ABOUT JMA

The Journal of Microbiology and Antimicrobials (JMA) (ISSN 2141-2308) is published monthly (one volume per year) by Academic Journals.

Journal of Microbiology and Antimicrobials (JMA), is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as Disorders of the immune system, vaccines and antimicrobial drugs, Microbial Metabolism, Protozoology etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMA are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email jma@academicjournals.org.

With questions or concerns, please contact the Editorial Office at jma@academicjournals.org.
Editors

Ass. Prof. Aamer Ikram
Department of Microbiology, Armed Forces Institute of Pathology,
Microbiology, Infection Control, Biosafety
Pakistan

Prof. Wang Jianhua
Gene Engineering Lab
Feed Research Institute,
DNA recombinant, Recombinant protein, peptide expression, Antimicrobial peptide
Chinese Academy of Agricultural Sciences
China

Dr. Mohd. Shahid
Antimicrobial Agents & Drug Resistance Researches and Microbial Biotechnology
Department of Medical Microbiology
Jawaharlal Nehru Medical College & Hospital
Aligarh Muslim University,
India

Dr. Anil Vyas
Microbial Biotechnology & Biofertilizer Lab.
Department of Botany
J.N.V. University
India

Dr. (Mrs.) Amita Jain
Medical Pathology and Bacteriology
Dept. of Microbiology
King George Medical University,
India

Dr. Eduardo Mere
Department of Biochemistry
Genetics, Biochemistry, Molecular Biology
University Federal of Rio de Janerio,
Brazil

Dr. Shwikar Mahmoud Abdel Salam
faculty of medicine,
Alexandria University,
Egypt

Dr. Gideon Mutie Kikuvi
Institute of Tropical Medicine and Infectious Diseases,
Jomo Kentatta a University of Agriculture and Technology
Molecular bacteriology and antimicrobial resistance
Pharmacology: Pharmacokinetics
Kenya
Editorial Board

Dr. Manal El Said El Sayed
Bilharz Research Institute (TBRI)
Ministry of Scientific Research
Medical Microbiology and Immunology
Egypt.

Dr. Amber Farooqui
Sardinian Research and Development (SARD)
Porto Conte Research Institute, Alghero, Italy.

Dr. Chang-Gu Hyun
Applied Microbiology, Biological Science
Laboratory of Bioresources, Jeju Biodiversity Research Institute (JBRI) & Jeju Hi-Tech Industry Development Institute (HiDI)
Korea

Dr. Vasant P. Baradkar
Department of Microbiology,
Government Medical College
Aurangabad, Maharashtra

Dr. Manal El Said El Sayed
Medical Microbiology and Infection Control
Egypt.

As. Prof. Ömür Baysal
Turkish Ministry of Agriculture and Rural Affairs
West Mediterranean Agricultural Research Institute (BATEM)
Plant Pathology and Molecular Biology Departments
Antalya / Turquie

Dr. Nazmul Huda
Molecular biology of microbial drug resistance, telomere dysfunction
India.

Demelash Biffa
Molecular microbiology and epidemiology
Ethiopia.

Prof. Dr. Omar Abd El-Fattah Mohamed Fathalla
National Research Centre, Dokki, Cairo,
Medicinal Chemistry Department.
Egypt.

Dr. Amber Farooqui
Dept di Scienze Biomediche, Universita di Sassari,
Antimicrobial Chemotherapy, Epidemiology of Infectious Diseases,
Clinical Microbiology
Italy.

Dr. Kosta V. Kostov
Military Medical Academy,
Department of Pulmonology
Pulmonology, Internal medicine
Bulgaria.

Dr. Antonio Rivera
Benemérita Universidad Autónoma de Puebla
Microbiology, Medical microbiology,
Mycoplasmatology
Mexico.

Dr. Mohammad Rahbar
Dept of Microbiology, Iranian Reference health Laboratory.
Medical Microbiologist
Iran.

Dr. Chang-Gu Hyun
Jeju Biodiversity Research Institute (JBRI) and Jeju Hi-Tech Industry Development Institute (HiDI)
S Korea Advanced Cosmetics, Bioactive Natural Products Chemistry
Korea.

Dr. Abd El-Latif Hesham
Genetics Department, Faculty of Agriculture,
Assiut University,
Microbial Genetics, Biotech, biodegradation, Meta-Genomics
Egypt.

Dr. Samuel Sunday Taiwo
Dept Med. Microbiology and Parasitology,
College of Health Sciences,
Clinical and Molecular Bacteriology
Nigeria.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Najla Dar-Odeh</td>
<td>University of Jordan, Oral Medicine, Jordan</td>
</tr>
<tr>
<td>Prof. Dr. Asiye Meric</td>
<td>Anadolu Univ, Fac Pharmacy, Dept. Pharm. Chem., TÜRKİYE (TR)</td>
</tr>
<tr>
<td>Prof. Salah M. Azwai</td>
<td>Al Fateh University, Microbiologist, Libya</td>
</tr>
<tr>
<td>Prof. Dr. Abdel Salam Ahmed</td>
<td>Department of Microbiology, Faculty of Medicine, Alexandria University, Egypt</td>
</tr>
<tr>
<td>Dr. Kuldeep Kumar Shivalya</td>
<td>Indian Veterinary Research Institute, Izatnagar, Bareilly, PU, Biotechnology and Microbiology, India</td>
</tr>
<tr>
<td>Prof. Viroj wiwanitkit</td>
<td>Wiwanitkit House, Bangkhae, Bangkok, Clinical Medicine, Laboratory Medicine, Tropical Medicine, Thailand</td>
</tr>
<tr>
<td>Dr. Hafizah Chenia</td>
<td>School of Biochemistry, Genetics, Microbiology, Plant Pathology, University of KwaZulu-Natal, Durban</td>
</tr>
<tr>
<td>Dr. Gholamreza Salehi Jouzani</td>
<td>Microbial Biotechnology and Biosafety Dept, Agric Biore institute of Iran ABRII, Iran</td>
</tr>
<tr>
<td>Dr. Wilson Parawira</td>
<td>Institute of Food, Nutrition and Family Sciences, University, Zimbabwe</td>
</tr>
<tr>
<td>Dr. Subhash C Mandal</td>
<td>Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, India</td>
</tr>
<tr>
<td>Dr. Adesemoye AO</td>
<td>Department of Plant Pathology, Centre for integrated Plant Systems, Michigan State University</td>
</tr>
<tr>
<td></td>
<td>Phytobacteriology, Plant Growth Promoting Rhyzobacteria, and soil borne Plant Pathogen/soil Microbiology, USA</td>
</tr>
<tr>
<td>Dr. Giselli Fernandes Asensi</td>
<td>Universidade Federal do Rio de Janeiro Brazil, Microbiology, Food Microbiology, Brazil</td>
</tr>
<tr>
<td>Prof. Hongyue Dang</td>
<td>Centre for Bioengineering and Biotech, China Univ. of Petroleum China, Microbial Ecology and Biotechnology, China</td>
</tr>
<tr>
<td>Dr. Babu Joseph</td>
<td>Acharya's Bangalore School, Microbial Biotechnology, India</td>
</tr>
<tr>
<td>Dr. Tadele Tolosa</td>
<td>Jimma University, College of Agriculture and Veterinary Medicine, Ethiopia</td>
</tr>
<tr>
<td>Dr. Urveshkumar D. Patel</td>
<td>Department of Pharmacology and Toxicology, Veterinary College, Anand Agricultural University, Pharmacology and Toxicology (Research in Antimicrobial Therapy), India</td>
</tr>
<tr>
<td>Dr. Aamer Ali Shah</td>
<td>Faculty of Biological Sci, Quaid-i-Azam Univ, Islamabad, Pakistan</td>
</tr>
<tr>
<td>Dr. Babu Joseph</td>
<td>Acharya's Bangalore School, Microbial Biotechnology, India</td>
</tr>
<tr>
<td>Dr. Babu Joseph</td>
<td>Acharya's Bangalore School, Microbial Biotechnology, India</td>
</tr>
<tr>
<td>Dr. Aamer Ali Shah</td>
<td>Faculty of Biological Sci, Quaid-i-Azam Univ, Islamabad, Pakistan</td>
</tr>
<tr>
<td>Dr. Tadele Tolosa</td>
<td>Jimma University, College of Agriculture and Veterinary Medicine, Ethiopia</td>
</tr>
<tr>
<td>Dr. Urveshkumar D. Patel</td>
<td>Department of Pharmacology and Toxicology, Veterinary College, Anand Agricultural University, Pharmacology and Toxicology (Research in Antimicrobial Therapy), India</td>
</tr>
<tr>
<td>Dr. Saeed Zaker Bostanabad</td>
<td>Islamic Azad University, Tehran Medical and Parand Branch, Iran</td>
</tr>
<tr>
<td>Dr. Rakesh Kumar Singh</td>
<td>Florida State University, College of Medicine, Molecular Microbiology, Biochemistry, Chromatin and Genomic stability, USA</td>
</tr>
</tbody>
</table>
Ass Prof. Vintila Iuliana
*Dunarea de Jos University,
Food Science & Technology
Romania.*

