ABOUT BMBR

The Biotechnology and Molecular Biology Reviews (BMBR) (ISSN 1538-2273) is published Monthly (one volume per year) by Academic Journals.

Biotechnology and Molecular Biology Reviews (BMBR), a new broad-based review journal, is an open access journal that was founded on two key tenets: (1) to publish the most exciting, cutting-edge reviews in all areas of applied biochemistry, industrial microbiology, genomics and proteomics, and metabolic engineering, and (2) to provide the most rapid turn-around time possible for reviewing and publishing. It is our hope these articles will serve teaching and reference tools.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajb@academicjournals.org.

With questions or concerns, please contact the Editorial Office at bmb@academicjournals.org.
Editor-In-Chief

P. Ravindra, Ph.D.
School of Engineering & IT University Malaysia Sabah
88999, Kota Kinabalu, Sabah, Malaysia

Editor

David Maina Menge, Ph.D.
University of California, Irvine
College of Health Sciences/Program in Public Health
Hewitt Hall Room 3501; Irvine, CA 92697-4050, USA.

Evans Kaimoyo, Ph.D.
Plant Microbe-interactions Laboratory,
Boyce Thompson Institute of Plant Research, Ithaca, NY, 14853, USA.

Solomon Olawale Odemuyiwa, Ph.D.
Pulmonary Research Group Department of Medicine
550 Heritage Medical Research Centre
University of Alberta
Edmonton
Canada T6G 2S2

Vikash Kumar Dubey
Department of Biotechnology Room No: 1N 102
Indian Institute of Technology, Guwahati
Guwahati- 781039, Assam, India.

Beng Ti Tey
Department of Chemical and Environmental Engineering,
Faculty of Engineering, Universiti Putra, Malaysia

Behera B.C.
Agharkar Research Institute
Pune-411004, India

Editorial Board

Dr. Daiana P.
Stolf University of Toronto, Toronto,
Canada

Dr. Stephane Chevaliez
Department of Virology and INSERM,
Henri Mondor Hospital,
avenue du Maréchal de lattre de Tassigny
Cretéil

Dr. Mohammad Asgharzadeh
Tuberculosis and Lung Disease Research Center and Biotechnology Research Center,
Tabriz University of Medical Sciences,
Iran

Dr. Mukul Das
Food Toxicology Division Industrial Toxicology Research Centre
Mahatma Gandhi Marg Lucknow, India

Dr. Jian-Zhong Liu
Biotechnology Research Center,
Zhongshan (Sun Yat-Sen) University Guangzhou,
China

Prof. Peter J. Reilly
Dept of Chemical and Biological Eng
Ansonowa State University

Prof. Mohammad Miransari
Department of Soil Science,
College of Agricultural Sciences,
Shahed University,
Tehran, Iran

Dr. Chhandak Basu
School of Biological Sciences
Ross Hall University of Northern Colorado Greeley,
Colorado
USA

Prof. Anil Kumar
School of BiotechnologyDevi Ahilya University,
Khandwa Road, Indore,
India
Dr. Ahmed M Malki
Alexandria University,
Faculty of Science,
Biochemistry department,
Alexandria,
Egypt

Dr. Christopher Brigham
Sinskey Laboratory
Massachusetts Institute of Technology
Cambridge, USA

Prof. Mahmoud Saker
National Research Center,
El Behoose St., Dokki, Cairo,
Egypt

Prof. Karl Bayer
Institute of Applied Microbiology,
University of Natural Resources and Applied Life Sciences, Muthgasse Austria.

Dr. Hector Budman
University of Waterloo Waterloo,
Ontario

Prof. Mohammad Miransari
Shahed University,
Tehran, Iran

Prof. R.P Singh
University of Roorkee, Roorkee
India

Prof. Jane B. Lian
University of Massachusetts Medical School 55 Lake Avenue
North Worcester

Dr. Vicki Ann Luna
University of South Florida USA

Dr. Helene F Rosenberg
National Institute of Allergy and Infectious Diseases
Rockville Pike, Bethesda,
USA

Dr. Silvia Bautista-Baños
National Polytechnic Institute Yautepec,
Morelos Cuernavaca,
México

