowship at Department of Biology, Federal University of Ceará - UFC, Brazil.
Dr. EL-Sayed E. Habib
Associate Professor,
Dept. of Microbiology,
Faculty of Pharmacy,
Mansoura University,
Egypt.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Warin Chamrap, Ubon Ratchathani 34190,
Thailand

Dr. Gokul Shankar Sabesan
Microbiology Unit, Faculty of Medicine,
AIMST University
Jalan Bedong, Semeling 08100,
Kedah,
Malaysia

Dr. Kwang Young Song
Department of Biological Engineering,
School of Biological and Chemical Engineering,
Yanbian University of Science and Technology,
Yanji,
China.

Dr. Kamel Belhamel
Faculty of Technology,
University of Bejaia
Algeria

Dr. Sladjana Jevremovic
Institute for Biological Research
Sinisa Stankovic,
Belgrade,
Serbia

Dr. Tamer Edirne
Dept. of Family Medicine, Univ. of Pamukkale
Turkey

Dr. R. Balaji Raja M.Tech (Ph.D)
Assistant Professor,
Department of Biotechnology,
School of Bioengineering,
SRM University,
Chennai.
India

Dr. Minglei Wang
University of Illinois at Urbana-Champaign, USA

Dr. Mohd Fuat ABD Razak
Institute for Medical Research
Malaysia

Dr. Davide Pacifico
Istituto di Virologia Vegetale – CNR
Italy

Prof. Dr. Akrum Hamdy
Faculty of Agriculture, Minia University, Egypt
Egypt

Dr. Ntobeko A. B. Ntusi
Cardiac Clinic, Department of Medicine,
University of Cape Town and
Department of Cardiovascular Medicine,
University of Oxford
South Africa and
United Kingdom

Prof. N. S. Alzoreky
Food Science & Nutrition Department,
College of Agricultural Sciences & Food,
King Faisal University,
Saudi Arabia

Dr. Chen Ding
College of Material Science and Engineering,
Hunan University,
China

Dr Svetlana Nikolić
Faculty of Technology and Metallurgy,
University of Belgrade,
Serbia

Dr. Sivakumar Swaminathan
Department of Agronomy,
College of Agriculture and Life Sciences,
Iowa State University,
Ames, Iowa 50011
USA

Dr. Alfredo J. Anceno
School of Environment, Resources and Development (SERD),
Asian Institute of Technology,
Thailand

Dr. Iqbal Ahmad
Aligarh Muslim University,
Aligrah
India
Dr. Josephine Nketsia-Tabiri
Ghana Atomic Energy Commission
Ghana

Dr. Juliane Elisa Welke
UFRGS – Universidade Federal do Rio Grande do Sul
Brazil

Dr. Mohammad Nazrul Islam
NIMR; IPH-Bangalore & NIUM
Bangladesh

Dr. Okonko, Iheanyi Omezuruike
Dept. of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria

Dr. Giuliana Noratto
Texas A&M University
USA

Dr. Phanikanth Venkata Turlapati
Washington State University
USA

Dr. Khaleel I. Z. Jawasreh
National Centre for Agricultural Research and Extension, NCARE
Jordan

Dr. Babak Mostafazadeh, MD
Shahed Beheshty University of Medical Sciences
Iran

Dr. S. Meena Kumari
Department of Biosciences Faculty of Science
University of Mauritius
Rebut
Mauritius

Dr. S. Anju
Department of Biotechnology, SRM University, Chennai-603203
India

Dr. Mustafa Maroufpor
Iran

Prof. Dong Zhichun
Professor, Department of Animal Sciences and Veterinary Medicine, Yunnan Agriculture University, China

Dr. Mehdi Azami
Parasitology & Mycology Dept, Baghaeei Lab., Shams Abadi St, Isfahan Iran

Dr. Anderson de Souza Sant’Ana
University of São Paulo. Brazil.

Dr. Juliane Elisa Welke
UFRGS – Universidade Federal do Rio Grande do Sul
Brazil

Dr. Paul Shapshak
USA

Dr. Jorge Reinheimer
Universidad Nacional del Litoral (Santa Fe)
Argentina

Dr. Qin Liu
East China University of Science and Technology
China

Dr. Xiao-Qing Hu
State Key Lab of Food Science and Technology
Jiangnan University
P. R. China

Prof. Branislava Kocic
Specialist of Microbiology and Parasitology University of Nis, School of Medicine Institute for Public Health Nis, Bul. Z. Djindjica 50, 18000 Nis Serbia

Dr. Rafel Socías
CITA de Aragón, _Spain_
<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Kamal I. Mohamed</td>
<td>State University of New York at Oswego USA</td>
</tr>
<tr>
<td>Dr. Adriano Cruz</td>
<td>Faculty of Food Engineering-FEA University of Campinas (UNICAMP) Brazil</td>
</tr>
<tr>
<td>Dr. Mike Agenbag (Michael Hermanus Albertus)</td>
<td>Manager Municipal Health Services, Joe Gqabi District Municipality South Africa</td>
</tr>
<tr>
<td>Dr. D. V. L. Sarada</td>
<td>Department of Biotechnology, SRM University, Chennai-603203 India.</td>
</tr>
<tr>
<td>Dr. Samuel K Ameyaw</td>
<td>Civista Medical Center United States of America</td>
</tr>
<tr>
<td>Prof. Huaizhi Wang</td>
<td>Institute of Hepatopancreatobiliary Surgery of PLa Southwest Hospital, Third Military Medical University Chongqing400038 P. R. China</td>
</tr>
<tr>
<td>Prof. Bakhiet AO</td>
<td>College of Veterinary Medicine, Sudan University of Science and Technology Sudan</td>
</tr>
<tr>
<td>Dr. Saba F. Hussain</td>
<td>Community, Orthodontics and Pediatric Dentistry Department Faculty of Dentistry Universiti Teknologi MARA 40450 Shah Alam, Selangor Malaysia</td>
</tr>
<tr>
<td>Prof. Dr. Zohair I.F.Rahemo</td>
<td>State Key Lab of Food Science and Technology Jiangnan University P. R. China</td>
</tr>
<tr>
<td>Dr. Afework Kassu</td>
<td>University of Gondar Ethiopia</td>
</tr>
<tr>
<td>Prof. Isidro A. T. Savillo</td>
<td>ISCOF Philippines</td>
</tr>
<tr>
<td>Dr. How-Yee Lai</td>
<td>Taylor’s University College Malaysia</td>
</tr>
<tr>
<td>Dr. Nidheesh Dadheech</td>
<td>MS. University of Baroda, Vadodara, Gujarat, India.</td>
</tr>
<tr>
<td>Dr. Omitoyin Siyanbola</td>
<td>Bowen University, Iwo Nigeria</td>
</tr>
<tr>
<td>Dr. Franco Mutinelli</td>
<td>Istituto Zooprofilattico Sperimentale delle Venezie Italy</td>
</tr>
<tr>
<td>Dr. Chanpen Chanchao</td>
<td>Department of Biology, Faculty of Science, Chulalongkorn University Thailand</td>
</tr>
<tr>
<td>Dr. Tsuyoshi Kasama</td>
<td>Division of Rheumatology, Showa University Japan</td>
</tr>
<tr>
<td>Dr. Kuender D. Yang, MD</td>
<td>Chang Gung Memorial Hospital Taiwan</td>
</tr>
<tr>
<td>Dr. Liane Raluca Stan</td>
<td>University Politehnica of Bucharest, Department of Organic Chemistry “C.Nenitzescu” Romania</td>
</tr>
<tr>
<td>Dr. Muhamed Osman</td>
<td>Senior Lecturer of Pathology & Consultant Immunopathologist Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia</td>
</tr>
<tr>
<td>Dr. Mohammad Feizabadi</td>
<td>Tehran University of Medical Sciences Iran</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Prof. Ahmed H Mitwalli</td>
<td>State Key Lab of Food Science and Technology, Jiangnan University, P. R. China</td>
</tr>
<tr>
<td>Dr. Mazyar Yazdani</td>
<td>Department of Biology, University of Oslo, Blindern, Oslo, Norway</td>
</tr>
<tr>
<td>Dr. Ms. Jemimah Gesare Onsare</td>
<td>Ministry of Higher, Education Science and Technology, Kenya</td>
</tr>
<tr>
<td>Dr. Babak Khalili Hadad</td>
<td>Department of Biological Sciences, Roudehen Branch, Islamic Azad University, Roudehen, Iran</td>
</tr>
<tr>
<td>Dr. Ehsan Sari</td>
<td>Department of Plan Pathology, Iranian Research Institute of Plant Protection, Tehran, Iran</td>
</tr>
<tr>
<td>Dr. Snjezana Zidovec Lepej</td>
<td>University Hospital for Infectious Diseases, Zagreb, Croatia</td>
</tr>
<tr>
<td>Dr. Dilshad Ahmad</td>
<td>King Saud University, Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Adriano Gomes da Cruz</td>
<td>University of Campinas (UNICAMP), Brazil</td>
</tr>
<tr>
<td>Dr. Hsin-Mei Ku</td>
<td>Agronomy Dept. NCHU 250 Kuo, Kuang Rd, Taichung, Taiwan</td>
</tr>
<tr>
<td>Dr. Fereshteh Naderi</td>
<td>Physical chemist, Islamic Azad University, Shahre Ghods Branch, Iran</td>
</tr>
<tr>
<td>Dr. Adibe Maxwell Ogochukwu</td>
<td>Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, Nigeria</td>
</tr>
<tr>
<td>Dr. William M. Shafer</td>
<td>Emory University School of Medicine, USA</td>
</tr>
<tr>
<td>Dr. Michelle Bull</td>
<td>CSIRO Food and Nutritional Sciences, Australia</td>
</tr>
<tr>
<td>Prof. Dr. Márcio Garcia Ribeiro (DVM, PhD)</td>
<td>School of Veterinary Medicine and Animal Science-UNESP, Dept. Veterinary Hygiene and Public Health, State of Sao Paulo, Brazil</td>
</tr>
<tr>
<td>Prof. Dr. Sheila Nathan</td>
<td>National University of Malaysia (UKM), Malaysia</td>
</tr>
<tr>
<td>Prof. Ebiamadon Andi Brisibe</td>
<td>University of Calabar, Calabar, Nigeria</td>
</tr>
<tr>
<td>Dr. Julie Wang</td>
<td>Burnet Institute, Australia</td>
</tr>
<tr>
<td>Dr. Jean-Marc Chobert</td>
<td>INRA- BIA, FIPL, France</td>
</tr>
<tr>
<td>Dr. Zhilong Yang, PhD</td>
<td>Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health</td>
</tr>
<tr>
<td>Dr. Dele Raheem</td>
<td>University of Helsinki, Finland</td>
</tr>
<tr>
<td>Dr. Li Sun</td>
<td>PLA Centre for the treatment of infectious diseases, Tangdu Hospital, Fourth Military Medical University, China</td>
</tr>
</tbody>
</table>
Dr. Biljana Miljkovic-Selimovic
School of Medicine,
University in Nis,
Serbia; Referent laboratory for Campylobacter and Helicobacter,
Center for Microbiology,
Institute for Public Health, Nis
Serbia

Dr. Xinan Jiao
Yangzhou University
China

Dr. Endang Sri Lestari, MD.
Department of Clinical Microbiology,
Medical Faculty,
Diponegoro University/Dr. Kariadi Teaching Hospital,
Semarang
Indonesia

Dr. Hojin Shin
Pusan National University Hospital
South Korea

Dr. Yi Wang
Center for Vector Biology, 180 Jones Avenue
Rutgers University, New Brunswick, NJ 08901-8536
USA

Dr. Heping Zhang
The Key Laboratory of Dairy Biotechnology and Engineering,
Ministry of Education,
Inner Mongolia Agricultural University.
China

Prof. Natasha Potgieter
University of Venda
South Africa

Dr. Alemzadeh
Sharif University
Iran

Dr. Sonia Arriaga
Instituto Potosino de Investigación Científica y
Tecnológica/División de Ciencias Ambientales
Mexico

Dr. Armando Gonzalez-Sanchez
Universidad Autonoma Metropolitana Cuajimalpa
Mexico

Dr. Pradeep Parihar
Lovely Professional University, Phagwara, Punjab.
India

Dr. William H Roldán
Department of Medical Microbiology,
Faculty of Medicine,
Peru

Dr. Kanzaki, L I B
Laboratory of Bioprospection. University of Brasilia
Brazil

Prof. Philippe Dorchies
Laboratory of Bioprospection. University of Brasilia
Brazil

Dr. C. Ganesh Kumar
Indian Institute of Chemical Technology,
Hyderabad
India

Dr. Farid Che Ghazali
Universiti Sains Malaysia (USM)
Malaysia

Dr. Samira Bouhdid
Abdelmalek Essaadi University,
Tetouan,
Morocco

Dr. Zainab Z. Ismail
Department of Environmental Engineering, University of
Baghdad.
Iraq

Dr. Ary Fernandes Junior
Universidade Estadual Paulista (UNESP)
Brasil

Dr. Papaevangelou Vassiliki
Athens University Medical School
Greece

Dr. Fangyou Yu
The first Affiliated Hospital of Wenzhou Medical College
China

Dr. Galba Maria de Campos Takaki
Catholic University of Pernambuco
Brazil
Dr. Kwabena Ofori-Kwakye
Department of Pharmaceutics,
Kwame Nkrumah University of Science & Technology,
KUMASI
Ghana

Prof. Dr. Liesel Brenda Gende
Arthropods Laboratory, School of Natural and Exact Sciences, National University of Mar del Plata
Buenos Aires,
Argentina.