Dr. Saganuwan Alhaji Saganuwan
*University of Agriculture,
Dept. of Physiology,
Makurdi, Nigeria.*

Dr. Eskild Petersen
*Dept. of Infectious Diseases,
Aarhus University Hospital
London.*

Dr. Shobha
*Melaka Manipal Medical College (Manipal Campus)
Microbiologist (Bacteriologist)
India.*

Dr. Elpis Giantsou
*Cambridge University Hospitals.
Respiratory Medicine-Intensive Care,
England.*

Ass Prof. Emana Getu Degaga
*Addis Ababa University
Ethiopia.*

Dr. Subramanian Kaviarasan
*Dept of Molecular Medicine, University Malaya,
Kuala Lumpur,
India.*

Ass Prof. Nongyao Kasatpibal
*Faculty of Nursing, Chiang Mai University
Epidemiology, Infection control
Thailand*

Dr. Praveen Rishi
*Panjab University
India*

Prof. Zeinab Nabil Ahmed Said
*Microbiology & Immunology Dept,
Faculty of Med Al-Azhar Univ.
Egypt.*

Dr. Sumit Dookia
*Ecology and Rural Development Society
Wildlife Biology, Microbial Ecology
India*

Ass. Prof. Abdulaziz Zorgani
Medical School, Edinburgh University

Dr. Adenike Adedayo Ogunshe
*University of Ibadan,
Nigeria.*

Prof. Itzhak Brook
*Pediatrics and Medicine, Georgetown University
Infectious Diseases
USA.*

Dr Md. Shah Alam Sarker
*School Agric and Rural Development,
Bangladesh Open University
Aquaculture Nutrition and Feed Technology
Bangladesh.*

Dr. Ramnik Singh
*Khalsa College of Pharmacy
Pharmaceutics
Amritsar.*

Prof. Amita Jain
*CSM Medical University
Tuberculosis, Drug resistance, Virology
India.*

Prof. Yulong Yin
*Institute of Subtropical Agriculture,
The Chinese Academy of Science
China.*

Prof. Mohan Karuppayil
*School of life sciences, Srtm university, Maharashtra
India.*

Dr. Seyedeh Seddigheh Fatemi
Iran.

Dr. Sunil Gupta
*National Centre for Disease Control
India.*

Dr. Zakaria
*Ministry of Health, Palestinian Authority
El Astal.*
Dr. Mustafa Gul
Kahramanmaras Sutcuimam University, Faculty of Medicine, Department of Microbiology and Clinical Microbiology
TURKEY.

Dr. Nese Karaaslan Biyikli
Anadolu Medical Center Pediatric Nephrology
Turkey.

Dr. Johnson Afonne
Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nigeria.

Dr. Giri Bhoopander
Department of Botany, Microbial Biotechnology
India.

Dr. Zafar Iqbal
Dept Plant Pathology, Univ Coll. Agriculture, Habil., Andras Fodor
Pakistan.

Ass Prof. Habil András Fodor
Department of Plant Protection, Georgikon Fac.,Pannonia Univ
Hungary.

Dr. Neelam Mewari
Department of Botany, University of Rajasthan, Rajasthan, Jaipur

Dr. Sanjib Bhattacharya
Bengal School of Tech. Pharmacy, India.

Dr. Habibur Rahman
PSG College of Pharmacy, India

Md. Elisa Bassi
Department of Dermatology, Delmati Hospital
Italy.

Iheanyi Omezuruike Okonko
University of Ibadan, Nigeria.

Ass. Prof. Weihua Chu
Tongjiaxiang, Dept. of Microbiology, School of Life Science & Technology, China Pharmaceutical University, China.

Dr. Mat Yamage
World Organization for Animal Health (OIE) Japan.

Dr. Ali Abbas Qazilbash
United Nations Industrial Development Organization, Pakistan.

Dr. Kulachart Jangpatarapongsa
Department of Clinical Microbiology, Med Tech, Mahidol University

Dr. Nasrin Ghasemi
Research and Clinical Centre for Infertility, Yazd SSU of Medical Sciences Safayeh, Bouali.

Dr. Branka Vasiljevic
Institute of Molecular Genetics and Genetic Engineering Serbia

Dr. Mehmet Ulug
BSK Anadolu Hospital Infectious Diseases and Clinic Microbiology
Turkey.