Dr. Stephen Bakiamo
Michigan Biotechnology Institute International
3900 Collins Road
Lansing, MI 48909, USA

Dr. RA Siddique
Department of Veterinary Biochemistry,
College of Veterinary Science and Animal Husbandry.
Navsari Agricultural University,
Navsari Gujarat, India

Dr. Eijiro Miyak
Health Technology Research Center,
National Institute of Advanced Industrial Science and Technology (AIST) Takamatsu,
Japan

Dr. Carla Marchetti
Istituto di Biofisica.
Consiglio Nazionale delle Ricerche. via De Marini,
Genova,
Italy

Dr. T Ankana Devi
Centre for Chemical Biology,
Indian Institute of chemical technology
Habsiguda Hyderabad
Andhra Pradesh, India

Dr. Moytri Roy-Chowdhury
Washington State University- Pullman,
Washington
USA

Dr. Poluri Krishna Mohan
University of Texas
Department of Biochemistry and Molecular Biology and The Sealy Center for Structural Biology and Molecular Biophysics
Medical Branch Galveston, Texas

Dr. Gao Guo
School of Dentistry,
University of California, Los Angeles (UCLA)
10833 Le Conte Avenue Los Angeles, CA 90095, USA
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.
Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or PowerPoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al.’ In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Biotechnology and Molecular Biology Reviews is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2015, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the BMBR, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
Correlating aluminium toxicity, heterosis and epigenetic mechanisms in maize yield improvement in acid soils

Josphert N. Kimatu
Correlating aluminium toxicity, heterosis and epigenetic mechanisms in maize yield improvement in acid soils

Josphert N. Kimatu

Department of Biological Sciences, South Eastern Kenya University, P.O. Box 170-90200, Kitui, Kenya.

Received 23 August, 2014; Accepted 24 February, 2015

Overuse of inorganic fertilizers have contributed to an increase in soil acidity in global arable land and consequently caused an increase in Aluminium ion (Al$^{3+}$) toxicity and a reduction of crop yield of between 30-50% in developing countries. Studies show that Al$^{3+}$ toxicity inhibits cell division in the root tip meristem in sensitive plants even at micromolar concentrations. Applications of lime, manure and compost are some of the most common methods used to overcome the impact of Al$^{3+}$ toxicity. Other studies have identified natural variation for the multigenic Al$^{3+}$ tolerance trait in many crop species and can be utilized in crop improvement. This review highlights a search for a clearer understanding of the molecular basis for Aluminium ion toxicity by correlating heterosis and epigenetic mechanisms like DNA Cytosine methylation in inbred and reciprocal maize hybrids crosses. Several recent studies indicated that the global differential gene expression regulated by epigenetic mechanisms between hybrids and parental inbred lines can potentially contribute to heterosis in maize.

Key words: Maize, heterosis, tolerance, epigenetics, aluminium ion toxicity.

INTRODUCTION

Aluminum ion (Al$^{3+}$) toxicity is one of the most critical factors that significantly limit crop yields on acid soils in about 50% of the arable land in the world (Kochian, 1995; Wood et al., 2000). The worldwide food insecurity problem caused by aluminium ion toxicity is only exceeded by drought stress in regard to abiotic limitation in crop production (von Uexküll and Mutert, 1995). Aluminum metal (Al) has no effect on plant growth and function although it has been described as the most abundant metal on the earth crust comprising about 7% by mass of the earth's crust (Delhaize and Ryan, 1995). However, Al becomes soluble in acidic soils of pH less than 4.5 causing root growth and function inhibition, consequently reducing crop yields by about 10% in developing countries (Kinjaide and Parker, 1989; Borrero, et al., 1995; Ma et al., 2001).

