ABOUT JYFR

The Journal of Yeast and Fungal Research (JYFR) (ISSN 2141-2413) is published Monthly (one volume per year) by Academic Journals.

Journal of Yeast and Fungal Research (JYFR), provides rapid publication (monthly) of articles in all areas of the subject such as Yeast physiology, fermentation and biotechnology, Bioremediation, Ethanol fermentation, economic importance of yeast etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JYFR are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email jyfr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at jyfr@academicjournals.org.
Editor

Prof. Viroj Wiwanitkit, M.D.
Wiwanitkit House, Bangkhae,
Bangkok Thailand 10160.
Visiting Prof. Tropical Medicine,
Hainan Medical College,
Hainan China.

Associate Editors

Dr. Wolfram Siede,
Department of Cell Biology and Anatomy
University of North Texas
Health Science Center.

Dr. Mohsen Asker
Microbial Biotechnology Dept.
National Research Centre
Cairo, Egypt.

Prof. Chester R. Cooper, Jr.
Youngstown State University
One University Plaza
Youngstown, Ohio.

Prof. Fukai Bao
Department of Microbiology and Immunology,
Kunming Medical University
Yunnan, P. R. of China.

Dr. Raviraja N Seetharam
Department of Oncology,
Montefiore Medical Center / Albert Einstein Cancer Center,
Hofheimer Room No. 413,
E 210th St, Bronx, NY.

Dr. Linghuo Jiang
Tianjin Medical University,
Tianjin Research Center of Basic Medical Sciences,
China.
Editorial Board

Dr. Jose Guedes de Sena Filho
Federal University of Paraiba State Brazil/
University of Oklahoma.

Dr. Fabien C.C. Hountondji
Agriculture and Livestock Research/Ministry of Agriculture,
Salalah, Oman.

Dr. Zhenjia Chen
Instituto de Tecnologia Quimica e Biològica (ITQB),
Universidade Nova de Lisboa, Oeiras,
Portugal.

Dr. Bankole Munir Akinwale
Ministry Of Health
Lagos State,
Nigeria.

Dr. Yiguang Wang
Institute of Medicinal Biotechnology,
CAMS&PUMC 1
TiantanXili, Beijing,
China.

Dr. Shobha D. Nadagir
Dept of Microbiology. Karnatak Institute of Medical Sciences,
Hubli. Karnatak State,
India.

Isaiah Masinde Tabu
Egerton University,
Egerton,
Kenya.

Prof. Tzi Bun Ng
School of Biomedical Sciences
The Chinese University of Hong Kong
Hong Kong,
China.

Prof. Cristóbal Noé Aguilar González
Group of Bioprocesses
Food Research Department
School of Chemistry
Universidad Autónoma de Coahuila
México.

Prof. Caihong Dong
State Key Laboratory of Mycology
Institute of Microbiology
Chinese Academy of Sciences
China.

Dr. Tine Grebenc
Department of Forest Physiology and Genetics
Slovenian Forestry Institute
Slovenia.
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, Tiff, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al.’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:
Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Yeast and Fungal Research is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2015, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties
In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JYFR, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Malassezia pachydermatis presence in canine external otitis and dermatopathies
Malassezia pachydermatis presence in canine external otitis and dermatopathies

Nascente, P. S.¹, Meinerz, A. R. M², Faria, R. O², Nobre, M. O², Escareño, J. J. H³, Mendes, J. F.²*, Meireles, M. C. A.² and Mello, J.R.B.⁴

¹Departamento de Parasitologia e Microbiologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
²Faculdade de Veterinária – Universidade Federal de Pelotas – Pelotas – RS – Brasil.
³Departamento de Microbiologia - Facultad de Medicina Veterinaria y Zootecnia - Universidad Autonoma de Nuevo Leon – Monterrey - México.