Dr. Vimala
Gitam University India

Dr. Pooja Jain
University of California, Department of Pathology; Irvine, California USA

Dr. Chellaiah Edward Raja
Cancer Biology Unit, School of Biological Sciences, M.K. University
India
Prof. Zeinab Nabil Ahmed Said
Fac. of Medicine (for girls) Al-Azhar University
Egypt

Prof. Manal Mohammad Baddour
Alexandria University, Faculty of Medicine,
Dept. of Microbiology and Immunology, Azarita
Egypt

Dr. Bechan Sharma
Department of Biochemistry
Coordinator: Centre for Biotechnology
University of Allahabad
Allahabad-India

Ass Prof. Ravichandran Veerasamy
Faculty of Pharmacy, AIMST University,
Pharmaceutical Chemistry, Medicinal Chemistry,
Phyto Chemistry
Malaysia

Dr. Mohammad Ibrahim
Programa de Pós-Graduação em Bioquímica
Toxicológica,
Centro de Ciências Naturais e Exatas, Universidade
Federal de Santa Maria, Brazil Biochemical Toxicology.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidius presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $650 handling fee. Publication of an article in the Journal of Microbiology and Antimicrobials is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2015, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties
In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JMA, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.
Descriptions of, or references to, products or publications does not imply endorsement of that product or publication.
While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Prevalence and antimicrobial susceptibility of *Salmonella* isolates from apparently healthy slaughtered goats at Dire Dawa municipal abattoir, Eastern Ethiopia
Beshatu Ferede, Fanta Desissa, Aklilu Feleke, Getachew Tadesse and Nebyu Moje

Prevalence and antimicrobial susceptibility of uropathogens in patients reporting to a tertiary care facility in Peshawar, Pakistan
Nasrullah Malik, Mamoon Ahmed and Muneeb ur Rehman
Prevalence and antimicrobial susceptibility of \textit{Salmonella} isolates from apparently healthy slaughtered goats at Dire Dawa municipal abattoir, Eastern Ethiopia

Beshatu Ferede1*, Fanta Desissa2, Aklilu Feleke2, Getachew Tadesse2 and Nebyu Moje3

1Faculty of Veterinary Medicine, Wollega University, P.O.Box, 395, Nekemte, Ethiopia. \\
2College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box, 34, Bishoftu, Ethiopia. \\
3Faculty of Veterinary Medicine, Hawasa University, P.O. Box, 05, Hawasa, Ethiopia.

Received 20 November, 2014; Accepted 15 January, 2015

A cross-sectional study was conducted from January to April 2014 on 249 apparently healthy slaughtered goats at the municipal abattoir of Dire Dawa to estimate the prevalence \textit{Salmonella} spp. and determine the antimicrobial susceptibility pattern of the isolates. A total of 249 goat carcass swab samples were collected using a systematic random sampling technique and examined for the presence of \textit{Salmonella} spp. Out of the total of 249 carcass swab samples, 44 (17.7\%) were positive for \textit{Salmonella}. Of all the isolates, 41 (93.2\%) were multiply antimicrobial resistant and the highest level of resistance was observed for tetracycline (100\%), nitrofurans (100\%), streptomycin (81.8\%) and kanamycin (79.5\%). However, all isolates were susceptible to ciprofloxacin. The present study shows high prevalence of \textit{Salmonella} spp. contamination of goat meat and resistance of the pathogen to most antimicrobials except ciprofloxacin. Authors recommended the use of standardized procedures and applications in handling of goat meat in the abattoir and rational use of antimicrobials particularly ciprofloxacin. Furthermore studies should be conducted to identify the potential source of contamination and identification of genes responsible for antimicrobial resistance.

\textbf{Key words:} Abattoir, antimicrobial sensitivity, goat meat, prevalence, \textit{Salmonella}.

INTRODUCTION

Foodborne salmonellosis often occurs following consumption of animal products contaminated with \textit{Salmonella} spp. resulting from infected animals used either in food production or from contamination of the carcasses or edible viscera during the slaughtering process (Baird-Parker, 1990; Alemayehu et al., 2002; Ejeta et al., 2004). Salmonellosis causes significant morbidity and mortality in both humans and animals and...
has a substantial global socioeconomic impact (Tassios et al., 1997; Hansen-Wester and Hensel, 2001). For instance, annually there are 16 million cases of typhoid fever, 1.3 billion cases of gastroenteritis and 3 million deaths worldwide due to Salmonella (Bhunia, 2008).

Antimicrobial-resistant Salmonella are increasing due to the use of antimicrobial agents in food producing animals. This may markedly increase the human health risks associated with consumption of meat products contaminated with antimicrobial-resistant Salmonella. Animals have been implicated as a source of human infection with antimicrobial resistant Salmonella (Zewdu and Cornelius, 2009; Zelalem et al., 2011).

Several studies showed the presence of Salmonella in humans, animals, and animal food products in many parts of the world (Nyeleti et al., 2000; Muleta and Ashenafi, 2001; Molla et al., 2003; Tibajjuka et al., 2003; Woldemariam et al., 2005, Asrat, 2008). There is little published information on the carriage of Salmonella in goats, although goat meat has been implicated as a source of Salmonella spp. food poisoning (Nabbut and Al-Nakhli, 1982; Chandra et al., 2007; Duffy et al., 2009).

Few studies have been conducted in Ethiopia to isolate Salmonella from goats meat and determine the antimicrobial susceptibility of the isolates. These studies focused only in the central part of the country and on export abattoirs (Molla et al., 1999, 2003, 2006; Wassie, 2004; Woldemariam et al., 2005; Akafete and Haileleul, 2011). However, there has been no report regarding the status of antibiotic susceptibility of Salmonella spp. from Dire Dawa municipal abattoir.

Materials and Methods

Study Site

This study was conducted between January, 2014 and April, 2014 at Dire Dawa Administration (DDA) situated at 515 km from Addis Ababa, in the eastern part of Ethiopia. It lies between 90° 27” and 90° 49”N latitudes and between 41° 38’ and 42° 19’E longitudes. The rainfall is bimodal and characterized by light rain from February to May and heavy rain from July to September. The mean annual rainfall in the study area varies from 550 to 850 mm. The monthly mean temperature ranges from 14.5 to 34.8°C (DDAEPA, 2011).

Study Design and Population

A cross-sectional study involving microbiological analysis was employed to isolate Salmonella spp. The study population comprised apparently healthy goats slaughtered at the Dire Dawa municipal abattoir.

Sample Collection

Two hundred forty nine (249) swab samples were selected using a systematic randomly technique from apparently healthy goats during slaughtering operations aseptically according to ISO-17604 (2003). The abdomen (flank), thorax (lateral), crutch, breast (lateral), were the sampling sites. Swab samples were taken from each delineated sampling area and all swab samples from a goat were pooled together and kept in a bottle containing buffered peptone water. Samples were kept in boxes containing ice packs and transported to the College of Veterinary Medicine and Agriculture, Addis Ababa University for isolation of Salmonella spp.

Salmonella Isolation

Salmonella was isolated according to the technique recommended by the International Organization for Standardization (ISO-6579, 2002). The swab samples were pre-enriched in buffered peptone water and incubated at 37°C for 24 h. About 0.1 ml of the pre-enriched sample was transferred into a tube containing 10 ml of Rappaport- Vassiliadis broth and incubated at 42°C for 24 h and 1 ml of the pre-enriched broth was transferred into a tube containing 10 ml of Müller Kauffman Tetrathionate with novobiocin broth and incubated at 37°C for 24 h. A loop of inoculum from each broth culture was streaked onto Xylose lysine desoxycholate and brilliant green agar plates and incubated at 37°C for 24 h. Five typical or suspected colonies of Salmonella were selected from the plates and further streaked onto the surface of pre-dried nutrient agar plates and incubated at 37°C for 24 h. Further biochemical tests using triple sugar iron agar, L-lysine decarboxylation medium, urease and indole production tests were done to isolate Salmonella spp.

