ABOUT JEN

The Journal of Entomology and Nematology (JEN) (ISSN: 2006-9855) is published monthly (one volume per year) by Academic Journals.

Journal of Entomology and Nematology (JEN) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as applications of entomology in solving crimes, taxonomy and control of insects and arachnids, changes in the spectrum of mosquito-borne diseases etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JEN are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email jen@academicjournals.org.

With questions or concerns, please contact the Editorial Office at jen@academicjournals.org.
Editors

Dr. Mukesh K. Dhillon
ICRISAT
GT-Biotechnology, ICRISAT, Patancheru 502 324, Andhra Pradesh, India

Dr. Lotfalizadeh Hosseinali
Department of Insect Taxonomy
Iranian Research Institute of Plant Protection
Tehran, P. O. B. 19395-1454, Iran

Prof. Liande Wang
Faculty of Plant Protection,
Fujian Agriculture and Forestry University
Fuzhou, 350002, P.R. China

Dr. Raul Neghina
Victor Babes University of Medicine and Pharmacy
Timisoara, Romania

Prof. Fukai Bao
Kunming Medical University
191 Western Renmin Road, Kunming, Yunnan, PR of China

Dr. Anil Kumar Dubey
Department of Entomology,
National Taiwan University, Sec. 4, Lane 119, Taipei, Taiwan 107

Dr. Mona Ahmed Hussein
National Research Centre, Centre of Excellence for Advanced Sciences, El-Behooth Street, Dokki, Cairo, Egypt

Associate Editors

Dr. Sam Manohar Das
Dept. of PG studies and Research Centre in Zoology, Scott Christian College (Autonomous), Nagercoil – 629 003, Kanyakumari District, India

Dr. Leonardo Gomes
UNESP

Dr. J. Stanley
Vivekananda Institute of Hill Agriculture
Indian Council of Agricultural Research, Almora–263601, Uttarakhand, India

Dr. Ramesh Kumar Jain
Indian Council of Agricultural Research, Division of Nematology, IARI
New Delhi-110012 India

Dr. Hasan Celal Akgul
Istanbul Plant Quarantine Service, Nematology Laboratory
Halkali Merkez Mahallesi, Halkali Caddesi, No:2, 34140 Halkali, Kucukcekmece-Istanbul Turkey

Dr. James E. Cilek
Florida A & M University
4000 Frankford Avenue, Panama City, Florida 32405 USA

Dr. Khan Matiyr Rahaman
Bidhan Chandra Krishi Viswavidyalaya
AICRP (Nematode), Directorate of Research, BCKV, PO. Kalyani, Dist. Nadia, PIN-741235, West Bengal, India

Manas Sarkar
Defence Research Laboratory (DRDO, Ministry of Defence, Govt. of India)
Post Bag No.2, Tezpur-784001, Assam, India
Mehdi Esfandiari
Department of Plant Protection
College of Agriculture,
Shahid Chamran University of Ahvaz,
Ahvaz, Iran

Prof. Dr. Mahfouz M. M. Abd-Elgawad
Nematology Laboratory
Department of Phytopathology
National Research Center El-Tahrir St., Dokki 12622, Giza,
Egypt

Matthew S. Lehnert
Department of Entomology, Soils, & Plant Sciences
Clemson University, Clemson,
United States

Wenjing Pang
3318 SE 23rd Avenue
Gainesville, FL 32641
Agronomy and Biotechnological College,
China Agricultural University, Beijing,
China

Dr. G. Shyam Prasad
Directorate of Sorghum Research (DSR),
Rajendranagar, Hyderabad 500030, AP,
India

Dr. Rashid Mumtaz
Date Palm Research
Plant Protection Department
Food & Agricultural Sciences
King Saud University, Riyadh
Kingdom of Saudi Arabia

Dr. D. N. Kambrekar
Regional Agricultural Research Station,
UAS Campus, PB. No. 18,
Bijapur-586 101 Karnataka-INDIA
India

Dr. P. Pretheep Kumar
Department of Forest Biology
Forest College & Research Institute
Tamil Nadu Agricultural University
Mettupalayam – 641 301
Tamil Nadu, India

Dr. Raman Chandrasekar
College of Agriculture Entomology
S-225, Agriculture Science Center
University of Kentucky
Lexington, KY 40546-0091
USA.

Dr. Rajesh Kumar
Central Muga Eri Research and Training Institute
Lahdoigarh, Jorhat-785700, Assam,
India

Editorial Board

Godwin Fuseini
International SOS Ghana,
Newmont Ghana Gold,
Ahafo mine,
Ghana.

Dr. Waqas Wakil
Department of Agriculture Entomology,
University of Agriculture, Faisalabad,
Pakistan

Gilberto Santos Andrade
Universidade Federal de Viçosa
Avenida Peter Henry Rolfs, s/n Campus Universitário
36570-000
Viçosa - MG - Brazil

Ricardo Botero Trujillo
Calle 117 D # 58-50 apto. 515
Pontificia Universidad Javeriana, Bogotá,
Colombia

Dr. Raman Chandrasekar
College of Agriculture Entomology
S-225, Agriculture Science Center
University of Kentucky
Lexington, KY 40546-0091
USA.