Dr. Adeshina Gbonjubola
Ahmadu Bello University,
Zaria.
Nigeria

Prof. Dr. Stylianos Chatzipanagiotou
University of Athens – Medical School
Greece

Dr. Dongqing BAI
Department of Fishery Science,
Tianjin Agricultural College,
Tianjin 300384
P. R. China

Dr. Dingqiang Lu
Nanjing University of Technology
P.R. China

Dr. L. B. Sukla
Scientist –G & Head, Biominerals Department,
IMMT, Bhubaneswar
India

Dr. Hakan Parlakpinar
MD. Inonu University, Medical Faculty, Department of Pharmacology, Malatya
Turkey

Dr Pak-Lam Yu
Massey University
New Zealand

Dr Percy Chimwamurombe
University of Namibia
Namibia

Dr. Euclésio Simionatto
State University of Mato Grosso do Sul-UEMS
Brazil

Dr. Hans-Jürg Monstein
Clinical Microbiology, Molecular Biology Laboratory,
University Hospital, Faculty of Health Sciences, S-581 85 Linköping
Sweden

Dr. Ajith, T. A
Associate Professor Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur, Kerala-680 555
India

Dr. Feng-Chia Hsieh
Biopesticides Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture
Taiwan

Prof. Dra. Suzan Pantaroto de Vasconcellos
Universidade Federal de São Paulo
Rua Prof. Artur Riedel, 275 Id. Eldorado, Diadema, SP CEP 09972-270
Brasil

Dr. Maria Leonor Ribeiro Casimiro Lopes Assad
Universidade Federal de São Carlos - Centro de Ciências Agrárias - CCA/UFSCar
Departamento de Recursos Naturais e Proteção Ambiental
Rodovia Anhanguera, km 174 - SP-330
Araras - São Paulo
Brasil

Dr. Pierangeli G. Vital
Institute of Biology, College of Science, University of the Philippines
Philippines

Prof. Roland Ndip
University of Fort Hare, Alice
South Africa

Dr. Shawn Carraher
University of Fort Hare, Alice
South Africa

Dr. José Eduardo Marques Pessanha
Observatório de Saúde Urbana de Belo Horizonte/Faculdade de Medicina da Universidade Federal de Minas Gerais
Brasil
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Yuanshu Qian</td>
<td>Department of Pharmacology, Shantou University Medical College, China</td>
</tr>
<tr>
<td>Dr. Helen Treichel</td>
<td>URI-Campus de Erechim, Brazil</td>
</tr>
<tr>
<td>Dr. Xiao-Qing Hu</td>
<td>State Key Lab of Food Science and Technology Jiangnan University, P. R. China</td>
</tr>
<tr>
<td>Dr. Olli H. Tuovinen</td>
<td>Ohio State University, Columbus, Ohio, USA</td>
</tr>
<tr>
<td>Prof. Stoyan Groudev</td>
<td>University of Mining and Geology “Saint Ivan Rilski” Sofia, Bulgaria</td>
</tr>
<tr>
<td>Dr. G. Thirumurugan</td>
<td>Research lab, GIET School of Pharmacy, NH-5, Chaitanya nagar, Rajahmundry-533294, India</td>
</tr>
<tr>
<td>Dr. Charu Gomber</td>
<td>Thapar University, India</td>
</tr>
<tr>
<td>Dr. Jan Kuever</td>
<td>Bremen Institute for Materials Testing, Department of Microbiology, Paul-Feller-Str. 1, 28199 Bremen, Germany</td>
</tr>
<tr>
<td>Dr. Nicola S. Flanagan</td>
<td>Universidad Javeriana, Cali, Colombia</td>
</tr>
<tr>
<td>Dr. André Luiz C. M. de A. Santiago</td>
<td>Universidade Federal Rural de Pernambuco, Brazil</td>
</tr>
<tr>
<td>Dr. Dhruva Kumar Jha</td>
<td>Microbial Ecology Laboratory, Department of Botany, Gauhati University, Guwahati 781 014, Assam, India</td>
</tr>
<tr>
<td>Dr. N Saleem Basha</td>
<td>M Pharm (Pharmaceutical Biotechnology) Eritrea (North East Africa)</td>
</tr>
<tr>
<td>Prof. Dr. João Lúcio de Azevedo</td>
<td>Dept. Genetics-University of São Paulo-Faculty of Agriculture- Piracicaba, 13400-970 Brasil</td>
</tr>
<tr>
<td>Dr. Julia Inés Fariña</td>
<td>PROIMI-CONICET, Argentina</td>
</tr>
<tr>
<td>Dr. Yutaka Ito</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Dr. Cheruiyot K. Ronald</td>
<td>Biomedical Laboratory Technologist, Kenya</td>
</tr>
<tr>
<td>Prof. Dr. Ata Akcil</td>
<td>S. D. University, Turkey</td>
</tr>
<tr>
<td>Dr. Adhar Manna</td>
<td>The University of South Dakota, USA</td>
</tr>
<tr>
<td>Dr. Cícero Flávio Soares Aragão</td>
<td>Federal University of Rio Grande do Norte, Brazil</td>
</tr>
<tr>
<td>Dr. Gunnar Dahlen</td>
<td>Institute of odontology, Sahlgrenska Academy at University of Gothenburg, Sweden</td>
</tr>
<tr>
<td>Dr. Pankaj Kumar Mishra</td>
<td>Vivekananda Institute of Hill Agriculture, (I.C.A.R.), ALMORA-263601, Uttarakhand, India</td>
</tr>
<tr>
<td>Dr. Benjamas W. Thanomsub</td>
<td>Srinakharinwiroth University, Thailand</td>
</tr>
<tr>
<td>Dr. Maria José Borrego</td>
<td>National Institute of Health – Department of Infectious Diseases, Portugal</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Catherine Carrillo</td>
<td>Health Canada, Bureau of Microbial Hazards</td>
</tr>
<tr>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>Dr. Marcotty Tanguy</td>
<td>Institute of Tropical Medicine</td>
</tr>
<tr>
<td></td>
<td>Belgium</td>
</tr>
<tr>
<td>Dr. Han-Bo Zhang</td>
<td>Laboratory of Conservation and Utilization for Bio-resources</td>
</tr>
<tr>
<td></td>
<td>Key Laboratory for Microbial Resources of the Ministry of Education,</td>
</tr>
<tr>
<td></td>
<td>Yunnan University, Kunming 650091.</td>
</tr>
<tr>
<td></td>
<td>School of Life Science, Yunnan University, Kunming, Yunnan Province 650091.</td>
</tr>
<tr>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Dr. Ali Mohammed Somily</td>
<td>King Saud University</td>
</tr>
<tr>
<td></td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Nicole Wolter</td>
<td>National Institute for Communicable Diseases and University of the Witwatersrand,</td>
</tr>
<tr>
<td></td>
<td>Johannesburg, South Africa</td>
</tr>
<tr>
<td>Dr. Marco Antonio Nogueira</td>
<td>Universidade Estadual de Londrina</td>
</tr>
<tr>
<td></td>
<td>CCB/Dept. De microbiologia</td>
</tr>
<tr>
<td></td>
<td>Laboratório de Microbiologia Ambiental</td>
</tr>
<tr>
<td></td>
<td>Caixa Postal 6001, 86051-980 Londrina.</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Bruno Pavoni</td>
<td>Department of Environmental Sciences University of</td>
</tr>
<tr>
<td></td>
<td>Venice</td>
</tr>
<tr>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Dr. Shih-Chieh Lee</td>
<td>Da-Yeh University</td>
</tr>
<tr>
<td></td>
<td>Taiwan</td>
</tr>
<tr>
<td>Dr. Satoru Shimizu</td>
<td>Horonobe Research Institute for the Subsurface Environment,</td>
</tr>
<tr>
<td></td>
<td>Northern Advancement Center for Science & Technology</td>
</tr>
<tr>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td>Dr. Tang Ming</td>
<td>College of Forestry, Northwest A&F University,</td>
</tr>
<tr>
<td></td>
<td>Yangling</td>
</tr>
<tr>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Dr. Olga Gortzi</td>
<td>Department of Food Technology, T.E.I. of Larissa</td>
</tr>
<tr>
<td></td>
<td>Greece</td>
</tr>
<tr>
<td>Dr. Mark Tarnopolsky</td>
<td>Mcmaster University</td>
</tr>
<tr>
<td></td>
<td>Canada</td>
</tr>
<tr>
<td>Dr. Sami A. Zabin</td>
<td>Al Baha University</td>
</tr>
<tr>
<td></td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Julia W. Pridgeon</td>
<td>Aquatic Animal Health Research Unit, USDA, ARS</td>
</tr>
<tr>
<td>Dr. Lim Yau Yan</td>
<td>Monash University Sunway Campus</td>
</tr>
<tr>
<td></td>
<td>Malaysia</td>
</tr>
<tr>
<td>Prof. Rosemeire C. L. R. Pietro</td>
<td>Faculdade de Ciências Farmacêuticas de Araraquara, Univ Estadual Paulista,</td>
</tr>
<tr>
<td></td>
<td>UNESP</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Nazime Mercan Dogan</td>
<td>PAU Faculty of Arts and Science, Denizli</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
</tr>
<tr>
<td>Dr Ian Edwin Cock</td>
<td>Biomolecular and Physical Sciences</td>
</tr>
<tr>
<td></td>
<td>Griffith University</td>
</tr>
<tr>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>Prof. N K Dubey</td>
<td>Banaras Hindu University</td>
</tr>
<tr>
<td></td>
<td>India</td>
</tr>
<tr>
<td>Dr. S. Hemalatha</td>
<td>Department of Pharmaceutics, Institute of Technology,</td>
</tr>
<tr>
<td></td>
<td>Banaras Hindu University, Varanasi. 221005</td>
</tr>
<tr>
<td></td>
<td>India</td>
</tr>
<tr>
<td>Dr. J. Santos Garcia A.</td>
<td>Universidad A. de Nuevo Leon</td>
</tr>
<tr>
<td></td>
<td>Mexico</td>
</tr>
</tbody>
</table>
Dr. Somboon Tanasupawat
Department of Biochemistry and Microbiology,
Faculty of Pharmaceutical Sciences,
Chulalongkorn University,
Bangkok 10330
Thailand

Dr. Vivekananda Mandal
Post Graduate Department of Botany,
Darjeeling Government College,
Darjeeling – 734101.
India

Dr. Shihua Wang
College of Life Sciences,
Fujian Agriculture and Forestry University
China

Dr. Victor Manuel Fernandes Galhano
CITAB-Centre for Research and Technology of Agro-Environment and Biological Sciences, Integrative Biology and Quality Research Group,
University of Trás-os-Montes and Alto Douro,
Apartado 1013, 5001-801 Vila Real
Portugal

Dr. Maria Cristina Maldonado
Instituto de Biotecnologia. Universidad Nacional de Tucuman
Argentina

Dr. Alex Soltermann
Institute for Surgical Pathology,
University Hospital Zürich
Switzerland

Dr. Dagmara Sirova
Department of Ecosystem Biology, Faculty Of Science,
University of South Bohemia,
Branisovska 37, Ceske Budejovice, 37001
Czech Republic

Dr. E. O Igbinosa
Department of Microbiology,
Ambrose Alli University,
Ekpoma, Edo State,
Nigeria.

Dr. Hodaka Suzuki
National Institute of Health Sciences
Japan

Dr. Mick Bosilevac
US Meat Animal Research Center
USA

Dr. Nora Lía Padola
Imunoquímica y Biotecnología- Fac Cs Vet-UNCPBA
Argentina

Dr. Maria Madalena Vieira-Pinto
Universidade de Trás-os-Montes e Alto Douro
Portugal

Dr. Stefano Morandi
CNR-Istituto di Scienze delle Produzioni Alimentari (ISPA), Sez. Milano
Italy

Dr Line Thorsen
Copenhagen University, Faculty of Life Sciences
Denmark

Dr. Ana Lucía Falavigna-Guilherme
Universidade Estadual de Maringá
Brazil

Dr. Baoqiang Liao
Dept. of Chem. Eng., Lakehead University, 955 Oliver Road, Thunder Bay, Ontario
Canada

Dr. Quyang Jinping
Patho-Physiology department,
Faculty of Medicine of Wuhan University
China

Dr. John Sorensen
University of Manitoba
Canada

Dr. Andrew Williams
University of Oxford
United Kingdom

Dr. Chi-Chiang Yang
Chung Shan Medical University
Taiwan, R.O.C.