Antimicrobial Susceptibility Tests

The antimicrobial susceptibility testing of the isolates was performed by using the disc-diffusion method according to the recommendations of the National Committee for Clinical Laboratory Standards (NCCLS, 2002). Four to five well-isolated colonies from nutrient agar plates were transferred into tubes containing 5 ml of tryptone soya broth (Oxoid, England). The broth culture was incubated at 37°C for 4 h until it achieved the 0.5 McFarland turbidity standards. A sterile cotton swab was dipped into the suspension, rotated several times, pressed firmly on the inside wall of the tube above the fluid level to remove excess inoculum and swabbed uniformly over the surface of Muller Hinton agar plate (Oxoid, England). The plates were kept at room temperature for 30 min to allow drying. Antibiotic discs were placed at least 15 mm apart on the plates and incubated at 37°C for 24 h. The diameter of the zones of inhibitions was compared with recorded diameters of the control organism E. coli ATCC 25922 and classified as resistant, intermediate or susceptible according to the interpretive standards of the Clinical Laboratory Standards Institute (CLSI, 2012).

Data Management and Analysis

The data collected from laboratory investigations were entered into Microsoft Excel and analyzed using SPSS statistical software version 20. Descriptive statistics such as frequency and percentage were used to present the data. P <0.05 was used to see the significant difference among the antimicrobial resistant to Salmonella isolates.

Results and Discussion

Out of the total 249 pooled carcass swab samples, 44
(17.7%) were positive for *Salmonella*. The antimicrobial susceptibility testing of the isolates indicated the highest level of resistance for tetracycline (100%), nitrofurantoin (100%), streptomycin (81.8%) and kanamycin (79.5%). All isolates were susceptible to ciprofloxacin (Table 1). Of all the isolates, 41 (93.2%) were multiple antimicrobial resistant (Table 2).

In the present study, out of the total 249 pooled carcass swab samples, 44 (17.7%) were positive for *Salmonella* spp. This percentage is higher in comparison with the reports of Akafete and Haileleul (2011) and Woldemariam et al. (2005) which are 8.3 and 7.5% from export abattoirs, respectively. This difference might be attributed to differences in the hygienic and sanitary practices practiced in the respective abattoirs. The current study was done on municipal abattoir that may have poor sanitation and hygienic standards in comparison with the export abattoirs. Moreover, the high level of contamination with *Salmonella* spp. could be associated with high excretion of *Salmonella* spp. with faeces as source of contamination due to exposure to predisposing factors such as starvation, overcrowding in the market and transportation (Venter et al., 1994). This overall high level of carcass contamination with *Salmonella* spp. is of special public health significance for a country like Ethiopia where consumption of raw and undercooked meat is common.

The current study showed that *Salmonella* spp. isolates were resistant to commonly used antimicrobials including tetracycline, nitrofurans, streptomycin, kanamycin and ampicillin with resistance rate of 100, 100, 81.8, 79.5 and 54.5%, respectively. This result is in agreement with the reports of other researchers from a different area (Akinyemia et al., 2005; Suresh et al., 2006; Akoachere et al., 2009; Zewdu and Cornelius, 2009; Zelalem et al., 2011).

In the present study, ciprofloxacin showed good antimicrobial activity against *Salmonella* spp. isolates. We found that all 44 (100%) isolates were susceptible to ciprofloxacin. This result was comparable to previous reports (Molla et al., 2006; Akinyemia et al., 2005; Zelalem et al., 2011) on isolates of *Salmonella* spp. from different animals and humans. The effectiveness of ciprofloxacin might be attributable to infrequent use of the drug for the treatment of animals and humans in the country indicating the benefit of rational use of the drug (Zelalem et al., 2011).

Resistance to multiple antimicrobials which was observed in the current study (93.2%) was higher than the reports of other studies conducted in Ethiopia. For instance, Alemayehu et al. (2002), Endrias (2004), Molla et al. (2004) and Zelalem et al. (2011) reported 52, 23.5, 44.8 and 83.3%, respectively. In addition, the finding of the present study was higher in comparison with reports on multidrug resistance of *Salmonella* isolated from food of animal sources, animals and humans elsewhere in the world (Stevens et al., 2006; Khaita et al., 2007; Al-Bahry et al., 2007; Elgroud et al., 2009; Fadlalla et al., 2012). This difference could be due to the use of antimicrobial agents in food producing animals and humans at sub-therapeutic level or prophylactic doses and indiscriminate use of antimicrobials (Molla et al., 2003, 2006; Zewdu and Cornelius, 2009). The continuing development of antibiotic resistance may lead to sufficient pressure ultimately to restrict the antibiotics available to the veterinary profession for animal treatment (Gracey et al., 1999). Moreover, this increase antibiotic resistance may lead to public health problems and economic loss in the countries due to loss of exporting meat and animal products and cost of drugs to treat human and animals.

In conclusion, the present study shows high prevalence of *Salmonella* spp. contaminating goat meat and

Table 1. Antimicrobial susceptibility in salmonella isolates

<table>
<thead>
<tr>
<th>Type of antimicrobial</th>
<th>Resistant (%)</th>
<th>Intermediate (%)</th>
<th>Susceptible (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin (AMP) 10 μg</td>
<td>24 (54.5)</td>
<td>2 (4.5)</td>
<td>18 (40.9)</td>
</tr>
<tr>
<td>Amoxicillin-clavulanic acid (AMC) 30 μg</td>
<td>20 (45.5)</td>
<td>14 (31.8)</td>
<td>10 (22.7)</td>
</tr>
<tr>
<td>Gentamicin (GEN) 10 μg</td>
<td>8 (18.2)</td>
<td>12 (27.3)</td>
<td>24 (54.5)</td>
</tr>
<tr>
<td>Kanamycin (KAN) 30 μg</td>
<td>35 (79.5)</td>
<td>6 (13.6)</td>
<td>3 (6.8)</td>
</tr>
<tr>
<td>Ciprofloxacin (CIP) 5 μg</td>
<td>-</td>
<td>-</td>
<td>44 (100)</td>
</tr>
<tr>
<td>Chloramphenicol (C) 30 μg</td>
<td>20 (45.5)</td>
<td>12 (27.3)</td>
<td>12 (27.3)</td>
</tr>
<tr>
<td>Trimethoprim (W) 2 μg</td>
<td>33 (75)</td>
<td>1 (2.3)</td>
<td>10 (22.7)</td>
</tr>
<tr>
<td>Sulphonamide (S3) 300 μg</td>
<td>19 (43.2)</td>
<td>2 (4.5)</td>
<td>23 (52.3)</td>
</tr>
<tr>
<td>Tetracycline (TE) 30 μg</td>
<td>44 (100)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nalidixic acid (NA) 30 μg</td>
<td>25 (56.8)</td>
<td>12 (27.3)</td>
<td>7 (15.9)</td>
</tr>
<tr>
<td>Ceftriaxone (CRO) 30 μg</td>
<td>10 (22.7)</td>
<td>11 (25)</td>
<td>23 (52.3)</td>
</tr>
<tr>
<td>Streptomycin (S) 10 μg</td>
<td>36 (81.8)</td>
<td>5 (11.4)</td>
<td>3 (6.8)</td>
</tr>
<tr>
<td>nitrofurantoin (F) 50 μg</td>
<td>44 (100)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
resistance of the pathogen to most antimicrobials except ciprofloxacin. Consequently, goat meat provided to the consumers in the city was found to be a potential source of food borne salmonellosis alarming for urgent intervention. Serotyping and phage typing of the isolates are planned. Authors recommended the use of standardized procedures and applications like hazard analysis and critical control point in handling of goat meat in the abattoir to avoid risk of salmonellosis associated with consumption of goat meat contaminated with Salmonella. Further study ought to be conducted to identify the source of contamination and characterize the molecule of the isolates to identify the resistant genes. Moreover rational use of antimicrobials particularly ciprofloxacin both in veterinary and public health sectors should be exercised.

