ABOUT IJMMS

The *International Journal of Medicine and Medical Sciences* is published monthly (one volume per year) by Academic Journals.

The *International Journal of Medicine and Medical Sciences* (IJMMS) provides rapid publication (monthly) of articles in all areas of Medicine and Medical Sciences such as:

Clinical Medicine: Internal Medicine, Surgery, Clinical Cancer Research, Clinical Pharmacology, Dermatology, Gynaecology, Paediatrics, Neurology, Psychiatry, Otorhinolaryngology, Ophthalmology, Dentistry, Tropical Medicine, Biomedical Engineering, Clinical Cardiovascular Research, Clinical Endocrinology, Clinical Pathophysiology, Clinical Immunology and Immunopathology, Clinical Nutritional Research, Geriatrics and Sport Medicine

Basic Medical Sciences: Biochemistry, Molecular Biology, Cellular Biology, Cytology, Genetics, Embryology, Developmental Biology, Radiobiology, Experimental Microbiology, Biophysics, Structural Research, Neurophysiology and Brain Research, Cardiovascular Research, Endocrinology, Physiology, Medical Microbiology

Experimental Medicine: Experimental Cancer Research, Pathophysiology, Immunology, Immunopathology, Nutritional Research, Vitaminology and Ethiology

Preventive Medicine: Congenital Disorders, Mental Disorders, Psychosomatic Diseases, Addictive Diseases, Accidents, Cancer, Cardiovascular Diseases, Metabolic Disorders, Infectious Diseases, Diseases of Bones and Joints, Oral Preventive Medicine, Respiratory Diseases, Methods of Epidemiology and Other Preventive Medicine

Social Medicine: Group Medicine, Social Paediatrics, Medico-Social Problems of the Youth, Medico-Social Problems of the Elderly, Rehabilitation, Human Ecology, Environmental Toxicology, Dietetics, Occupational Medicine, Pharmacology, Ergonomy, Health Education, Public Health and Health Services and Medical Statistics

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published approximately one month after acceptance. All articles published in IJMMS are peer-reviewed.

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: ijmms@academicjournals.org. A manuscript number will be mailed to the corresponding author.

The *International Journal of Medicine and Medical Sciences* will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Dr. J. Ibekwe
Acting Editor-in-chief,
International Journal of Medicine and Medical Sciences Academic Journals
E-mail: ijmms.journals@gmail.com
http://www.academicjournals.org/ijmms

Afrozul Haq
Editor, Laboratory Medicine
Department of Laboratory Medicine
Sheikh Khalifa Medical City
P.O. Box 51900, ABU DHABI
United Arab Emirates
Editorial Board

Chandrashekhar T. Sreeramareddy
Department of Community Medicine,
P O Box No 155, Deep Heights
Manipal College of Medical Sciences,
Pokhara,
Nepal

Sisira Hemananda Siribaddana
259, Temple Road, Thalapathpitiya,
Nugegoda, 10250
Sri Lanka

Dr. Srinivas Koduru
Dept of Clinical Sciences
Collage of Health Sciences
University of Kentucky
Lexington USA

Dr. santi M. Mandal
Internal Medicine
UTMB, Galveston, TX,
USA

Konstantinos Tziomialos
Department of Clinical Biochemistry
(Vascular Prevention Clinic),
Royal Free Hospital Campus,
University College Medical School, University College
London, London,
United Kingdom

Cyril Chukwudi Dim
Department of Obstetrics & Gynaecology
University of Nigeria Teaching Hospital (UNTH)
P.M.B. 01129, Enugu. 400001,
Nigeria

Mojtaba Salouti
School of Medical and Basic Sciences,
Islamic Azad University- Zanjan,
Iran

Imtiaz Ahmed Wani
Srinagar Kashmir, 190009,
India

Professor Viroj Wiwanitkit
Wiwanitkit House, Bangkhae,
Bangkok
Thailand 10160

Dr. Srinivas Koduru
Dept of Clinical Sciences
Collage of Health Sciences
University of Kentucky
Lexington USA

Weiping Zhang
Department of Oral Biology
Indiana University School of Dentistry
1121 West Michigan Street, DS 271
Indianapolis, IN 46202
USA

Lisheng XU
Ho Sin Hang Engineering Building
Department of Electronic Engineering
The Chinese University of Hong Kong
Shatin, N.T. Hong Kong,
China

Dr. Mustafa Sahin
Department of Endocrinology and Metabolism
Baskent University,
Ankara,
Turkey

Dr. Harshdeep Joshi
Maharishi Markandeshwar
Institute of Medical Sciences and Research
Ambala, (Haryana).
India.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the IJMMS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The **Discussion** should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The **Acknowledgments** of people, grants, funds, etc. should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or PowerPoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.
Case Studies

Case Studies include original case reports that will deepen the understanding of general medical knowledge.

The **Title** should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The **Abstract** should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 **key words** that will provide indexing references should be listed.

A list of non-standard **Abbreviations** should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml).