Received 27 April 2015; Accepted 10 June 2015

Malassezia pachydermatis is a commensal yeast of the skin and external ear canal of dogs and cats that may become an opportunistic pathogen under some conditions. The aim of this paper was to research the diseases which predispose to the development of opportunistic *M. pachydermatis* in dogs with external otitis or dermatopathies. The samples were collected by sterile swabs or by the carpet technique. Samples were obtained from the external ear canal and cutaneous tegument and were seeded in Sabouraud dextrose agar added with chloramphenicol and cycloheximide. Following, they were incubated at 32°C for seven days for yeast identification. *M. pachydermatis* isolation was successful in 49 (70%) of the 70 samples investigated. Underlying diseases diagnosed in these animals included ceruminous otitis, skin fold pyoderma, seborrhoeic dermatitis, atopic dermatitis, pressure point pyoderma, parasitic otitis, acanthosis nigricans, hot spot and bacterial otitis. The results confirm that the presence of this yeast can cause the perpetuation of these diseases and be a treatment complication factor.

Key words: Malasseziosis, dogs, otitis external, dermatopathies.

INTRODUCTION

M. pachydermatis is both normal occurrence yeast and an opportunistic pathogen of the external ear canal of dogs and cats which can also be found on the skin, in the rectum, anal sacs and vagina (Bond et al., 1996; Dizotti and Coutinho, 2007). This yeast is one of the most frequent microorganisms associated to external otitis in dogs (Gentilini et al., 1991; Crespo et al., 2002; Nascente et al., 2004); recent studies have also referred to *M. pachydermatis* as being the cause of canine dermatitis (Nardoni et al., 2007; Leite et al., 2003).

Corresponding author. E-mail: josiara.mds@hotmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Malasseziosi clinical manifestation installation indicates an alteration in the balance between the commensal and its host. The clinical disease occurs when there is an excessive multiplication of M. pachydermatitis due to alterations in the host defense mechanism. The increase in M. pachydermatitis cell number is facilitated when there are microenvironment changes, such as an excessive production of cerumen after therapy involving the use of antibiotics or corticoids (Ashbee, 2007; Nardoni et al., 2005), and also by concomitant primary conditions, such as hypersensitivity to food, flea bite hypersensitivity and/or atopy, pyodermitis, demodicosis and endocrine problems (hyperadrenocorticism, hyperthyroedism, diabetes mellitus) (Bond et al., 2002).

The aim of this paper was to research the diseases which predispose to the development of opportunistic M. pachydermatitis in dogs with external otitis or dermatopathies.

MATERIALS AND METHODS

The study was performed in 70 dogs with dermatological clinical signs and/or external otitis, classified according to age, sex, and breed. All animals were submitted to a general clinical examination; the external ear canal and/or cutaneous tegument were also examined. Auxiliary examination methods were used to reach a final diagnosis.

Cerumen samples from animals with external otitis were collected with sterile swabs, rubbing the anterior part of the ear canal; samples from animals with dermatopathies were collected through the carpet technique (Mariat and Adan-Campos, 1967) by rubbing the carpet in the lesion area.

A direct examination was performed for the material collected from the external ear canal by using Gram coloration, which was analyzed under a microscope (1000X) in search for cells with morphology compatible to M. pachydermatitis. Direct examination was done by counting the cells which were similar to the yeast in the microscopic field; six fields were observed.

The yeast cell/field absence was considered negative (-), and the following scores were considered positive: (+) up to five cells/field; (++), six to ten cells/field; (+++) more than ten cells/macroscopic field. All isolated samples of M. pachydermatitis were cultured in Sabouraud dextrose agar medium (Kindo et al., 2004; Prado et al., 2008) added with chloramphenicol and cycloheximide kept at 32°C for ten days; their macroscopic characteristics were observed daily. Cell morphology was seen through colony smear, stained with Gram color and then biochemically characterized (Guého et al., 1996).

The results were coded according to animal characteristics parameters (sex, age and ear shape), direct examination and isolation; subsequently, data were analyzed by the Epi Info software (Epi Info (TM) software), and distribution frequencies were carried out by the chi-square test for comparison.