Conflict of interests

The authors have not declared any conflict of interest.

Table 2. Antimicrobial resistance patterns for Salmonella isolates

<table>
<thead>
<tr>
<th>Number</th>
<th>Antimicrobials (No)</th>
<th>Number (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four</td>
<td>STR, NAL, TET & NIT (1) KAN, W, TET & NIT (2) S3, AMC, TET, NIT (1)</td>
<td>5 (11.4%)</td>
</tr>
<tr>
<td></td>
<td>STR, KAN, NAL, TMP, AMP, TET & NIT (2) STR, KAN, NAL, TMP, AMC, TET & NIT (1)</td>
<td>5 (16%)</td>
</tr>
<tr>
<td></td>
<td>KAN, S3, NAL, W, AMP, TET & NIT (1) STR, CAF, S3, NAL, TMP, TET & NIT (1)</td>
<td></td>
</tr>
<tr>
<td>Five</td>
<td>STR, CAF, NAL, TET, GEN, & NIT (1) STR, S3, NAL, AMC, TET & NIT (1)</td>
<td>2 (4.5%)</td>
</tr>
<tr>
<td></td>
<td>STR, KAN, NAL, TMP, AMP, TET & NIT (2) STR, KAN, NAL, TMP, AMC, TET & NIT (1)</td>
<td>5 (11.4%)</td>
</tr>
<tr>
<td></td>
<td>STR, CAF, S3, NAL, TMP, TET & NIT (1)</td>
<td></td>
</tr>
<tr>
<td>Six</td>
<td>STR, CAF, KAN, NAL, TMP, TET, GEN, & NIT (2) STR, KAN, NAL, TMP, AMP, TET & NIT (6) STR, CAF, KAN, S3, CRO, TMP, TET & NIT (1) STR, CAF, KAN, NAL, TMP, AMP, TET & NIT (1)</td>
<td>10 (22.7%)</td>
</tr>
<tr>
<td></td>
<td>STR, CAF, KAN, CRO, TMP, AMC, AMP, TET & NIT (1) STR, CAF, KAN, NAL, TMP, AMP, TET & NIT (1)</td>
<td></td>
</tr>
<tr>
<td>Seven</td>
<td>STR, CAF, KAN, S3, NAL, AMP, TET & NIT (2) STR, KAN, NAL, TMP, AMP, TET & NIT (1) STR, CAF, KAN, S3, NAL, TMP, TET & NIT (1)</td>
<td>6 (13.6%)</td>
</tr>
<tr>
<td></td>
<td>STR, CAF, KAN, CRO, NAL, TMP, AMP, TET & NIT (1)</td>
<td></td>
</tr>
<tr>
<td>Eight</td>
<td>CAF, KAN, S3, CRO, NAL, TMP, AMP, TET & NIT (2) STR, CAF, KAN, S3, NAL, TMP, AMP, TET & NIT (1)</td>
<td>4 (9.1%)</td>
</tr>
<tr>
<td></td>
<td>STR, CAF, KAN, S3, NAL, TMP, AMP, TET & NIT (1)</td>
<td></td>
</tr>
<tr>
<td>Nine</td>
<td>STR, CAF, KAN, S3, NAL, TMP, AMP, TET & NIT (2) STR, KAN, NAL, TMP, AMP, TET & NIT (1) STR, CAF, KAN, S3, NAL, AMP, TET & NIT (1)</td>
<td>6 (13.6%)</td>
</tr>
<tr>
<td></td>
<td>STR, CAF, KAN, CRO, NAL, TMP, AMP, TET & NIT (1)</td>
<td></td>
</tr>
<tr>
<td>Ten</td>
<td>CAF, KAN, S3, CRO, NAL, TMP, AMP, TET & NIT (2) STR, CAF, KAN, S3, NAL, TMP, AMP, TET & NIT (1)</td>
<td>4 (9.1%)</td>
</tr>
<tr>
<td></td>
<td>STR, CAF, KAN, S3, NAL, TMP, AMP, TET & NIT (1)</td>
<td></td>
</tr>
<tr>
<td>Eleven</td>
<td>STR, CAF, KAN, S3, NAL, TMP, AMP, TET & NIT (2) STR, CAF, KAN, S3, CRO, NAL, TMP, AMP, TET & NIT (1)</td>
<td>3 (6.8%)</td>
</tr>
<tr>
<td>Twelve</td>
<td>STR, CAF, KAN, S3, CRO, NAL, TMP, AMP, TET & NIT (1)</td>
<td>1 (2.3%)</td>
</tr>
</tbody>
</table>

AMP = Ampicillin; AMC = amoxicillin-clavulanic acid; GEN = gentamicin; KAN = kanamycin; CIP = ciprofloxacin; CAF = chloramphenicol; TMP = Trimethoprim; S3 = Sulphonamide; TET = tetracycline; NAL = nalidixic acid; CRO = ceftriaxone; NIT = nitrofurantoin and STR = streptomycin.
Prevalence and antimicrobial susceptibility of uropathogens in patients reporting to a tertiary care facility in Peshawar, Pakistan

Nasrullah Malik1*, Mamoon Ahmed2 and Muneeb ur Rehman2

1CM Hospital, Peshawar, Pakistan. 2National University of Sciences and Technology, Islamabad, Pakistan.

Received 23 July, 2014; Accepted 14 January, 2015

This study was conducted to assess the frequency and antimicrobial susceptibility pattern of bacteria in urinary isolates. The study was carried out in the clinical microbiology laboratory of a tertiary care hospital in Peshawar, Pakistan. The duration of study was 12 months, from July 2012 to June 2013. Midstream urine samples were collected in sterile containers. All samples for urine culture were examined. Samples were processed and microbial isolates were identified by standard methods. Antimicrobial susceptibility testing was performed by Kirby-Bauer disk diffusion method. Frequency of cultures proven urinary tract infection (UTI) cases in our study was 17.9% with Escherichia coli being the most common pathogen followed by Citrobacter freundii, Klebsiella oxytoca and Enterobacter cloacae. For E. coli, only 2% of the organisms were resistant to imipenem. For C. freundii, 9% of isolates were resistant to amikacin. For K. oxytoca, the most effective antibiotic was amikacin, with 100% sensitivity. Most common isolate was E. coli which was mostly sensitive to nitrofurantoin, amikacin and gentamicin. The drug of choice for oral empirical therapy for UTI in our setup is nitrofurantoin as bacteria were quite resistant to ampicillin, ciprofloxacin and cotrimoxazole. The best parental empirical therapies are amikacin and gentamicin.