The **Introduction** should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

The presentation of the case study should include the important information regarding the case. This must include the medical history, demographics, symptoms, tests etc. Kindly note that all information that will lead to the identification of the particular patient(s) must be excluded.

The conclusion should highlight the contribution of the study and its relevance in general medical knowledge.

The **Acknowledgments** of people, grants, funds, etc should be brief.

References: Same as in regular articles

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage. Because IJMMS will be published freely online to attract a wide audience, authors will have free electronic access to the full text (in both HTML and PDF) of the article. Authors can freely download the PDF file from which they can print unlimited copies of their articles.

Copyright: Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the Manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Table of Contents

ARTICLES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic oligospermia treatment: An alternate approach</td>
<td>74</td>
</tr>
<tr>
<td>Mohdmmad Abdul Sami, Halima Nazar and Khan Usmanghani</td>
<td></td>
</tr>
<tr>
<td>Multicenter bacteraemia among Sudanese children: Causative agents and</td>
<td>80</td>
</tr>
<tr>
<td>antimicrobial susceptibility patterns</td>
<td></td>
</tr>
<tr>
<td>Baha Eldin K. Elamin, Maryam Atif Salah Eldin, Maali Faisel Abd Elseed</td>
<td></td>
</tr>
<tr>
<td>and Emanowell Sedig</td>
<td></td>
</tr>
</tbody>
</table>
Idiopathic oligospermia treatment: An alternate approach

Mohdmmad Abdul Sami, Halima Nazar and Khan Usmanghani*

Department of Surgery and Allied Sciences and Department of Basic Medical Sciences, Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan.

Received 6 March, 2015; Accepted 9 April, 2015

One of the factors of male infertility is idiopathic oligospermia in which the causative factor is not known. A direct case control, two-centers, prospective, randomized controlled two-arm parallel group trial was carried out to investigate the safety and efficacy of trialed medicine in Shifa-ul-Mulk Memorial Hospital for Eastern Medicine at Madinat-ul-Hikmah, Hamdard University Karachi-74600, Pakistan. An assessment was conducted on the coded herbal formula Spermox (Test drug) to treat idiopathic condition of oligospermia; the test drug spermox was compared with Fertilox (Control drug). The idiopathic pathogenic states of spontaneous origin were detected on 62 clinically diagnosed patients. The conclusive findings were significant as improvements were seen in clinical assessment and semen analyses parameters. The value of sperm count per milliliter in spermox was found more than 29 million in 26 patients (p 0-032). It revealed that Spermox is more effective in upgrading the semen quality and quantity when compared with Fertilox for the treatment of idiopathic oligospermia. This is clearly evident that Spermox (Test drug) possesses a more viable value for the treatment of idiopathic oligospermia in comparison to Fertilox (Control drug).

Key words: Oligospermia, herbal medicine, male infertility, prospective, multicentre, randomized, clinical trial.

INTRODUCTION

Oligospermia is the deficiency of spermatozoa in the semen and is the basic cause of male infertility. The quality and quantity of semen having reduced sperm concentration display a marked abnormality in sperm morphology and motility and vitality (Dorland’s Medical Dictionary, 2007; Grimes and Lopez, 2007). The associated risk may be involved in producing condition, including age, infection of Chlamydia trachomatis, Y chromosome deletions due to aberration mitochondrial changes, chemical effects of environmental hazards and hormonal changes (Cavallini, 2006).

Although it is understood that in most cases of oligospermia and idiopathic form there is no direct medical or surgical involvement found to be curative. Despite the fact that it is comprehended that by and large of idiopathic oligospermia, there is no immediate therapeutic or surgical contribution discovered to be remedial at yet. However, the diverse therapeutic methodologies have been attempted. The treatment of idiopathic oligospermia and male infertility by using...
herbs and unani medicine have largely been undertaken and there are evidence where in natural medicine have proved useful in oligospermia. However, in the traditional medication, the following plants *Asparagus racemosus*, *Mucuna pruriens*, *Asparagus adscendens*, *Withania somnifera*, and *Tribulus terrestris*, etc., were used for stress treatment, anxiety, treat bacteria, retardation of the aging process and recovering men's sexual disorders, and in some cases to address infertility and case of oligospermia (Chittendon, 1956; Hedrick, 1919). These plants were used in spermox for the determination of the spermogenic effect. Spermox is not a commercial product; it is formulated first time for this clinical trial, however, the ingredients of this product is already reported in literature for the said activity.

It has been previously reported that *T. terrestris* and *W. somnifera* have good results in oligospermia and male infertility for the improvement of sperm quantity and quality. So by taking advantage, the coded herbal formulation spermox contains a total of five ingredients in which *A. adscendens*, *W. somnifera*, *A. racemosus*, *T. terrestris* and *M. pruriens* for the treatment of semen abnormalities causing infertility in man.

A. racemosus were used in this study and it was observed that streptozotocin as well as alloxan induced hyperglycemic rats showed an overall reduced sexual performance. The deleterious effect was significantly ameliorated in animals treated with polysaccharide-rich fraction of *A. racemosus*. This study validates the traditional claim of using *A. racemosus* as an aphrodisiac herb for treating sexual dysfunction in males (Mayank et al., 2009).