RESULTS

The samples studied (70) included 26 female and 44 male animals ranging from seven months to 14 years of age, 42 of which belonged to the following breeds: Poodle (7), Cocker Spaniel English (9), Basset Daschund (5), Sharpei (5) Labrador Retriever (5), German Shepherd (3), Rotweiller (2), Boxer (2), Bulldog (2), Old English Sheep Dog (1) Siberian Husky (1); the remaining 28 animals were mixed breed (MB). External otitis diagnosis was confirmed in 45 dogs (28 male and 17 female) and dermatopathies occurred in 25 dogs (16 male and 9 female) (Table 1).

M. pachydermatitis was isolated in 49 (70%) of the 70 samples investigated. The frequency of the yeast isolation was greater (80%, 36/45) for external otitis samples than for dermatitis samples (52%, 13/25) (Figure 1). In all external otitis samples where the yeast was isolated (36), the presence of yeast-like cells was observed by direct examination. Seven samples (15.6%) were scored +, 19 (42.2%) ++, and 10 (22.2%) ++++. As to the remaining nine samples without M. pachydermatitis, four of them (8.9 %) were positive (+) and the other five (11.1%) were negative upon direct examination (Table 2).

Underlying diseases diagnosed in all 70 animals referred to the dermatological clinic were predominantly ceruminous otitis (35), followed by seborrhea (10) and parasitic otitis (6). M. pachydermatitis was isolated, respectively, in 29 (82.9%), 6 (60%) and 3 (50%) of these illnesses.

Skin fold pyoderma (2), atopy (2), flea bite hypersensitivity (4), hot spot (2), bacterial otitis (2) atopic otitis (2), pressure point pyoderma (1), sarcopitic scabies (1), pododermatitis (1), folliculitis (1) and acanthosis nigricans (1) were also detected. In atopic otitis (2) and bacterial otitis (2), the isolation of M. pachydermatitis was successful in all samples. There was no isolation of this yeast in animals which showed sarcopitic scabies, flea bite hypersensitivity and pododermatitis. The yeast was isolated in folding dermatitis (2), pressure point pyoderma (1), acanthosis nigricans (1), hot spot (2) and atopy cases (2). M. pachydermatitis was isolated from one sample only (Figure 2).

In this study, 28 samples of mixed breed animals and 42 definite breed ones were analyzed. Due to the great number of samples obtained from the mixed breed animals (MB), M. pachydermatitis frequency was high (67.9%) among them. In definite breed dogs, M. pachydermatitis was isolated in 50% (21), mainly Poodle (85.8%), Daschund (80%), Cocker Spaniel English (77.8%), Sharpei and Labrador retriever (60%) and German shepherd (33.3%) breeds (Table 3).

DISCUSSION

The high M. pachydermatitis percentage (80%) in canine external otitis cases was similar to those previously found by Gentilini et al. (1991) and Nascente et al. (2004), who found 91.8 and 76.5%, respectively. Feigl et al. (1981), isolated M. pachydermatitis in 50.6% of
Table 1. Features of the animals referred to veterinary clinic with skin disease or otitis external and its isolation *Malassezia pachydermatis*

<table>
<thead>
<tr>
<th>Disease</th>
<th>Sex</th>
<th>Age</th>
<th>Race</th>
<th>Base disease</th>
<th>Isolation of M. pachydermatis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatopathies</td>
<td>16 M, 9 F</td>
<td>Seven months to 14 years of age</td>
<td>Poodle (7), Cocker Spaniel English (9), Bassett Daschund (5), Sharpei (5), Labrador Retriever (5), German Shepherd (3), Rotweiller (2), Boxer (2), Bulldog (2), Old English Sheep Dog (1), Siberian Husky (1), Mixed breed (MB) (28)</td>
<td>Skin fold pyoderma (2), Hot spot (2), Flea bite hypersensitivity (4), Atopy (2), Pressure point pyoderma (1), Sarcoptic scabies (1), Pododermatitis (1), Acanthosis nigricans (1), Foliculitis (1)</td>
<td>13 +</td>
</tr>
<tr>
<td>External otitis</td>
<td>28 M, 17 F</td>
<td></td>
<td></td>
<td>Atopic otitis (2), Bacterial otitis (2), Parasitic otitis (6), Ceruminous otitis (35)</td>
<td>36+</td>
</tr>
<tr>
<td>Total</td>
<td>70 (100%)</td>
<td>70 (100%)</td>
<td>70 (100%)</td>
<td>70 (100%)</td>
<td>49 (70%)</td>
</tr>
</tbody>
</table>

e external otitis cases. In other countries, the yeast frequency ranged from 23% to 76.3% (Nascente et al., 2004; Dworecka-Kaszak et al., 1994).