The ionic forms of Al$^{3+}$ that are capable of crossing the plant membranes have been speculated to be mainly Al$^{3+}$ and AlOH$^{2+}$ at pH below 4.5. The two are the products of Al(OH)$_3$ dissociation with the latter being known to be the most phytotoxic (Moore, 1974). The Al$^{3+}$ toxicity has wide-ranging influences on plant growth and physiology especially at the seedling transition stage between the heterotrophic and autotrophic growth (Mona, 2008).
 Farmers have tried to battle this phenomenon via application of lime in order to raise the soil pH. This has resulted in ecological imbalance and pollution in farm lands, compelling scientists to venture into breeding crops which are tolerant to Al³⁺ in the pursuit of improving yield in major crops (Bennetzen and Hake, 2008). Hence, the problem of Al³⁺ in acid soils in the tropics is particularly complex and critical (Rao et al., 1993). However, intra-specific differences between maize inbred lines in response to Al³⁺ have provided clues to the understanding of the genetic basis of toxicity tolerance and aids in plant breeding for enhanced Al³⁺ tolerance (Tice et al., 1992).

PLANT ALUMINIUM ION TOXICITY AVOIDANCE MECHANISMS

Plants avoid Al³⁺ toxicity by either an exclusion mechanism, which keeps the Al³⁺ from entering the roots or by immobilizing the Al³⁺ species which have already entered the roots. The basis of these mechanisms has been the focus of many researchers as reviewed by Kochian et al. (2004). Nevertheless, only the exclusion mechanism which involves the chelating of Al³⁺ by organic acids like citrate, malate and oxalate from the plants have been well documented (Maron et al., 2008). Exudation of organic acids by roots have been associated with the mechanism of Al³⁺ tolerance in plants (Sasaki et al., 2004) especially citrate²⁻ ions in maize roots (Piñeros et al., 2007) but, it has been shown that in maize it is not necessarily correlated with it, implying that it is not the only mechanism involved in Al³⁺ tolerance in plants (Wenzl et al., 2004). Although the mechanism of the Al³⁺ induced growth inhibition is largely poorly understood and even controversial, the primary response of Al has been traced to be at the root apex (Sivaguru et al., 1999; Sivaguru and Horst, 1998). Later findings have revealed also the involvement of the cell wall, plasma membrane, and the cytoskeleton continuum (Miller et al., 1997) hence, necessitating a further investigation into the mechanisms. Studies on Al³⁺-tolerant maize that secrete citrate in response to Al³⁺ treatment, found out that Al³⁺ activated an anion channel on the plasma membrane and that the Al³⁺-activated anion channel is permeable to malate and citrate anions. The activation occurred more frequently in an Al³⁺-tolerant genotype of maize than an Al³⁺-sensitive genotype (Kollmeier et al., 2001). The mechanisms which underlie these differences remain largely unknown.

POSSIBLE ALUMINIUM TOXICITY, HETEROTIC AND EPGENETIC MECHANISM MODELS

Morphologically maize exhibits a greater diversity of phenotypes than perhaps any other common grain crop (Kuleshov, 1933). The most significant and practical consequence of the huge maize genotype genetic diversity is the phenomenon of positive Heterosis. This is also referred to as hybrid vigor. Our results demonstrated and confirmed past results that there are differences in Al sensitivity between cultivars but also showed that low pH could be also influencing plants independently and at lower level. The influence of heterosis due to parent of origin also referred to as epigenetic imprinting was shown to be a significant factor to be considered in heterotic breeding, for example in our experiments, epigenetic imprinting of varieties denoted as inbred lines N9 and N6 showed differences of heterosis after screening for Al³⁺ and pH tolerance in reciprocal hybrids. The cross, N9 x N6 had 10.67 % response while its reciprocal N6 x N9 had a higher (14.29%) heterotic response but less was lower at low pH (Figure 1).

The molecular explanations of the above observations, involved the re-examination of the two models put forth by Ma et al. (2001), especially the pattern II as shown in Figure 2 and the influence of low pH and Al³⁺ toxicity on the cell membrane and in the cytosol can suggest possible mechanisms for Al³⁺ and low pH resistance, tolerance and its influence to heterotic mechanisms. The gene activation due to Al³⁺ toxicity which was at that time speculative could now possibly be explained in the light of stress regulators and epigenetic mechanisms (Chinnusamy and Zhu, 2009).