The rhizomes of white musli (*A. adscendens*) is an aphrodisiac; its effect is to increase sperm count hence energy and vigour to the body to fight against chronic diseases (Panda and Kar, 1998). *T. terrestris* was proven to be a spermogenic herb (Mutee et al., 2012). The therapeutic applications of *M. pruriens* were reported to regulate steroidogenesis and improve semen quality in infertile men (Shukla et al., 2009).

MATERIALS AND METHODS

This is a two-centers, prospective, randomized, open-label, active-controlled study. The trial was completed in July, 2009 to June, 2011. These studies were completed in Shifa UI Mulik Memorial Hospital for Eastern Medicine, Hamdard University, Karachi and Alisha Clinic Nazimabad. Only those participants selected who fulfilled inclusion criteria were used. A clinical trial protocol was filled by investigator at the start of treatment. After excluding withdrawal, the total patients who had finished test study were 62.

Semen samples were gathered in sterile tubes by masturbation after a sexual forbearance time of 3 to 5 days. Semen samples were instantly transformed for investigation. The tests were performed by World Health Organization rules standard semen quality parameters (WHO, 2010). The Data Monitoring Committee audited the unblinded information for patient from both centers. The patients received treatment consisted of 96 patients screened; 85 met eligibility criteria and 78 patients agree to participate: coded herbal formulation Spermox prescribed to 32 patients, and 30 were treated with Fertilox. Eight patients in test group and 8 in the control group were excluded from the study because of incomplete follow-up. In order to find out the restorative evaluations of trialied medicines, 62 patients were examined clinically and laboratory investigations were taken during the course of treatment.

Control drug (Fertilox) is a very costly medicine, not so potent and exert some side effects. In order to overcome this problem, there is a great need to find new medicinal agents that have good efficacy and less adverse effects. Herbal medicine could be choice to treat idiopathic oligospermia and considering this option, a formulation has been designed based on literature citation. Therefore, one of the good candidates could be a coded herbal formulation Spermox (Farone and Koenigsberg, 1995).

Patients were categorized in two groups. Group A on test drug (Spermox) and group B on control drug (Fertilox). The duration of study was six-month. Sample was taken randomly to avoid bias in clinical trial. For the correct diagnosis of Idiopathic oligospermia, we had strictly followed WHO criteria based on complete history and semen analysis findings. After treatment, the test was repeated to find out the difference in treatment. Ethical committee clearance for this study was obtained prior the start of clinical trial. All patients gave written, informed consent and the protocol approval was already taken from Ethics Committee of the Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan according to principles based on the Declaration of Helsinki.

Inclusion criteria

Cases suffering from idiopathic oligospermia were selected and registered. Patients aged 24 to 50 years were included. Cases that have no other disease on routine checkup interfering with the current matter were selected. Infertile patient having sperm count less than 20 Million/ml were the choice of management. Patients were residing in Karachi, Pakistan. All socio-economical classes were included. Fertility test of female were seen to exclude the female, so that ultimate diagnosis is referred.

Exclusion criteria

Patients suffering from uncontrolled hypertension and diabetes mellitus and other chronic diseases were not allowed to participate. Patient having any sexual transmitted diseases were detected besides idiopathic oligospermia. Idiopathic oligospermia coexisted with any partner problem, that is, female factor was also not administered in the study.

Clinical assessment

The patients included in the trial were those reporting to outpatient unit. They were thoroughly examined for clinical signs and symptoms. Their laboratory reports were recorded. Consent of the patients was taken at the first examination, semen analysis was drawn for the estimation of sperm count and motility, and the standard clinical trial proforma was filled for registration. Different parameters, that is, age, duration, and other clinical sign and symptoms base line were studied and compared between two groups at base line and end of therapeutic applications.

Treatment assignment and follow-up

Sixty two patients consented to participate in the study. Pretreat-
Control drug (Fertilox) is a very costly medicine, not so potent and exert some side effects. In order to overcome this problem, there is a great need to find new medicinal agents that have good efficacy and less adverse effects. Herbal medicine could be the choice to treat idiopathic oligospermia and considering this option, a formulation has been designed based on literature citation. Therefore, one of the good candidates could be a coded herbal formulation Spermox.

It has been previously reported that *T. terrestris*, *W. somnifera* have good results in oligospermia and male infertility for the improvement of sperm quantity and quality. So by taking the advantage, the coded herbal formulation Spermox contains a total of 5 ingredients in which *A. adscendens*, *W. somnifera*, *A. racemosus*, *T. terrestris* and *M. pruriens* for the treatment of semen abnormalities causing infertility in man.

In order to validate the results, the statistical analysis was performed by Chi square and Fisher’s exact test to find out the level of significance and to confirm the efficacy of the treatment drugs both in test and control group as Spermox and Fertilox, respectively.