Dr. Quanming Zou
Department of Clinical Microbiology and Immunology,
College of Medical Laboratory,
Third Military Medical University
China
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ashok Kumar</td>
<td>School of Biotechnology, Banaras Hindu University, Varanasi, India</td>
</tr>
<tr>
<td>Dr. Chung-Ming Chen</td>
<td>Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan</td>
</tr>
<tr>
<td>Dr. Jennifer Furin</td>
<td>Harvard Medical School, USA</td>
</tr>
<tr>
<td>Dr. Julia W. Pridgeon</td>
<td>Aquatic Animal Health Research Unit, USDA, ARS, USA</td>
</tr>
<tr>
<td>Dr. Alireza Seidavi</td>
<td>Islamic Azad University, Rasht Branch, Iran</td>
</tr>
<tr>
<td>Dr. Thore Rohwerder</td>
<td>Helmholtz Centre for Environmental Research UFZ, Germany</td>
</tr>
<tr>
<td>Dr. Daniela Billi</td>
<td>University of Rome Tor Vergat, Italy</td>
</tr>
<tr>
<td>Dr. Ivana Karabegovic</td>
<td>Faculty of Technology, Leskovac, University of Nis, Serbia</td>
</tr>
<tr>
<td>Dr. Flaviana Andrade Faria</td>
<td>IBILCE/UNESP, Brazil</td>
</tr>
<tr>
<td>Prof. Margareth Linde Athayde</td>
<td>Federal University of Santa Maria, Brazil</td>
</tr>
<tr>
<td>Dr. Guadalupe Virginia Nevarez Moorillon</td>
<td>Universidad Autonoma de Chihuahua, Mexico</td>
</tr>
<tr>
<td>Dr. Tatiana de Sousa Fiuza</td>
<td>Federal University of Goias, Brazil</td>
</tr>
<tr>
<td>Dr. Indrani B. Das Sarma</td>
<td>Jhulelal Institute of Technology, Nagpur, India</td>
</tr>
<tr>
<td>Dr. Guanghua Wang</td>
<td>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Dr. Renata Vadkertiova</td>
<td>Institute of Chemistry, Slovak Academy of Science, Slovakia</td>
</tr>
<tr>
<td>Dr. Charles Hocart</td>
<td>The Australian National University, Australia</td>
</tr>
<tr>
<td>Dr. Guoqiang Zhu</td>
<td>University of Yangzhou College of Veterinary Medicine, China</td>
</tr>
<tr>
<td>Dr. Guilherme Augusto Marietto Gonçalves</td>
<td>São Paulo State University, Brazil</td>
</tr>
<tr>
<td>Dr. Mohammad Ali Faramarzi</td>
<td>Tehran University of Medical Sciences, Iran</td>
</tr>
<tr>
<td>Dr. Suppasil Maneerat</td>
<td>Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Thailand</td>
</tr>
<tr>
<td>Dr. Francisco Javier Las heras Vazquez</td>
<td>Almeria University, Spain</td>
</tr>
<tr>
<td>Dr. Cheng-Hsun Chiu</td>
<td>Chang Gung memorial Hospital, Chang Gung University, Taiwan</td>
</tr>
<tr>
<td>Dr. Ajay Singh</td>
<td>DDU Gorakhpur University, Gorakhpur-273009, India</td>
</tr>
<tr>
<td>Dr. Karabo Shale</td>
<td>Central University of Technology, Free State, South Africa</td>
</tr>
<tr>
<td>Dr. Lourdes Zélia Zanoni</td>
<td>Department of Pediatrics, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Tulin Askun</td>
<td>Balikesir University, Turkey</td>
</tr>
<tr>
<td>Dr. Marija Stankovic</td>
<td>Institute of Molecular Genetics and Genetic Engineering, Republic of Serbia</td>
</tr>
<tr>
<td>Dr. Scott Weese</td>
<td>University of Guelph, Dept of Pathobiology, Ontario Veterinary College, Guelph, Ontario, N1G2W1, Canada</td>
</tr>
<tr>
<td>Dr. Sabiha Essack</td>
<td>School of Health Sciences, South African Committee of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa</td>
</tr>
<tr>
<td>Dr. Hare Krishna</td>
<td>Central Institute for Arid Horticulture, Beechwal, Bikaner-334 006, Rajasthan, India</td>
</tr>
<tr>
<td>Dr. Anna Mensuali</td>
<td>Dept. of Life Science, Scuola Superiore, Sant'Anna</td>
</tr>
<tr>
<td>Dr. Ghada Sameh Hafez Hassan</td>
<td>Pharmaceutical Chemistry Department, Faculty of Pharmacy, Mansoura University, Egypt</td>
</tr>
<tr>
<td>Dr. Kátia Flávia Fernandes</td>
<td>Biochemistry and Molecular Biology, Universidade Federal de Goiás, Brasil</td>
</tr>
<tr>
<td>Dr. Abdel-Hady El-Gilany</td>
<td>Public Health & Community Medicine, Faculty of Medicine, Mansoura University, Egypt</td>
</tr>
<tr>
<td>Dr. Hongxiong Guo</td>
<td>STD and HIV/AIDS Control and Prevention, Jiangsu provincial CDC, China</td>
</tr>
<tr>
<td>Dr. Konstantina Tsaousi</td>
<td>Life and Health Sciences, School of Biomedical Sciences, University of Ulster</td>
</tr>
<tr>
<td>Dr. Bhavnaben Gowan Gordhan</td>
<td>DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand and National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa</td>
</tr>
<tr>
<td>Dr. Ernest Kuchar</td>
<td>Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw Teaching Hospital, Poland</td>
</tr>
<tr>
<td>Dr. Mar Rodriguez Jovita</td>
<td>Food Hygiene and Safety, Faculty of Veterinary Science, University of Extremadura, Spain</td>
</tr>
<tr>
<td>Dr. Jes Gitz Holler</td>
<td>Hospital Pharmacy, Aalesund. Central Norway Pharmaceutical Trust, Professor Brochs gt. 6. 7030 Trondheim, Norway</td>
</tr>
<tr>
<td>Prof. Chengxiang FANG</td>
<td>College of Life Sciences, Wuhan University, Wuhan 430072, P.R.China</td>
</tr>
<tr>
<td>Dr. Anchalee Tuntrongchitr</td>
<td>Siriraj Dust Mite Center for Services and Research, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, 10700, Thailand</td>
</tr>
</tbody>
</table>
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the Journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJMR to publish manuscripts within weeks after submission.

Regular articles

All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc. should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the African Journal of Microbiology Research is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties
In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJMR, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
African Journal of Microbiology Research

Table of Content: Volume 8 Number 48, 26 November, 2014

ARTICLES

Development and evaluation of loop-mediated isothermal amplification (LAMP) for the rapid diagnosis of *Candida parapsilosis*
Yili Chen and Hongxu Xu

The prevalence of *Brucella abortus* DNA in seropositive bovine sera in Bangladesh

Verification of molecular characterization of coagulase positive *Staphylococcus* from bovine mastitis with matrix-assisted laser desorption ionization, time-of-flight mass spectrometry (MALDI-TOF MS) mass spectrometry
Cássia Couto da Motta, Anna Carolina Coelho Marín Rojas, Felipe Carlos Dubenczuk, Larissa Alvarenga Batista Botelho, Beatriz Meurer Moreira, Shana Mattos de Oliveira Coelho, Irene da Silva Coelho and Miliane Moreira Soares de Souza

Microbiological quality and safety of street vended raw meat in Jijiga town of Somali Regional State, southeast Ethiopia
Firew Tafesse, Gulelat Desse, Ketema Bacha and Haile Alemayehu
Development and evaluation of loop-mediated isothermal amplification (LAMP) for the rapid diagnosis of *Candida parapsilosis*

Yili Chen and Hongxu Xu*

Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.

Received 4 September, 2014; Accepted 14 November, 2014

The *Candida parapsilosis* family has emerged as a major opportunistic and nosocomial pathogen. It causes multifaceted pathology in immuno-compromised and normal hosts, notably low birth weight neonates. In the present study, a novel method, known as loop-mediated isothermal amplification (LAMP), was described for the rapid and specific detection of the species, using primer sets derived from the 5.8 S ribosomal RNA gene of *C. parapsilosis* (internal transcribed spacer 2, ITS2). Amplification products can be detected macroscopically by visual inspection in vials using SYBRGreen I as well as by electrophoresis on agarose gel. The LAMP assay resulted in specific amplification of the ITS2 of *C. parapsilosis* using pure cultures after a 45-min reaction at 65°C; no cross-reactivity with other fungi including other *Candida* species was observed. The detectable DNA limit was 0.01 pg fungal DNA per reaction, equivalent to 3.74×10^{-3} cfu/ml. In addition, specific amplification was achieved using 30 proven *C. parapsilosis* strains from patients samples. The method provides a powerful tool for rapid diagnostics in the clinical laboratory, and has potential for use in ecological studies.

Key words: Loop-mediated isothermal amplification, diagnosis, *Candida parapsilosis*.

INTRODUCTION

Over the past decade, the incidence of *Candida parapsilosis* has dramatically increased. In fact, reports indicate that *C. parapsilosis* is often the second most commonly isolated *Candida* species from blood cultures (Almirante et al., 2006; Brito et al., 2006), and *C. parapsilosis* even outranks *Candida albicans* in some European (Nakamura and Takahashi, 2006), Asian (Nakamura and Takahashi, 2006; Ng et al., 2001) and South American (Medrano et al., 2006) hospitals. This species has emerged as an important nosocomial pathogen, with clinical manifestations including fungemia, endocarditis, endophthalmitis, septic arthritis and peritonitis, all of which usually occur in association with invasive procedures or prosthetic devices. Outbreaks of *C. parapsilosis* infections have been caused by contamination of hyperalimentation solutions, intravascular pressure monitoring devices, and ophthalmic irrigating solution. Experimental studies have generally shown that *C. parapsilosis* is less virulent than...
C. albicans or Candida tropicalis. However, characteristics of C. parapsilosis that may relate to its increasing occurrence in nosocomial settings include frequent colonization of the skin (Bonassoli et al., 2005), particularly the subungal space, and an ability to proliferate in glucose-containing solutions, with a resultant increase in adherence to synthetic materials (Alonso-Valle et al., 2003).

Traditionally, C. parapsilosis strains have been identified based on morphological, physiological and biochemical characteristics (Van Asbeck et al., 2009). These methods are laborious and time consuming. Currently, matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS is reported as a reliable, rapid and simple technique for the identification of the C. parapsilosis group (Quiles-Melero et al., 2012). However, MALDI-TOF MS requires expensive equipment, which impedes it as an attractive tool for the routine of a clinical microbiology laboratory. Molecular methods based on the analysis of polymorphism in the DNA region that encodes the ribosomal RNA genes (5S, 5.8S, 18S and 28S) (Kurtzman and Robnett, 1998; Nosek et al., 2002; Sofair et al., 2006) and the non-coding internal transcribed spacers (ITS)(Cadez et al., 2002; Sabate et al., 2002) and IGS (Intergenic Spacer) regions (Diaz et al., 2000; Naumov et al., 2003) are being successfully used for the identification of many yeast species. Recently, developed molecular techniques may facilitate the continued exploration of the epidemiology and pathogenesis of C. parapsilosis infections. However, all have been developed based on cultured material, and require a fully equipped molecular laboratory. Thus, there is still a need for a rapid and simple technique that is able to deliver an unambiguous identification within a single day.

Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method, which relies on autocycling strand displacement DNA synthesis performed by the Bst DNA polymerase large fragment (Mori et al., 2001; Nagamine et al., 2002; Notomi et al., 2000). The amplification products are stem-loop DNA structures with several inverted repeats of the target and cauliflower-like structures with multiple loops. LAMP has the following characteristics: (i) all reactions can be conducted under isothermal conditions ranging from 60 to 65°C by using only one type of enzyme; (ii) the specificity of the reaction is extremely high because it uses four primers recognizing six distinct regions on the target DNA; (iii) amplification can be performed in a shorter time than amplification by PCR because there is no time loss due to thermal cycling; and (iv) it produces extremely large amounts of amplified products and enables simple detection methods such as visual judgment by the turbidity or fluorescence of the reaction mixture, which is kept in the reaction tube (Mori and Notomi, 2009). With all these characteristics, LAMP of target DNA has emerged as a powerful tool to facilitate point-of-care genetic testing at the bedside. Recently, Nagamine et al. (2002) reported that when two more primers, termed loop primers, were added, the LAMP reaction time could be even less than half of that for the original LAMP method. In their procedure, six primers recognized eight distinct regions on the targeted DNA. In the present study, we introduced LAMP diagnostics for C. parapsilosis. The sensitivity, specificity and applicability of this method for C. parapsilosis from patient samples were evaluated. It is believed that the rapid detection and confirmation of C. parapsilosis in clinical specimens is essential for efficient management.

MATERIALS AND METHODS

Strains

Thirty proven strains of C. parapsilosis isolated from patients, 5 isolates of other reference strains including C. albicans, C. tropicalis, Candida glabrata, Candida krusei and Cryptococcus neoformans and one C. parapsilosis type strain ATCC 22019 were used in this study. The 30 strains of C. parapsilosis and the 5 other reference strains were all collected in Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University during the period of January 2010 to December 2012. Cases from patients were confirmed by routine and molecular identification methods. All the isolates were cultured on Sabourand dextrose agar (SDA) at 37°C. Inoculated plates were examined after 48 h of incubation. Identification of Candida species were based on VITEK 2 system (bioMérieux, Marcy l’Etoile, France) and further identified by 18S rRNA gene sequencing as described by Zheng et al. (2013).

DNA extraction

Candida species were grown on SDA plates for 24 to 48 h at 30°C. Single colonies were inoculated into 200 ml of YPD broth (1% yeast extract, 2% peptone, 2% glucose) and incubated in a shaking water bath at 200 rpm and 30°C for 36 h. DNA was extracted from this culture by adaptation of the Lyticase-based method (10KU, Sigma, USA). DNA concentrations and A260/A280 ratios were determined using a spectrophotometer Lambda 1A (Perkin-Elmer, USA). An A260/A280 ratio of 1.9-2.1 was considered acceptable.

Design of LAMP primers

The target gene of the LAMP was the 5.8 S ribosomal RNA gene of C. parapsilosis (internal transcribed spacer 2, ITS2). The binding sites of all primer sets are located within the target gene and were designed by using PrimerExplorer software V4 (Eiken Chemical Co. Ltd.) in the database under the Accession No. KF313207. A set of sixLAMP primers was selected as follows: outer primers (F3 and B3), a forward inner primer (FIP), a backward inner primer (BIP) and loop primers (loop F and loop B) (Table 1).

LAMP reaction

The LAMP reaction was performed with a Loop amp DNA amplification kit (Eiken Chemical Co., Ltd., Tochigi, Japan). A reaction mixture (25 µl) containing 1.2 µM each inner primer (FIP and BIP), 0.2 µM each outer primer (F3 and B3), 0.8 µM each loop primer (F and B), 0.8 mM dNTPs, 1M betaine (Sigma), 1xThermoPol Buffer, 4 mM MgSO4, 8 U of Bst DNA large fragment polymerase (New England Biolabs), with 2 µl of crude DNA extract.
Table 1. Sequences of primers used in the LAMP assay.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward outer (F3)</td>
<td>AACGAGAGATATCCTCACTC</td>
</tr>
<tr>
<td>Backward outer (B3)</td>
<td>TCAACAATGGATCTCTTGGT</td>
</tr>
<tr>
<td>Forward inner primer (FIP)</td>
<td>ATTGCGCCCTCTGGTATTCCAAACAAACGTTT</td>
</tr>
<tr>
<td>Backward inner primer (BIP)</td>
<td>GTGCCTCTGATCTGATTGCTCTC</td>
</tr>
<tr>
<td>LF</td>
<td>CCTGTTGACGCTATTTC</td>
</tr>
<tr>
<td>LB</td>
<td>ACGGAATTCTGCAATTCACATTAC</td>
</tr>
</tbody>
</table>

Figure 1. Identification specificities of the LAMP assay for *C. parapsilosis*. (A) Electrophoretic analysis of LAMP amplified products. Lane M, 100-bp ladder used as a size marker; Lane 1, negative control; Lane 2, *C. parapsilosis* ATCC22019. (B) Visual inspection of LAMP amplified products. Tube 1, negative control; Tube 2, *C. parapsilosis* ATCC22019.

as the template and the specified amounts of DNA lysates was incubated at 65°C for 45 min and was heated at more than 80°C for 2 min to terminate the reaction. Positive and negative controls were included in each run, and all precautions to prevent cross contamination were observed.