We found that Al³⁺ toxicity does not influence the activation or silencing of the Al genes directly but by immobilization of the movement of secondary and primary stress regulators in the cytosol. Al³⁺ entry in the cell cytoplasm has been shown to trigger reactive oxygen species (ROS), phytohormones and other secondary stress regulators which through cascade of events is suggested to trigger gene activation in tolerant plants but not in sensitive plants. The reason why Al³⁺ interferes with other ions like Ca²⁺ could be due to pH changes in and outside the cytosol. For example, studies have shown that Al was able to block Ca²⁺ channels at the plasma membrane of cultured tobacco cells (Jones et al., 1998). This mechanism is also being discussed in this paper, although some questions still abound. For example, is the exudation of citrate by Al³⁺ tolerant plants occurring for the purpose of keeping Al³⁺ out of the cell or is it taking place solely to remove the bound Al³⁺ organic acid complex? Furthermore, recent studies show that the level of citrate efflux is poorly correlated with the level of Al³⁺ resistance among a wide range of cultivars (Piñeros et al., 2007) which indicates that citrate efflux is not the main Al³⁺ resistance mechanism operating in maize (Piñeros et al., 2005).

Uniqueness of the maize correlation of organic acids release and aluminium tolerance

Although the correlation between the release of organic acids and Al³⁺ tolerance has been shown in many plants including maize (Piñeros et al., 2002; Mariano and
Figure 1. Intra heterotic screening using hybrids from Al sensitive inbred lines N9 and N6 and their reciprocal hybrids; shows that heterosis (red arrow) and a possibility of differences due to the genomic influences of the parent of origin (epigenetic imprinting).

Figure 2. A Model showing Al$^{3+}$ and low pH effects in the plant cell; Pattern I shows the three possible entry points for Al$^{3+}$ and H$^{+}$protons into a cell. Studies have shown some evidences of this pathway. It includes the exudation of organic acids which are coordinated from the mitochondria (mt). The pattern II has been speculative; hence an epigenetic influence is suggested to explain it together with the heterotic influence of Al$^{3+}$ which is postulated as a byproduct of the two patterns both in the plasma membrane (A) and in the cytosol (B). The abbreviations R and OA represent the receptor and organic acid respectively (part of the diagram is adopted from Ma et al., 2001).
Epigenetic regulation of the maize repetitive genome

An understanding of the epigenetic regulation of the plant genome is an enormous endeavor especially for maize which contains abundant repetitive sequences (Eckardt, 2009). The revelation that epigenetic marks are influenced by environmental factors (Waterland and Jirtle, 2004) and consequently inherited transgenerationally (Rakyan et al., 2003), has boosted the investigation of how epigenetic variability can affect development and the overall phenotype of an organism. The epigenome has been found to be most prone to dysregulation during early development because it is during this time that an organism’s DNA synthetic rate is at its highest peak, and accordingly, substantial epigenetic reprogramming may also take place during this period, which is required for future proper cell and tissue development. The organism at this period is also characterized to have a high vulnerability to environmental stresses and hence it is at this transition stage before full autotrophic life that is predicted to be most suitable for identifying metastable epialleles. These epialleles can be variably expressed in genetically identical individuals due to epigenetic modifications caused by the stresses and are most likely established during early development (Dana et al., 2007). Environmental stresses can cause epigenetic changes to occur at higher frequencies in crop plants causing generation of phenotypic variations that are not correlated with genetic variation (Lukens and Zhan, 2007). Any disturbance of the intrinsic DNA methylation patterns in plants may lead to numerous interlinked functional and phenotypic abnormalities or adaptive opportunities (Kakutani, 2002; Rapp and Wendel, 2005). Normal plant metabolic and physiological processes can be altered during stress or disease related conditions and these changes are mainly determined by temporal changes in gene expressions that are mediators of altered cellular properties (Jiang et al., 2000). These temporal changes are hereby hypothesized as being linked to heterosis or being epigenetic in maize. The screening of inbred lines and their reciprocal hybrids (He et al., 2013) in Al³⁺ toxicity to determine; the genes or gene families involved in Al³⁺ stress and heterosis; the level of heterosis in Al³⁺ toxicity and at low pH and the subsequent analysis of cytosine DNA methylation levels in maize can contribute in identifying the mechanism which underlies the molecular basis of Al³⁺ toxicity in maize and also in correlating it to maize heterosis from an epigenetic aspect. The current situation in this field shown that some genes are differentially regulated due to Al³⁺ stress among different plant species (Ezaki et al., 1996; Hamel et al., 1998; Mao et al., 2004); although several genes are related to general stress responses which are not to particularly related Al³⁺ tolerance (Kochian et al., 2004). We tried to elucidate the Al³⁺ triggered genes by separating the low pH stress and from Al³⁺ toxicity and by using a standardized Al³⁺ sensitive maize plant to screen inbred lines and their reciprocal hybrids in the two treatments alongside the differential use of endogenous enzymes to cut and analyze the CCGG sites using the methylation-sensitive amplified polymorphisms (MSAP) (Kimatu et al., 2013). One of the main genes we found was CSLD2 (CELLULOSE-SYNTHASE LIKE D2). The Genetrees in Figure 3 represents the evolutionary history of the CSLD2 gene families as generated by using the longest protein from the gene Orthology/Paralogy prediction method pipeline at Ensembl. It shows the likely phylogenetic tree with internal nodes revealing duplication or speciation events.

