ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Submission of Manuscript

Submit manuscripts as e-mail attachment to the Editorial Office at: jmpr@academicjournals.org. A manuscript number will be mailed to the corresponding author shortly after submission.

The Journal of Medicinal Plant Research will only accept manuscripts submitted as e-mail attachments.

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R.China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062,
India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province, China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Prof Swati Sen Mandi
Division of plant Biology, Bose Institute, India.

Dr. Ujjwal Kumar De
Indian Vetreinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India.

Dr. Arash Kheradmand
Lorestan University, Iran.

Prof Dr Cemşit Karakurt
Pediatrics and Pediatric Cardiology Inonu University Faculty of Medicine, Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso Nigeria.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center Cairo Egypt.
ARTICLES

Research Articles

A review on gall karkatshrungi
Kaur Barinder and Singh Saurabh

Antimicrobial activity and synergistic effects of an ethyl acetate fraction from methanol extract of Myracrodruonurundeuva bark
Jannyson José Braz Jandú, Luís Cláudio Nascimento da Silva, Márcia Vanusa da Silva and Maria Tereza dos Santos Correia
A review on gall karkatshringi

Kaur Barinder¹ and Singh Saurabh²*

¹Pharmacy School of Pharmaceutical Sciences, Lovely Professional University Phagwara Punjab, India.
²Ayurvedic Pharmacy School of Pharmaceutical Sciences, Lovely Professional University Phagwara Punjab, India.

Received 2 March, 2014; Accepted 22 December, 2014

Karkatshringi (Pistacia integerrima) is a well known medicinal plant which belongs to the family of Anacardiaceae. The plant is indigenous to India and is found in the outer ranges of the North-Western Himalayas at an altitude of 500 to 2500 m. The different parts of the plant like leaf, bark, root and galls are reported to contain the secondary metabolites. Among them, the galls are more used in folk medicines. They are used in various Ayurvedic formulation like the “Dasamularista”, “Chayavanaprasa” and “Shringyadi curma” which are used in the treatment of diseases like swasa (asthma), yakshma (tuberculosis), ajeerna (indigestion), hridyaroga (heart disease), jwara (fever) and yakrit roga (liver disorder). The secondary metabolites like alkaloids, tannins, terpenoids and flavonoids are reported in the galls. Beside them, minor constituents like crystalline hydrocarbon, gum mastic, resinous substance, crystalline acids are also present. The bark contains terpenoids and flavonoids. The root and leaves contain tannins and terpenoids. Tannin being the major chemical constituent shows the strongest astringent action of the plant. The effect of the plant is due to the presence of these different secondary metabolites that are responsible for pharmacological activities. The aim of this review is to highlight the description of plant in classical literature of Ayurveda as well as therapeutic properties and chemical constituents.

Key words: Karkatshringi, galls, secondary metabolites.

INTRODUCTION

Karkatshringi is a multibranched, single stemmed, deciduous tree of Pistacia integerrima which belong to the family of Anacardiaceae. This plant belongs to Amra-Kula and it is a dioecious shedding tree. It is found in North-West Himalaya including the Siwalik ranges/ Rohitkhand from Indus to Kumaon between 500 to 2500 m. Altitudes (Anonymous, 2005). The plant is known as chakra, chandraspada, shikari in Sanskrit, kakra in Hindi. (Chopra and Chopra, 2006) Typical type of worms make horn shaped galls on the branches and leaves. (Vashist and Anil, 2012) These galls are pale greenish brown or pinkish, elongated, horn-shaped, hollow, twisted, curved or straight. When young they are coriaceous, but later become hard (http://www.indianmedicinalplants.info/Medicinal-Plants). This gall is caused by the insect Dasia aedifactor (Homoptera), (plant produce resin against insect) (http://www.ayurvedaconsultants.com/ayurvedaherbs). They make these galls by sucking juice from the leaves (Vashist and Anil, 2012). Then they are called