Patient characteristics

Total numbers of 32 patients were prescribed Spermox and Fertilox was prescribed to 30 patients as shown in Table 1. The age allocation of class interval was categorized as 24 to 50 years. The age distribution of 62 patients were recorded having 5 class intervals accordingly, 24 to 27, 28 to 31, 32 to 35, 36 to 39, 40 to 43, 44 to 32, and 48 to 51. It was observed from the data in Table 2 that infertility has a strong correlation with socioeconomic factors and this problem tends to worsened in illiterate population and the families were leading their life in stressful condition either due to joint family problems or other social factors.

Semen analysis

The normal range of semen quantity is 2 to 4 ml per ejaculation. The result depicted in Table 3 signifies no difference of treatment between two given medications as p value was calculated as 0.599 as shown in Table 3. The normal color of semen is grayish white to pale yellow and all patients of both groups were observed having normal color at base line and after treatment as well. Therefore, there was no change in semen color between test and control group. The range of sperm count is >20 millions/ml. It is a most common factor in oligospermic patients. After having the complete follow-up in test group out of 32 patients, 26 patients were recorded to be >20 millions/ml and only 6 patients were recorded to be <20 millions/ml. Whereas in the control group, out of 30 patients, 17 were recorded to be > 20 millions/ml and 13

Results

The present investigations were carried out for the verification and comparative analysis of efficacy of these medicines for low sperm count and motility. The therapeutic evaluations of these medicines were conducted on 62 patients at Shifa-ul-Mulk Memorial Hospital, for Eastern Medicine, Hamdard University, Karachi and Alshifa Clinic, Nazimabad. The patients that received treatment consisted of 96 patients screened; 85 met eligibility criteria and 78 patients agree to participate: coded herbal formulation Spermox prescribed to 32 patients, and 30 were treated with Fertilox. Eight patients in the test group and 10 in the control group were excluded from the study, because of incomplete follow-up. In order to find out the restorative evaluations of trialed medicines, 62 patients were examined clinically and laboratory investigations were taken during the course of treatment after excluding the failure cases.
Table 2. Demographic characteristics in treatment groups.

<table>
<thead>
<tr>
<th>Socio demographic variable</th>
<th>Treatment group</th>
<th>Total (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test</td>
<td>Control</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 – 27</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>28 – 31</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>32 – 35</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>36 – 39</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>40 – 43</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>44 – 32</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>48 – 51</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literate</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Illiterate</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate</td>
<td>10</td>
<td>09</td>
</tr>
<tr>
<td>Joint</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Prior family planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>17</td>
<td>26</td>
</tr>
</tbody>
</table>

patients were recorded to be <20 millions/ml. The Chi square test p value were calculated to be less than 0.05; it showed that there was a significant difference between these two drugs as shown in Table 3.

Similar results were seen in morphology and rapid linear progression of semen analysis where p values were 0.001 and 0.046. The range of normal morphology is >30%/ml. It is also a most common factor in oligospermic patients.

This study was undertaken as clinical evaluation of effect of herbal medicine on quantity and quality and motility of sperm in oligospermia. An attempt has been made to explore the performance of herbal (test drug) and authentic allopathic (control) medicine so as to assess their efficacy.

Adverse effects profile

All the patients enrolled in the study were valuable for safety. Side effects were defined as sign and symptoms that first occurred or became more severe during the course of treatment. Majority of adverse events were assessed as mild in severity and self-limiting in nature. Therefore, none of the patients withdrew from the study due to these adverse events. Side effects classified by the clinical exports were found to be drug related in patients administered Fertilox, such as nausea (5 patients), malaise (3 patients), headache (2 patients), and loss of appetite (4 patients), were the most observed drug related events among control recipients and no side effects were recorded in test treated recipients. No critical side effects recorded in any group, that is, hot flushes, psychological upset, hypertension, etc. It is because of the fact that plant drug selected for the treatment of male infertility does not contain any chemical agent that may trigger the adverse drug reaction response. This can be explained further that chemical components of the plant drugs altogether are low in the frequency of occurrence and even administered together in synergistic fashion exhibit pronounced type of effective response for curative action.

DISCUSSION

Generally, there are different causes of infertility such as lacks in discharge per ejaculate, sperm count (e.g., oligospermia, low sperm count, azoospermia, no sperm in the discharge), sperm motility, or sperm morphology. Therefore, with the diagnosis, one can always pinpoint the causes of infertility and on this basis treatment modalities can be planned. The beginning assessment of the male partner ought to be quick, noninvasive, and less expansive. A comparative approach will suffice to pick the treatment choices for the couple for the wanted result.

Medicinal plants were selected to form dosage designed to manufacture Spermox. The literature citation have been thoroughly searched that all these plants are utilized to combat infertility in male. Basically, Asparagus recemosu, M. pruriens, A. adscendens, W. somnifera, and T. terrestris, the first three plants directly act on sperm motility and increment of sperm counts and related factors, whereas Withnia sominfera is an immunity enhancer and Tribulus terresteris is spermogenic.

The semen investigation is the beginning stage in the
Table 3. Results of semen analysis.