Key words: Antibiotics, antimicrobial resistance, Escherichia coli, uropathogens.

INTRODUCTION

The antimicrobials misuse in clinical practice has led to an increase of the microbial resistance and the consequent spread of bacterial resistant strains has become a serious public health problem (Sharif et al., 2012; Arjunan et al., 2010; Rahman et al., 2009; Fridkin et al., 2014). Urinary tract infection (UTI) is the most common infectious disease after respiratory tract infection in community practice (Epoke et al., 2000; Gonzalez and Schaeffer, 1999). It remains a major public health problem in terms of morbidity and financial cost.
UTIs accounts for a significant part of the workload in clinical microbiology laboratories and enteric bacteria remain the most frequent cause of UTIs, although the distribution of pathogens that cause UTI is changing (Barber et al., 2013). Although UTIs occur in all age groups including men and women, clinical studies suggest that the overall prevalence of UTI is higher in women. An estimated 50% of women experience at least one episode of UTI at some point of their lifetime and almost 20 to 40% of women can have recurrent episodes (Den et al., 2013).

Community-acquired urinary tract infections (CA-UTIs) are mainly uncomplicated, colonizing preferably the bladder and causing cystitis. However, Escherichia coli may ascend through the ureters to the kidneys and cause more severe infections such as pyelonephritis (Wiles et al., 2008; Stamm et al., 2006).

The introduction of antimicrobial therapy has contributed significantly to the management of UTIs. In almost all cases of CA-UTIs, empirical antimicrobial treatment is initiated before the laboratory results of urine cultures are available; thus resistance may increase in uropathogens due to frequent misuse of antimicrobials (Den et al., 2013). In a country like Pakistan, clinicians may be prescribing more than one antibiotics, which increases the chances of development of antimicrobial resistance in pathogens (Ullah et al., 2009).

In an era of increasing antimicrobial resistance, knowledge of local antimicrobial susceptibility patterns of common uropathogens is essential for prudent empirical therapy of CA-UTIs (Rock et al., 2007). Therefore there is need for periodic monitoring of etiologic agents of UTI and their susceptibility pattern in the community. Such measures allows for controlling the increase of antimicrobial resistance and the spread of resistant bacterial strains that represent a public health problem worldwide.

The main objective of this study was to evaluate the antimicrobial susceptibility pattern of the bacteria responsible for urinary tract infection in Peshawar, Khyber Pakhtunkhwa (KP), Pakistan, in order to establish an appropriate empirical therapy.

MATERIALS AND METHODS

Study design

Our study is a cross-sectional prospective study.

Sample size

The sample size was determined from http://www.surveysystem.com/sscalc.htm with confidence level of 95% and confidence interval of ±5. According to official estimates, the population of Peshawar is 1,303,351. The minimum sample size was calculated to be 184. However, in our study, the sample size was 1516.

All the samples that came to our clinical microbiology laboratory during the duration of the study (July 2012 to June 2013) which fulfilled the inclusion criteria were included in our study. So our sample size was 1516.

Setting

All urine samples of hospital-admitted and outdoor cases of CM Hospital Peshawar from July 2012 to June 2013, in which there was indication of UTI coming for urine culture examination, were examined. Our hospital is a government-run tertiary care hospital located in the capital city of Khyber Pakhtoonkhwa (KPK) province of Pakistan. The clinical laboratory, admission wards and out-patient clinics are all located within the same vicinity and are run by the same administration. The patients presented to this hospital hail from various districts of KPK, FATA and upper Punjab; and belong to various socioeconomic classes.

Urine sample collection

Mid-stream urine was collected in sterile container, without stopping the flow of urine. Instructions on the urine collection procedure were verbally informed to the patients. For children, specimens were collected by urine collection bag. After every fifteen minutes, the bags were checked. After micturition, the bags were closed and stored at 4°C until processing. All samples were processed within 2 h of collection. In cases of unavoidable delay, samples were stored at 4°C and processed within 24 h. For all patients, date of sample collection, sex, age, result of urine culture, identification of the pathogenic isolate and the corresponding antimicrobial sensitivity were recorded.

Laboratory procedures

Bacteruria Dipstrip (Mast BTR-1) was used to inoculate urine on CLED agar (Britannica Argentine Code B0211906). The Petri-plates were incubated at 37°C for 48 h. After incubation, the CLED agar plates were examined for growth after 24 and 48 h. After 24 h of incubation, all plates were examined for bacterial growth. If the number of colonies formed was sufficient (20 or more) and the size of bacterial colonies was adequate, then they were processed further for identification and sensitivity. Otherwise, those plates were incubated for another 24 h. If number of colonies grown were less than 20 even after 48 h, then it was considered as insignificant growth (exclusion criterion). If growth was seen as two or three different types, it was labeled as mixed growth (exclusion criterion). Significant growth was labeled when 20 or more colonies of one type were present (inclusion criterion), then antibiotic sensitivity was applied by Kirby-Bauer disk diffusion technique (Bauer et al., 1966).

For all cases with significant growth, gram stain was done. Depending on morphology on gram stain, further tests were done. For all gram negative rods API-10 S Company was applied. For selected cases API 20 E was applied, if identification was not precise with API-10S. For gram positive isolates catalase test was done. For all catalase positive cases, coagulase test was done. Novobiocin sensitivity test (5 μg oxoid CT0037B) was done on all catalase positive, coagulase negative, Gram positive cocci to identify Staphylococcus saprophyticus.
Kirby-Bauer disk diffusion technique (Bauer et al., 1966) was performed for antimicrobial susceptibility test. Bacterial suspension of turbidity McFarland 0.5 standard was made from two or three pure colonies. The suspension was spread on to Mueller-Hinton II agar. Antimicrobial disks were applied with the help of automatic disk dispenser. For enterobacteriaceae, the antibiotic disks applied were ampicillin 10 µg, sulfisoxazole 300 µg (For sulfonamides), gentamicin 10 µg, amikacin 30 µg, norfloxacin 10 µg, lomefloxacin 10 µg, nitrofurantoin 300 µg, ceftriaxone 30 µg, imipenem 10 µg, pipracillin + tazobactam 100/10 µg, ceftazidime 30 µg, cefuroxime 30 µg and nalidixic acid 30 µg. For enterococci, the antibiotics tested were ciprofloxacin 5 µg, nitrofurantoin 300 µg, tetracycline 30 µg, vancomycin 30 µg and ampicillin 10 µg. For Staphylococcus spp. the antibiotics tested were nitrofurantoin 300 µg, sulfisoxazole 300 µg and lomefloxacin 10 µg. For Pseudomonas aeruginosa ceftazidime 30 µg, gentamicin 10 µg, lomefloxacin 10 µg, levofloxacin 5 µg, pipracillin + tazobactam 100/10 µg and aztreonam 30 µg were tested. Plates were incubated at 37°C for 18 to 24 h and zones of inhibition were measured and interpreted according to CLSI (2012).