Studies have demonstrated that *M. pachydermatis* frequency is variable and that the high percentage of isolations obtained was probably related to the great number of ceruminous otitis cases, which promotes an accumulation of secretion and cerumen (Nagata, 2013). The latter is a growth promoter to *M. pachydermatis* (Gabal, 1988); this frequency tends to be lower in bacterial otitis (Kiss et al., 1997) even though the yeast was isolated in the two cases presented in this study. It is also important to consider that the presence of the yeast in the external ear canal of dogs is more frequent than that in other parts of the body (Nascente et al., 2004; Guého et al., 1996; Bond et al., 2006; Machado et al., 2003).

In this study, there was a variation in cell number of the collected material from canine external otitis per microscopic field visualized by direct examination; in all cases where *M. pachydermatis* was isolated, however, direct examination presented yeast cells ranging from + to ++++. Bond et al. (1996) considered the presence of many yeast cells per microscopic field to be a pathogenic activity sign.

Canine tegument infection by *Malassezia* is a chronic evolution dermatopathy because of the exacerbated multiplication of *M. pachydermatis* in certain cutaneous areas. When there is a rupture of the epidermal barrier, secondary infections caused by bacteria or yeasts may occur. There is a number of cutaneous or systemic conditions that can alter the protective skin barrier, such as food hypersensitivity, atopy, flea bite hypersensitivity, pyodermatitis, demodicosis and endocrine problems (hyperadrenocorticism, hypertireoidism, mellitus diabetes), directly contributing to the development of the disease (Gabal, 1988; Larsson et al., 1998; Nagata, 2013).

M. pachydermatis has also been isolated in animals with skin ceratinization disorders, hypersensitivity, epidermal displasia, and immunosuppression, in addition to those showing external otitis. From the 25 dermatopathy samples, isolation was observed in 52% (13) of the cases, and the underlying diseases diagnosed in these cases were seborrhea (6), folding dermatitis (2), hot spot (2), atopy (1), callus pyodermatitis (1) and ancanthosis nigricans (1). However, the fact the seborrhea was the most frequent dermatopathy found in the diagnosis (10) must be taken into consideration. The yeast pathogen has been discussed in several studies which have
Figure 1. *M. pachydermatis* distribution associated to external otitis and dermatopathies.

Table 2. Distribution of insulation number in relation to the result of the direct examination of cerumem cases of canine otitis external.

<table>
<thead>
<tr>
<th>Score direct exam</th>
<th>Number of external otitis</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>++</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>+++</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>36</td>
</tr>
</tbody>
</table>

Figure 2. Distribution of *M. pachydermatis* isolates according to the diseases that predispose the development of the opportunist yeast.
Table 3. Distribution characteristics of 49 animals with *Malassezia pachydermatis* isolation associated with a skin disease or external otitis.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Isolation M. pachydermatis</th>
<th>Base disease (N)</th>
<th>Breed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatopathies</td>
<td>13+</td>
<td>Seborrhea (6)</td>
<td>Mixed breed (MB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin fold pyoderma (2)</td>
<td>Poodle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atopy (2)</td>
<td>Daschund</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flea bite hypersensitivity (4)</td>
<td>Cocker Spaniel English</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hot spot (2)</td>
<td>Sharpei</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atopic otitis (2)</td>
<td>Labrador retriever</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure point pyoderma (1)</td>
<td>German shepherd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarcoptic scabies (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pododermatitis (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folliculitis (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acanthosis nigricans (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folding dermatitis (2)</td>
<td></td>
</tr>
<tr>
<td>External otitis</td>
<td>36+</td>
<td>Ceruminous otitis (29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parasitic otitis (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bacterial otitis (2)</td>
<td></td>
</tr>
</tbody>
</table>

Total 49 49 49

*No statistical difference between isolation of *M. pachydermatis* and gender, age or race.