<table>
<thead>
<tr>
<th>Semen analysis</th>
<th>Treatment group</th>
<th>Total (n)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test (Spermox)</td>
<td>Control (Fertilox)</td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before treatment</td>
<td><2 ml</td>
<td>08</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>2 - 4 ml</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>>4 ml</td>
<td>04</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>After treatment</td>
<td>< 2 ml</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2 - 4 ml</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>>4 ml</td>
<td>04</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before treatment</td>
<td>Grayish white</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Pale yellow</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>After treatment</td>
<td>Grayish white</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Pale yellow</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before treatment</td>
<td>< 20 millions/ml</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>≥20 millions/ml</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>After treatment</td>
<td>< 20 millions/ml</td>
<td>06</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>≥20 millions/ml</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Morphology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before treatment</td>
<td>< 30%</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>≥30%</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>After treatment</td>
<td>< 30%</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>≥30%</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Linear progression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before treatment</td>
<td>< 25%</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>≥25%</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>After treatment</td>
<td>< 25%</td>
<td>05</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>≥25%</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>32</td>
<td>30</td>
</tr>
</tbody>
</table>

assessment of male infertility and when discovered to be normal, endocrine anomalies are amazingly uncommon, and further hormonal assessment more often than not is superfluous. As a general manual for the conclusion of
male subfertility, the WHO has given typical qualities for semen examination such as volume > 2 ml, density > 20 million/ml, motility > 50% forward progression, morphology > 30% normal forms, round cells > 5 million/ml, and white cells > 1 million/ml (WHO, 1992; Damani and Shaban, 2008).

On the treatment with Spermox, the normal range of semen quantity is 2 to 4 ml per ejaculation. The range of sperm count was found to be >20 millions/ml. In case of Spermox and test drugs of 32 patients, 26 patients were recorded >20 millions/ml, whereas in Fertilox control group, out of 30 patients, 17 were recorded >20 millions/ml affording p value less than 0.05. Similarly, of test and control drugs, results for morphology and rapid linear progression of semen analysis afforded p values of 0.001 and 0.046, and the range of normal morphology was determined as >30% per ml. All these parameters corroborate with the aforementioned semen results and clearly displayed that Spermox is comparatively superior than Fertilox in the management of idiopathic oligospermia. In addition, no side or untoward effects have been observed in case of Spermox and use of medicinal plants product have shown that oligospermia is possible with considerable success. A lot of studies have provided evidence that medicinal plants products may improve semen parameters, but again is not consistent and variation in the treatment may occur, therefore, better designed clinical trials is a need for the management of male infertility (Arcaniolo et al., 2014).

Conclusion

The finding from this study demonstrated the following salient clinical assessment; there was statistically significant difference when comparing the effectiveness of herbal treatment Spermox to Fertilox for the treatment of idiopathic oligospermia as described in the thesis. This is clearly evident that Spermox possesses a therapeutic value for the treatment of idiopathic oligospermia.

There was no untoward manifestation associated with the use of Spermox and this has found good acceptability by all treated patients. The principal objective on herbal medicine Spermox as compared to Fertilox is to determine whether these may represent a platform for the development of novel therapeutic. This is an exercise of applying modern techniques and clinical design to product that have been in use for centuries. The efficacy of herbal formulation is a characteristic of a complex mixture of chemical compounds present in different herbs used as multiple dosage form design.

The results from this research study have clearly revealed the evidence of efficacy of test drug Spermox as compared to Fertilox. This study outlines an approach to the scientific and clinical validation of traditional and conventional medicines, so in its ultimate dictate; this is a worthwhile exercise, since it leads to new class of therapeutics.

Conflict of interest

Authors have none to declare

REFERENCES

Chittendon F (1956). RHS Dictionary of Plants plus Supplement. Comprehensive listing of species and how to grow them. Somewhat outdated, it has been replaces in 1992 by a new dictionary.
Multicenter bacteraemia among Sudanese children: Causative agents and antimicrobial susceptibility patterns

Baha Eldin K. Elamin1,2*, Maryam Atif Salah Eldin2, Maali Faisel Abd Elseed2 and Emanowell Sedig2

1Department of Microbiology, Faculty of Medicine, University of Bisha, Riyadh Street, P.O Box 551, Bisha, Saudi Arabia.
2Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.

Received 24 December, 2014; Accepted 31 March, 2015

Bacteraemia is a common cause of morbidity and mortality in children worldwide. Therefore, bacteraemia continues to be increasingly a serious health problem that needs immediate attention and treatment. A retrospective hospital-based study was conducted on positive blood cultures collected from 804 children (aged less than 10 years) including both genders in a period between 2012 and 2013 in three different medical services center in Khartoum state, Sudan, out of 804 tested blood samples, among whom 226 isolates were recovered from blood cultures. The majority of the children with bacteraemia (77.4%) were found to be less than one year old (49.1% male and 50.9% female). The most frequent pathogen was found to be Staphylococcus aureus (33.6%), followed by Klebsiella pneumoniae (30.5%), Pseudomonas aeruginosa (11.5%), Burkholderia cepacia (10.6%), Streptococcus spp., (7%), Escherichia coli (3.5%), Acinetobacter spp. (1.7%) and coagulase negative staphylococci (1.3%). This study shows the highest susceptibility rate of S. aureus to vancomycin (97.3%), and the lowest susceptibility rate (34.7%) was recorded for erythromycin. Staphylococcus aureus was the main etiological agent of bacteraemia in children, while the most isolates demonstrating susceptibility to vancomycin. Overall, erythromycin resistance was 65.3%. This information should be considered when empirical therapy is recommended for the treatment of children with bacteraemia. Most laboratories in Sudan use a single aerobic blood culture bottle for routine blood culture. So our recommendation is using aerobic in conjugation with anaerobic bottles in order to recover significantly more organisms.