Inclusion and exclusion criteria

Samples from all age groups, pregnant, as well as post-treatment patients, referred to our clinical microbiology laboratory were included in the study. These cases were referred to our laboratory for urinary complaints by various clinicians such as medical specialist or nephrologist, urologist, gynecologist or pediatrician. Duplicate, same day samples and samples in unsterilized containers were excluded.

Data analysis

Our data were entered into, and analyzed by SPSS version 21.

RESULTS

A total of 1516 urine samples were included in the study. 272/1516 samples tested positive for bacterial growth. Hence, overall frequency of culture proven UTI cases was 17.9%. Out of the 272 that tested positive for bacterial growth, n=170 (62.5%) were females while n=102 (37.5%) were males. 86 (31.6%) patients fell in the age bracket of 0-19 years, 91 (33.5%) patients were aged 20-39, 65 (23.9%) were aged 40-59 while 30 (11%) were above 60 years of age. While out of these 272 patients, 71 (26.1%) were admitted patients while the rest 201 (73.9%) patients were those referred to the laboratory from outpatient department. Figure 1 shows the month wise distribution of the sample. Out of all the bacteria isolated (n = 272) (Table 1) E. coli was most prevalent (n=170, 62.5%) followed by C. freundii (n=22, 8.08%), K. oxytoca (n=18, 6.61%), E. cloacae (n=16, 5.88%), Candida albicans (n=12, 4.11%), Staphylococcus saprophyticus (n=8, 2.94%), Enterococcus faecalis (n=8, 2.94%), Serratia odorifera (n=8, 2.94%), Pseudomonas aeruginosa (n=6, 2.2%), Stenotrophomonas maltophilia (n=2, 0.7%) and Acinetobacter baumannii (n=2, 0.7%).

Table 1 shows the frequency of bacterial uropathogens isolated from urine cultures. Table 2 shows the antimicrobial susceptibility pattern of members of enterobacteriaceae family to various antibiotics.

Relating to E. faecalis (n = 8), 100% isolates were resistant to ciprofloxacin while all 8 isolates were sensitive to nitrofurantoin and vancomycin. For tetracycline,
Table 1. Frequency of bacterial uropathogens isolated from urine cultures

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>170 (62.5)</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>22 (8.08)</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>18 (6.61)</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>16 (5.88)</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>12 (4.11)</td>
</tr>
<tr>
<td>Staphylococcus saprophyticus</td>
<td>08 (2.94)</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>08 (2.94)</td>
</tr>
<tr>
<td>Serratia odorifera</td>
<td>08 (2.94)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>06 (2.2)</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>02 (0.7)</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>02 (0.7)</td>
</tr>
</tbody>
</table>

6 (75%) were resistant, 2 (25%) were sensitive. For ampicillin, 2 (25%) were resistant while 6 (75%) were sensitive. Among *S. saprophyticus* (n = 8), all 8 (100%) were sensitive to nitrofurantoin. All isolates were resistant to sulfisoxazole and lomefloxacin. For *P. aeruginosa* (n = 6), 1 (33.33%) was resistant while 3 (66.67%) were sensitive to ceftazidime. For gentamicin, 2 (33.33%) were resistant, 4 (66.67%) were sensitive. For lomefloxacin, 2 (33.33%) were resistant, 4 (66.67%) were sensitive. For piprocillin + tazobactam all 6 (100%) were sensitive. For levofloxacin, all 6 (100%) isolates were resistant. For aztreonam, 4 (66.67%) were resistant while 2 (33.33%) were sensitive.

The sole *Acinetobacter baumannii* was resistant to ampicillin and sulfisoxazole. It was found to be sensitive to gentamicin, amikacin, lomefloxacin, nitrofurantoin, imipenem, piprocillin + tazobactam, ceftazidime, nalidixic Acid and ampicillin + sulbactam.

DISCUSSION

This study shows that females are much more vulnerable to UTIs than male. Out of the total samples positive for uropathogens, 62.2% were of female patients while 37.8% were of men. This is consistent with a study in US (Foxman, 2002) and Netherlands (Den et al., 2013). Actual percentage of UTI cases in women in our setup may be much higher because women are less educated, mostly remain in-door and have less access to primary health care. Hence, some women do not usually report to the hospital till their condition becomes serious. They prefer treating themselves with homeopathic remedies.

The present study aimed at finding the drug of choice for empirical therapy. Sensitivity processing is performed whenever empirical therapy fails in treating UTIs (Heginbothom et al., 2004). Therapy starts even before microbiological tests are known (Gupta et al., 2001).

The percentage of culture positive cases for UTI in our study was 17.9%. This is significantly lower as compared to 60% in Nigeria (Kolawole et al., 2009), but higher than in Portugal which was 12.1% (Linhares et al., 2013). In this study, sulfisoxazole disk represents the sulfonamides like cotrimoxazole (CLSI, 2012). This study may have missed few bacteria which do not grow on CLED agar for example, Anaerobes and fastidious Streptococci.

As ours is a hospital based study and a good number of patients are initially treated empirically for UTI, so this study may not reflect the true prevalence of UTI in our area. In this study, *E. coli* was most common uropathogen (62.5%). This is quite similar to 64.5% observed in Portugal (Linhares et al., 2013) but lower than 85% observed in United States (Karlowsky et al., 2002). Similar study carried out in Karachi, Pakistan showed 52% *E. coli* among all urinary isolates (Farooqi et al., 2000). Antimicrobial sensitivity pattern of uropathogens mostly varies broadly by region. In this study, *E. coli* was highly resistant to ampicillin (89.41%), nalidixic Acid (83.53%) and ceftazidime (78.82%) respectively. *E. coli* was always considered to be resistant to ampicillin (Mazzulli, 2002). In the current study, *E. coli* was most sensitive to imipenem (97.64%) followed by nitrofurantoin (94.11%) and amikacin (85.88%), respectively. 96.4% of isolates were sensitive to nitrofurantoin in US (Karlowsky et al., 2002) while 89% were sensitive to this antibiotic in Senegal (Sire et al., 2007). 100% isolates were sensitive to imipenem, whereas 67% were sensitive to amikacin in India (Kothari and Sagar, 2008). A previous study showed that *E. coli* is most sensitive to nitrofurantoin (98.2%) (Mazzulli, 2002).