Dr. Rajesh Kumar
Central Muga Eri Research and Training Institute
Lahdoigarh, Jorhat-785700, Assam,
India
Prof. Ding Yang
Department of Entomology,
China Agricultural University,
2 yuanmingyuan West Road, Haidian,
Beijing 100193, China

Dr. Harsimran Gill
University of Florida
970 Natural Area Drive, PO Box 110620,
Gainesville, Florida- 32611

Dr. Mehdi Gheibi
Department of Plant Protection,
College of Agriculture, Shiraz Islamic
Azad University, Shiraz, Iran

Dr. Nidhi KakKar
University College, Kurukshetra University,
Kurukshetra, Haryana, India

Dr. Marianna I. Zhukovskaya
Schenov Institute of Evolutionary Physiology
and Biochemistry, Russian Academy of Sciences
44 Thorez Ave, 194223,
Saint-Petersburg, Russia

Gaurav Goyal
University of Florida
282#14 Corry village,
Gainesville, FL 32603, USA

Gilberto Santos Andrade
Universidade Federal de Viçosa
Avenida Peter Henry Rolfs,
s/n Campus Universitario
36570-000 Vicosã - MG - Brazil

Joshi Yadav Prasad
Gyanashwor Kathmandu, Nepal
G P O Box: 8975 EPC:
5519, Kathmandu, Nepal
India

Baoli Qiu
Department of Entomology,
South China Agricultural University
No 483, Wushan Road, Tianhe, Guangzhou,
PR China 510640

T. Ramasubramanian
Central Research Institute for Jute and Allied Fibres
(Indian Council of Agricultural Research)
Barrackpore, Kolkata – 700 120,
India

Leonardo Gomes
UNESP Av. 24A, n 1515, Depto de Biologia,
IB, Zip Code: 13506-900, Rio Claro,
SP, Brazil.

Hasan Celal Akgul
Istanbul Plant Quarantine Service,
Nematology Laboratory
Halkali Merkez Mahallesi,
Halkali Caddesi, No:2, 34140 Halkali,
Kucukcekmece-Istanbul/Turkey

J. Stanley
Vivekananda Institute of Hill Agriculture
Indian Council of Agricultural Research,
Almora– 263601, Uttarakhand, India

Atef Sayed Abdel-Razek
National Research Centre,
Dept. of Plant Protection
El-Tahrir Street, Dokki, Cairo, Egypt
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:
Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Entomology and Nematology is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2015, Academic Journals.
All rights reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JEN, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Sources and abundance of fungi with entomopathogenic potential for control of the cowpea pod borer, *Maruca vitrata* Fab. in Ibadan, Nigeria
Omoloye, Adebayo Amos, Ajifolokun, Adesola Oluwabunmi, and Tobih, Francis Okeremute

Adult emergence percentage from irradiated fruit flies, *Bactrocera zonata* and *Bactrocera cucurbitae* pupae
Muhammad Naveed, Muhammad Jalal ARIF and Nazir Ahmad
Sources and abundance of fungi with entomopathogenic potential for control of the cowpea pod borer, *Maruca vitrata* Fab. in Ibadan, Nigeria

Omoloye, Adebayo Amos\(^1\)*, Ajifolokun, Adesola Oluwabunmi\(^1\), and Tobih, Francis Okeremute\(^2\)

\(^1\)Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria.
\(^2\)Department of Agronomy, Faculty of Agriculture, Delta State University, Asaba, Nigeria.

Received 20 February, 2015; Accepted 20 April, 2015

The potential sources and abundance of naturally occurring entomopathogenic fungi with bio-control potential against the cowpea pod borer, *Maruca vitrata*, were investigated by adapting the Galleria bait method. Soil samples from five sites: Cow-stead, Piggery and Poultry sites as well as Crops Research Garden (CRG) and Practical Year Training Programme (PYTP) farm for arable crops of the University of Ibadan were used in the study. Soil samples from the different sites and 2\(^{nd}\) instar larvae that were exposed to the samples of the different soils were assessed for occurrence and abundance of the fungi following standard procedures. Results show nine fungi species from soil samples and seven fungi species to be associated with dead larvae of *M. vitrata*. The most abundant fungi in the soil and dead larvae were *Rhizopus* sp. and *Fusarium* sp. while the most abundant fungus with known entomopathogenic potential was *Beauveria bassiana* followed by *Trichoderma* and *Penicillium* spp. The best sources for collection of the entomopathogenic fungi were the arable crop farms of the PYTP and the CRG sites where active farming activities carried out.

Key words: Entomopathogenic fungi, *Beauveria bassiana*, *Trichoderma* and *Maruca vitrata*.

INTRODUCTION

The pod borer, *Maruca vitrata* is a major field pest of Cowpea, *Vigna unguiculata* (L.) Walp., causing severe yield losses in Nigeria. The challenges posed by this and other field insect pests have constrained many cowpea farmers to apply synthetic pesticides in order to obtain good yield (Abate and Ampofo, 1996; Atachi, 1998; Adipala et al., 2000; Adu-Dapaah et al., 2005; Adati et al., 2007). However, the use of synthetic pesticides is being
discouraged due to threat to human, livestock and environmental health (Ton et al., 2000; Thundyiyil et al., 2008; Thiam and Touni, 2009).

There is currently a growing concern among farmers and other stakeholders to search for and develop environmentally friendly pest management options that would be sustainable and capable of minimizing pre-harvest losses and enhance production. The use of biological agents especially fungal entomopathogens such as Beauveria bassiana; Lecanicillium lecanii, Paecilomyces farinosus and Paecilomyces variotii (Gottwald and Tedders, 1984; Hallsworth and Magan, 1999; Vega et al., 2008); via well coordinated pest management programme has proved to be effective and environmentally safe in managing some pests of crops (Balogun and Fagade, 2004). Among these, B. bassiana is reputed to be one of the most widely used entomopathogens for control of many insect pest of crops such as stem borers, beetles, aphids, mites, termites, white flies, mealy bugs and thrips especially via exogenous application as spray formulations (Feng et al., 1994; Shah and Pell, 2003; Tefera and Vidal, 2009).