Described *M. pachydermatis* as a pathogenous opportunist which thrives in the medium where there is an increase in humidity and lipid cerumen composition, among other favorable factors (Amaral et al., 1998; Coutinho, 2005).

Cocker Spaniel English, Daschund and Poodle breeds showing dermatopathies, as well as animals of no definite breed, were the ones which presented the most dermatological problems, followed by Sharpei, Labrador, German Shepherd, Boxer and Bulldog breeds, though their sampling was not significant due to the few individuals available for each breed. In previous studies, Bassett Hound, Boxer, Sharpei, Lhasa Apso, Cocker Spaniel English, Poodle, German Shepherd, Daschund, German Shepherd and Labrador retriever breeds have been described as being more dermatitis-prone (Nascente et al., 2004; Bond et al., 2002; Larsson et al., 1998). The breeds most often stricken by external otitis were Poodle, Cocker Spaniel English, Labrador retriever, Sharpei, Rotweiller, Old English Sheep Dog, Siberian Husky, Boxer, as well as those animals of no definite breed. According to Feijó et al. (1998), the breed most affected with otic infection by *Malassezia is the Poodle*. In external otitis cases, a greater percentage of animals with malasseziosis infection presented pendulum-like ears, such being the case of the Poodle and the Cocker Spaniel English. These findings were justified by Mansfield et al. (1990) as being the result of an alteration in the external ear canal microclimate. German Shepherd dogs have prick ears but are external otitis prone due to the apocrine glands (Guillot and Bond, 1999; Feijó et al., 1998). In our study, the Cocker Spaniel English presented dermatitis and external otitis, in agreement with the findings by Larsson et al. (1998) and Feijó et al. (1998), who consider this breed as being malasseziosis prone due to idiopathic seborrhea.

Age predisposition was not observed, once there was a wide age range among the studied animals was; these results are in agreement with those by Reynaud and Chauve (Reynaud and Chauve, 1984), who found equivalent percentages for animals in every age range. Feijó et al. (1998), though, found a great percentage of affected animals ranging from two months to three years of age, considering that young animals are more affected than adults.

Chengapa et al. (1983) also observed the disease caused by this yeast in every age range, but with a higher percentage in animals up to nine months. Other studies have reported a frequency in animals up to two years of age (Machado et al., 2003; Larsson et al., 1998). Choi et al. (2001) reported its occurrence in animals from one to three years of age and Dufait (1983) considered that most cases mostly occur in dogs older than two years.

In relation to sex, most of the animals referred to the Dermatological Clinic were male, in agreement with a study by Feijó et al. 1998. However, according to many authors (Coutinho et al., 2006; Girão et al., 2006; Larsson et al., 1998; Feijó et al., 1998; Mansfield et al., 1990), there is no sexual preference.

Conclusion

The results obtained confirms that the yeast may be a
strenuous and perpetuating factor for the diseases here reported. It is important to include chronic dermatitis and ceruminous otitis in the malasseziosis diagnosis protocol so that a better and faster resolution of the problem can be obtained, thus decreasing the risk of therapeutic failure, as well as avoiding the relapse of the disease.

Conflict of interests

The authors have not declared any conflict of interest.

REFERENCES

Journal of Yeast and Fungal Research

Related Journals Published by Academic Journals

- African Journal of Agricultural Research
- African Journal of Environmental Science & Technology
- Biotechnology & Molecular Biology Reviews
- African Journal of Biochemistry Research
- African Journal of Microbiology Research
- African Journal of Food Science
- African Journal of Pharmacy & Pharmacology
- African Journal of Biotechnology
- Scientific Research and Essays