This finding can extend the current understanding of epigenetic and transcriptional regulation by Al³⁺ stress in maize from heterotic and epigenetic aspects and may form the basis for more intensive and extensive genomic investigation for crop improvement in Al³⁺ toxicity prone acid soils. Interestingly, DNA methylation changes in hybrids had been correlated with the altered expression of a subset of the genes (Shen et al., 2012).

The epigenetic mechanisms and their influence in crop development

More studies on tolerance and genetic control mechanisms are needed for the development of tolerant varieties (Abate et al., 2013), for example no variety of commercial maize and sorghum has been bred which is Al³⁺ tolerant in Kenya although several studies have come up with some guidelines of what to expect, (Kisinyo et al., 2014). Epigenetic mechanisms have been studied...
Figure 3. Gene Tree of the CSLD2; the CSLD2 is shown in red. The red squares represent duplications nodes; blue squares represent speciation nodes, giving rise to paralogues, orthologues, or between-species paralogues. Another class of node, ambiguous, is shown as a lighter blue square. The Taxonomy IDs refers to the NCBI Taxonomy Browser indexes. The green bars show the multiple alignments of the peptides while white bars show the alignment gaps.

Because trait differences which are caused by methylation have also been observed within natural populations (Cubas et al., 1999). Recent studies by Schmitz et al. (2013), who studied the level, pattern and origin of epigenomic variation in A. thaliana by characterizing the genomes, methylomes and transcriptomes of wild populations of A. thaliana, proposed that, though single CG methylation polymorphisms do not have a genetic basis in this species, genetic variation does affect RNA-directed DNA methylation (RdDM) which occurs at differentially methylated regions. Thousands of methylation quantitative trait loci were identified in these regions. Therefore, there is evidence that RdDM-targeted genes might have chosen the transposon silencing mechanism to preserve their silenced condition in vegetative tissues and trans-generationally, and ensure appropriate expression vital for germ-line and seed development. Hence, we should be careful not to attribute all epigenetic changes to a single factor like aluminium ion toxicity although the extent and inheritability of such variations can be of significant importance in future crop breeding programs. There are strong suggestions that other processes that effect epigenetic changes like the siRNA-mediated transcriptional gene silencing pathway and other non-coding repeats are functionally interlinked and hence further mutant involving studies are needed to unfolding these mechanisms (Xiong et al., 1999; Alleman et al., 2006). Furthermore, epigenetic marker-assisted breeding strategies can be applied to select for agronomical desirable epigenetic quantitative traits in crops (Zhang and Hsieh, 2013).
Conflict of interests

The author(s) did not declare any conflict of interest.

REFERENCES

Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc. Natl. Acad. Sci. USA 100: 2538–2543. http://dx.doi.org/10.1073/pnas.0436776100

The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol. 119:1072-1082. http://dx.doi.org/10.1104/pp.119.3.1073

DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids. Maydica 50:19-23.
Biotechnology and Molecular Biology Reviews

Related Journals Published by Academic Journals

- Journal of Cell and Animal Biology
- African Journal of Environmental Science and Technology
- African Journal of Biochemistry Research
- African Journal of Agricultural Research
- African Journal of Microbiology Research
- African Journal of Biotechnology
- African Journal of Pharmacy and Pharmacology
- Scientific Research and Essays