PCR reaction

To compare the detection sensitivities of LAMP and PCR, PCR using F3 and B3 primers which amplify a 446-bp product was carried out in a total reaction volume of 25 µl containing 1 µl of the fungal DNA, 2 µl of a pair of appropriate primers (0.1 mM), 2 µl dNTPs mixture (0.8 mM), 2.5 U ExTaqTM DNA polymerase (TaKaRa, Shiga, Japan) with the corresponding polymerase buffer were mixed. PCR conditions consisted of an initial denaturation of 94°C for 4 min and 30 cycles of 94°C for 60 s, 58°C for 60 s, 72°C for 90 s and a final extension of 72°C for 4 min in a DNA thermal cycler 9700 (Applied Biosystems, Foster City, CA). The amplified products (4µl) were then analyzed by 1% agarose gel.

Analysis of LAMP products

Amplified products were analyzed by electrophoresis on 1% agarose gels, stained with ethidium bromide and photographed. A 100-bp DNA ladder was used as the molecular weight standard. LAMP amplicons in the reaction tube were directly detected with the naked eye by adding 1.0 µl of 1/10-diluted original SYBR Green I (Molecular Probes Inc.) to the tube and observing the color of the solution. The solution turned green in the presence of a LAMP amplicon, while it remained orange with no amplification. The sensitivities of electrophoresis and SYBR Green I inspection with the naked eye were compared by using serially diluted LAMP products.

RESULTS

Specificity of LAMP assay

The specificity of LAMP was tested using fungal DNA extracted from *C. parapsilosis* ATCC22019, 5 proven isolates of *C. parapsilosis* and 5 isolates of non-*C. parapsilosis*, including *C. albicans*, *C. tropicalis*, *C. glabrata*, *C. krusei* and *Cryptococcus neoformans*. After incubation at 65°C for 45 min, all the *C. parapsilosis* isolates were positively detected, whereas no cross-reactivity with other fungi including other *Candida* species such as *C. albicans* was observed (Figure 1). The products
Sensitivity of the LAMP assay

To assess the detection sensitivity of the LAMP assay for the detection of *C. parapsilosis*, the reaction was tested using 1-µl tenfold serial dilutions of fungal DNA (1 µg/ml) and compared with the PCR assay. The LAMP reaction was able to detect *C. parapsilosis* up to 0.01 pg fungal DNA per reaction, equivalent to 3.74×10^5 cfu/ml. However, PCR could only detect *C. parapsilosis* up to 0.1 pg fungal DNA per reaction. LAMP amplification products were analyzed visually by addition 1 µl SYBR Green I and by 2% agarose gel electrophoresis (Figure 2). The results indicate a tenfold higher sensitivity of LAMP than the standard PCR method.

Identification of *Candida* strains isolated from clinical samples

Clinical samples were first discriminated by VITEK 2 system and further identified by 18SrRNA gene sequencing, and then assessed by LAMP established in this study. The results showed that all the 30 proven *C. parapsilosis* strains were detected, suggesting that the established LAMP assay for *C. parapsilosis* represented a great consistency with conventional PCR and VITEK 2 system (Figure 3).

DISCUSSION

LAMP is a powerful innovative gene amplification technique providing a simple and rapid tool for early detection and identification of microbial diseases. In the present study, we developed and evaluated the LAMP assay, exemplified by the detection and identification of *C. parapsilosis* in DNA from pure cultures. The LAMP assay is a simple detection tool in which the reaction is performed in a single tube by mixing the thermopol buffer, primers, and Bst DNA polymerase, and incubation of the mixture at 65°C for 45 min. The LAMP reaction is done under isothermal conditions and it does not require expensive equipment. The only equipment needed for the LAMP reaction is a regular laboratory water bath or a heating block that can provide a constant temperature of 65°C. Moreover, the amplification efficiency is extremely high because there is no time loss because of thermal cycling and inhibition reactions at later stages are less likely to occur unlike in standard PCR. In addition, LAMP amplifies DNA to higher concentrations than PCR making it convenient for visualizing the products after addition of SYBR Green I without gel electrophoresis. Hence, the LAMP assay could be developed into a field
test and made available to empower active efforts to identify \textit{C. parapsilosis}.

During the past decade, various nucleic acid amplification based methods have been developed to address the need for rapid and sensitive diagnosis of \textit{C. parapsilosis} (Burton et al., 2011). These methods require either precision instruments for the amplification or elaborate methods for detection of the amplified products, which are the major obstacles to wide use of these methods in relatively small scale clinical laboratories (Carolis et al., 2014; Del et al., 2011; Hays et al., 2011). In this regard, the LAMP-based assay developed in this study has the advantages of rapid reaction, simple operation and easy detection.

In this study, the LAMP method detecting \textit{C. parapsilosis} was found to be highly sensitive, as it could detect \textit{C. parapsilosis} up to 0.01 pg fungal DNA per reaction, equivalent to 3.74×10^{-3} cfu/ml, whereas by PCR, the detection of \textit{C. parapsilosis} was possible up to 0.1 pg fungal DNA per reaction. This indicates that the sensitivity of LAMP is ten times more than that of the standard PCR. This increased sensitivity makes LAMP a better choice than PCR for the detection of \textit{C. parapsilosis} in cases where lower fungal concentrations are expected.

Identification of the species of \textit{C. parapsilosis} isolates is another critical requirement for clinical laboratories. In the present study, the results showed that all the 30 proven \textit{C. parapsilosis} isolates from clinical samples were detected by the LAMP assay, suggesting that the established LAMP assay for \textit{C. parapsilosis} represented a great consistency with conventional PCR and VITEK 2 system. The conventional biochemical tests for identification of \textit{C. parapsilosis} are relatively time-consuming. The LAMP-based assay can identify \textit{C. parapsilosis} in 80 min: 30 min for DNA extraction, 45 min for the LAMP reaction and 1 min for detection.

In conclusion, the LAMP method described in this study represents a new sensitive, specific and rapid protocol for the detection of \textit{C. parapsilosis}. Due to its easy operation without sophisticated equipment, it will be simple enough to use in small-scale hospitals, primary care facilities and clinical laboratories in developing countries if the remaining issues such as nucleic acid extraction and cross-contamination controls are addressed. Our next direction in developing this promising method for wider clinical use would be to detect \textit{C. parapsilosis} in clinical specimens such as blood, urine and sputum.

Conflict of Interest

The author(s) have not declared any conflict of interests.

REFERENCES

Full Length Research Paper

The prevalence of *Brucella abortus* DNA in seropositive bovine sera in Bangladesh

Md. Siddiqui Rahman\(^1,3\)*, Md Abu Sayed Sarker\(^1\), A. K. M. Anisur Rahman\(^1\), Roma Rani Sarker\(^1\), Falk Melzer\(^2\), Lisa D. Sprague\(^2\) and Heinrich Neubauer\(^2,3\)

\(^1\)Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
\(^2\)Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany.
\(^3\)OIE Reference Laboratory for Brucellosis, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany.

Received 12 June, 2013; Accepted 19 November, 2014

Prevalence of brucellosis has been widely investigated on the basis of serological test in livestock but the information on the prevalence of *Brucella* species is scarce in Bangladesh. The objective of this work was to determine the prevalence of *Brucella* species in cattle and buffaloes in Bangladesh. For these purpose, a total of 799 serum samples of cattle and buffaloes were collected from different districts of Bangladesh. Out of 799 serum samples, 45 serum samples reacted positively to the Rose Bengal test (RBT); among the RBT positive serum, 14 sera were found to contain *Brucella* DNA by genus specific IS711 screening using quantitative real time PCR (qRT-PCR); and all the 14 qRT-PCR positive samples were found to contain specifically *Brucella abortus* DNA. This report confirms that *B. abortus* is endemic in cattle and buffaloes in Bangladesh. A combination of SAT-iLEISA and PCR could be effective for future eradication programmes.

Key words: Brucellosis, cattle, buffalo, Bangladesh, serology, polymerase chain reaction (PCR).

INTRODUCTION

Brucellosis is considered to be the most widespread zoonosis throughout the world and is caused by different species of the genus *Brucella* (OIE, 2008). In animals, brucellosis mainly affects reproduction and fertility, with abortion, birth of weak offspring and reduced milk yield (Sewel and Blocklesby, 1990). In man, the clinical picture resembles many other febrile diseases, but sacroiliitis and hepato-splenomegaly are the most prominent symp-

toms. Severe complications are endocarditis and neurological disorders (Colmenero et al., 1996). Numerous serological tests, that is, Rose Bengal Test (RBT), serum agglutination test (SAT), complement fixation test (CFT) and ELISA are used for detecting *Brucella* antibodies in cattle and small ruminants at herd level. Presently, quantitative real time (qRT) PCR methods are used to corroborate serological diagnostics. *Brucella* DNA can
readily be detected in serum of infected animals when blood culture fails, and species differentiation is done using serum and the IS711 species specific qRT-PCR is possible (Gwida et al., 2011).

In the agro-based economy of Bangladesh, livestock contribute 2.73% of the total gross domestic product (GDP) and 75% of rural people are directly or indirectly involved in livestock rearing including 23.4 million cattle and 1.86 million buffaloes. Brucellosis was first identified serologically in cattle in 1967 (Mia and Aslam, 1967), and in buffalo in 1997 (Rahman et al., 1997). Besides, the serological prevalence of brucellosis has been reported in man and animals in Bangladesh (Nahar and Ahmed, 2009; Muhammad et al., 2010; Rahman et al., 2006; 2011; 2012). Pharo et al. (1981) for the first time in Bangladesh described the isolation of *Brucella abortus* from two cows both of which were MRT and RBT positive. In the same year, Rahman and Rahman (1981) claimed to isolate *Brucella* spp. from MRT positive milk in sub-clinical mastitic udder. Unfortunately, the detail procedure to validate the isolates as *Brucella* spp. is missing in these papers. Moreover, these isolates were not preserved in any laboratory in Bangladesh for further analysis. The culture of *Brucella* spp. requires BSL 3 facilities, highly skilled personnel and it has also high health risk to laboratory workers. However, real time PCR techniques are available to identify *Brucella* at species level which is more sensitive, specific, faster, safer and relatively cheaper than culture technique (Alton et al., 1988; Al Dahouk et al., 2007). Therefore, the aim of this study was to determine the species of *Brucella* in Bangladesh using sophisticated and sensitive technique, quantitative real time PCR.

MATERIALS AND METHODS

Blood samples from 99 adult buffaloes and 700 cattle were randomly collected between May and October 2011 for a preliminary study. RBT, SAT, CFT (all Pourquier, IDEXX, Montpellier, France) and the IDEXX Brucellosis Serum X2 Ab Test (IDEXX, Liebefeld-Bern, Switzerland) were performed according to the procedures described by the manufacturers. The RBT positive sera were re-tested with SAT, CFT, ELISA and qRT-PCR. For the qRT-PCR, DNA was isolated from 200 µL of seropositive serum using the High Pure PCR Template Preparation Kit (Roche Diagnostics, Mannheim, Germany) according to the manufacturer's instructions. *Brucella* IS711 targeting genus specific qRT-PCR was done according to the established and routine protocol (Tomaso et al., 2010) on a light cycler 2.0 instrument (Roche, Mannheim, Germany). Cycle threshold values (CT) ≤ 40 were interpreted as positive. Positive samples were then typed with the *Brucella* IS711 species specific qRT-PCRs for *B. abortus* and *Brucella melitensis* according to Probert et al. (2004). CT values were calculated by the instrument's software MxPro3000P v 4.01. CT values ≤ 42 were interpreted as positive. The details primers list could be found in Table 1.

Statistical analysis

Descriptive statistics, 95% confidence interval of prevalence and Fisher Exact test to determine the level of significance between *B. abortus* detection level among RBT positive cattle and buffalo serum were performed in R 3.1.0 (The R foundation for Statistical Computing).

RESULTS

Out of total 700 cattle and 99 buffalo sera, 38 cattle and seven buffalo sera showed positive reaction to RBT with the overall prevalence of brucellosis 5.42% (95% Confidence Interval (CI): 3.87-7.38) in cattle and 7.07% (95% CI: 2.89-14.03) in buffalo (Table 2). Out of 38 RBT positive sera of cattle, 23.68% were *B. abortus* positive whereas out of 7 RBT positive buffalo sera, 71.43% were *B. abortus* positives. The difference in detection level of *B. abortus* from cattle and buffalo sera was statistically significant (p=0.02). The odds of getting *B. abortus* DNA from RBT positive buffalo sera was 7.61 times higher than the same from cattle sera (Table 2). Figure 1 shows the amplification plots of *B. abortus* specific real time PCR based on seropositive cattle and buffalo sera.

Out of 45 sera tested, six samples were three tests positive and can be considered as acute and active infection. Among 799 sera samples, 36 were positive only to RBT but negative to the other two tests (Table 3).

The relationship between serological tests and PCR is shown in Table 4. Out of nine *B. abortus* specific rPCR positive cattle samples, 7 were positive only to RBT but negative to the other two tests. On the other hand, out of five buffalo *B. abortus* specific rPCR positive buffalo

Table 1. Oligonucleotide primers and probes in the real-time multiplex PCR assay for the detection of *Brucella* spp., *B. abortus*, *B. melitensis*.

<table>
<thead>
<tr>
<th>Species</th>
<th>Forward primer<sup>a</sup></th>
<th>Reverse primer<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucella spp.</td>
<td>GTCGGTTGCCAAATATCAATGC</td>
<td>GGGTAAAGCGTCGCCAGAAG</td>
</tr>
<tr>
<td>Brucella spp. TagManprobe<sup>ab</sup></td>
<td>6FAMAAATCCTTCACCTGCCATTGCCATCABHQ1</td>
<td>CATGCGCTATGATCTGGTTACG</td>
</tr>
<tr>
<td>B. abortus</td>
<td>GGCGTTTTCTATCACGATTTG</td>
<td>CATGCGCTATGATCTGGTTACG</td>
</tr>
<tr>
<td>B. abortus Tag Manprobe<sup>ab</sup></td>
<td>HEXCGCTATGCTGCGCAGCTCAATGCABHQ1</td>
<td>CATGCGCTATGATCTGGTTACG</td>
</tr>
<tr>
<td>B. melitensis</td>
<td>AACAGGGGCCACCTTAAA</td>
<td>CATGCGCTATGATCTGGTTACG</td>
</tr>
<tr>
<td>B. melitensis TagMan probe<sup>ab</sup></td>
<td>Texas RedCAGGAGTGTTTCGGCTCAAGATATCCACABHQ2</td>
<td>CATGCGCTATGATCTGGTTACG</td>
</tr>
</tbody>
</table>

^aOligonucleotide sequence provided in 5’ to 3’ orientation. 5’ Fluorophonre/3’ quencher^b: 6-FAM: 6-carboxyfluorescein; HEX: 6-hexachlorofluorescein; BHQ1: Black Hole Quencher 1; BHQ2: Black Hole Quencher 2.
Table 2. Prevalence of brucellosis and *B. abortus* infection in cattle and buffalo based on RBT and rt PCR.