Key words: Bacteraemia, children, antimicrobials, drug resistance, Sudan.

INTRODUCTION

Bacteraemia is a common cause of morbidity and mortality in children (Reimer et al., 1997) worldwide (Dawodu et al., 1997; Stoll et al., 1998; Bhutta and Yusuf, 1997; Orrett and Shurland, 2001). Therefore, bacteraemia continues to be a serious problem that needs immediate attention and treatment. For an accurate diagnosis and an
appropriate choice of antimicrobials, blood culture, which usually takes a few days, is required. The empirical choice of antimicrobials for the treatment of bacteremia is guided by an awareness of previous culture reports (Cisterna et al., 2001). The majority of the bacteremia cases are caused by number of pathogens including Staphylococcus spp., Streptococcus spp., Enterobacter spp., Escherichia coli, Klebsiella pneumoniae and Pseudomonas spp. (Reimer et al., 1997). In a prospective five-year study on 344 clinically significant episodes of pediatric septicemia, the most common organisms were accounted for 2.0% of all episodes (Cheng et al., 1991). Furthermore, another study found that among 408 bacterial strains, Salmonella spp. were the most commonly isolated (23%), followed by Staphylococcus aureus and Acinetobacter moraxella (Gedebo et al., 1984). The most frequent etiologic agents of bacteremia cases include Staphylococcus spp., Streptococcus spp., Enterobacter spp., E. coli, K. pneumoniae and Pseudomonas spp. (Reimer et al., 1997; Cisterna et al., 2001). We have conducted this study to facilitate the empiric treatment and management of children with bacteremia. The purpose of this study is to determine the causative agents that accounts for bacteremia among Sudanese children ≤ 10 years old and to assess their susceptibility to various groups of antimicrobial agents.

MATERIALS AND METHODS

A descriptive retrospective hospital based study was conducted on positive blood cultures taken from 804 children (aged less than 10 years) regardless of their genders, in a period between December, 2012 and December, 2013 in three different urban medical services center in Khartoum state including Soba University Hospital, Saed Abo Ella hospital and Ibrahim Malik hospital. Eligible patients had an examination (for example pneumonia, urinary tract infection, criteria were a clearly identifiable infection apparent on physical infection, meningitis, osteomyelitis, septic arthritis), immunisation within the preceding 48 h and treatment with antibiotics within the preceding 7 days.

The selection include in-patients and out-patients. Patients with the clinical suspicion to suffer from bacteremia were included if blood culture analysis was requested by the responsible physician. Patients older than 10 years and patients with unavailable laboratory parameter results were excluded. Patients with a potential blood culture contaminant and those with missing or inaccurate identification to the species level were excluded from further analysis. Sampling process, culturing, bacterial identification and susceptibility testing for antimicrobials were as follows: the blood specimens had been taken for culture after sterilizing the skin with 70% alcohol and then with 10% povidone iodine solution. One to three milliliters venous blood was taken from the patient and inoculated into an aerobic blood culture bottle that contained 50 ml of Tryptose phosphate broth and 0.02% polyanethol sulfonate (liquid). All cultures were checked daily for cloudiness, haemolysis, and gas production. Sepsis was defined according to the recommendations of Bone et al. (1992).

Organisms were identified via standard microbiological techniques; culture was incubated at 37°C for 24 h prior to the isolation and identification of the bacteria. Based on the Gram-staining, characteristics of the bacterial growth in the blood culture bottle was sub-cultured onto MacConkey agar, chocolate blood agar, and blood agar plates. Bacteria which have been isolated from colonies were further characterized by special biochemical methods; analytical profile index (API 20E) was used for gram negative bacilli, and susceptibility testing was evaluated using the disc diffusion methods according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS) (Standards NCICL (2007). The following antibiotics and concentrations (in brackets) were used: amikacin (30 μg), ampicillin (10 μg), amoxicillin–clavulanic acid (AMC) (20/10 μg), cefotaxime (30 μg), tetracycline (30 μg), erythromycin (15 μg), cefuroxime (30 μg), meropenem (10 μg), ceftaxone (30 μg), ceftazidine (30 μg), vancomycin (30 μg), gentamicin (10 μg), ciprofloxacin (5 μg), co-trimoxazole (trimethoprim–sulfamethoxazole) (1.25/23.75 μg), cephalaxin (30 μg), cefazolin (30 μg), clindamycin (2 μg) and oxacillin (1 μg).