Aside their comparable effectiveness, the various risk factors associated with the use of chemical insecticides such as development of resistance, pest resurgence, residues accumulation in food chain, environmental and human health risks and high costs have driven scientist and farmers to intensify the quest for alternative strategies via using entomopathic organisms for pest management. This has necessitated the need to search for local biotic agents with potential for control of destructive crop pests. The objective of this study therefore is to bioprospect for fungi with entomopathogenic potential via isolation and identification of pathogenic species, their abundance and sources in the local community where local isolates and strains could be readily obtained for research and possible adoption for pest management.

MATERIALS AND METHODS

Study site

Investigations were conducted in the Entomology and Pathology Research laboratories of the Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, at ambient conditions of 65 ± 5% relative humidity and temperature of 27 ± 3°C.

Sources of larvae and culture media

The second instar larvae of M. vitrata as well as the artificial diet and fresh cowpea pods used in the study were obtained from the International Institute for Tropical Agriculture (IITA), Ibadan. The fresh pods used were plucked from the susceptible cowpea variety - tvs3236. The artificial diet was composed from cowpea flower variety - tvs3236; wheat germ flour, sugar, salt mix, ascorbic acid, potato dextrose agar (PDA) and stock solution. The stock solution consisted of acetic acid, formaldehyde, vitamin suspensions, choline chloride and potassium hydroxide (Aderanti, 2013; Personal comm. IITA Ibadan, Nigeria).

Soil sample collection

Potentially, fungi infected soil samples (200 g) were purposefully taken from five different sites with different history of use in the University of Ibadan namely: (A) Piggery Unit of the Teaching and Research Farm (TRF); (B), Poultry Unit of the TRF; (C), the Cow stand site of the TRF; (D), the Crop Research Garden (CRG) of the Department of Crop Protection and Environmental Biology (CPEB) and (E) the Practical Year Training Programme (PYTP) farm site. All were evaluated in four replicates for abundance and diversity of naturally occurring fungi with entomopathogenic potential following standard procedures.

Isolation of fungi from soil samples

Suspension of soil samples collected from each site was prepared by addition of 1 g soil into 9 ml of sterile distilled water and admixing thoroughly. Thereafter, Serial dilutions (10^{-1} to 10^{-5}) of the prepared soil suspensions were made. One millilitre each of the three (10^{-3}, 10^{-4} and 10^{-5}) dilutions was poured into sterile Petri dish which was mixed with cooled Potato dextrose agar (PDA) supplemented with lactic acid to avoid bacterial growth and sterilized for 20 min at 121°C. Four replications were used for each dilution level. The plates were sealed with parafilm before incubation at 25°C for 7 days. Fungi species isolated were identified and pure cultures were obtained by a subsequent re-isolation by adapting the method used by Mohammadbeigi and Port (2013).

Isolation of fungi from infected larvae of Maruca vitrata

A 200 g sample of each soil sample collected from the various sites already described was weighed and replicated four times. The samples were re-moisturized to 60% water holding capacity with distilled water before fresh cowpea pods of the susceptible variety TVS-3236 were placed on them. Adapting the galleria bait method described by Zimmerman (1986), five 2^{nd} instar larvae of M. vitrata were introduced into each of the soil samples using a camel hair brush. The larvae were left to feed on the fresh cowpea pods placed on the different soil substrates and examined daily till they died. The dead larvae were retrieved; surface sterilized with 1% sodium hypochlorite and rinsed in three washings of sterile distilled water at the Pathology Laboratory, Department of CPEB. Thereafter, the larvae were placed initially on sterile whatman No 1 filter paper before being plated on PDA which had been sterilized for 20 min at 121°C and supplemented with lactic acid to prevent bacterial growth. The plates were sealed with parafilm. Fungal pathogens isolated were identified and pure cultures were obtained as already described.

Data analysis

The experimental design for all trials was completely randomized. Data on number of cfu/ml of samples were analyzed using the analysis of variance (ANOVA) and the mean values were compared by the Least Significant Difference test (P ≤ 0.05) using SAS statistical software.
Occurrence and abundance of fungi associated with dead larvae of *Maruca vitrata* and soil samples in the University of Ibadan, Nigeria

The occurrence and abundance of fungi associated with each soil sample and the dead larvae of *M. vitrata* from each of the soil samples varied significantly as presented in Table 1. A total of nine species were encountered on both soil and insect larvae exposed to the soil tested. All the nine species were detected in the soil samples whereas only seven fungi species were detected in the dead larvae from each soil sample. In addition, the nine species detected in the soil were from five families and three orders (Table 1) while all the fungal species except *B. bassiana* and *Fusarium* sp. were detected on the dead larvae. The most abundant fungus in the soil was *Rhizopus* sp. (9.03 cfu/ml) and was significantly higher (P<0.05) than *Fusarium* sp. (6.28 cfu/ml) > *Aspergillus niger* (5.82 cfu/ml) > *A. flavus* (5.55 cfu/ml) > *B. bassiana* (5.02 cfu/ml) > *Penicillium* sp. (4.39 cfu/ml) > *A. terreus* (4.02 cfu/ml) > *A. ochraceus* (3.05 cfu/ml). In the dead larvae however, the seven species found were from four orders and three families (Table 1). The most abundant species detected on the dead larvae was *A. niger* (6.82 cfu/ml) > *A. terreus* (5.82 cfu/ml) > *A. flavus* (5.39 cfu/ml) > *A. ochraceus* (5.51 cfu/ml) > *Rhizopus* sp. (4.59 cfu/ml) > *Penicillium* sp. (3.02 cfu/ml). The coefficient of variation for soil was 58.9% while for the dead larvae it was 43.7%, indicating that fungal pathogens were better dispersed on the insect larvae than in the soil samples.

Table 1. Occurrence of fungi in samples of soil and dead larvae of *Maruca vitrata* raised on different soil samples in Ibadan.