<table>
<thead>
<tr>
<th>Sera</th>
<th>Tested</th>
<th>Positive in RBT</th>
<th>Prevalence (95% CI)</th>
<th>B. abortus detected</th>
<th>Detection percentage (95% CI)</th>
<th>Fisher Exact Test Odd ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>700</td>
<td>38</td>
<td>5.42 (3.87-7.38)</td>
<td>9</td>
<td>23.68 (11.4-40.24)</td>
<td>1</td>
</tr>
<tr>
<td>Buffalo</td>
<td>99</td>
<td>7</td>
<td>7.07 (2.89-14.03)</td>
<td>5</td>
<td>71.43 (29.04-96.33)</td>
<td>7.61 (1.03-92.99)</td>
</tr>
</tbody>
</table>

p-value=0.02.

Figure 1. Amplification plots of *B. abortus* specific real time PCR with the DNA extracted from sera of cattle and buffalo in Bangladesh.

We found seroprevalences of 5.42 and 7.07% in cattle and buffalo by RBT, respectively (Table 2). The seroprevalence of brucellosis in cattle in Bangladesh is reported to lie between 2.4 - 18.4% at animal level and at 62.5% at herd level. Serological prevalence in buffaloes was reported to be 2.87% (Rahmanet al., 1997; Amin et al., 2005).

About 13.3% (6/45) RBT positive bovines were found to be acutely infected with brucellosis. These animals were positive to both IgG (iELISA) and IgM (SAT) detecting tests. The IgM and IgG are produced respectively in early and later stage of the disease. So, if a sample is positive in SAT and ELISA, it is considered as an active and acute infection. Whereas, if a sample is positive only to
IgG ELISA, it is considered as chronic infection. A sample positive to only agglutination test like SAT cannot be considered as brucellosis unless confirmed by an IgG detecting test like IgG ELISA within one week (Godfroid et al., 2010; Seleem et al., 2010). However, it requires repeated sampling from the same animal which was not possible and also not the purpose of this study. From all cattle and buffalo sera investigated, only two cattle sera from Kurigram could be analysed by CFT due to the low quality of the sera. These two sera were also positive in the ELISA.

Out of 9 cattle sera from where *B. abortus* DNA were detected 7 had negative test results both in SAT and iELISA. The biological explanation of this phenomenon is not clear. However, these animals were positive to RBT (1+). The infection in these animals may be in the very early stage which was detected by the qualitative test (RBT) but not by the quantitative tests like SAT and iELISA for the presence of antibody below cut-off level.

Similarly, for buffalo sera only one sample was positive to RBT but negative to SAT and iELISA. In humans, presence of *Brucella* DNA after a long time after clinical cure was also reported by Navarro et al. (2006). This indicates that the presence of only *Brucella* DNA does not indicate acute infection. Similar phenomenon may also occur in animals as we have notice in this study. Contrarily, serological cross reactivity with other abortion causing agents could explain the high number of RBT ‘positives’which is regularly reported for females older than four years (Chantal and Thomas, 1976). However, the low number of animals investigated in this study does not allow statistical proof of these assumptions.

The major shortcoming of PCR based techniques is that the biovar cannot be determined. Cultivation from sera often fails and was thus not attempted in our preliminary study but has to be part of future investigations. It can be concluded that a combination of real-time PCR with SAT and iELISA should be applied to

Table 3. Summary of three serological test results.

<table>
<thead>
<tr>
<th>RBT</th>
<th>SAT</th>
<th>iELISA</th>
<th>Number</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1+</td>
<td>+</td>
<td>-</td>
<td>3</td>
<td>Probably false positive (if RBT detected IgG)/Acute infection (if RBT detected IgM)</td>
</tr>
<tr>
<td>1+</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>Probably false positive</td>
</tr>
<tr>
<td>2+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>Acute infection*</td>
</tr>
<tr>
<td>2+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2+</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>Probably false positive</td>
</tr>
<tr>
<td>3+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>Acute infection*</td>
</tr>
<tr>
<td>3+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3+</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sub-total</td>
<td>45</td>
<td></td>
<td></td>
<td>Tested by genus and species specific rt PCR</td>
</tr>
<tr>
<td>Suspicious</td>
<td>ND</td>
<td>Negative</td>
<td>93</td>
<td>Probably false positive</td>
</tr>
<tr>
<td>Suspicious</td>
<td>ND</td>
<td>ND</td>
<td>15</td>
<td>Probably false positive</td>
</tr>
<tr>
<td>Negative</td>
<td>ND</td>
<td>Negative</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>ND</td>
<td>ND</td>
<td>596</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>799</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND: Not done, only two sera were tested by CFT and found positive. They were positive in at least 2+ in RBT and also in iLEISa and SAT.

Table 4. Relationship of serological tests and PCR.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Area</th>
<th>RBT</th>
<th>SAT</th>
<th>iELISA</th>
<th>BCSP genus specific rt PCR</th>
<th>IS711 genus specific rt PCR</th>
<th>B. abortus specific IS711 rtpcr</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle serum</td>
<td>Kurigram</td>
<td>1+</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
<td>Not done</td>
<td>Positive</td>
<td>7</td>
</tr>
<tr>
<td>Cattle serum</td>
<td>Kurigram</td>
<td>2+</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>1</td>
</tr>
<tr>
<td>Cattle serum</td>
<td>Kurigram</td>
<td>3+</td>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>1</td>
</tr>
<tr>
<td>Buffalo serum</td>
<td>Mymensingh</td>
<td>1+</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>1</td>
</tr>
<tr>
<td>Buffalo serum</td>
<td>Mymensingh</td>
<td>2+</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>1</td>
</tr>
<tr>
<td>Buffalo serum</td>
<td>Bagerhat</td>
<td>2+</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>2</td>
</tr>
<tr>
<td>Buffalo serum</td>
<td>Bagerhat</td>
<td>3+</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
detect brucellosis in cattle and buffalo from Bangladesh in a future eradication program. This paper for the first time detected the presence of *B. abortus* using real time PCR technique in the cattle and buffalo populations in Bangladesh.

Conflict of Interest

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

Dr. M. S. Rahman was supported in part by funding obtained from the DAAD (Deutscher Akademischer Austausch Dienst-German Academic Exchange Service) Programme “Research Stays and Study Visits for University Academics”, OIE Reference Laboratory for Brucellosis, Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Naumberg Str. 96a, 07743 Jena, Germany, November-December, 2011.

REFERENCES

Verification of molecular characterization of coagulase positive *Staphylococcus* from bovine mastitis with matrix-assisted laser desorption ionization, time-offlight mass spectrometry (MALDI-TOF MS) mass spectrometry

 Cássia Couto da Motta¹, Anna Carolina Coelho Marín Rojas¹, Felipe Carlos Dubenczuk¹, Larissa Alvarenga Batista Botelho², Beatriz Meurer Moreira², Shana Mattos de Oliveira Coelho¹, Irene da Silva Coelho¹ and Miliane Moreira Soares de Souza¹*

¹Veterinary Microbiology and Immunology Department, Federal Rural University of Rio de Janeiro, BR 465 Km 7, CEP 23897-970, Seropédica/RJ, Brazil.
²Research Laboratory of Medical Microbiology, Institute of Microbiology Paulo Goes, Federal University of Rio de Janeiro, Avenue Carlos Chagas Filho, 373, University City, CEP 21941-902, Rio de Janeiro/RJ, Brazil.

Received 17 August, 2014; Accepted 17 November, 2014

Besides *Staphylococcus aureus*, other coagulase-positive *Staphylococcus* (CPS) species such as *Staphylococcus hyicus* and *Staphylococcus intermedius* are implicated in bovine mastitis etiology. These species are often misdiagnosed as *S. aureus*. Also, some atypical *S. aureus* isolates can test negative for coagulase production and consequently be misdiagnosed as coagulase-negative *Staphylococcus* (CNS). Several currently available methods for the identification of *Staphylococcus* spp., including molecular techniques, are widely used worldwide. Recently, matrix-assisted laser desorption ionization, time-offlight mass spectrometry (MALDI-TOF MS) has been attracting attention for its fast and precise identification of several microorganisms at the species level. The present work evaluated the efficiency of a protocol for *S. aureus* characterization using PCR and M-PCR procedures. MALDI-TOF was considered the gold standard test to evaluate the sensitivity and specificity of the proposed identification protocol. Seventy-two *Staphylococcus* spp., isolates were evaluated. All samples were submitted to PCR for coa, nuc and 23S rDNA. Out of 33 isolates, genotypically characterized as *S. aureus* and confirmed by MALDI-TOF MS, 2 (6.1%) tested negative for coagulase production. Three isolates were identified as *S. hyicus* (2) and *S. intermedius* (1) by MALDI-TOF MS. The proposed molecular identification schedule achieved 100% sensitivity and specificity as compared to MALDI-TOF MS.

Key words: Bovine mastitis, coagulase-positive *Staphylococcus*, matrix-assisted laser desorption ionization, time-offlight mass spectrometry (MALDI-TOF MS), molecular identification.

INTRODUCTION

Bovine mastitis is an inflammatory disease usually caused by bacterial and mycotic pathogens (Capurro, 2009). It is recognized as a major disease affecting milk production and consequently dairy enterprises. Among the infectious
agents implicated in the etiology of mastitis, *Staphylococcus* spp. are usually the most frequent bacteria (Taponen and Pyörälä, 2009).

According to the List of Prokaryotic Names with Standing in Nomenclature (http://www.bacterio.net/staphylococcus.html), the genus *Staphylococcus* comprises 49 species and 26 subspecies, separated into two distinct groups based on their ability to produce coagulase. The coagulase-negative *Staphylococcus* (CNS) was long regarded as non pathogenic species assembled in an undistinguishable group. Today, their importance in animal infections is becoming clear and there are several reports implicating CNS in bovine mastitis.

Eight coagulase-positive *Staphylococcus* species have been reported: *Staphylococcus aureus*, *Staphylococcus intermedius*, *Staphylococcus delphini*, *Staphylococcus pseudointermedius*, *Staphylococcus schleiferi* subsp. *coagulans*, *Staphylococcus hyicus*, *Staphylococcus lutrae* and *Staphylococcus agnetis* (Freney et al., 1999; Devriese et al., 2005; Sasaki et al., 2010; Taponen et al., 2012). *S. aureus* is the most frequent species isolated from bovine mastitis samples. *S. intermedius* and *S. hyicus* are rarely identified and the other CPS seems to be misidentified as *S. aureus* (Capurro, 2009).

The failures in the identification protocol are mostly related to phenotypic procedures, since distinguishing between species is a difficult task. The use of molecular markers has greatly improved species differentiation and allows the elucidation of the taxonomy of *Staphylococcus* spp., (Lange et al., 2011). Description of new species (Foster et al., 1997; Devriese et al., 2005) and reclassification of known ones have happened as a consequence of new methods and techniques (Sasaki et al., 2007; Blaiotta et al., 2010).

Molecular identification methods are keys to achieving phenotypic identification spaces as gene specific markers are being recognized. Nucleic acid-based detection approaches offer rapid and sensitive methods that are easily reproducible. Several identification schedules considering the amplification of *nuc*, *coa* and 23S rDNA genes have been previously reported for *S. aureus* (Hookey et al., 1998; Straub et al., 1999; Ciftci et al., 2009). Sasaki et al. (2010) developed a multiplex PCR (M-PCR) of *nuc* gene which encodes for thermonuclease in different *Staphylococcus* species.

Recently, matrix-assisted laser desorptionionization, time off light mass spectrometry (MALDI-TOF MS) has been attracting attention for its fast and precise identification of several microorganisms at the species level, even in mixed cultures (Bizzini and Greub, 2010; Bannoehr and Guardabassi, 2012). Mass spectrometry (MS) is a technique based on the analysis of ionized molecules in a gaseous phase. Decristophoris et al. (2011) reported high specificity (95%) and sensitivity (100%) in the identification of species of the SIG group, the *S. intermedius* reclassification proposed by Devriese et al. (2005), that comprises S. intermedius, the new species *S. pseudintermedius* and *S. delphini*. Böhme et al. (2012) also reported its use for *S. aureus* identification.

In the present study, we proposed a molecular schedule based on PCR amplification of the *nuc*, 23S rDNA and *coa* genes in coagulase-positive *Staphylococcus* isolated from dairy farms. The results obtained were compared with those yielded by MALDI-TOF MS, considered the gold standard technique due to its reliability and speed.

MATERIALS AND METHODS

Sampling

The 72 *Staphylococcus* spp. isolates evaluated in this study were obtained from samples of mastitic cow’s milk and dairy workers' hands, obtained from dairy farms in the state of Rio de Janeiro, Brazil. The samples were first inoculated on blood agar (blood agar base enriched with 5% sheep blood) and incubated at 35°C (+ 2°C) for 24 h. Then, the isolates were submitted to routine microbiological diagnostics, including inoculation in selective medium for analysis of cultural properties and catalase and coagulase production. The coagulase-positive samples were evaluated for maltose and d- mannitol fermentation, acetoin production and nitrate reduction (Winn et al., 2006). Coagulase-negative isolates were stored in 45% glycerol added to Brain Heart Infusion (BHI) broth for complementary analysis. To its identification, a modified scheme based on Cunha et al., (2004) was used, comprising the following tests: fermentation of the sugars xylose, arabinose, sucrose, trehalose, maltose, mannitol, lactose, xyitol, ribose, fructose and mannose; production of hemolysin; presence of urease; and resistance to novobiocin 5 mcg.