The data were collected from the clinical microbiology laboratory records which was filled in a prepared data sheet and included micro-organisms isolated from blood culture and antibacterial susceptibility data. The hospitals were informed for the purpose of the study and its objectives, before taking their permission, with protections of their records. Permission to carry out the study was taken from the Scientific Research Committee, Khartoum University. Minimum inhibitory concentrations (MICs) were done according to NCCLS guidance and interpretative criteria (2001). Statistical analysis was done using the Chi-squared test. Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 49189) and one of Escherichia coli (ATCC 25922), were included to establish the validity of the experiment.

RESULTS

During the study period (2012 to 2013), a total of 226 out of 804 blood samples of selected children less than 10 years of age (49.1% male and 50.9% female) which gave a positive blood culture was analyzed. No significant difference showed between male and female inflicted with bacteremia. Results have shown that most of bacteremia cases (77.4%) were observed among children less than 12 months old, among whom (65.9%) were less than one month old. Only (17.3%) were observed in children aged between 3 to 10 years. There is a significant increase of bacteremia in children aged one year or less (P = 0.001). The majority of the isolated pathogens were S. aureus (33.6%), followed by Klebsiella spp. (30.5%), Pseudomonas spp. (11.5%), Burkholderia cepacia (10.6%), Streptococcus spp. (7%), E. coli (3.5%), Acinetobacter spp. (1.7%) and coagulase negative staphylococci (1.3%) (Table 1). The antimicrobial susceptibility of bacteremia isolates for 18 selected antimicrobial agents used in this study are summarized in Table 2. The highest susceptibility rate of S. aureus was to vancomycin (97.3%), whereas the lowest susceptibility rate was to erythromycin (34.7%). The highest susceptibility rates of other isolates to meropenem were Klebsiella spp. (100%), Acinetobacter spp. (100%), Burkholderia cepacia (100%), E. coli (87.5%) and Pseudomonas spp. (88.5%). However, vancomycin was
detected to give the highest susceptibility rate of 96.7% to a variety of bacteria isolates; amoxicillin plus clavulanic acid have exhibited the lowest susceptibility rate of 7.3% (Table 3).

DISCUSSION

Blood for culturing is a routine procedure for investigating the cause of suspected infection in the majority of patients attending an emergency department(unit). Isolation of a true pathogen from blood culture ultimately warrants and augur well treatment with an appropriate antibiotic. This study provides information regarding the main etiological agents that cause bacteraemia in children of both inpatients and outpatient and its antimicrobial susceptibility patterns. S. aureus was reported to have emerged as a major cause (33.6%). These results are in accordance with other studies that have pointed out S. aureus as the most common bacteria isolated from blood of children (Nimri and Batchoun, 2004; Mohammad, 2010). The second most common organism causing bacteraemia in this study was Klebsiella spp. (30.5%). Similar results were reported in Jordan (Standards NCfCL, 2001). In another studies conducted elsewhere, E. coli was the most common organism (70%) (Berkley et al., 2005). In this study, the occurrence of Pseudomonas spp. Streptococcus spp. E. coli and Acinetobacter spp. were 11.5, 7, 3.5 and 1.7%, respectively. Different occurrence of these blood isolates were reported in different exhaustive literature (Mohammad, 2010; Joshi et al., 2000). Nonetheless, Pseudomonas spp. was the most common cause of neonatal sepsis in Karachi, Pakistan (Bhatta and Yusuf, 1997).

Burkholderia cepacia has the potential to cause fatal infections in hospital, and multidrug resistance makes them a serious threat in hospital settings. B. cepacia has been reported from bloodstream infections (Aaron et al.,

Table 1. Bacterial species isolated from 226 blood culture.

<table>
<thead>
<tr>
<th>Species isolated</th>
<th>No. of isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella</td>
<td>69 (30.5)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>76 (33.6)</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>16 (7)</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>24 (10.6)</td>
</tr>
</tbody>
</table>

Table 2. Susceptibility rates of blood bacterial isolates to antimicrobial agents.