<table>
<thead>
<tr>
<th>Fungi</th>
<th>Order</th>
<th>Family</th>
<th>Mean number of cfu/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus niger</td>
<td>Eurotiales</td>
<td>Trichocomaceae</td>
<td>5.82±2.60</td>
</tr>
<tr>
<td>A. flavus</td>
<td>Eurotiales</td>
<td>Trichocomaceae</td>
<td>5.55±2.21</td>
</tr>
<tr>
<td>A. terreus</td>
<td>Eurotiales</td>
<td>Trichocomaceae</td>
<td>4.02±1.75</td>
</tr>
<tr>
<td>A. ochraceus</td>
<td>Eurotiales</td>
<td>Trichocomaceae</td>
<td>3.05±1.08</td>
</tr>
<tr>
<td>Rhizopus sp.</td>
<td>Mucorales</td>
<td>Mucoraceae</td>
<td>9.03±3.63</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Hypocreales</td>
<td>Clavicipitaceae</td>
<td>5.02±2.20</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>Hypocreales</td>
<td>Hypocreaceae</td>
<td>4.39±1.17</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td>Eurotiales</td>
<td>Trichocomaceae</td>
<td>4.42±1.84</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>Hypocreales</td>
<td>Nectriaceae</td>
<td>6.28±2.32</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>10.93</td>
<td>3.16</td>
<td></td>
</tr>
<tr>
<td>CV%</td>
<td>58.9%</td>
<td>43.7%</td>
<td></td>
</tr>
</tbody>
</table>

cfu = Colony forming units.

RESULTS

Occurrence and abundance of fungi associated with dead larvae of *Maruca vitrata* and soil samples from selected sites in the University of Ibadan

From the total of nine fungi isolated and identified in the soil substrates from the different sites (Table 1); only the soil samples from the PYTP and the Poultry site had the full complement of all the nine fungi. Eight were detected in each of the soils from Piggery, Cowstead and the CRG sites (Table 2). The most abundant fungus in soil from the PYTP site was *Rhizopus* sp. (10.58 cfu/ml), followed by *A. niger* (9.76 cfu/ml), while the most abundant fungus at the Poultry site was *Aspergillus flavus* (9.57 cfu/ml) followed by *Rhizopus* sp. (8.20 cfu/ml). Similarly, the most abundant fungus in the Cowstead soil sample was *Rhizopus* sp. (9.05 cfu/ml) followed by *A. niger* (7.98 cfu/ml). *Rhizopus* sp. (9.67 cfu/ml) and *Trichoderma* sp. (6.88 cfu/ml) were the most abundant fungi in soil samples from the Piggery and CRG sites respectively. Apart from *A. ochraceus* and *Trichoderma* sp. with significantly higher number of colony forming units from the PYTP soil sample; the difference between the number of colony forming units of *A. ochraceus* and *Trichoderma* sp. from all the samples were not significant. The differences in the number of colony forming units in *A. flavus*, *A. terreus* and *Rhizopus* sp. were also not significant (P>0.05) on the soil samples from the piggery site but these were significantly higher compared to other fungi species. Similarly, the differences in the number of colony forming units of the different fungi in the soil sample from the poultry site were not significantly different (P>0.05) except for *Trichoderma* sp. and *Penicillium* sp. Similarly, differences...
Table 2. Occurrence and abundance of fungi in soil samples from selected sites in Ibadan

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Mean cfu/ml</th>
<th>LSD(0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PYTP</td>
<td>Cow stead</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>9.76±3.65*</td>
<td>7.98±1.25</td>
</tr>
<tr>
<td>A. flavus</td>
<td>2.53±1.14</td>
<td>5.66±2.50</td>
</tr>
<tr>
<td>A. terreus</td>
<td>4.52±1.13</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>A. ochraceus</td>
<td>6.98±2.95</td>
<td>3.43±2.16</td>
</tr>
<tr>
<td>Rhizopus sp.</td>
<td>10.58±3.42</td>
<td>9.05±2.25</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>7.65±2.30</td>
<td>3.56±1.75</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>5.42±1.67</td>
<td>4.63±1.89</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>3.18±0.85</td>
<td>6.05±3.00</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td>6.38±2.34</td>
<td>5.64±2.50</td>
</tr>
<tr>
<td>LSD(0.05)</td>
<td>4.75</td>
<td>2.55</td>
</tr>
</tbody>
</table>

cfu = Colony forming units.

Table 3. Occurrence of fungi on dead larvae raised on cowpea pods on soils from different sites in Ibadan.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Mean abundance (cfu/ml)</th>
<th>LSD(0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PYTP</td>
<td>Cow stead</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>5.05±2.10</td>
<td>13.7±5.20</td>
</tr>
<tr>
<td>A. flavus</td>
<td>7.75±4.50</td>
<td>4.43±2.50</td>
</tr>
<tr>
<td>A. terreus</td>
<td>5.23±2.65</td>
<td>9.33±3.75</td>
</tr>
<tr>
<td>A. ochraceus</td>
<td>2.56±3.10</td>
<td>9.43±3.80</td>
</tr>
<tr>
<td>Rhizopus sp.</td>
<td>3.65±0.75</td>
<td>2.70±1.10</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>2.16±1.94</td>
<td>3.19±2.35</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td>4.00±1.95</td>
<td>3.10±1.20</td>
</tr>
<tr>
<td>LSD(0.05)</td>
<td>4.22</td>
<td>4.51</td>
</tr>
</tbody>
</table>

cfu = Colony forming units.

between the numbers of colony forming units of all the fungi detected from the CRG samples were not significant except for A. niger, A. ochraceus and Fusarium sp. However, the concentration of A. niger from the PTYP and the Cowstead was significantly higher than those found on other substrates (Table 2). The number of the colony forming units of B. bassiana and Trichoderma sp. found was significantly higher on the PTYP soil sample (7.65 cfu/ml) followed by the Crop Garden (6.53 cfu/ml) than on all other samples.