Molecular and proteomic analysis

After phenotypic identification, all strains including CNSs, were submitted to polymerase chain reaction for 16S rRNA to confirm the presence of *Staphylococcus* spp. (Zhang et al., 2004). PCR for *coa* (Hookey et al., 1998), *nuc* (Ciftci et al., 2009) and 23S rDNA (Straub et al., 1999) genes were performed to characterize *S. aureus* (Table 1). *S. aureus* standard strain ATCC29213 was used as control.

Multiplex PCR (M-PCR) for *nuc* gene was performed according to Sasaki et al. (2010) to characterize coagulase-positive *Staphylococcus* species (Table 1). Strains ATCC 29213 S. aureus and ATCC 29663 S. intermedius and two strains from UFRJ culture collection, the S. hyicus 5368 and S. schleiferi 3975 were used as quality controls.

Furthermore, all 72 isolates were evaluated by the MALDI-TOF MS. To perform this procedure, the samples were inoculated in BHI agar at 37°C for 24 h. Each culture was transferred to a microplate.
(96 MSP, Bruker® - Billerica, USA). Each bacterial sediment was covered by a lysis solution (70% formic acid; Sigma-Aldrich®). Additionally, a 1-μL aliquot of matrix solution (alpha-ciano-4-hidroxicinamic acid diluted in 50% acetonitrile and 2.5% trifluoracetic acid, Sigma-Aldrich®) was added to each sediment. The spectra of each sample were generated in a mass spectrometer (MALDI Microflex, Bruker®) equipped with a 337 nm nitrogen laser in a linear path, controlled by the FlexControl 3.3 (Bruker®) program. The spectra were collected in a mass range between 2,000-20,000 m/s, and then were analyzed by the MALDI Biotype 2.0 (Bruker®) program, using the standard configuration for bacteria identification, by which the spectrum of the sample is compared with the references in the database. The results vary on a 0-3 scale, where the highest value means a more precise match and reliable identification (Table 2). In this study, we accepted values for matching greater than or equal to 2.

The percentage of sensitivity, specificity and positive and negative predictive values for the employed molecular methods were measured considering MALDI-TOF MS proteomic analysis as the gold standard technique in this study.

RESULTS

Out of a total of 72 Staphylococcus spp. isolates evaluated in this study, 52.8% (38/72) tested negative for the phenotypic coagulase production test, so they were initially considered to be coagulase-negative *Staphylococcus*. Phenotypic identification of the 47.2% (34/72) of isolates that tested positive for coagulase production demonstrated that 79.4% (27/34) were *S. aureus*. Seven coagulase-positive isolates (20.6%) from the 34 could not be phenotypically identified.

PCR amplification of the 16S rRNA gene (756 pb) tested positive in all 72 isolates, corroborating the *Staphylococcus* spp., phenotypic identification. Additionally, PCRs for coa, nuc and 23S rDNA genes were carried out for all 72 isolates to characterize *S. aureus*. The decision to evaluate even the phenotypic coagulase-negative strains was due to the report of the detection of atypical coagulase-negative *S. aureus* strains misdiagnosed as CNSs (Akineden et al., 2011). The coa gene was detected in 41.7% (30/72) isolates, yielding variable size amplicons. Each nuc (279 pb) and 23S rDNA (1250 pb) gene was detected in 37.5% (27/72) of the isolates. Strains were characterized as *S. aureus* when positive for the amplification of at least one of these specific genes, consisting of 45.8% (33/72) of the samples. Interestingly, 6.1% (2/33) tested negative for phenotypic coagulase production. Also, none of the studied genes were detected in 4.2% (3/72) of the coagulase-negative isolates. These isolates were submitted to M-PCR for nuc genes of *S. intermedius*,

Table 1. Primers and cycles employed to identify *S. aureus* and other CPS species.

<table>
<thead>
<tr>
<th>Gene (fragment)</th>
<th>Species</th>
<th>Primer Sequence (5'-3')</th>
<th>Cycling*</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA(756 pb)</td>
<td>Staphylococcus spp.</td>
<td>AAC TCT GTT ATT AGG GAA GAA CA
CCA CCT TCC TCC GGT TTG TCA CC</td>
<td>1</td>
</tr>
<tr>
<td>23S rDNA(1250 pb)</td>
<td>S. aureus</td>
<td>ACG GAG TTA CAA AGG ACG AC
AGC TCA GCC TTA ACG AGT AC</td>
<td>1</td>
</tr>
<tr>
<td>coa (Variável)</td>
<td>S. aureus</td>
<td>ATA GAG ATG CTG GTA CAG G
GCT TCC GAT TGT TCG ATG C
GGC ATT GAT GGT GAT ACG GTT</td>
<td>2</td>
</tr>
<tr>
<td>nuc (279 pb)</td>
<td>S. aureus</td>
<td>AGC CAA GCC TTG ACG AAC TAA AGC
TCG CTT GCT ATG ATT GTG G
GCC AAT GAT CTA CCA TAG C
GCG ATT GAT GGT GAT ACG GTT</td>
<td>3</td>
</tr>
<tr>
<td>nuc (359 pb)</td>
<td>S. aureus</td>
<td>TCG CTT GCT ATG ATT GTG G
GCC AAT GAT CTA CCA TAG C
GCG ATT GAT GGT GAT ACG GTT</td>
<td>4</td>
</tr>
<tr>
<td>nuc (430 pb)</td>
<td>S. intermedius</td>
<td>CAT GTC ATA TTA TTG CCA ATG A
AGG ACC ATC ACC ATT GAC ATA TTG AAA CC
AAT GGC TAC AAT GAT AAT CAC TAA
CAT ATG TTC CTT CTC GCG CG
CAT TTC GAT TGA GAA CAA
CAT ATG TTC CTT CTC CCT AGA C
TAT GCG ATT CAA GAA CTG A
TAT ATG ATT TGA ACG TG
GA AGR TTC GTT TTT CCT AGA C
CC ATT GAC ATA TTG AAA CC</td>
<td>4</td>
</tr>
<tr>
<td>nuc (526 pb)</td>
<td>S. schleiferi sub sp. coagulans</td>
<td>TGA AGG CAT ATT GTA GAA CAA
CGR TAC TTT TCG TTA GGT CG
GGA AGR TTC GTT TTT CCT AGA C
TAT GCG ATT CAA GAA CTG A
TAT ATG ATT TGA ACG TG
GA AGR TTC GTT TTT CCT AGA C
CC ATT GAC ATA TTG AAA CC</td>
<td>4</td>
</tr>
<tr>
<td>nuc (661 pb)</td>
<td>S. delphini group A</td>
<td>TGA AGG CAT ATT GTA GAA CAA
CGR TAC TTT TCG TTA GGT CG
TTT CCG TTA ATG GGA
CCA CCT TCC TCC GGT TTG TCA CC
CC ATT GAC ATA TTG AAA CC</td>
<td>4</td>
</tr>
<tr>
<td>nuc (1135 pb)</td>
<td>S. delphini group B</td>
<td>GGA AGR TTC GTT TTT CCT AGA C
TAT GCG ATT CAA GAA CTG A
TAT ATG ATT TGA ACG TG
GA AGR TTC GTT TTT CCT AGA C
CC ATT GAC ATA TTG AAA CC</td>
<td>4</td>
</tr>
<tr>
<td>nuc (793 pb)</td>
<td>S. hyicus</td>
<td>CAT TAT ATG ATT TGA ACG TG
GAA GAT GGT GAT ACG GTT
GEN GCT TCC CTA CTA CTA
CTT TGC TGC TGC TGC TGC
CATT TGC TGC TGC TGC TGC</td>
<td>4</td>
</tr>
</tbody>
</table>

*1. 94°C 5 min (94°C 1 min, 55°C 1 min, 72°C 1 min) x 30 and 72°C 10 min; 2. 94°C 4 min (94°C 1 min, 60°C 1 min, 72°C 1 min) x 30 and 72°C 5 min; 3. 94°C 5 min (94°C 45 s, 68°C 45 sec and 72°C 90 s) x 30 and 72°C 10 min; 4. 95°C 2 min (95°C 30 sec, 56°C 35 sec and 72°C 1 min) x 30 and 72°C 2 min.
Three isolates, previously identified as CPSs, were misidentified as MALDI standard strain could not be identified by this technique. The other two isolates and the just one presented atypical amplicon bigger than 1000 pb. The other two isolates and the Staphylococcus intermedius identified by MALDI-TOF MS technique and their respective scores.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Phenotype identification</th>
<th>PCR genes</th>
<th>M-PCR genes</th>
<th>MALDI-TOF MS (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>S. aureus(2.354)</td>
</tr>
<tr>
<td>2</td>
<td>CPS</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>S. aureus(2.58)</td>
</tr>
<tr>
<td>3</td>
<td>CPS</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>S. aureus(2.380)</td>
</tr>
<tr>
<td>4</td>
<td>CNS</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.329)</td>
</tr>
<tr>
<td>5</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.403)</td>
</tr>
<tr>
<td>6</td>
<td>CNS</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.317)</td>
</tr>
<tr>
<td>7</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.459)</td>
</tr>
<tr>
<td>8</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.367)</td>
</tr>
<tr>
<td>9</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.408)</td>
</tr>
<tr>
<td>10</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.381)</td>
</tr>
<tr>
<td>11</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.441)</td>
</tr>
<tr>
<td>12</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.424)</td>
</tr>
<tr>
<td>13</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.443)</td>
</tr>
<tr>
<td>14</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.351)</td>
</tr>
<tr>
<td>15</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.405)</td>
</tr>
<tr>
<td>16</td>
<td>CPS</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.419)</td>
</tr>
<tr>
<td>17</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.371)</td>
</tr>
<tr>
<td>18</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.418)</td>
</tr>
<tr>
<td>19</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.426)</td>
</tr>
<tr>
<td>20</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.450)</td>
</tr>
<tr>
<td>21</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.455)</td>
</tr>
<tr>
<td>22</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.410)</td>
</tr>
<tr>
<td>23</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.461)</td>
</tr>
<tr>
<td>24</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.379)</td>
</tr>
<tr>
<td>25</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.428)</td>
</tr>
<tr>
<td>26</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.410)</td>
</tr>
<tr>
<td>27</td>
<td>CPS</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.477)</td>
</tr>
<tr>
<td>28</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.442)</td>
</tr>
<tr>
<td>29</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.451)</td>
</tr>
<tr>
<td>30</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.459)</td>
</tr>
<tr>
<td>31</td>
<td>CPS</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.425)</td>
</tr>
<tr>
<td>32</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.422)</td>
</tr>
<tr>
<td>33</td>
<td>S. aureus</td>
<td>S. aureus</td>
<td>ND</td>
<td>S. aureus(2.424)</td>
</tr>
<tr>
<td>34</td>
<td>CPS</td>
<td>Negative (CPS)</td>
<td>Negative</td>
<td>S. hyicus(2.157)</td>
</tr>
<tr>
<td>35</td>
<td>CPS</td>
<td>Negative (CPS)</td>
<td>Negative</td>
<td>S. hyicus(2.116)</td>
</tr>
<tr>
<td>36</td>
<td>S. aureus</td>
<td>Negative (CPS)</td>
<td>Nonspecific fragment</td>
<td>S. intermedius(2.178)</td>
</tr>
</tbody>
</table>

*CPS: Coagulase-positive Staphylococcus; CNS: coagulase-negative Staphylococcus; ND: not determined.

S. pseudintermedius, S. schleiferi subsp. coagulans, S. delphini group A and B, S. hyicus and S. aureus (Sasaki et al., 2010). Out of these three CPSs isolates evaluated, just one presented an atypical amplicon bigger than 1000 pb. The other two isolates and the Staphylococcus hyicus 5368 standard strain could not be identified by this technique. MALDI-TOF MS confirmed the 33 isolates previously identified as S. aureus (45.8%), even the strain misidentified as S. intermedius by the M-PCR assay. Three isolates, previously identified as CPSs, were identified by MALDI-TOF MS as S. hyicus (2) and S. intermedius. The M-PCR assay for the nuc gene was not able to distinguish these strains. All 36 isolates previously identified as CNSs (45.8%) were confirmed by the MALDI-TOF MS proteomic analysis. S. chromogenes and S. sciuri were the prevalent species. The genotypic identification schedule based simultaneously on the detection of coa, nuc and 23S rDNA genes and showed correspondence of 100% with the MALDI-TOF MS technique.
Table 3. Percentages of sensitivity, specificity, positive predictive value and negative predictive value found for the proposed identification of S. aureus.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Values (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity</td>
</tr>
<tr>
<td>coa, nuc e 23S rDNA</td>
<td>100</td>
</tr>
<tr>
<td>coa</td>
<td>90.9</td>
</tr>
<tr>
<td>nuc</td>
<td>81.8</td>
</tr>
<tr>
<td>23S rDNA</td>
<td>81.8</td>
</tr>
</tbody>
</table>

*PPV: Positive predictive value; NPV: negative predictive value.

DISCUSSION

The phenotypic differentiation of CPS species is a difficult task due to the absence of specific biochemical markers. To overcome this problem, the use of molecular tools has become routine in human and veterinary microbiology diagnosis. Nonetheless, genotypic assays are relatively expensive, time consuming and most important may provide results that are difficult to analyze.

To evaluate susceptibility patterns, it is necessary to establish a reliable identification procedure of CPS species involved in several infections of distinct hosts. Parameters such as oxacillin minimum inhibitory concentration, antimicrobial susceptibility, incubation time and inhibition zones are specific to different *Staphylococcus* species (Sasaki et al., 2010).

In the present study, MALDI-TOF MS proteomic analysis was carried out to evaluate the sensitivity, specificity and positive and negative predictive values of a molecular identification schedule for *S. aureus* based on the coa, nuc and 23S rDNA genes. It proved to be an efficient tool for distinguishing *Staphylococcus* species. Also, it has high potential for routine automated analysis, allowing the identification of isolates from clinical sources on a large scale (CLSI, 2013). Nevertheless, although it proved to be a fast and easy method with high specificity and sensitivity, the equipment is very expensive and requires skilled staff, so it is not suitable for small laboratories.

The proposed genotypic identification schedule based on the coa, nuc and 23S rDNA genes achieved 100% sensitivity and specificity as compared to MALDI-TOF MS, the gold standard tool in this study (Table 3). So, this proposed identification schedule is reliable to characterize *S. aureus*, even the atypical coagulase-negative strains, and can be used in small research laboratories.

Despite the fact that it was reported as a 99.8% sensitive and a 100% specific method, the M-PCR technique, established by Sasaki et al. (2010) was not able to distinguish among the other CPS strains. In fact, although several molecular approaches have been suggested for the proper identification of CPS, since phenotypic methods are time consuming and unreliable for animal samples, this is still a goal to be achieved.

REFERENCES

CONFLICT OF INTEREST

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

This study was supported by the National Council for Scientific and Technological Development (CNPq, Rio de Janeiro, Brazil – process 472119/2011-7) and the Rio de Janeiro State Research Foundation (FAPERJ; process E-26/110.526/2011).
A cross sectional study was conducted to determine the microbial quality and safety of street vended raw meats in Jijiga town, Ethiopia. Questionnaire was used to assess the profile of 33 street vendors. A total of 60 meat samples (30 beef and 30 goats) were collected. The pH and holding temperature were measured. Six microbial groups were counted using standard methods. The aerobic mesophilic flora was characterized. Vendors had very little degree of awareness on food safety and food borne diseases. The sanitary condition of the vending environment was poor. The mean pH values were 6.03 and 5.98 for beef and goat meat samples, respectively. The samples were held in a temperature range of 17.5-27.5°C. Total mesophilic bacteria, Enterobacteriaceae and coliforms, Staphylococci, lactic acid bacteria, yeasts and moulds had counts of >7, 4, 6, 4 and 4log cfu/g respectively for both species. The aerobic plate counts were dominated by Staphylococcus spp. followed by Enterobacteriaceae. Salmonellae were also isolated from 5 (8.3%) meat samples. There were significant differences (P<0.05) between goat and beef samples in total mesophilic bacteria and Staphylococci counts. The samples harbored high counts of microorganisms. Trainings, inspections, infrastructures and code of practice are recommended.

Key words: Jijiga, raw meat, street vendors, quality, safety.

INTRODUCTION

Food is essential for survival. However, occasionally, human beings consume undesirable chemical and biological agents and toxins resulting in food borne illness. Consequently, in many countries food safety and quality is becoming a matter of increasing concern. Food safety problems are particularly becoming an increasingly serious threat to public health in developing countries. Lack of adequate regulations related to food safety as...
reflected in many unrecognized cases of food borne illnesses puts especially children and infants at high risk (Unnevehr and Hirschhorn, 2000). Biological contaminants, largely bacteria, viruses and parasites constitute the major cause of food-borne diseases (Kaferstein, 2003).

Vending foods on the street is a common aspect of lifestyle both in industrialized as well as countries in which there are high unemployment, low salaries and limited work opportunities (Bryan et al., 1988). Street vendors provide an essential service to people of all walks of life by selling raw foods, complete meals, refreshing drinks and snacks (WHO, 1996).

In spite of numerous advantages offered by street vended foods, there are also several hazards associated with this sector of the economy. Multiple line evidence revealed that foods exposed for sale on the roadside may become contaminated by either spoilage or pathogenic microorganisms (Mogessie, 1995). This constitutes serious health hazards, particularly in economically disadvantaged countries where food surveillance are undeveloped or not there at all. Evidently, street vended foods have shown epidemiological link with illness (Van Kampen et al., 1998; Mogessie, 1995) and laboratory results have also shown high counts of microorganisms and presence of food borne pathogens (Umoh et al., 1984, 1985; Mogessie, 1995). Some foods like meats, rice, fish and fruits have been frequently identified as vehicles in outbreaks of food borne diseases in countries where food-borne surveillance data are available (Davey, 1985; Bryan et al., 1988). Among the most common street vended foods, meat and meat products were known to be the major in either processed or unprocessed form (WHO, 1996). Retailing unprocessed raw meat in the street or in an open air market for the public is common in Africa as well as in some parts of Asian countries (WHO, 1996). Studies made in Africa, Asia and Latin America (FAO, 1995) pointed out that the important aspect of street vended food is their safety and understanding the possible ways of contamination.

Microbial contamination of street vended foods could occur due to different possible reasons such as storing food in cheap utensils, holding food at a temperature that would permit bacterial growth, utilization of water of questionable hygienic quality, using packing materials that were not of food-grade quality, vending site that had no facilities for waste disposal and utilization of unclean utensils (Deriba and Mogessie, 2001). In addition, street food vendors are unaware of the basic importance of personal cleanliness, thus their products are usually vulnerable to gross contamination by flies, insects, rodents, dust and other dirt (Deriba and Mogessie, 2001). It is also indicated that street-food vendors are often poor and uneducated and lack appreciation for safe food handling (Bryan et al., 1988).

Although vending raw meat is not common in most parts of Ethiopia, there are some areas in which vending raw meat in an open market is practiced. Jijiga town is one of these areas where raw meat street vendors are available in most parts of the town and highly populated at the center of the town. Raw meats of different animals (such as sheep, goat, camel and cattle) are commonly retailed and vending and purchasing activities are carried out every day in a week.

Studies concerning various street vended foods in Ethiopia showed the presence of pathogens or existence of good conditions in street foods to allow growth of pathogens in them (Mogessie, 1994, Deriba and Mogessie, 2002). However, information on the microbial quality and safety of street vended raw meats in Jijiga town is scant. The purpose of this study was therefore to determine the microbiological quality and safety of raw beef and raw goat meats as these types of meats were the most common and widely vended meats in the study area.

MATERIALS AND METHODS

Study area

The study was conducted at Jijiga town, the capital city of Somali Regional State, located about 80 km east of Harar and 620 km southeast of Addis Ababa. Its geographical coordinates are 9° 21’ North, 42° 48’ East. The majority of the region has an altitude of 900 m above sea level and in some areas the altitude reaches 1600 m. Of the total area size of the state, approximately 80% is flat and 7% mountainous. Regarding climate, 80% of the region is classified as “Kolla” (lowlands), 5% highland (“Dega”) and 15% of the area fall under temperate (“Woyna Dega”) category. The maximum temperature reaches 32-40°C. In the temperate (“Woyna Dega”) areas, the temperature is within 20-28°C. The mean annual rainfall of the state is estimated to be 300-500 mm.

Study design and data collection

The current cross-sectional study was carried out at Jijiga town from December, 2010 to March, 2011 with the aim of evaluating the microbiological quality and safety of street vended beef and goat meat in the town. Questionnaire and direct observation were used as tools to collect data. Content of the questionnaire included issues addressing socio-demographic characteristics, health status and personnel hygiene, food handling practices and food safety knowledge of the vendors and access to hygienic water supply and other sanitary facilities. Standard microbiological methods were also used to assess the microbiological quality and safety of street vended raw meats.

Survey

Survey using direct observation and questionnaire was undertaken throughout the study period in order to obtain data on socio-demography, food safety knowledge and food handling practices of street raw meat vendors. For this study, vendors selling mainly raw meat of goat and cattle were included. From the total of 44 raw meat vendors recognized by the city administration office and operating in the major open air market in a fixed place, only 33 food vendors were recruited using simple random sampling technique. Written consent was obtained by reading a statement to prospective respondents seeking permission for the data gathering. Data were collected only after getting willingness of the vendors.
and confidentiality was ensured using data coding system.

Sample collection for microbiological analysis

About 60 (30 from each meat type) samples of raw meat were collected from 30 different street vendors as made available to the consumers. Collection and transportation of the meat samples was carried out following the procedures used by Mogessie (1994) and Deriba and Mogessie (2002).

Plating and enumeration of microorganisms from raw meat samples

Plating of samples and microbial enumeration was conducted based on well established procedures (Diane et al., 2003). Twenty five grams of raw meat and 225 ml of 0.1% sterile buffered peptone water (BPW) was homogenized in a stomacher bag after the meat was chopped using sterile scissors. A volume of 0.1 ml sample from appropriate dilutions was plated on the following culture media (all from Oxoid) for microbial count: Aerobic mesophilic bacteria were counted on plate count (PC) agar after incubation at 32°C for 24-48 h. Violet Red Bile agar was used to count coliforms. After 24 h incubation at 32°C, purplish red colonies surrounded by red zone of precipitated bile were counted as coliforms. Violet Red Bile Glucose agar plates were used to count enterobacteriaceae. The seeded culture plates were incubated at 30-32°C for 20-24 h after which pink to red purple colonies with or without haloes of precipitation were enumerated as members of enterobacteriaceae. Staphylococci were counted on Mannitol Salt agar after incubation at 35°C for 36 h. Lactic acid bacteria were counted on de-Mann, Rogossa and Sharp (MRS) agar plates after incubation in an anaerobic jar at 32°C for 48 h. Yeasts and moulds were counted on potato dextrose agar plates. Colonies were counted after incubation at 28-30°C for five days (Diane et al., 2003).

Mesophilic flora analysis: After enumeration of aerobic mesophilic bacteria, about 10-20 colonies were picked randomly from countable plates and inoculated into tubes containing about 5 ml Nutrient Broth (Oxoid). The broth cultures were incubated at 37°C overnight. Cultures were further purified by repeated plating and differentiated to various bacterial groups. Cell morphology and clustering pattern, presence or absence of endospores and motility were examined under a microscope. Gram reaction was determined using the KOH test as indicated by Gregerson (1978). Furthermore, the presence of cytochrome oxidase (Kovacs, 1956) and catalase (Deriba and Mogessie, 2001) and oxidation-fermentation test (Hugh and Leifson, 1953) for glucose metabolism were also employed to characterize the microbial flora to their respective genus and/or species level.

Isolation of *Salmonella* spp. from meat samples: Isolation and identification of *Salmonella* was done according ISO 6579 (Muinde and Kuri, 2005). Briefly, 25 g sample was mixed with 225 ml buffered peptone water (BPW) and homogenized in a stomacher bag after the meat was chopped using sterile scissors. The homogenized solution was incubated at 37°C for 18-24 h for primary enrichment. For secondary enrichment, 0.1 ml of the solution was added in a tube containing 10 ml Rappaport-Vassiliadis broth (Oxoid) and incubated at 42°C for 24 h. A loopful of culture from the enrichment broth was inoculated into xylose lysine deoxycholate (XLD) medium (Oxoid) and incubated at 37°C for 18-24 h. Characteristic colonies from XLD medium were picked and further purified and tested biochemically using the following media: Triple Sugar Iron (TSI) agar, Lysine Iron (LI) agar, Urea agar, Simon’s Citrate agar and Sulphur-Indole-Motility (SIM) medium. For all media, incubation was done at 37°C for 18-24 h (Diane et al., 2003).

Data management and statistical analysis

All data collected form survey and laboratory investigations were double entered into Microsoft Spread Sheet data storage program. For the analysis, data generated from the questionnaire was analyzed using SPSS version 15.0. All microbial counts were converted to log_{10} colony forming unit (cfu) per gram values. Difference in microbial counts among meat samples of the two meat types was analyzed by analysis of variance (ANOVA). Significance was determined at the 5% of confidence level.

RESULTS

Survey

Survey results indicated that the majority of the food vendors were females (78.8%). Fifty-eight percent of the respondents were in the age range of 31-45 years. Only 30.3% of the vendors were literate (elementary school). Most of them (58%) were involved in vending meat for 5-10 years.

The sanitary condition of the vending environment was poor as it was dusty and full of remains of slaughtered animals such as bones, horn, head and other body parts. House flies were also very prevalent throughout the vending area and even on the raw meats displayed for sale by street vendors. All street vendors included in our study had no access to clean potable water. Forced by the situation, they simply reuse the water that they brought from their home.

It was also observed that the raw meats were displayed uncovered for more than 6 h for sale at ambient temperature on a table or a carton which would be used again and again.

All food handlers have a basic task to maintain a high degree of personal cleanliness and observe hygienic and safe food handling practices. Only 67% of the vendors had relatively good personal hygiene with respect to cleanliness of their cloths and visible body parts. None of the raw meat street vendors evaluated in our study wore appropriate working garment (overcoat). The majority (70%) of street vendors wore jewelers on their hands, ear and different body parts.

Microbiological analysis

Mean pH values for the meat samples investigated in our study ranged between 5.98 and 6.03. The raw meat samples analyzed in our study were held within a temperature range of 17.5-27.5°C during the time of vending and they were also possibly displayed for more than 6 h.

The mean values of aerobic mesophilic counts of street
Table 1. Microbial counts (log cfu/g) of street vended raw beef and goat meat samples in Jijiga town, 2011.

<table>
<thead>
<tr>
<th>Microbial group</th>
<th>RBM</th>
<th>RGM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>AMB</td>
<td>8.07</td>
<td>0.75</td>
</tr>
<tr>
<td>TC</td>
<td>4.71</td>
<td>1.32</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>4.45</td>
<td>1.31</td>
</tr>
<tr>
<td>Staphylococci</td>
<td>6.74</td>
<td>0.37</td>
</tr>
<tr>
<td>LAB</td>
<td>5.16</td>
<td>0.88</td>
</tr>
<tr>
<td>Yeasts & Moulds</td>
<td>4.62</td>
<td>1.06</td>
</tr>
</tbody>
</table>

AMB, Aerobic mesophilic bacteria; TC, total coliforms; LAB, lactic acid bacteria; S.D, standard deviation; RBM, raw beef meat; RGM, raw goat meat.

Table 2. Frequency distribution of mesophilic bacteria in meats collected from street vendors in Jijiga town, 2011

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>149</td>
<td>77(52)</td>
<td>10(6.7)</td>
<td>11(7.4)</td>
<td>33(22.2)</td>
<td>4(2.7)</td>
<td>7(4.7)</td>
<td>4(2.7)</td>
<td>3(2.0)</td>
</tr>
<tr>
<td>Goat</td>
<td>153</td>
<td>73(47.7)</td>
<td>11(7.2)</td>
<td>16(10.5)</td>
<td>36(23.5)</td>
<td>3(2.0)</td>
<td>10(6.5)</td>
<td>3(2.0)</td>
<td>1(0.7)</td>
</tr>
<tr>
<td>Sum</td>
<td>302</td>
<td>150(49)</td>
<td>21(7)</td>
<td>27(8.9)</td>
<td>69(22.8)</td>
<td>7(2.3)</td>
<td>17(5.6)</td>
<td>7(2.3)</td>
<td>4(1.3)</td>
</tr>
</tbody>
</table>

Where: EB, Entrobacteriaceae; Numbers in the parenthesis are percentage of the total isolates of respective species.

vended raw meat obtained in this study were 8.07 log cfu/g (ranged from 6.20 to 9.40 log cfu/g) and 7.59 log cfu/g (ranged 6.00-9.00 log cfu/g) for raw beef and raw goat meat, respectively (Table 1).

Enterobacteriaceae and coliforms were also encountered in our samples frequently (Table 1). The mean count of enterobacteriaceae and coliforms in our raw beef and raw goat meat samples was as high as log 4 cfu/g. Both raw meat samples analyzed in the present study had staphylococci counts ≥ 6log cfu/g (Table 1).

Counts of lactic acid bacteria (LAB) in the meat samples might indicate improper handling of the meats and inadequate storage conditions. Since lactic acid bacteria (LAB) are meat spoilers (Jay, 2005), the presence of such high counts in the samples may limit the keeping quality of the raw meats. The mean count of yeasts and moulds for raw beef and goat meat samples analyzed in our study were log 4.62 cfu/g and log 4.66 cfu/g, respectively (Table 1).

In our study, a total of 302 bacterial groups (149 isolates from raw beef and 153 isolates from raw goat meat) were isolated and characterized to various genera and bacterial groups (Table 2). In both types of meats, the aerobic mesophilic flora was dominated by staphylococci followed by enterobacteriaceae and other Gram positive rods. Pseudomonas spp., Alcaligenes spp., Acinetobacter spp, and Aeromonas spp. were also among the aerobic mesophilic bacterial groups isolated in beef and goat meat samples although they were not significant in their number. Salmonella was isolated from 5 meat samples (8.3%) (3 from goat meat and 2 from beef samples) (Table 2).

Statistical analysis with one-way ANOVA revealed that there were significant differences (P< 0.05) between goat and beef raw meat samples with regard to aerobic mesospheric count and staphylococci count (Table 3). However, significant
Table 3. ANOVA for microbial counts (log cfu/g) of raw beef and raw goat meat samples collected from street vendors in Jijiga Town, 2011.

<table>
<thead>
<tr>
<th>Bacterial groups</th>
<th>Log cfu/g (Mean±S.D.)</th>
<th>RBM</th>
<th>RGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM B</td>
<td>8.07±0.75a</td>
<td>7.59±0.76b</td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>4.45±1.31a</td>
<td>4.10±1.14a</td>
<td></td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>4.71±1.32a</td>
<td>4.31±1.12a</td>
<td></td>
</tr>
<tr>
<td>Staphylococci</td>
<td>6.74±0.37a</td>
<td>6.23±0.40b</td>
<td></td>
</tr>
<tr>
<td>LAB</td>
<td>5.16±0.88a</td>
<td>4.82±0.81a</td>
<td></td>
</tr>
<tr>
<td>Yeasts and moulds</td>
<td>4.62±1.06a</td>
<td>4.66±0.87a</td>
<td></td>
</tr>
</tbody>
</table>

 Rows followed by the same letters are not significantly different (\(P > 0.05 \)).

Differences were not observed in the counts of other microbial groups (\(P > 0.05 \)).

Discussion

Idowu and Rowland (2006) reported that in countries like Nigeria, Ghana, Uganda and Botswana, the majority of vendors are women who balance the income-generating opportunities of street vending. On the other hand, Muinde and Kuri (2005) have reported that 60% of the vendors surveyed in Nairobi were male. Although the quality and safety of raw meats sold by males and females was not assessed in our study, however, Ohiorhieh (2003) reported that female vendors sold food of better quality than their male counterparts. Klontz et al. (1995) also reported that in the United States, safer food preparations were consistently reported by persons who were female, at least 40 years old, with at least high school education and experience in the sector. In this survey, the experience and the age is consistent with that indicated by Klontz et al. (1995). However, there were significant percentage of youngsters under the age of 16-25 and inexperienced (0-4 years) vendors had also participated at vending activities in addition, their higher percentage of illiteracy would influence the good handling practice so does the safety of raw meat.

The presence of animals, insects, liquid waste and solid waste in all of food vending areas is similar to a study conducted elsewhere (FAO, 1988). The linkage between houseflies and diarrheal diseases has been also documented (Smith and Rose, 1998).

Reused water would have dissolved organic material in it to serve as a ‘culture medium’ favoring the growth of array of microorganisms including pathogens (Bryan et al., 1992c). For instance, in Ibadan, Nigeria, water was considered to be the major source of food contamination (Yah et al., 2009).

It has been mentioned that holding foods for more than 4-6 h is one of the main contributing factors of high possible microbial counts (El-Sherbeeny et al., 1985; Bryan et al., 1992a, b, c). Deriba and Mogessie (2001) also indicated that foods that are held at ambient temperatures of 15-45°C for more than about 4 h present a considerable public health risk.

All food handlers have a basic task to maintain a high degree of personal cleanliness and observed hygienic and safe food handling practices. Keeping hands clean, shortening fingernails, wearing clean working garment and hair cover (hair net and cap) are some of the precautions that a food handler must maintain (Kinfe and Abera, 2005). However, none of raw meat street vendors evaluated in our study wore appropriate working garment (over coat).

Jewelries observed especially on vendor’s hand were very high (70%) as compared to street food vendors assessed in other areas of Ethiopia such as Mekelle (35.7%) and Awassa (28.7%) (Kinfe and Abera, 2005). Thus, the culture might have also its own effect on food safety in relation to jewelries and clothing.

Several studies have shown that skin under rings is more heavily colonized by microorganisms as compared to fingers without rings (Jacobson et al., 1985). Hands are the most important vehicle for the transfer of organisms from faeces, nose, skin or other sites to food (WHO, 1984). Epidemiological studies of Salmonella typhi, non-typhi salmonellae, Campylobacter and Escherichia coli have demonstrated that these organisms can survive on finger tips and other surfaces for varying periods of time and in some cases after hand washing (Pether and Gilbert, 1971; WHO, 1984). Hands are important agents when it comes to transmitting microorganisms and intestinal parasites to food. Therefore, they should always be washed before starting work, immediately after using the bathroom, after handling contaminated material or any other material that could possibly transmit diseases, and whenever necessary (Goh et al.,1993). WHO (1984) also indicated that food vendors should wash their hands in hot soapy water before preparing or touching foods and after using bathroom. However, washing hands was not a common practice by raw meat street vendors in Jijiga town.

Absence of clean water and washing facilities in the vending environment and lack of awareness of the vendors about food handling and safety might be possible reasons for the poor handling practice of vendors observed in this study. Van-Kampen et al. (1998) reported that the lack of available hand washing facilities and poor knowledge concerning hygiene were correlated with improper food handling practices of street food vendors in Jakarta, Indonesia. On the other hand, a study conducted by Azanza et al. (2005) in Philippines showed that street vendors had good practice of washing hands during handling foods due to the relatively high level of knowledge in hand washing and the availability of a number of hand washing facilities within the area.
Microbiological analysis

These mean pH values (6.03 and 5.98) for beef and goat meat samples respectively might make these products susceptible to bacteria as well as mold and yeast spoilage (Jay, 1996) and could allow the multiplication of several bacterial pathogens (Ferrari and Torres, 2002). Freese et al. (1998) also indicated that pH above 4.4 and 5.0 would promote growth of pathogens.

Food that is not maintained within the safety temperature zone acts as an incubator for pathogenic bacteria whether the food is raw, partially cooked or fully done (Roller, 1999). According to Van Kampen et al. (1998) and Joseph and Doser (1999), time-temperature abuse was considered particularly potentially hazardous and initiate microbial proliferation. Freese et al. (1998) also indicated that storing foods at a temperature range of 15–47°C could promote growth of pathogens.

The mean values of total aerobic mesophilic counts were relatively higher than that reported by Okonko et al. (2009) for fresh meats sold in Calabar metropolis, Nigeria which had a mean aerobic mesophilic count of 4 log cfu/g. Comparable results with our study were reported by Kumar et al. (2010) for raw beef meat marketed in some parts of Tigray region as samples had aerobic mesophilic counts >7log cfu/g. According to Jay (2005), foods kept at ambient temperature, will stimulates the growth of aerobic mesophilic organisms, including most of the pathogens. Thus, high aerobic mesophilic count recorded in this study might reflect the time temperature abuse during displaying the meats for sale. ICMSF (1980) also indicated that high total bacterial count might be attributed to the contamination of the product from different sources or unsatisfactory processing and it may be due to unsuitable temperature during storage.

Although, there are no standards or guidelines regarding the microbial contamination of street vended raw meat in Ethiopia, HPA (2009) indicated that aerobic mesophilic count must be < 7 log cfu/g for raw meats. However, in this study, the mean counts of raw beef and raw goat meat samples were 8.07 and 7.59 log cfu/g, respectively. These mean values, thus exceeded the typical guideline for aerobic mesophilic count. Total bacterial count is considered an index of quality, which gives an idea about the hygienic measures during processing and helps in the determination of the keeping quality of the product Aberle et al. (2001). Comparable results were also reported by Mukhopadhyay et al. (2009) as most of goat meat and beef meat samples showed aerobic plate counts above 7.00 log cfu/g. Thus, it can be also said that most of the meat samples analyzed in this study were in a condition at which spoilage of meat can occur since they had aerobic mesophilic counts greater than 7log cfu/g (Warriss, 2001).

Comparable Enterobacteriaceae counts were also reported by Khalafalla et al. (1993) for ground beef meat samples. However, the mean values of our samples were higher than that reported by Mehmet and Hilmi (2005) for ground beef samples in Turkey which had mean count of Enterobacteriaceae and coliforms as low as 3log cfu/g. According to Cathy (1997) and HPA (2009) a raw meat is categorized as unacceptable if the count of Enterobacteriaceae and coliforms is > 4log cfu/g. Based on this, it can be said that both species of meat samples were found to be unacceptable as they had counts of these microbial groups >4log cfu/g. The presence of such high counts in the investigated samples could indicate time/temperature abuse during handling or inadequate storage and displaying conditions during sale. As these microbial groups are safety indicators, the presence of high counts may indicate possible presence of pathogens (Jay, 1996).

Staphylococci counts obtained were comparable with results obtained for ground beef by Tekinsen et al. (1980). However, the mean values of our samples were by far greater than that reported for ground meat obtained at retail (2log cfu/g) (Mehmet and Hilmi, 2005). Khalafalla et al. (1993) also reported lower counts of staphylococci (3log cfu/g) for ground beef meat samples. Staphylococci are common in unprocessed animal products and in products handled by bare hands. The high count of staphylococci in our meat samples indicates the presence of cross contamination, which is usually related to human skin, hand touch, discharge from human and clothing because of faulty handling activities, as they are typical contaminants from hands, clothes and utensils (Postgate, 2000).

The presence of such high counts of lactic acid bacteria (LAB) in this study might indicate improper handling of the meats and inadequate storage conditions. Since lactic acid bacteria (LAB) are spoilers (Jay, 2005), the presence of such high counts in the samples may limit their keeping quality.

In contrast with our finding, Selvan et al. (2007) reported that the mean total viable count was significantly greater in goat meat than other products (chicken and beef) studied in Chennai City, India. Another study in India by Mukhopadhyay et al. (2009) also indicated that coliform count was slightly lower in beef than goat meat samples (mean 5.84 and 6.40 log cfu/g). The presence of low microbial counts in raw goat meat samples as compared to raw beef samples in this study can be explained by the relatively short display time of goat meat at retail due to consumer preference for goat meat. In addition to this, trimming and cutting which usually enhance microbial contamination was minimized during sale of goat meat as compared to beef meat. These differences may be explained by personal hygiene, individual difference in awareness and safe food handling practice, displaying period and intrinsic characteristics of the two meat species.

The aerobic mesophilic flora was dominated by staphylococci followed by enterobacteriaceae. Deriba and Mogessie (2001) reported that the microflora of ‘kitfo’ a
traditional Ethiopian spiced, minced meat samples collected from street vendors in Addis Ababa were also dominated by various bacterial genera. *Staphylococcus* spp.

Isolation of *Staphylococcus* spp. and Enterobacteriaceae from the street vended meat can be worrying because certain strain of these bacteria cause food-borne infections (Mogessie, 1994). Thus, the raw meat samples investigated were under question from food safety point of view.

Salmonella was isolated from 5 meat samples (8.3%) quite far as compared to the study in Jimma town by Tasew et al. (2010) for minced meat in which rate of *Salmonella* isolation was 2 (1.2%). However, our samples had lower prevalence of salmonella as compared to other findings where rate of isolation from raw meat at retail was 20% in Gaborone, Botswana (Mrrema et al., 2006), 9% in raw meat obtained from butchers shop in Awassa, Ethiopia (Mogessie, 1994) and 42% from raw “kifto” (minced meat) in Addis Ababa (Mezgebhu and Mogessie, 1998). The variation in the prevalence of *Salmonella* contamination could be partly due to differences in sample type, sampling techniques, distribution of *Salmonella* in a lot examined and the detection methods employed.

In general, the majority of raw meats considered in this study had high microbial load and in some cases, even pathogens were isolated. Time/temperature abuse during vending on the street or cross contamination due to improper handling of meat or inappropriate vending practices or a combination of these factors might contribute to the presence of high microbial counts. Furthermore, the absence of clean potable water and receptacles, and also the poor sanitary condition of the vending area revealed inadequacies concerning quality and safety of the meats analyzed in this study. Training and inspections are important. Moreover, provision of basic infrastructures and establishment of code of practice for the sector are also recommended.

Conflict of interest

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

We acknowledge the Addis Ababa University for sponsoring this study and we would also like to thank the Akiilu Lemma Institute of Pathobiology for their permission to use microbiology laboratory. Our sincere thanks also go to Wro. Hirut Assaye for her profound comments on the entire work and the manuscript too.

REFERENCES

Käferstein F (2003). Food safety as a public health issue for Developing Countries. Focus 10, brief 2 of 17. 2020 Vision for Food, Agriculture
and the Environment. Washington, DC., USA.
African Journal of Microbiology Research

Related Journals Published by Academic Journals

- African Journal of Biotechnology
- African Journal of Biochemistry Research
- Journal of Bacteriology Research
- Journal of Evolutionary Biology Research
- Journal of Yeast and Fungal Research
- Journal of Brewing and Distilling