In the present study, *C. freundii* (12.94%) was the second most common bacterial isolate. In Canada only 1% isolates were identified as *Citrobacter* (Karlowsky et al., 2011). While in Iran (Kashef et al., 2010), this was the least isolated uropathogen, with only 0.2% of total isolates being *Citrobacter* (9%). Hence, our study claims that *Citrobacter* is relatively a common uropathogen in our population. In this study, *Citrobacter* was 100% resistant to ampicillin and nalidixic acid. Surprisingly, it was also 100% sensitive to nalidixic acid in Iran (Kashef et al., 2010). Ampicillin was not checked for its sensitivity to *Citrobacter* in Iran (Kashef et al., 2010). 17.7% of isolates were resistant to ampicillin in Canada (Karlowsky et al., 2011). In our study, *Citrobacter* was most sensitive to imipenem with 90.9% isolates being sensitive while the remaining 9.09% have intermediate sensitivity to this antibiotic. 90.9% isolates were sensitive to piprocillin + tazobactam. In Canada, 100% isolates were sensitive to imipenem while 89.7% were sensitive to piprocillin + tazobactam, the remaining showed intermediate sensitivity (Karlowsky et al., 2011).

K. oxytoca turned out to be the third most common uropathogen in our study. It was also the third most common in Iran (9.5%) (Kashef et al., 2010). In Canada,
Enterobacteriaceae family | N | Pattern | Antimicrobial agents tested
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>17</td>
<td>(62.5)</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>22</td>
<td>(8.1)</td>
<td>I</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>18</td>
<td>(6.6)</td>
<td>R</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>16</td>
<td>(5.8)</td>
<td>I</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td>2 (12.5)</td>
</tr>
<tr>
<td>Serratia odorifera</td>
<td>8</td>
<td>(2.9)</td>
<td>I</td>
</tr>
</tbody>
</table>

10.5% of all isolates were *Klebsiella* (Karlowsky et al., 2011). In India, the percentage was 16.9% (Kothari and Sagar, 2008). This study showed that 100% of *K. oxytoca* isolates were resistant to ampicillin while 88.89% of isolates were resistant to norfloxacin and lomefloxacin. This is consistent with study carried out in Iran showing 100% resistant to ampicillin but 9% were resistant to norfloxacin (Kashef et al., 2010). In the current study, *Klebsiella* was 100% sensitive to imipenem and amikacin. 44.44% of isolates were sensitive to gentamicin. In Iran, 53.1% of isolates were sensitive to this drug (Kashef et al., 2010); while 97.8% were sensitive to this in Canada (Karlowsky et al., 2011). 100% of isolates were sensitive to imipenem in Canada (Karlowsky et al., 2011) and India (Kothari and Sagar, 2008), which is consistent with our study. Amikacin had 94% susceptibility in Europe (Karlowsky et al., 2011).

Enterobacter was the fourth most common uropathogen in our population. It was relatively uncommon in Iran (0.9%) (Kashef et al., 2010). In India, it was 5.3% (Kothari and Sagar, 2008) whereas in Canada, (Karlowsky et al., 2011) it was 1.8% of all isolates. In this study, *Enterobacter* was 100% resistant to ampicillin, cefuroxime and nalidixic acid. 87.5% of isolates were resistant to ceftriaxone, ceftazidime and sulfisoxazole. Enterobacter is quite resistant to ampicillin with 97.1% isolates resistant to this antibiotic as claimed in a study in UK (Kashef et al., 2010). In this study, 4.7% of all isolates were *S. saprophyticus*. In Iran, its frequency was 9% (Kashef et al., 2010); while it was 0.5% in Canada (Karlowsky et al., 2011); 2.8% in India (Kothari and Sagar, 2008) and 0.8% in Karachi (Faroqui et al., 2000). All isolates were resistant to lomefloxacin. This is consistent with a study carried out in Iran (Fluit et al., 1999).

In this study, 4.7% of all isolates were *E. faecalis*. While in Canada, the frequency was 13.9% (Karlowsky et al., 2011); in India, (Kothari and Sagar, 2008) 1.5%; Karachi 2% (Faroqui et al., 2000); while in Iran, it was 1.3% (Kashef et al., 2010). All isolates were resistant to ciprofloxacin while 75% were resistant to tetracycline in this study.

In Canada, 39.1% were resistant to ciprofloxacin (Karlowsky et al., 2011). About 100% of *E. faecalis* isolates were sensitive to nitrofurantoin and vancomycin in this study. In Canada, 97 and 99% were sensitive to nitrofurantoin and vancomycin, respectively (Karlowsky et al., 2011).

Percentage of *Pseudomonas* among all isolates in our study was 3.52%. In Karachi, it was 9% (Faroqui et al., 2000); Canada, 3.4% (Karlowsky et al., 2011); Iran, 3.3% (Kashef et al, 2010). In another study in Karachi, it was about 9.2%.
(Gul et al., 2014). Hence, there was significant change in incidence of *Pseudomonas* in our setup as compared to Karachi, the other major city of Pakistan. About 7.05% of all isolates in our study were identified as *C. albicans*. Whereas only 1% of isolates was identified as *Candida* in a study carried out in Karachi (Faroogi et al., 2000).

About 2.9% of all isolates tested positive for UTI were *Serratia odorifera*. All isolates were resistant to ampicillin, sulfoisoxazole, cefuroxime and nalidixic acid. *S. odorifera* was also found to be resistant to cefuroxime in Germany (Stock et al., 2003).

100% of isolates were sensitive to imipenem and pipracillin + tazobactam. Another study also revealed increasing susceptibility of *Serratia* spp. to pipracillin + tazobactam (Traub, 2000).

Fosfomycin is an oral antibiotic commonly used in Europe for treating CA-UTI with low resistance rates (Garcia et al., 2007; Kahlmeter, 2003) but fosfomycin was not tested in our study because its disk was not available and this drug is not marketed in our country.

Multi drug resistance (MDR = resistance in >2 antibiotics) was observed in 92% of the isolated bacterial uropathogens. This is much higher than that reported in Ethiopia (74%) (Assefa et al., 2008). The main explanation of this high rate may be inappropriate administration of drugs in empirical therapies and a dearth of infection control strategy. Another study also showed that increased incidence and high antibiotic resistance of especially of non *E. coli* UTI should be considered in selection of empirical antibiotics for treatment of UTI (Bae et al., 2010).

Easy availability and indiscriminate use of commonly used drugs like cotrimoxazole and tetracycline has led to an increase in resistance. High resistance to such orally administered antibiotics is mostly due to uncontrolled consumption of these drugs (Rao et al., 2013). Low resistance to drugs like amikacin reflects lower usage of these drugs (Kothari and Sagar, 2008).

International policies are no longer applicable for treating community acquired urinary tract infections in Pakistan, hence some guidelines based on local susceptibility pattern are recommended. Such regional surveillance programs are necessary to provide information which can help to develop Pakistani UTI guidelines.

Conclusion

E. coli was the most common uropathogen in our setup followed by *C. freundii, K. oxytoca* and *E. cloacae*. The best oral empirical therapy in our setup is nitrofurantoin. Ampicillin, ciprofloxacin and cotrimoxazole are not recommended as a first choice for treatment of UTI in Peshawar, Pakistan. The best parental therapies include amikacin and gentamicin.

Conflict of interests

The authors have not declared any conflict of interest.

REFERENCES