Occurrence of fungi on dead larvae of *Maruca vitrata* raised on cowpea pods placed on soils from different sites in the University of Ibadan

A total of seven fungi: *Rhizopus* sp., *A. terreus*, *A. niger*, *Trichoderma* sp., *A. ochraceus*, *Penicillium* sp. and *A. flavus* were detected on all the samples (Table 3). *A. flavus* was the most abundant on the larvae from pods on the PTYP site soil sample while *A. niger* was the most abundant on the larvae from pods from the Cowstead site (13.7 cfu/ml). Similarly, the most abundant fungi on the larvae from pods from the Poultry site (7.25 cfu/ml) was *A. ochraceus* while *A. flavus* was the most abundant on the larvae raised on the soil from the Piggery site (7.78 cfu/ml). *Rhizopus* sp. was the most abundant on larvae from soil samples from the CRG. From this study, the sites from which the soil samples were taken did not significantly influence the number of colony forming units of the detected fungi. For example, the number of cfu of the different fungi detected on the larvae from the pods raised on PYTP soil was not significantly different from those from the other sites except for *A. flavus*, *A. ochraceus* and *Trichoderma* sp. Yet, the number of CFUs of *A. niger* on the pods from Cowstead site varied significantly, although only *A. flavus* and *A. terreus* had significant higher number of the cfu compared to other
The abundance of fungal species at different dilution levels (%)

Table 4. Abundance of fungi species at different dilution levels.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Mean abundance (cfu/ml) / dilution level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10<sup>3</sup></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>3.60±1.25</td>
</tr>
<tr>
<td>A. flavus</td>
<td>1.05±0.79</td>
</tr>
<tr>
<td>A. terreus</td>
<td>4.70±1.04</td>
</tr>
<tr>
<td>A. ochraceus</td>
<td>2.05±0.98</td>
</tr>
<tr>
<td>Rhizopus sp.</td>
<td>6.15±1.04</td>
</tr>
<tr>
<td>Beauveria sp.</td>
<td>1.65±0.54</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>2.25±0.65</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td>1.20±0.45</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>1.35±0.29</td>
</tr>
<tr>
<td>LSD<sub>(0.05)</sub></td>
<td>2.17</td>
</tr>
</tbody>
</table>

Effect of serial dilution on the abundance of fungal pathogens from soil substrate and dead larvae of *Maruca vitrata* in University of Ibadan

The number of cfu/ml of fungi detected in soils from different sites in Ibadan reduced significantly with increase in the dilution levels of the samples except for *A. flavus* and *A. ochraceus* (Table 4). The abundance which was determined by the number of colony forming units (cfu) of each of the detected fungi was highest at 10³ followed by 10⁴ and 10⁵. At the dilution level 10³, the most abundant fungus was *Rhizopus* sp. (6.15 cfu/ml) followed by *A. terreus* (4.70 cfu/ml) > *A. niger* (3.60 cfu/ml). Similarly, at 10⁴ dilution level, the most abundant fungus was still *Rhizopus* sp. (4.90 cfu/ml) followed by *A. niger* (3.50 cfu/ml) (Table 4). Although the number of cfu at the highest dilution level of 10⁵ was comparatively lower than the lower dilution levels, the most abundant fungus at 10⁵dilution level was *Rhizopus* sp. (3.65 cfu/ml) followed by *A. niger* (1.30 cfu/ml) (Table 4). However, the intra-species difference between the number of cfu/ml of *Rhizopus* sp. at different dilution levels of 10³ and 10⁴ were not significant (P>0.05) but comparatively, the differences between the number of cfu at 10³ and 10⁴ dilution levels of different species: *Rhizopus* sp., *Penicillium* sp. and *Fusarium* sp. were significant (P<0.05) (Table 4).

Identification of sources and abundance of fungal isolates with entomopathogenic potential and their sources

The abundance of four fungal isolates with records of potential pathogenicity on other organisms: *Trichoderma* sp., *Penicillium* sp., *B. bassiana* and *A. niger* at different concentration levels and their sources in the University of Ibadan are presented in Tables 5 to 8. The best source for *Trichoderma* sp. as depicted by significantly higher number of cfu/ml was the PYTP site followed by the CRG (Table 5). The number of colony forming units of *Trichoderma* sp. at the different soil dilution levels varied and was highest (P<0.05) in the soil sample from PYTP (6.50 cfu/ml) at 10³ dilution level compared to the other
Table 6. Abundance of *Penicillium* sp. in soil samples from different sites at different dilution levels.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean abundance/ dilution level (cfu/ml) (n=4)</th>
<th>(10^3)</th>
<th>(10^4)</th>
<th>(10^5)</th>
<th>LSD(_{0.05})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTP</td>
<td></td>
<td>0.75±0.15</td>
<td>2.25±1.14</td>
<td>0.00±0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Cow stead</td>
<td></td>
<td>2.00±0.56</td>
<td>0.00±0.00</td>
<td>0.75±0.25</td>
<td>0.92</td>
</tr>
<tr>
<td>Piggery</td>
<td></td>
<td>2.50±1.00</td>
<td>1.25±0.47</td>
<td>0.25±0.10</td>
<td>1.42</td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td>3.00±2.05</td>
<td>2.50±0.78</td>
<td>0.50±0.02</td>
<td>1.98</td>
</tr>
<tr>
<td>Crop garden</td>
<td></td>
<td>3.00±0.95</td>
<td>2.50±1.40</td>
<td>0.00±0.00</td>
<td>1.83</td>
</tr>
<tr>
<td>LSD(_{0.05})</td>
<td></td>
<td>1.20</td>
<td>0.50</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Abundance of *Beauveria bassiana* in samples from different locations at different dilution levels