<table>
<thead>
<tr>
<th>Drug</th>
<th>S. aureus (n=76)</th>
<th>Klebsiella pneumoniae (n=69)</th>
<th>E. coli (n=8)</th>
<th>CNS (n=3)</th>
<th>Streptococcus spp. (n=16)</th>
<th>Acinetobacter spp. (n=4)</th>
<th>B. cepacia (n=24)</th>
<th>Pseudomonas aeruginosa (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S%</td>
<td>S%</td>
<td>S%</td>
<td>S%</td>
<td>S%</td>
<td>S%</td>
<td>S%</td>
<td>S%</td>
</tr>
<tr>
<td>CIP</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>82.6</td>
<td>7</td>
<td>42.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MEM</td>
<td>0</td>
<td>0</td>
<td>67</td>
<td>100</td>
<td>8</td>
<td>87.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AK</td>
<td>0</td>
<td>0</td>
<td>62</td>
<td>98.4</td>
<td>7</td>
<td>85.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CXM</td>
<td>0</td>
<td>0</td>
<td>58</td>
<td>3.4</td>
<td>5</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AMC</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>AMC</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>2.2</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>AZC</td>
<td>0</td>
<td>0</td>
<td>58</td>
<td>5.2</td>
<td>7</td>
<td>14.3</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>COT</td>
<td>43</td>
<td>58.1</td>
<td>39</td>
<td>7.7</td>
<td>5</td>
<td>20</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>GEN</td>
<td>43</td>
<td>86</td>
<td>27</td>
<td>22.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VA</td>
<td>74</td>
<td>97.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>OX</td>
<td>75</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>33.3</td>
</tr>
<tr>
<td>E</td>
<td>75</td>
<td>34.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>66.7</td>
</tr>
<tr>
<td>CD</td>
<td>74</td>
<td>62.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>66.7</td>
</tr>
<tr>
<td>TE</td>
<td>70</td>
<td>71.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>AMP</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 3. Susceptibility rate (%) of different blood bacterial isolates to antimicrobial agents.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Bacteria</th>
<th>No. of isolate</th>
<th>Sensitive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP</td>
<td></td>
<td>104</td>
<td>82 (78.8)</td>
</tr>
<tr>
<td>MEM</td>
<td></td>
<td>130</td>
<td>125 (96.1)</td>
</tr>
<tr>
<td>AK</td>
<td></td>
<td>116</td>
<td>100 (86.2)</td>
</tr>
<tr>
<td>CMX</td>
<td></td>
<td>96</td>
<td>18 (18.8)</td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td>95</td>
<td>7 (7.3)</td>
</tr>
<tr>
<td>CTR</td>
<td></td>
<td>150</td>
<td>23 (15.3)</td>
</tr>
<tr>
<td>CAZ</td>
<td></td>
<td>110</td>
<td>34 (30.9)</td>
</tr>
<tr>
<td>COT</td>
<td></td>
<td>122</td>
<td>56 (45.9)</td>
</tr>
<tr>
<td>CN</td>
<td></td>
<td>57</td>
<td>7 (12.3)</td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td>31</td>
<td>9 (29)</td>
</tr>
<tr>
<td>CTX</td>
<td></td>
<td>30</td>
<td>13 (43.3)</td>
</tr>
<tr>
<td>Gen</td>
<td></td>
<td>87</td>
<td>53 (60.9)</td>
</tr>
<tr>
<td>VA</td>
<td></td>
<td>91</td>
<td>88 (96.7)</td>
</tr>
<tr>
<td>OX</td>
<td></td>
<td>78</td>
<td>31 (39.7)</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>79</td>
<td>28 (35.4)</td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td>78</td>
<td>48 (61.5)</td>
</tr>
<tr>
<td>TE</td>
<td></td>
<td>76</td>
<td>53 (69.7)</td>
</tr>
<tr>
<td>AMP</td>
<td></td>
<td>30</td>
<td>11 (36.7)</td>
</tr>
</tbody>
</table>

In this study, B. cepacia reported for 10.6%. Coagulase negative Staphylococci encountered for 1.3%. Other studies reported coagulate negative staphylococci as the most common bacteria isolated from infant with bacteremia (Sabui et al., 1999). The most effective antimicrobial agent against S. aureus which has been demonstrated in this study was vancomycin (97.3%), followed by gentamicin (86%). Similar results for vancomycin were reported in Jordan (Mohammad, 2010; El-Nasser, 2009). However, another author reported high susceptibility rates of S. aureus, reaching 59.5% to gentamicin (Blomberg et al., 2007). From our study we observed resistance rate of S. aureus to erythromycin (65.3%) which was higher than documented resistance rate of 33.1% conducted elsewhere (Delialioglu et al., 2005). However, the highest susceptibility rate (100%) to meropenem observed in this study was for Klebsiella. Similar results have been reported in the literature (Endtz et al., 1997). Whereas the highest resistance rate (100%) to ampicillin observed in this study was for Klebsiella, similarly low susceptibility rate (0%) of Klebsiella to ampicillin has been reported in Jordan (Mohammad, 2010).

CONCLUSION AND RECOMMENDATION

Our study shows that S. aureus is the main causative agent of bacteremia in children. Treatment of bacteremia is compromised by antimicrobial resistance. Accordingly, this study is important in order to facilitate the empirical treatment of children with bacteremia. Most laboratories in Sudan use a single aerobic blood culture bottle for routine blood culture. So our recommendation is using aerobic in conjunction with anaerobic bottles in order to recover significantly more organisms. Further studies are needed to help authorities to formulate antimicrobial prescription policies.

Conflicts of interest

Authors have none to declare.

ACKNOWLEDGEMENTS

We thank all the participants in this study for generously helping us in this research.

REFERENCES

Orrett FA, Shurland SM (2001). Neonatal sepsis and mortality in a
International Journal of Medicine and Medical Sciences

Related Journals Published by Academic Journals

- Journal of Medicinal Plant Research
- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences