ABOUT JYFR

The Journal of Yeast and Fungal Research (JYFR) (ISSN 2141-2413) is published Monthly (one volume per year) by Academic Journals.

Journal of Yeast and Fungal Research (JYFR), provides rapid publication (monthly) of articles in all areas of the subject such as Yeast physiology, fermentation and biotechnology, Bioremediation, Ethanol fermentation, economic importance of yeast etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JYFR are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email jyfr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at jyfr@academicjournals.org.
Editor
Prof. Viroj Wiwanitkit, M.D.
Wiwanitkit House, Bangkhae,
Bangkok Thailand 10160.
Visiting Prof. Tropical Medicine,
Hainan Medical College,
Hainan China.

Associate Editors
Dr. Wolfram Siede,
Department of Cell Biology and Anatomy
University of North Texas
Health Science Center.

Dr. Mohsen Asker
Microbial Biotechnology Dept.
National Research Centre
Cairo, Egypt.

Prof. Chester R. Cooper, Jr.
Youngstown State University
One University Plaza
Youngstown, Ohio.

Prof. Fukai Bao
Department of Microbiology and immunology,
Kunming Medical University
Yunnan, P. R. of China

Dr. Raviraja N Seetharam
Department of Oncology,
Montefiore Medical Center / Albert Einstein Cancer Center,
Hofheimer Room No. 413,
E 210th St, Bronx, NY.

Dr. Linghuo Jiang
Tianjin Medical University,
Tianjin Research Center of Basic Medical Sciences,
China.
Editorial Board

Dr. Jose Guedes de Sena Filho
Federal University of Paraiba State Brazil/ University of Oklahoma.

Dr. Fabien C.C. Hountondji
Agriculture and Livestock Research/Ministry of Agriculture, Salalah, Oman.

Dr. Zhenjia Chen
Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal.

Dr. Bankole Munir Akinwale
Ministry Of Health Lagos State, Nigeria.

Dr. Yiguang Wang
Institute of Medicinal Biotechnology, CAMS&PUMC 1 TiantanXili, Beijing, China.

Dr. Shobha D. Nadagir
Dept of Microbiology. Karnatak Institute of Medical Sciences, Hubli. Karnatak State, India.

Isaiah Masinde Tabu
Egerton University, Egerton, Kenya.

Prof. Tzi Bun Ng
School of Biomedical Sciences The Chinese University of Hong Kong Hong Kong, China.

Prof. Cristóbal Noé Aguilar González
Group of Bioprocesses Food Research Department School of Chemistry Universidad Autónoma de Coahuila México.

Prof. Caihong Dong
State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences China.

Dr. Tine Grebenc
Department of Forest Physiology and Genetics Slovenian Forestry Institute Slovenia.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length.. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al.’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:
Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Yeast and Fungal Research is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2015, Academic Journals.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JYFR, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Evaluation of antifungal activity of snake venoms from the Amazon forest
Marcelo dos Santos Neves, Diego Rayan Teixeira de Sousa, Maria do
Perpétuo Socorro Borges Carriço Ferreira, Maria Zeli Moreira Frota,
João Vicente Braga Souza and Jorge Luis López Lozano

Diversity and distribution of species of Ganoderma in south western
Cameroon
Tonjock Rosemary Kinge, Afui Mathias Mih
Evaluation of antifungal activity of snake venoms from the Amazon forest

Marcelo dos Santos Neves¹, Diego Rayan Teixeira de Sousa³, Maria do Perpétuo Socorro Borges Carriço Ferreira², Maria Zeli Moreira Frota², João Vicente Braga Souza³* and Jorge Luis López Lozano¹

¹Universidade do Estado do Amazonas/Fundação de Medicina Tropical- Dr Heitor Vieira Dourado, Brazil.
²Federal University of Amazonas / UFAM, Brazil.
³Mycology Laboratory of the National Institute of Amazonian Research / INPA, Brazil.

Received 4 November, 2014; Accepted 30 March, 2015

In recent years, many antimicrobial peptides have been found in the venoms of animals from different sources and have been intensively studied to elucidate their ability to inhibit the growth of potential pathogenic microorganisms. The aim of this study was to characterize and evaluate the in vitro antifungal activity of crude venom from two amazonian snakes: Bothrops atrox and Crotalus durissus ruruima. The molecular profile of representative proteins from the venom samples was obtained by reversed-phase high-performance liquid chromatography (RP-HPLC) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Fungal inhibition was investigated by microdilution assays against two Candida albicans strains. Based on the chromatography and electrophoresis analyses, the venom from B. atrox and C. durissus ruruima were characterized. In addition, the venoms (400 µg/mL) were not able to cause significant inhibition (> 50%) of the growth of C. albicans KL-07, at only 9.09% (200 µg/mL) and 7.88% (400 µg/mL), respectively, and neither presented any influence on the growth of strain C. albicans ATCC 36232.

Key words: Antifungal, activity, snake and Amazon.

INTRODUCTION

The venoms of animals have evolved to generate a broad group of peptide toxins for capture and defense. These peptides are directed against a wide variety of pharmacological targets and represent sources of prototype drugs. Some of these peptides have been used for in vivo studies to prove their effectiveness, in preclinical or clinical trials, for developing treatments for pain, diabetes, multiple sclerosis and cardiovascular disease (Lewis and Garcia, 2003).

Most venoms comprise a mixture of highly complex peptides, usually showing diverse and selective pharmacology. Despite this diversity, venom peptides appear to have evolved from a relatively small number of structures that are particularly well adjusted to meet critical issues
of potency and stability (Lewis and Garcia, 2003). Studies have demonstrated that the peptides present in the venom from snakes, wasps, spiders and scorpions represent a new class of antifungal and antimicrobial proteins (Gomes et al., 2005; de Oliveira Junior et al., 2013).

In recent decades, an increasing number of human populations are becoming more susceptible to opportunistic fungal infections, which has led to a growing number of clinical cases involving emergent fungal species. Furthermore, the discovery of clinical isolates that exhibit inherent or developed resistance to drugs such as Amphotericin B, Clotrimazole, Econazole, Fluconazole, 5-Fluorocytosine, Itraconazole, Ketoconazole, Miconazole, and Nystatin presents a challenge when treating fungal infections. Therefore, studies aimed at the discovery of new antifungal drugs, particularly proteins derived from animal toxins, are fundamental and necessary to expand the therapeutic options, thus ensuring greater efficacy and control in the treatment of these infections (Arango et al., 2004).

Although it is important to evaluate the peptides from Brazilian snakes (Nunes et al. 2011; Okubo et al. 2012), studies on the antifungal activity and molecular characterization of proteins and peptides from snake venoms obtained from the Amazon as well as the in vitro growth inhibition of yeasts of clinical interest are scarce in the literature. This situation makes such work an important initiative for this line of research in the Amazon region (Núñez et al., 2009; Calvete et al., 2011). The objective of this study was to characterize and evaluate the in vitro antifungal activity of crude venom from two amazonian snakes: Bothrops atrox and Crotalus durissus ruruima.

MATERIALS AND METHODS

Venoms
The venom samples were obtained from adult specimens of B. atrox and C. durissus ruruima, species belonging to the Snakebite Center "Professor Paul Friedrich Bührnheim" from the Foundation of Tropical Medicine Hietor Viera Dourado (FMT-HVD). The venom was collected through manual pressure on the venom glands after anesthetization of the snakes with carbon dioxide (CO₂). The samples were centrifuged (5000 x g for 15 min), and the supernatant was filtered (0.45 µm), lyophilized and stored at -20°C.

Characterization of venom
The venoms from B. atrox and C. durissus ruruima were characterized by chromatographic and electrophoresis methods

Reversed-phase high-performance liquid chromatography: The protein fractions of the venoms used in inhibition tests were obtained using the conventional chromatographic method of reversed-phase fractionation using organic solvents and buffer solutions (López-Lozano et al. 2002). The detection of the molecular profile of the protein constituents of the venoms was achieved using reversed-phase high-performance liquid chromatography (RP-HPLC) with a semipreparative ODS column (Shim-Pack C18, 10 mm x 250 mm, 10 mM) equilibrated with 0.1% trifluoroacetic acid (TFA; solution A). The elution of the venom constituents was started with a continuous gradient flow of solution A for 10 min and 0.1% TFA in acetonitrile (solution B) from 0 to 60% in 70 minutes (min). The flow rate for the elution of the constituents was 2.5 ml/min using an analytical monitoring detector at 216 nm. For each chromatographic process, 4 µg of each sample was applied, with two chromatographic analyses each (Ali et al. 2010).

Electrophoresis
The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) technique described by Laemmli (1970) was used. The running gel concentration was 15%, and the stacking gel was 4%. The venoms were diluted (volume to volume) with sample buffer (0.125 M Tris, 2% SDS, 10% glycerol and 0.05% bromophenol blue, with or without β-mercaptoethanol), resulting in reduced and non-reduced fractions, respectively. The samples were heated for 5 min at 100°C (reduced) or 40°C for 30 min (non-reduced). B. atrox at a concentration of 0.2 µg/µl and C. durissus ruruima at a concentration of 0.4 µg/µl, along with two controls for race B. atrox and C. durissus ruruima, both at a concentration of 10 µg/µl, were electrophoresed at a constant current of 20 mA/gel using Tris-glycine, pH 8.3 (0.025 M Tris, 0.192 M glycine, 0.1% SDS) as the running buffer. The gels were then stained with silver nitrate, as described (Babaie et al., 2013).

Evaluation of antifungal activity of venoms
In vitro tests were used to evaluate the antifungal activity of the venoms. A Candida albicans strain, identified with code KL-07, isolated from a patient with a clinical and laboratory diagnosis of chronic or recurrent vulvovaginal candidiasis that showed clinical resistance to conventional therapy at the referral center for Diseases Sexually Transmitted Infections - Foundation of Tropical Dermatology and Venereology “Alfredo da Matta” (FUAM) was used. The standard strain of C. albicans, ATCC 36232, provided by the Mycology Laboratory of the National Institute for Amazonian Research (INPA) was also used.

The initial concentration (or stock) of B. atrox and C. durissus ruruima venoms used in the tests was 20 and 10 mg/ml, respectively. The MICs of the venoms were determined according to CLSI M27-A2. The final concentrations ranged from 400 to 0.8 µg/ml for both venoms, and 64 to 0.06 µg/ml ketoconazole was implemented as a control. Microdilution trays containing 100 µl of twofold serial dilutions of the antifungal in standard RPMI 1640 broth were inoculated with 100 µl of the fungi at 2.5x10⁵ CFU/ml and incubated in ambient air at 35°C for 24 to 48 h. Reference MICs were defined as the lowest drug concentration that showed 50% of growth inhibition compared with the control (Pfaller et al., 2013).

Statistical analysis
All experiments were performed in triplicate, and the data were used to calculate the average, median and standard deviation (SD) of the readings. In comparing the medians of different dilution levels, the test Non-parametric Kruskal-Wallis test with a significance level of 5% was used. Epi-Info 3.3 software for Windows, developed and distributed by the CDC (www.cdc.org / epiinfo), was used in the analysis.

RESULTS
In order to characterize the venoms, HPLC and electro-
HPLC chromatographic profile of venom from *B. atrox* using a flow rate of 1 mL/minute. Solution A - 0.1% TFA; solution B - 0.1% TFA in acetonitrile; Column - C18 RP.

The electrophoresis (SDS-PAGE) profiles of the venoms were different under reducing and non-reducing conditions (presence or absence of β-mercaptoethanol) (Figures 3). In addition, the predominant bands in both venoms were of approximately 14, 23 and 50 kDa.

The antifungal activity of the venoms was investigated. In Figure 4 is shown the influence of different contents of the venom of *B. atrox* and *C. durissus ruruima* on the growth of *C. albicans* KL-07.

The venoms (400 µg/mL) were not able to cause a significant inhibition (> 50%) of the growth of *C. albicans* KL-07, at 9.09% (200 µg/mL) and 7.88% (400 µg/mL), respectively. Furthermore, neither venom presented any influence on the growth of *C. albicans* strain ATCC 36232.

DISCUSSION

In recent years, many antimicrobial peptides have been found in the venoms of animals from different sources and have been intensively studied to elucidate their ability to inhibit the growth of potential pathogenic microorganisms (Liu et al., 2013; Bahar and Ren, 2013; He et al., 2013). The data presented in the present work constitute important preliminary information about the characteristic and antifungal activity of the venom from *B. atrox* and *C. durissus ruruima*.

Our characterization (chromatography and electrophoresis assays) demonstrated that the venoms have distinctive profiles of expected protein fractions in a snake venom (Liu et al., 2013; Bahar and Ren, 2013; He et al., 2013). The chromatograms and SDS-PAGE profiles presented here are important for comparisons with future works intended to investigate the characterization and/or biological function of these venoms.

By investigating the influence of the venoms on the growth of *C. albicans* KL-07, only slight activity was observed for both, with a poor correlation between the venom content and growth inhibition. Similar results were previously described in bioassays with venoms (Bustillo et al., 2008; Afc et al., 2010). One explanation for this situation is the existence of an optimal concentration for inhibition or that interactions between the venom compounds at different concentrations cause interference with growth inhibition (Haeberli et al., 2000; Kuhn-Nentwig et al., 2012; Ciscotto et al., 2009). Previous studies corroborate the last explanation in that the peptide
Figure 2. HPLC chromatographic profile of venom from *C. durissus ruruima* using a flow rate of 1 mL/minute. Solution A - 0.1% TFA; solution B - 0.1% TFA in acetonitrile; Column - C18 RP.

Figure 3. SDS-PAGE profile of the venom (10 μg/μl) from *B. atrox* (lanes 1 and 3) and *C. durissus ruruima* (lanes 2 and 4) under non-reducing (lanes 1 and 2) and reducing (lanes 3 and 4) conditions.

The fraction of the venom from *Bothrops jararaca* showed higher inhibitory activity on the growth of *Candida albicans* than the unfractionated venom (Gomes et al., 2005). According to the data obtained, the venoms may have also suffered from proteolysis by *C. albicans* proteases (Castro and Lima, 2012; Demitto et al., 2012).

The absence of inhibition against *C. albicans* ATCC 36232 demonstrated a difference between the two strains,
and mechanisms that prevent the binding of specific proteins to the fungal cell membrane is a possible explanation (Maróti et al., 2011; Barbosa et al., 2011).

Future works should avoid self-degradation caused by proteases from the venom (Schneider and Di Pietro, 2013; Röhm et al., 2013) because both venoms presented high concentrations of metalloproteases (Calvete et al., 2011).

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGMENTS

We thank CNPQ, CAPES and FAPEAM for funding this research.

REFERENCES

Full Length Research Paper

Diversity and distribution of species of *Ganoderma* in south western Cameroon

Tonjock Rosemary Kinge\(^1\)* and Afui Mathias Mih\(^2\)

\(^1\)Department of Biological Sciences, Faculty of Science, University of Bamenda, P. O. ox 39, North West Region, Cameroon.
\(^2\)Department of Botany and Plant Physiology, Faculty of Science, University of Buea, P. O. Box 63, South West Region, Cameroon.

Received 29 December, 2014; Accepted 26 March, 2015

The genus *Ganoderma* is one of the most important group of Basidiomycetes due to their medicinal effects and also because they cause decay in a very wide range of tree species all over the world. Opportunistic sampling was used to collect 57 samples of *Ganoderma* from oil palm and other hosts for identification using comparative morphology and supported by molecular studies of the ITS and mtSSu gene regions. The objectives were to identify the species associated with different hosts, and to generate a checklist of species of *Ganoderma* in south western Cameroon. Morphological and molecular characterization of the 57 specimens showed that they belonged to 17 species of *Ganoderma*. Two species, *Ganoderma tornatum* and *Ganoderma chalceum* are known records for Cameroon. Four species, *Ganoderma weberianum*, *Ganoderma cupreum*, *Ganoderma steyaertanum* and *Ganoderma zonatum* are new records for Cameroon. The remaining 11 species *Ganoderma ryvardense*, *Ganoderma lobenense*, and *Ganoderma* species 1–9 with different affinities might be new to science. Six plant species were identified as hosts to different species of *Ganoderma*. They are *Elaeis guineensis*, *Cassia* sp., *Acacia* sp., *Pinus sylvestris*, *Avocado* sp. and unidentified hardwoods, with *E. guineensis*, hosting the highest number of species. With supplementary literature survey, a check-list of 23 species was established.

Key words: Host tree species, morphology, mushroom, taxonomy.

INTRODUCTION

The genus *Ganoderma*, a member of Aphyllophorales, was described by Karsten in 1881. The correct citation of the type species is written as *Ganoderma lucidum* (Curt; Fr) P. Karst., (Karsten, 1981). *Ganoderma* can degrade lignin component of wood while leaving white cellulose exposed, or as pathogens of living trees such as oil palm, rubber, tea and wood rot of forest trees, thereby causing diseases (Singh, 1991; Paterson, 2007). Several species are responsible for root and butt rots of commercially important crops such as tea [*Camillia sinensis* (L.) Kuntze],

*Corresponding authors. E-mail: rosemary32us@yahoo.com. Tel: +237 67462339.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
rubber (Hevea brasiliensis Muell. Arg.), temperate hardwoods, coconut (Cocos nucifera L.) and betel nut palms (Areca catechu L.) (Singh, 1991). Several species cause basal stem rot of oil palm (Elaeis guineensis) (Kinge et al., 2012), and other tropical forest trees. The fruit body of Ganoderma, for its perceived health benefits, has gained wide popular use as a dietary supplement in China, Japan, North America and other regions of the world, including Cameroon. Ganoderma species are also used in folk medicine to cure various diseases, and strains are commercially cultivated for the preparation of health tablets or drinks. As a kind of health food, it has also been used to prevent and treat immunological diseases, such as hypertension, tumorigenesis, etc. (Liu et al., 2002; Kinge et al., 2011). The many medicinal benefits of Ganoderma were reviewed by Jong and Birmingham (1992). On the other hand, some Ganoderma species play an important role in plant pathogens. Several species cause severe diseases in plantations or in forests (Steyaert, 1967; Bakshi et al., 1976). However, some of them have been shown to selectively delignify wood and are recognized as a potentially important source of lignin-degrading enzymes (Öljén et al., 1987).

The genus Ganoderma was divided into two distinct groups. The laccate including the Ganoderma lucidum complex is characterised by the presence of a cutex layer on the outer surface of the fruiting body that renders it shiny. The non-laccate lacks the cutex layer and is referred to as Ganoderma applanatum complex. Over 290 taxonomic names have been published in the genus Ganoderma, indicating that the genus is morphologically complex (Ryvarden, 2000). This led Ryvarden (1991) to describe the state of Ganoderma taxonomy as being in crisis. Traditional identification of Ganoderma species has been based on morphological features, physiological and developmental characters and chemical components such as secondary metabolites (Takamatsu, 1998). Species concept in the genus Ganoderma is thus not universally accepted neither well established (Gottlieb et al., 2000).

It has been shown that morphology and culture characteristics of species from the same genus can be greatly affected by growth conditions (Moncalvo, 2000). This signifies that a large number of synonyms may exist due to the number of species that have been identified based on morphology (Moncalvo, 2000). The shape of basidiocarp (fruiting body) has been demonstrated to be greatly influenced by the environment (Chen, 1993), and the basidiospores by latitude and altitude (Steyaert, 1975). In some species, the context colour was darker in collections from southern latitudes than northern latitudes on the European continent (Steyaert, 1972). Age and environment have been shown to have a marked effect on the colour, size and brightness of the fruiting body, as well as length of stipe (Moncalvo, 2000). Identification of Ganoderma based on these characteristics have contributed greatly to the confusion in the naming of species within this genus, and have resulted in traditional taxonomic methods being inconclusive for establishing a stable classification system for Ganoderma species (Hong et al., 2002; Hseu et al., 1996). Traditional identification methods are being supplemented with new identification methods such as restriction fragment length polymorphism (RFLP) (Miller et al., 1991), sequence analysis (Hong et al., 2002; Moncalvo et al., 1995a; Smith and Sivasithamparam, 2000a) and isoenzyme electrophoresis (Gottlieb et al., 1998; Gottlieb and Wright, 1999; Smith and Sivasithamparam, 2000b). It is the phylogenetic analysis of amino acid or DNA sequences that is known to have the highest resolving power (Bruns et al., 1991). These modern techniques have helped to clarify the distribution of different species complexes in the genus Ganoderma, and have revealed some instances of misidentification (Gottlieb et al., 1998; Moncalvo et al., 1995a, b).

Despite advances in taxonomic techniques, the species diversity of Ganoderma and other polypores in Africa have received very little attention. In Cameroon, the following species have been reported: Ganoderma tornatum var. tornatum, Ganoderma hildebrandii, G. lucidum, Ganoderma cf. multipicatum, Ganoderma resinaeum, Ganoderma carocalcareus and Ganoderma ryvardense (Turner, 1981; Nunez and Daniels, 1999; Douanla-Meli and Langer, 2009; Kinge, 2012). Moncalvo and Ryvarden (1997) listed 49 Ganoderma species from Africa. Apart from the work published by Douanla-Meli and Langer (2009), Kinge (2012) and Kinge et al. (2012) all other reports based their identification on morphology alone. It is therefore reasonable to suggest that a wealth of information is waiting to be discovered. As very little is known about the diversity of Ganoderma in Cameroon. In order to understand the diversity of Ganoderma species, the knowledge of their distribution and association with their substrates are essential. The substrates such as dead and decaying wood and its associated fungi and invertebrates are vital elements of the forest ecosystem and their decay processes represent a key path for nutrient and carbon recycling (Bobiec et al., 2005). Thus, the objectives of this research were as follows: to identify the different hosts of species of Ganoderma in the study area, to prepare a check-list of species of Ganoderma in the study area and to produce a species distribution map.

MATERIALS AND METHODS

Study area and sampling

Collection trips were done between 2008-2011 from Lobe, Bai, Dibombari, Idenau, Bota, Mondoni, Mungo and Beneo estates as well as on forest areas in Buea, Idenau, Ekona and Bafla in the Mount Cameroon Region all in South Western Cameroon (Figure 1). An opportunistic sampling method was used in collecting the samples. Collection sites were geo-referenced by GPS points using the Garmin Etrex Venture GPS.
Morphological characterization

External and internal morphology

Prior to examination of the basidiomata, specimens were photographed from above as per Steyaert (1972). External and internal morphological characters and confirmation by molecular methods have been described by Kinge et al. (2012).

After identification, a species distribution map based on the presence or absence of species was produced using GIS software (ArC GIS 9.3). A thorough literature search was also made to supplement data from the present field survey and a checklist for species of Ganoderma in Cameroon was produced.

RESULTS

Species diversity

A total of 57 samples were examined morphologically representing 17 species. Of the 17 identifiable entities, 6 were identified with known species. The 11 others had affinities with existing species and appeared to be new to science. Two of these, G. rywardense and G. lobenense have been described as a new species (Kinge, 2012; Kinge and Mih, 2014).

Disease symptoms of Ganoderma on different hosts

Symptoms of Ganoderma disease was found on different hosts in the study area. This was evident with the presence of basidiocarp at the base of the stem in some cases. In oil palm, external symptoms observed included a one sided yellowing, or mottling of the lower fronds, followed by necrosis. The newly unfolded leaves were shorter than normal and chlorotic, and additionally the tips were necrotic in some plants. Also, with the progression of the disease within the plant, an overall pale appearance, with retarded growth was noticed and the spear leaves remain unopened. Dead desiccated fronds droop at the point of attachment to the trunk or fracture at some point along the rachis and hang down to form a skirt of dead leaves. There is also the creation of bole at the base of the trunk, after which the palm breaks and falls over. In Cassia sp., wilting of the leaves was observed followed by yellowing of the leaves, defoliation and finally dieback was observed in the crown. In Acacia sp., there was wilting of the leaves, death branches and finally death of the tree. Only basidiocarp formation was observed on Pinus sylvestris, Avocado sp. and several unidentified hardwood (Figure 2).
Figure 2. Symptoms of basal stem rot on different host caused by different Ganoderma species (A) Acacia sp., (B) Cassia sp., (C) Cassia sp., (D) Avocado sp., (E) oil palm, (F) HARDWOOD.

Table 1. Diversity of hosts and species of Ganoderma in south western Cameroon

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Species of Ganoderma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaeis guineensis</td>
<td>G. ryvardense, G. lobenense, G. chalceum, G. steyartanum, G. tomatum, G. zonatum, Ganoderma sp. 3</td>
</tr>
<tr>
<td>Cassia sp.</td>
<td>G. cupreum, G. ryvardense, G. weberianum, Ganoderma sp. 2, Ganoderma sp. 4</td>
</tr>
<tr>
<td>Acacia sp.</td>
<td>Ganoderma sp. 1</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>Ganoderma sp. 5</td>
</tr>
<tr>
<td>Avocado sp.</td>
<td>Ganoderma sp. 8</td>
</tr>
<tr>
<td>Unidentified hardwood</td>
<td>Ganoderma sp. 5, Ganoderma sp. 2, Ganoderma sp. 4, Ganoderma sp. 6, Ganoderma sp. 7, Ganoderma sp. 8, Ganoderma sp. 9</td>
</tr>
</tbody>
</table>

Natural range and distribution of species of Ganoderma

The plant species that were host to various species of Ganoderma are shown on Table 1. Of the 17 species obtained from the study area, eight were restricted to oil palm and nine species to ornamentals and forest trees. The species were well distributed except for species like G. lobenense, G. weberianum and Ganoderma species 1-9 with different affinities which were restricted to specific locations (Figure 3). There were six species reported in literature of which just one species, Ganoderma tomatum, was found in the present study.

Checklist of species of Ganoderma in Cameroon

Apart from the 17 species of Ganoderma collected from the study area, a review of the literature identified 8 other species from Cameroon, giving a total of 25 species of Ganoderma in Cameroon (Table 2).

DISCUSSION

The present study shows that 17 species of Ganoderma can be discerned based on comparative morphology. Comparative morphology remains the cheapest and most
available tool for identification in the developing economies. This is evident with many authors who have used comparative morphology to study the taxonomy of *Ganoderma* from Cameroon. For example, Turner (1981) reported the occurrence of *G. tornatum var. tornatum* from Cameroon but without specifying the locality. Nunez and Daniels (1999) identified *Ganoderma hildebrandii*, *G. lucidum* and *G. cf. multiplicatum* from the Dja biosphere reserve and recently, Douanla–Meli (2007) described *G. hildebrandii*, *G. lucidum* and *Ganoderma resinaceum* and *Ganoderma australe* from the Mbalmayo forest reserve.

This survey represents the first major investigation establishing a checklist of species of *Ganoderma* in Cameroon. A small number of collections have already been published, principally by different authors and are compared with the present study. We checked and studied a total of 57 collections representing 17 species of *Ganoderma* from the study area. Understanding
Table 2. Checklists of species of *Ganoderma* in Cameroon.

<table>
<thead>
<tr>
<th>Species name</th>
<th>Annotation</th>
<th>Host</th>
<th>Locality</th>
<th>Voucher no.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species identified in this study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganoderma chalceum</td>
<td>–</td>
<td>Elaeis guineensis</td>
<td>Bota</td>
<td>HKAS 58056</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma cupreum</td>
<td>–, #</td>
<td>Cassia sp.</td>
<td>Buea</td>
<td>PREM 60577</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma lobenense</td>
<td>+</td>
<td>Elaeis guineensis</td>
<td>Lobe</td>
<td>HKAS 58059</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma ryvardense</td>
<td>+</td>
<td>Elaeis guineensis, Cassia sp.</td>
<td>Dibombari, Mungo, Beneo, Bota, Ekona, Mononi, Buea</td>
<td>HKAS 58053</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma steyaertanum</td>
<td>–, #</td>
<td>Elaeis guineensis</td>
<td>Bai</td>
<td>HKAS 58052</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma tornatum</td>
<td>–</td>
<td>Elaeis guineensis</td>
<td>Bai</td>
<td>HKAS 58057</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma weberianum</td>
<td>–, #</td>
<td>Cassia sp.</td>
<td>Ekona, Buea</td>
<td>PREM 60587</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma zonatum</td>
<td>–, #</td>
<td>Elaeis guineensis</td>
<td>Lobe, Idenau</td>
<td>HKAS 58060</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 1</td>
<td>+</td>
<td>Elaeis guineensis, Pinus sylvestris</td>
<td>Ekona, Buea</td>
<td>PREM 60592</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 2</td>
<td>+</td>
<td>Cassia sp., unidentified hardwood</td>
<td>Bafia</td>
<td>PREM 60582</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 3</td>
<td>+</td>
<td>Elaeis guineensis</td>
<td>Lobe</td>
<td>PREM 60588</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 4</td>
<td>+</td>
<td>Cassia sp., Acacia sp., hardwood</td>
<td>Buea</td>
<td>PREM 60595</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 5</td>
<td>+</td>
<td>Acacia sp.</td>
<td>Buea</td>
<td>PREM 60576</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 6</td>
<td>+</td>
<td>Unidentified hardwood</td>
<td>Buea</td>
<td>PREM 60593</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 7</td>
<td>+</td>
<td>Unidentified hardwood</td>
<td>Buea</td>
<td>PREM 60594</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 8</td>
<td>+</td>
<td>Unidentified hardwood, Avocado sp.</td>
<td>Idenau, Bafia</td>
<td>PREM 60581</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Ganoderma sp. 9</td>
<td>+</td>
<td>Unidentified hardwood</td>
<td>Idenau</td>
<td>PREM 60596</td>
<td>Kinge, 2012</td>
</tr>
<tr>
<td>Species in earlier studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganoderma hildebrandii</td>
<td>–</td>
<td>Unidentified hardwood, on the ground</td>
<td>Dja, Mbalmayo forest reserves</td>
<td>MA38255</td>
<td>Nunez and Daniels, 1999</td>
</tr>
<tr>
<td>Ganoderma lucidum</td>
<td>–</td>
<td>Unidentified hardwood</td>
<td>Dja, Mbalmayo forest reserves</td>
<td>MA38189</td>
<td>Nunez and Daniels, 1999</td>
</tr>
<tr>
<td>Ganoderma cf. multiplicatum</td>
<td>–</td>
<td>Unidentified hardwood</td>
<td>Dja, Mbalmayo forest reserves</td>
<td>MA38262</td>
<td>Nunez and Daniels, 1999</td>
</tr>
<tr>
<td>Ganoderma resinaceum</td>
<td>–</td>
<td>Unidentified hardwood</td>
<td>Mbalmayo forest reserves</td>
<td>NS</td>
<td>Douana - Meli, 2007</td>
</tr>
<tr>
<td>Ganoderma australie</td>
<td>–</td>
<td>Unidentified hardwood</td>
<td>Mbalmayo forest reserves</td>
<td>NS</td>
<td>Douana - Meli, 2007</td>
</tr>
<tr>
<td>Ganoderma carocalcareus</td>
<td>–</td>
<td>Anthocleista nobilis</td>
<td>Mbalmayo forest reserves</td>
<td>DMC 322</td>
<td>Douana - Meli, 2007</td>
</tr>
<tr>
<td>Ganoderma colossum</td>
<td>–</td>
<td>Unknown</td>
<td>Yaounde forest</td>
<td>DCM</td>
<td>Mossebo, 2012</td>
</tr>
<tr>
<td>Ganoderma baudonii</td>
<td>–</td>
<td>Unknown</td>
<td>Yaounde forest</td>
<td>DCM</td>
<td>Mossebo, 2012</td>
</tr>
</tbody>
</table>

Species are annotated by: + = New species, – = known species and # = new records, NS = not stated.
the taxonomic status of species of Ganoderma in Cameroon, it is confirmed that till date, 25 valid species, some with affinities have been reported from Cameroon of which 17 species are reported in the present study. The work facilitates the understanding of species diversity of Ganoderma from Cameroon. Due to the high variability of morphological characters, the genus Ganoderma has been described as a fairly character poor genus by Moncalvo and Ryvarden (1997) and Douanla-Meli and Langer (2009).

As per the study, E. guineensis, Cassia sp., unidentified hardwood, Acacia sp. and P. sylvestris were found to be most susceptible hosts to species of Ganoderma. Oil palms of the CDC plantation were the most susceptible and showed high incidence of infection causing threat to the plantation. Seven species of Ganoderma (G. ryvardense, G. lobenense, G. tornatum, G. chalceum, G. steyaertanum, G. zonatum and Ganoderma sp. 3) were found associated with basal stem rot disease of oil palm. Six species out of the seven species were found to be host specific and found only in association with oil palm while G. ryvardense had dual host distribution because it was found to be pathogenic on oil palm and Cassia sp. Other species of Ganoderma encountered in the study area on landscape plants such as (Acacia sp., Cassia sp., P. sylvestris), unidentified hardwood, and forest trees are G. cupreum, G. weberianum and Ganoderma species with different affinities.

Species of Ganoderma have traditionally been reported to be a problem on oil palm and thus of economic importance to agriculture (Utomo and Niepold, 2000; Utomo et al., 2005). The present study showed that members of this genus can be of significant importance in horticulture, infecting landscape plants (Pinus sp., Acacia sp., Cassia sp.) and fruit trees (Avocado). They can also be of importance in forestry. Whereas some species were host-specific; others attached more than one host. This showed that the diseases caused by Ganoderma could rise to epidemic proportions as was observed in Mungo. Our study and observations strongly suggested that there is a dearth of information on Ganoderma species diversity and distribution in Cameroon, emphasizing the point made by Douanla-Meli and Langer (2009) about the poor state of knowledge on macrofungi in Cameroon. The checklist presented in this study contains only those Ganoderma taxa for which a reasonably confident identification has been obtained. G. tornatum and G. chalceum are known records for Cameroon. Ganoderma weberianum, Ganoderma cupreum, Ganoderma steyaertanum and Ganoderma zonatum are new records for Cameroon. Ganoderma ryvardense, Ganoderma lobenense, and Ganoderma species 1-9 with different affinities might be new to science and some are supported with molecular data.

The distribution of some species of Ganoderma at certain sites and hosts and not in others may be due to dispersal, if spores have just begun and they have not had enough time to expand their range into other habitats. It might also be because the species are habitat specific or because the viability of their spore is short. The species were well distributed except for species like viz. G. lobenense, G. weberianum and Ganoderma species with different affinities which are restricted to specific locations and hosts. The abundance of certain species such as G. ryvardense might be due to the fact that spores have acquired the capacity to remain dormant during unfavourable periods. Symptoms of basal stem rot disease on different hosts were evident on Cassia sp., Acacia sp., Avocado sp., E. guineensis, Pinus sylvestris and many unidentified hardwood. Different species of Ganoderma have been reported as the causal agents for basal stem rot disease of oil palm in Malaysia, Indonesia, Papua New Guinea and Cameroon. The most widely reported fungi associated with root-rot disease of tropical Acacia are species of Ganoderma (Glen et al., 2006). In Papua New Guinea an unnamed Ganoderma species was associated with root and butt rot in a plantation of Acacia mangium (Arentz and Simpson, 1988) and a sporocarp of G. weberianum (Bres. & Henn. ex Sacc.) Steyaert was also collected from a decayed stump in this plantation. This shows that species of Ganoderma have diverse hosts.

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGEMENTS

This study was supported, in part, by a Grant from the Rufford Foundation, UK for field work and Tree Protection Cooperative Program in Forestry and Agricultural Biotechnology Institute of the University of Pretoria, South Africa and TWAS-CAS for laboratory work.

REFERENCES

Douanla-Meli C, Langer E (2009); Ganoderma carocalcareus sp. nov.

Journal of Yeast and Fungal Research

Related Journals Published by Academic Journals:

- African Journal of Agricultural Research
- African Journal of Environmental Science & Technology
- Biotechnology & Molecular Biology Reviews
- African Journal of Biochemistry Research
- African Journal of Microbiology Research
- African Journal of Food Science
- African Journal of Pharmacy & Pharmacology
- African Journal of Biotechnology
- Scientific Research and Essays