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean Abundance/ dilution level (cfu/ml) (n=4)</th>
<th>(10^3)</th>
<th>(10^4)</th>
<th>(10^5)</th>
<th>LSD(_{0.05})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTP</td>
<td></td>
<td>2.25±0.72</td>
<td>2.00±0.78</td>
<td>1.25±0.10</td>
<td>1.83</td>
</tr>
<tr>
<td>Cow stead</td>
<td></td>
<td>1.00±0.10</td>
<td>1.25±0.95</td>
<td>2.25±0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>Piggery</td>
<td></td>
<td>16.25±4.36</td>
<td>12.75±3.98</td>
<td>8.50±2.30</td>
<td>14.17</td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td>6.50±2.89</td>
<td>7.25±2.58</td>
<td>6.25±2.78</td>
<td>6.67</td>
</tr>
<tr>
<td>Crop garden</td>
<td></td>
<td>0.00±0.00</td>
<td>0.25±0.10</td>
<td>2.25±0.96</td>
<td>0.83</td>
</tr>
<tr>
<td>LSD(_{0.05})</td>
<td></td>
<td>6.15</td>
<td>4.90</td>
<td>3.65</td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Abundance of *Aspergillus niger* in samples from different locations at different dilution levels.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean Abundance / dilution level (cfu/ml)</th>
<th>(10^3)</th>
<th>(10^4)</th>
<th>(10^5)</th>
<th>LSD(_{0.05})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTP</td>
<td></td>
<td>5.00±3.10</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>1.67</td>
</tr>
<tr>
<td>Cow stead</td>
<td></td>
<td>6.00±2.45</td>
<td>8.50±2.96</td>
<td>0.50±0.25</td>
<td>5.00</td>
</tr>
<tr>
<td>Piggery</td>
<td></td>
<td>2.50±1.20</td>
<td>6.00±3.95</td>
<td>4.50±1.60</td>
<td>4.33</td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td>1.50±0.95</td>
<td>2.25±1.00</td>
<td>4.20±1.20</td>
<td>2.70</td>
</tr>
<tr>
<td>Crop garden</td>
<td></td>
<td>4.50±2.10</td>
<td>3.00±1.00</td>
<td>1.50±1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>LSD(_{0.05})</td>
<td></td>
<td>3.60</td>
<td>3.50</td>
<td>1.30</td>
<td></td>
</tr>
</tbody>
</table>

cfu - Colony forming Units.

sites (Table 5). Similarly, the cfu/ml of *Trichoderma* sp. was also higher at \(10^4\) and \(10^5\) dilution levels in the soil samples from the PYTP than the cfu on other sites. *Trichoderma* sp. was not detected in all soil samples from the piggery unit; but was detected at \(10^3\) only in the soil sample from the Cowstead. The abundance of *Penicillium* sp. in soils from different sites at also varied significantly at the different dilution levels. *Penicillium* sp. was detected and isolated from all the soil substrates (Table 6) but mean abundance in cfu/ml was comparatively lower than the cfu of *Trichoderma* sp. from all the sites. At \(10^3\), *Penicillium* sp. was most abundant in soil samples from both the Poultry unit (3.00 cfu/ml) and CRG (3.00 cfu/ml). However, the fungus was not found in the soil samples from the Cowstead at \(10^4\) and in the soil samples from the PYTP and CRG at \(10^5\). *B. bassiana* was detected and isolated from all the soil samples although significantly highest in the sample from Piggery at all dilution levels: 16.25 cfu/ml at \(10^3\); 12.75 cfu/ml at \(10^4\) and 8.50 cfu/ml at \(10^5\) compared to other sites (Table 7). Interestingly, the occurrence of *A. niger* recorded in the soil samples from poultry site increased
with the dilution level from 1.50 cfu/ml at 10^{-3} to 2.25 cfu/ml at 10^{-4} to 4.20 cfu/ml at 10^{-5}. However, the number of cfu/ml of *A. niger* (6.00) was significantly highest at 10^{-3} dilution level in the sample from the Cowstead site followed by PYTP (5.00) > Crop garden (4.50) > Piggery (2.50) > Poultry (1.50).

DISCUSSION

This study has demonstrated the possibility of obtaining local strains of entomopathogenic fungi with potential for adoption for the management of *M. vitrata* on cowpea and other insect pests of cowpea or other crops as well. Although the most abundant fungi found in this study irrespective of the sources were *Rhizopus* and *Fusarium* species, the occurrence of the other fungi with entomopathogenic or pesticidal potential especially *B. bassiana*, *Penicillium* sp. and *Trichoderma* sp. could also be readily obtained locally. This suggests that many pests especially insects could be easily managed with the well adapted local strains of entomopathogenic pathogens either singly or in an integrated pest management programme if properly harnessed (Sapna et al., 2010). Several studies had indicated and confirmed the effectiveness of entomopathogens especially *B. bassiana* and *Trichoderma* spp. as effective for control of several crop insect pests (Hajek and St. Leger, 1994; Ekesi et al., 2002; Balogun and Fagade, 2004; Enrique and Alain 2004; Fan et al., 2007; Vega et al., 2008). This study has also revealed that the PYTP, piggery and the CRG soils among others had the highest concentration of the entomopathogens – *B. bassiana*, *Penicillium* sp. and *Trichoderma* sp. This suggests that these potential entomopathogenic fungi were most active and commonly found in cropped soils rather than on the soils with decayed organic materials like the wastes from the poultry and Cowstead. The reason for the comparatively low abundance of the potentially entomopathogenic fungi on the other soil samples could be due to the lethal effects on the fungi caused probably by the heat generated in the process of decomposition of the organic wastes and formation of organic acids. It is known that most entomopathogenic fungi have a wide range of temperature tolerance (0-40°C) for reproduction and survival. However, the temperature optima for general infection and survival, mycelium growth and sporulation are usually more restricted (Lacey et al., 2001; Luangsa-ard et al., 2005).

For an entomopathogen to be considered successful as a biocontrol agent, such will require among other important traits, a predictable performance under challenging environmental conditions such as found in Nigeria (Luangsa-ard et al., 2005). The occurrence and abundance of the potentially entomopathogenic fungi detected in this study especially *B. bassiana* and *Trichoderma* sp. as depicted by their comparatively high abundance and occurrence is known to be a major factor determining the effectiveness of entomopathogens under field conditions. It is known also that spore production characteristics of any entomopathogenic fungus are an important feature for selection as biocontrol agents against insect pests (Goettel et al., 1997). Therefore, for continuous survival of these entomopathogens in nature, there must be successful spore dissemination and this would require the production of abundant reproductive structures under advantageous environmental conditions. In this study, *Beauveria bassiana* showed an average conidial production of 1.65×10^3 per ml. Although the effects of growth rates on conidial production under the Nigerian climate were not part of this study, the possibility that conidial production potential may have a direct relationship to growth rates is speculated (De Cross et al., 1999). It is known also that the important factors that could significantly influence spore production especially by entomopathogens are light (Hajek and St. Leger, 1994; Butt, 2002; Sanchez-Murillo et al., 2004) and culture age (Edelstein et al., 2005) and these must be considered in order to optimize the conidial production. Our findings in this study also show that these entomopathogenic fungi could be cultured relatively easily in the laboratory on common solid media. These features make the fungi to be a promising candidate for incorporation into an integrated pest management programme.

Conclusion and Recommendation

This study has shown that the available local biota could be harnessed for management of local pests. The most common entomopathogens with known potential for management of field pests of crops encountered in this study was *B. bassiana* and *Trichoderma* sp. Although *B. bassiana* was not detected on the dead larvae of *M. vitrata* in this study which may preclude any presumption about its potential for inclusion as biocontrol agent against *M. vitrata*; yet literature abound on its effectiveness against other insect pests (Gottwald, and Tedders, 1984; Feng et al., 1994; Hallsworth and Magan, 1999; Enrique and VEU, 2004; Fan et al., 2007; Tefera and Vidal, 2009; Sapna et al., 2010; Mohammadbeigi and Port , 2013) and so, its detection in the local soils is indicative of its ready availability within the local agroecosystem. Also, this study has also shown the occurrence and abundance of these fungi on actively cropped soils rather than on soils from farm yard organic materials from poultry, piggery or the cowstead. However, further work would be required to assess the effectiveness of these locally sourced potential biocontrol agents against local pests of cowpea especially *M. vitrata* under the screen house and field conditions.
Conflict of interest

The authors did not declare any conflict of interest.

ACKNOWLEDGEMENT

We are grateful to Mrs. M. Aderanti of the International Institute of Tropical Agriculture, Ibadan for technical assistance and supply of larvae of *M. vitrata*.

REFERENCES

Full Length Research Paper

Adult emergence percentage from irradiated fruit flies, *Bactrocera zonata* and *Bactrocera cucurbitae* pupae

MUHAMMAD NAVEED¹*, MUHAMMAD JALAL ARIF¹ and NAZIR AHMAD²

¹Department of Entomology, University of Agriculture, Faisalabad, Pakistan.
²Nuclear Institute of Agriculture, Tandojam, Pakistan.

Received 16 March, 2015; Accepted 20 April, 2015

Fruit flies are regarded as one of the most devastating pest of fruits and vegetables on earth planet. Generally chemical control is implemented for their control but it poses lot of eco-environmental concerns so the emphasis is now turning towards eco-friendly management practices. Bio-control is an efficient and environmentally sound approach and augmentation is primarily focus on classical biological control program. In this study, eight sub-sterilizing doses of 0, 20, 30, 40, 50, 60, 70 and 80 were tested against *Bactrocera zonata* and *Bactrocera cucurbitae* pupae. The results showed that radiation prolong the duration of pupal stage and hatching is reduced by applying radiation. This also shows that when the quantity of the radiation increases, the adult emergence decreases. This study could be very useful in exploiting the potential host for longer period of time for culturing their pupal parasitoids.

Key words: Sub sterilizing doses, radiation, fruit flies and emergence.

INTRODUCTION

Fruit flies are of significant economic importance as pest in many of the important fruits. These are controlled generally by applying pesticides but these pesticides cause lot of environmental concerns and also on human health (Gill and Garg, 2014) moreover the fruit flies have attain resistance against pesticides (Van Steenwyck et al., 1975) so the focus is now diverting towards other control practices in which sterilization using radiation is an important tool. Nuclear techniques are already being practically applied convincingly in various areas of entomology (Bakri et al., 2005). These are used against the different insect pest for suppressing the activity of insects (Faruki et al., 2005). The immature stages of the insect are most likely vulnerable to radio activity (Tilton and Brower, 1983). Additionally, radiation can be applied to semi- or completely sterilize hosts or prey for deployment in the field to increase the initial survival and build-up of natural or released biological control agents in advance of seasonal pest population build-up (Hendricks et al., 2009). By applying radiations the emergence of adults decreases (Faruki et al., 2007). It is

*Corresponding author. Email: naveedtjam@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
also reported that emergence of black cutworm at different radiation doses applied on egg stage decreases the hatching and induced sterility in adults, more over it prolong the larval and pupal stage of the insect (Salem et al., 2014). The objective of current is to evaluate the emergence of adult fruit flies by irradiating the pupae at different doses.

MATERIALS AND METHODS

Adult emergence percentage of B. zonata and B. cucurbitae from the one day old pupae irradiated at different doses

The experiment was conducted at fruit flies rearing laboratory, Nuclear Institute of Agriculture (NIA), Tandojam, Pakistan. The pupae of two fruit fly species, Bactrocera zonata and B. cucurbitae were obtained from their respective colonies being maintained in NIA at temperature 27±2 and relative humidity about 40-45% for the last several years. Then these pupae were radiated from Nuclear Institute of Medicine and Radiopathy (NIMRA) Jamshoro which is about 60 km from NIA by using gamma radiation source of Atomic Energy of Canada Limited Co-60 Ottawa, Ontario, Canada having Model GWXJ80 with dose rate of 1.20 Gy per minute. Radiations were applied at different doses ranging from 20 to 80 Gy to one day old pupae to check the emergence of fruit flies adults. The pupae irradiated at different doses and of two different species are kept in petri dishes separately then calculate the emerged adults from the pupae, meanwhile the un-emerged and half emerged pupae are also calculated. Data analyzed statistically using variance followed by DMRT test by using statistical software statistix 8.1.

RESULTS

Adult emergence percentage of B. zonata and B. cucurbitae from the one day old pupae irradiated at different doses

The emergence of the fruit flies, B. zonata and B. cucurbitae was affected significantly with increase in radiation doses applied (Table 1). The emergence percentage of B. zonata and B. cucurbitae was at its peak 83.25 and 87.50, respectively when no dose of radiation was applied to the pupae. Among different radiation doses, the treatment of 20 Gy resulted in highest emergence percentage, 78% of B. zonata and 84.50% of B. cucurbitae. The emergence percentage decreased gradually with the increase in radiation doses and with the subsequent doses of 30, 40, 50, 60 and 70 Gy the emergence percentage of B. zonata was 76.26, 72.50, 68.75, 63.75 and 60.0% while that of B. cucurbitae was 80.25, 76.25, 73.25, 69.0 and 62.25%, respectively. This decreasing trend in the emergence of both the fruit fly species is clearly visible in the bar series of Figures 1 and 2. Significantly the least number of adults of both species of the fruit flies (53.75 and 57, respectively) were emerged when 80 Gy radiation dose was applied to the host pupae. The present studies reflected that emergence of fruit flies is negatively correlated with the radiation doses and higher doses of irradiation applied to the pupae resulted in lower emergence percentage of the fruit fly adults. The radiation effect was comparatively higher on B. zonata pupae as compared to the B. cucurbitae as the emergence of the B. cucurbitae was relatively higher at all the radiation doses tested including the un-treated control (Figure 3). The results indicated a gradual decrease in the fruit fly adult emergence with the increase in the radiation doses applied.

Table 1. Adult emergence percentage of B. zonata and B. cucurbitae from the one day old pupae irradiated at different doses.

<table>
<thead>
<tr>
<th>Irradiation dose (Gy)</th>
<th>B. zonata</th>
<th>B. cucurbitae</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>83.25±1.93</td>
<td>87.50±1.71</td>
</tr>
<tr>
<td>20</td>
<td>78.00±0.91</td>
<td>84.50±0.65</td>
</tr>
<tr>
<td>30</td>
<td>76.26±1.38</td>
<td>80.25±0.65</td>
</tr>
<tr>
<td>40</td>
<td>72.50±0.65</td>
<td>76.25±1.32</td>
</tr>
<tr>
<td>50</td>
<td>68.75±0.63</td>
<td>73.25±0.85</td>
</tr>
<tr>
<td>60</td>
<td>63.75±0.85</td>
<td>69.00±0.82</td>
</tr>
<tr>
<td>70</td>
<td>60.00±0.91</td>
<td>62.25±0.85</td>
</tr>
<tr>
<td>80</td>
<td>53.75±1.11</td>
<td>57.00±1.08</td>
</tr>
</tbody>
</table>

Means followed by different letters into the same column indicate a significant difference. Data was analyzed through analysis of variance followed by DMRT (P=0.05).

DISCUSSION

These studies indicated a wide range of tolerances in the usage of irradiation for rearing of the fruit fly pupal parasitoids. However, the emergence of the adult fruit flies decreased with the increasing doses of radiation. Similar results were reported by López-Martínez and Hahn (2014). This may be very useful in reducing the chance of releasing the fertile fruit flies in the target areas that may have been left un-parasitized in the parasitoid rearing colony. The emergence of the adult fruit flies from the B. cucurbitae was comparatively higher than the B. zonata that may be due to the size of the pupae. As the effects of the radiation appears interrelated to the size of the pupae and the pupal size of the B. cucurbitae is bigger than B. zonata which resulted comparatively higher number of B. cucurbitae adult emergence at same radiation doses than B. zonata. Similar finding was observed by Bustos et al., (1992). Their studies provided significant support for irradiation of hosts before exposing to the parasitoids. The emergence of the parasitoids from the irradiated fruit fly pupae clearly demonstrated that the use of irradiated pupae (host) does not depict any negative effect on parasitoids. A number of studies conducted in Mexico have demonstrated a very high efficiency of the parasitoids cultured on irradiated hosts (Montoya et al., 2000).
Moreover the present studies showed higher parasitism on irradiated pupae at the dose of 40 to 50 Gy in comparison to the un-irradiated pupae.

Conclusion

Radiations significantly decrease the emergence of the
host pupae of both fruit flies species and these pupae can be efficiently exploited for the rearing of bio-control agents and these pupae can be utilized for longer time period as compared with normal pupae due to slow development of the host after applying radiation.

Conflict of interest

The authors did not declare any conflict of interest.

REFERENCES