*Corresponding author. E-mail: saurabh.singh2514@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
karkatshringi (Vashist and Anil, 2012). Majorly, galls contains resins, pistacienoic acid, tetracyclic triterpenes, camphene, luteolin, pistacin, pistacinin, amino acids, dihydromavalic acids, sterols and tannins (Warrier et al., 1995). These galls are useful in asthma, cough, hiccough, dysentery, diarrhoea, ulcers, bronchitis, fever, irritability of stomach, leprosy, psoriasis, skin diseases, vitiated condition of tridosha, dyspepsia, inflammation, anorexia, pharyngitis, leucorrhoea and general debility. It is also very effective in children at the time of teething. In Pakistan, the galls of *Pistacia chinensis* var. *Integerrima* are used for the treatment of hepatitis and liver. It has been reported to have depressant, analgesic anti-inflammatory activities and hyperuricemic effect disorder (Ghias et al., 2011; Ansari et al., 1993)

REVIEW OF LITERATURE

Literature brush up reveals the different classical categorization of Karkatshringi. Different Acharayas (Ancient scholars) kept it in the different categories according to their own knowledge. Some confusion arises because of all the names related to Karkatika, Karkatakhya, Karkatkhya etc. which are generally accepted as Karkatshringi.

Classical categorization

Charaka: Kasahara, Hikanigrahana, Madhur skandha.

Sushruta: Kakolyadi, Padmakadi.

Vagbhata: These medicinal plants were described in Kesave Paddhati. Both caraka and Sushruta consider this plant as a poison for a vegetable origin. Acharya Sushruta kept this plant in Visa khand. Similar confusion is apparent in the context of Gunja which is categorized under Mula visa (root poison). Caraka interpreted it as amalaka and the toxic symptoms are mentioned by Acharya Sushruta. Likewise, Dalhana’s comments add more confusion about its identification since Mesasringi, Ajasringi and Uttamarni are equated to Karkatshringi because, the Asclepiadaceae family may have the same synonyms (Jivanti).

Botanical description

Deciduous tree, up to 18 m high, barks dark grey or blackish. Leaves alternate, pinnate, 15 to 23 cm. long, with or without terminal leaflet, leaflets 4 to 5 pairs, lanceolate, acuminate, sub-opposite, coriaceous, 7 to 12 cm long. Characteristic galls are produced on the leafy branches. Flowers small, reddish, unisexual, dioecious. male panicles short, compact. Female flowers have long lax panicles. Drupe globose, wrinkled, rugose and grey when ripe.

Microscopic characters

Transverse section of mature root shows a wide zone of stratified cork, exfoliating at places, consisting of rectangular, thin-walled, tangentially elongated, radically arranged cells, upper few layers filled with reddish-brown contents, remaining cells colourless, cortex, a wide zone of rounded cells with fibre groups towards central and middle region, cells obliterated at places, endodermis barrel-shaped, slightly thickwalled, pericycle and phloem not distinct, xylem forms bulk of root consisting of vessels, fibres and parenchyma, medullary rays not distinct, vessels shows annular or pitted thickening, fibres thick-walled, elongated having a few simple pits. Powder-yellowish-brown, under microscope shows fragments of corks, xylem vessels and fibres.

Distribution

North-West Himalayas (Indus to Kumaon) at 350 to 2500 m. cultivated in Punjab plains.
Chemical constituents

Karkatashringi contains various important phyto-constituent for commercial value and therapeutic potential. Chiefly it contains resin two isomeric triterpenic acids-pistacienoic acids A and B, tannins, a triterpene alcohol-tirucallol, beta-sitosterol, tetracyclic triterpenes, pistacigerrimones A,B,C(galls); alpha-piene, beta-piene, camphene, dl-limonene,1:8-cinol, alpha- terpineol, beta- terpineol, aromadendrene, lactonic stearoptene, caprylic acid, alpha-d-pinene, alpha &beta-phallandrene,amino acids, dihydromalylic acid, protein (seeds); hydrocarbons, sterols, triterpenoids(seeds oil), tannins (leaves,bark).

Pharmacological activities

Karkatashringi is an important medicinal plant whose galls are used in traditional medicines in India for the treatment of asthma, chronic bronchitis, phthisis, diarrhea, fever and other reported activities as antispasmodic, carminative, antiamoebic and anthelmintic.

Toxicology

Essential oil of gall has a depressant action on the central nervous system of guinea-pigs and white rats when given in sub-lethal doses. The animals become deeply unconscious in about an hour. Lethal doses (m.l.d0.1cc/100 gm body wt.) cause deep narcosis leading to death within a few hours. The oil has a slight irritant action on the skin and mucous membrane.

Therapeutic evulation

In a clinical trail Brihat talisadi churna in which Karkatashringi is one of the ingredients was found useful in the patients of productive cough when administered in the dose of 500 mg QID with honey as adjuvant.

Formulations and preparations

Karkatashringi is one of the major ingredients of various type of Ayurvedic formulations like Shringiadi chura, Karkatadi chura, Balachaturbhadrachurna, Brihat talisadi churna, Devadarvayadi kwath churna, shatavaryadi ghrit, chayanprash-awaleha, Dashmularista, Kanta karyavaleha, Siva gutika and khadiradi gutika used in various therapeutic purposes.

Substitues and adultrants

Galls produced on the plants viz. Rhus succedanea, Garuga pinnata, Terminalia chebula are also used and sold under the name Karkatshringi.

Research work done

1. Oil extracted from P. chinensis exhibited central nervous system (CNS) depressant activity (Sharma, 1981).
2. The crude methanolic extract of P. integerrima bark evaluated for antipyretic activity (The crude methanolic extract of Pistacia integerrima bark evaluated for antipyretic activity, Sharma and Bhagwan, 2011).
3. Phytochemical investigation of the galls of P. Integerrima (Ahmad et al., 2010).
4. Ethyl gallate isolated from P. integerrima Linn. inhibits cell adhesion molecules by blocking AP-1 transcription factor (Mehla et al., 2011).
5. Pharmacological basis for use of P. integerrima leaves in hyperuricemia and gout (Ahmad et al., 2008).
6. Analgesic and anti-inflammatory effects of P. integerrima extracts in mice (Ahmad et al., 2010).
7. Propagation of pistachio rootstock by rooted stem cuttings (Almehdi et al., 2002).
8. Phylogenetics and reticulate evolution in Pistacia (Anacardiaceae) (Phylogenetics and reticulate evolution in Pistacia (Anacardiaceae) (Yi et al., 2008).
9. Analgesic, anti GIT motility and toxicological activities of P. integerrima Stewart ex Brandis bark in mice (Ismail et al., 2012).
10. Hepatoprotective effects of berries lyceum, gallium aparine and P. integerrima in carbon tetrachloride treated rats (Khan et al., 2008).
11. Pharmacognostical studies on the south Indian market sample of Karkatshringi (Kadukkaipoo)- (Gaertn. Leaf gall) (Santha et al., 1991).

Observation

The profile of the medicinal plant (Karkatshringi) which is present in ancient and modern text carried little confusion related to the synonym of plant. Ancient scholar (Sushruta) kept the plant in poisonous category (Visha khand). They also mentioned the uses of plant in respiratory disorders viz. asthma, hiccough, cough etc. After reviewing the various research articles on the basis of preclinical studies it possess the properties mentioned in Ayurvedic texts and shows some other significant properties like: antipyretic, analgesic, anti-inflammatory, antioxidant, hepatoprotective, antimicrobial, GIT motility and toxicological, hyperuricemia and gout (Table 1).

CONCLUSION

The multipurpose medicinal plant (P. integerrima), is the unique source of various types of compounds having
Table 1. Ayurvedic properties.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasa</td>
<td>Tikta (Pungent)</td>
</tr>
<tr>
<td>Veerya</td>
<td>Ushna (Hot)</td>
</tr>
<tr>
<td>Vipaka (Post digestion effect)</td>
<td>Katu (pungent)</td>
</tr>
<tr>
<td>Effect on tridosha</td>
<td>Pacifies Kapha and Pitta</td>
</tr>
</tbody>
</table>

Table 2. Vernacular names.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Language</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English</td>
<td>Crab's claw</td>
</tr>
<tr>
<td>2</td>
<td>Hindi</td>
<td>Kakdashingi,Kakarsingi,Kakra,Kakkatasimgi</td>
</tr>
<tr>
<td>3</td>
<td>Punjabi</td>
<td>Kakar,Kakarshingi,Drek,Gurgu,Kakkeran,Kakkrangehei,Kakala,Kangar Masna,Sumak,Tungu,Tanbari,Shne,Karkarshingi</td>
</tr>
<tr>
<td>4</td>
<td>Bengali</td>
<td>Kakra,Kakrashingi,Kandasringi</td>
</tr>
<tr>
<td>5</td>
<td>Gujrati</td>
<td>Kakadasingi,Kakra,Kakarshingi</td>
</tr>
<tr>
<td>6</td>
<td>Marathi</td>
<td>Karkadasringi,Kakra,Kakarsingi,Kakadshingi</td>
</tr>
<tr>
<td>7</td>
<td>Malayalm</td>
<td>Karkatasringi,Karkktakasingi</td>
</tr>
<tr>
<td>8</td>
<td>Tamil</td>
<td>Karkata,Singi,Kakkatalasingi</td>
</tr>
<tr>
<td>9</td>
<td>Telgu</td>
<td>Kakarashingi,Kakatakashrung,Kakarasimga</td>
</tr>
<tr>
<td>10</td>
<td>Assam</td>
<td>Kakiasrangi</td>
</tr>
<tr>
<td>11</td>
<td>Oriya</td>
<td>Kakadashruni,Kakadashringi,</td>
</tr>
<tr>
<td>12</td>
<td>Urdu</td>
<td>Kakrasinghi,Kakra</td>
</tr>
</tbody>
</table>

Table 3. Identity, purity and strength.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Identity, purity and strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foreign matter not more than 2 per cent</td>
</tr>
<tr>
<td>2</td>
<td>Total Ash Not more than 11 per cent</td>
</tr>
<tr>
<td>3</td>
<td>Acid-insoluble ash Not more than 2 per cent</td>
</tr>
<tr>
<td>4</td>
<td>Alcohol-soluble extractive Not less than 9 per cent</td>
</tr>
<tr>
<td>5</td>
<td>Water-soluble extractive Not less than 16 per cent</td>
</tr>
</tbody>
</table>

diverse chemical structures. Very little work has been done on the biological activity and plausible medicinal applications of these compounds and hence extensive investigation is needed to exploit their therapeutic utility to combat diseases. The present results therefore, offer a scientific basis for the traditional use of the various extracts of *P. integerrima* (Tables 2 and 3).

ACKNOWLEDGEMENT

This review was supported by Prof. M.G. Chauhan former Dean IAMPS Gujarat Ayurved University Jamnagar Gujarat India.

Conflict of interest

Authors have none to declare.

REFERENCES

Almehdi AA, Parfitt DE, Chan H (2002). Propagation of pistachio...

This study aimed to investigate the antimicrobial action of different methanolic extract fractions from *Myracrodruon urundeuva* (Anacardiaceae) bark and to evaluate the interaction between the most active fraction and some commercial antibiotics. After methanolic extraction, the extract obtained was submitted to liquid/liquid fractionation using cyclohexane, ethyl acetate, n-butanol and water. All fractions showed antimicrobial action, although the ethyl acetate fraction showed the best antimicrobial activity. This fraction inhibited all tested microorganisms (*Staphylococcus aureus*, *Bacillus subtilis*, *Micrococcus luteus*, *Enterococcus faecalis*, *Escherichia coli*, *Klebsiella pneumoniae*, *Candida albicans* and *Aspergillus niger*) with minimum inhibitory concentration (MIC) values ranging from 0.097 to 0.78 mg/ml. The ethyl acetate fraction showed different effects depending on the kind of antibiotic and bacteria tested. The best interaction was observed with gentamicin which resulted in synergistic results for all tested bacteria (∑FIC values of 0.01 for both *S. aureus* and *B. subtilis* and 0.25 for *K. pneumoniae* and *E. coli*). In conclusion, *Myracrodruon urundeuva* bark is a source of antimicrobial compounds able to improve the activity of some antimicrobials, especially gentamicin, erythromycin, tetracycline and ciprofloxacin. The identification of the active compounds and the action mechanisms involved are crucial for the use of this plant in biotechnological preparations.

Key words: Antimicrobial activity, *Myracrodruon urundeuva*, Caatinga, synergism, pharmaceutical preparations.
indiscriminate use of antibiotics. Antibiotic resistance reduces the possibility of effective treatments and increases the risk of complications or death for the patient (Woodford and Livermore, 2009).

Medicinal plants have been used as therapeutic tools to treat various pathologies, such as bacterial and fungal infections (Holetz et al., 2002). Furthermore, due to the growing ineffectiveness of many synthetic products, as well as their high costs and collateral effects, there is a great interest in medicinal plants. An option to overcome bacterial resistance is the combination of antibiotics with plant-derived compounds (Wagner and Ulrich-Merzenich, 2009), and an assessment of synergism has become a great tool in finding new active agents (Figueroedo et al., 2014; Bezerra dos Santos et al., 2015).

A good example of a medicinal plant is Myracrodruon urundeuva (Anacardiaceae), a typical species of the Caatinga, a semi-arid biome exclusively found in Northeastern Brazil. This plant (mainly the bark) has been used by rural community to treat several injuries (Monteiro et al., 2005; Cartaxo et al., 2010) and some of these biomedical properties have been scientifically supported, especially, its anti-inflammatory, analgesic, antioxidant and antimicrobial actions (Viana et al., 2013; Sá et al., 2009a; Jandú et al., 2013). Other biotechnological applications are also reported to extracts and compounds isolated from M. urundeuva. For example, lectins from different tissues of M. urundeuva (heartwood, bark and leaves) (Sá et al., 2009b; Napoleão et al., 2012) and m-pentadecadienyl-phenol isolated from seeds (Souza et al., 2012) showed insecticidal activity against Aedes aegypti. Neuroprotective action was reported for a chalcone-enriched fraction from its stem bark (Nobre-Júnior et al., 2009). Extracts from M. urundeuva also showed inhibitory effect against caries development in rats (Crivelaro de Menezes et al., 2010) and healing activity (Cavalcante et al., 2005). Previous studies of our group showed that methanolic extract from M. urundeuva (MuBME) has broad-spread antimicrobial activity and it was able to increase the action of erythromycin against clinical isolates of S. aureus (Jandú et al., 2013). This study aimed to investigate the antimicrobial action of different fractions obtained from a methanolic crude extract of M. urundeuva bark and the synergistic potential of the most active fraction with some commercial antibiotics.

MATERIALS AND METHODS

Plant source, collection and identification

M. urundeuva bark was collected in Parque Nacional do Catimbau (PARNa do Catimbau), Pernambuco, Brazil, in 2010. Botanical identification was done by Dr. Alexandre Gomes da Silva, at the Herbarium of the Instituto Agronômico de Pernambuco (IPA), where the voucher specimen 84.059 is deposited. The bark was dried using an incubator at 45°C for 2 to 3 days. The dried vegetal material was ground into powder form using a grinder followed by a Waring blender.

Methanolic extraction

Samples of M. urundeuva bark were submitted to methanolic extraction as described in Jandú et al. (2013). The resultant extract was subjected to liquid/liquid fractionation, using cyclohexane, ethyl acetate and n-butanol. Subsequently, each solvent was evaporated and the fractions were stored at -20°C until used. The remaining aqueous fraction was dried by lyophilization and the other fractions were then concentrated in a rotary vacuum. All the extracts were kept in tightly stoppered bottles in a refrigerator until used for antimicrobial testing.

Antimicrobial assays

Microorganisms

The seven tested microorganisms were obtained from the culture collection of the Departamento de Antibioticos, Universidade Federal de Pernambuco (UFPE-DA), Brazil. The following microorganisms were used as test organisms: Staphylococcus aureus (UFPE-DA 02), Bacillus subtilis (UFPE-DA 86), Micrococcus luteus (UFPE-DA 100), Enterococcus faecalis (UFPE-DA 138), Escherichia coli (UFPE-DA 224), Klebsiella pneumoniae (UFPE-DA 396), Candida albicans (UFPE-DA 1007), and Aspergillus niger (UFPE-DA 2003).

Disc diffusion method

The paper disc diffusion method was used to determine antibacterial activity (Bauer et al., 1966). Bacterial strains were grown on Mueller-Hinton Agar (MHA) at 37°C for 18 h and suspended (1.5 × 10⁸ CFU/ml). The MHA was poured into petri dishes and inoculated with 100 μl of the suspension. Sterile paper discs (6 mm diameter), containing 100 μg of fractions, were set on the agar. Dimethyl sulfoxide (DMSO) was used as a negative control. The plates were cultured at 37°C for 18 h. At the end of the incubation period the antimicrobial activity was evaluated by measuring the inhibition diameter plus the diameter of the disc. An inhibition zone of 14 mm or more was considered as showing high antibacterial activity.

Determination of the minimum inhibitory concentration (MIC)

MICs of all fractions and reference antibiotics (ampicillin, penicillin, gentamicin, ciprofloxacin, erythromycin, gentamicin, neomycin, kanamycin and nystatin) were determined by the microdilution method: in Mueller-Hinton broth (MHB) for bacteria and Sabouraud broth (SAB) for bacteria fungi, according to the Clinical and Laboratory Standards Institute (CLSI) Standards (2011). Inoculates were prepared in MHB, an aliquot of 10 μl of microbial suspension (1.5 × 10⁶ CFU/ml) was added to a two-fold serial dilution of all fractions (50 to 0.09 mg/ml). After specific incubation (24 h at 37°C for bacteria; 48 and 96 h at 30°C for C. albicans and A. niger, respectively). MIC values were recorded using a resazurin solution (0.01%) as a growth indicator (CLSI, 2011).

Evaluation of combinatory effects of the ethyl acetate fraction and antibiotics

The checkerboard method was used to test the combinatory effect of the ethyl acetate fraction and commercial antibiotics (ampicillin, penicillin, gentamicin, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, neomycin and tetracycline) against S. aureus, B. subtilis and K. pneumonia strains. The ethyl acetate fraction and drug were
Table 1. Antimicrobial activity of fractions obtained from methanolic extracts of Myracrodruon urundeuva bark.

<table>
<thead>
<tr>
<th>UFPEDA Number</th>
<th>Microorganism</th>
<th>Cyclohexane fraction</th>
<th>Ethyl acetate fraction</th>
<th>n-Butanol fraction</th>
<th>Aqueous fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IDZ (mm)</td>
<td>MIC (mg/ml)</td>
<td>IDZ (mm)</td>
<td>MIC (mg/ml)</td>
</tr>
<tr>
<td>02</td>
<td>Staphylococcus aureus</td>
<td>18±2.08 a</td>
<td>3.125</td>
<td>27±1 b</td>
<td>0.97</td>
</tr>
<tr>
<td>86</td>
<td>Bacillus subtilis</td>
<td>11±0.00 a</td>
<td>3.12</td>
<td>18±0.00 b</td>
<td>0.97</td>
</tr>
<tr>
<td>100</td>
<td>Micrococcus luteus</td>
<td>18±6.66 b</td>
<td>3.12</td>
<td>30±1.73 b</td>
<td>0.97</td>
</tr>
<tr>
<td>138</td>
<td>Enterococcus faecalis</td>
<td>0 a</td>
<td>3.12</td>
<td>18±1.53 b</td>
<td>0.78</td>
</tr>
<tr>
<td>396</td>
<td>Klebsiella pneumoniae</td>
<td>0 a</td>
<td>3.12</td>
<td>17±0.58 b</td>
<td>0.39</td>
</tr>
<tr>
<td>1007</td>
<td>Candida albicans</td>
<td>8±0.00 a</td>
<td>0.78</td>
<td>11±1.53 b</td>
<td>0.97</td>
</tr>
<tr>
<td>2003</td>
<td>Aspergillus niger</td>
<td>0 a</td>
<td>3.125</td>
<td>0 a</td>
<td>0.97</td>
</tr>
</tbody>
</table>

*Same superscript letter (ab, c) indicates no significant difference (p > 0.05) between IDZ values from different solvents against each pathogen (same row).

RESULTS AND DISCUSSION

M. urundeuva is a valuable medicinal plant widely distributed in Brazil and well-known due to its traditional use (especially its bark) in the treatment of infections of the urogenital, respiratory, and digestive systems, skin, subcutaneous tissues and neoplasia (Lucena et al., 2012). In this work, the antimicrobial action of fractions obtained from crude methanolic extracts of the bark was reported and the combinatory effects of the most active antimicrobial fraction with some commercially available drugs were evaluated.

The first step of this study was to evaluate the antimicrobial activity of fractions obtained from the crude methanolic extract of M. urundeuva bark (Table 1). Our previous results have demonstrated that this extract has broad-spectrum antimicrobial activity and high concentrations of gallic, fumaric, catechic, protocatechuic and chlorogenic acids (Jandú et al., 2013). These phytochemicals have been detected in various bioactive extracts and some of them had the antimicrobial action confirmed when tested separated (Jayaraman et al., 2010; Daglia, 2012; He et al., 2013; Yu and Shengrong, 2015).

All fractions obtained showed antimicrobial activity and the best antimicrobial action was observed for the ethyl acetate fraction, which showed inhibition diameter zones (IDZ) of 18±0.0, 18±0.0, 27±1 and 30±1.73 mm against B. subtilis, E. faecalis, S. aureus, and M. luteus, respectively. Its MIC values were 0.097 mg/ml for B. subtilis, S. aureus, and M. luteus; and 0.78 mg/ml for E. faecalis. This fraction was also active against K. pneumoniae (IDZ of 17±0.58 mm and MIC of 0.39 mg/ml). Regarding antifungal action, the ethyl acetate fraction inhibited C. albicans with an IDZ of 11±1.53 mm and MIC of 0.097 mg/ml, the same MIC value as with A. niger (Table 1). The cyclohexane fraction showed IDZ values ranging from 0 mm (E. faecalis, K. pneumonia and A. niger) to 18 mm (S. aureus and M. luteus) and MIC of 3.125 mg/ml for most of the tested pathogens, except for K. pneumoniae (6.25 mg/ml) and C. albicans which showed the best potential with MIC value of 0.78 mg/ml. On the other hand, the n-butanol fraction exhibited IDZ values of 0 mm (K. pneumoniae and A. niger), 9±2.08 mm (C. albicans), 10±2.08 mm (E. faecalis), and 15±0.58 mm (B. subtilis). Its MIC values were 0.78 mg/ml (B. subtilis, C. albicans and A. niger), and 3.125 mg/ml (E. faecalis and K. pneumoniae). For S. aureus and M. luteus, this fraction showed MICs values of 1.56 mg/ml and IDZ values of 18±2.31 and 23±6.66 mm, respectively. Finally, the aqueous fraction showed IDZ values ranging from 0 mm (E. faecalis, K. pneumoniae, A. niger) to 27±1 mm (S. aureus); and MIC values of 0.39 mg/ml (C. albicans and A. niger), 0.78 mg/ml (S. aureus and M. luteus) and 3.125 mg/ml (B. subtilis and E. faecalis).
Using the classification proposed by Holetz et al. (2002), ethyl acetate fraction showed the best antimicrobial activity as it had MIC values less than 100 µg/ml for the most tested pathogens. The MIC average of this fraction was about 13, 7 and 6 times less than the values found for cyclohexane, n-butanol and aqueous fractions, respectively. The results found for the ethyl acetate fraction are also better than those reported for the methanolic extract as a whole (Jandú et al., 2013).

Taking these factors together, we decided to evaluate the combinatory effects of ethyl acetate fraction with some commercial drugs against two Gram-positive (S. aureus and B. subtilis) and two Gram-negative (E. coli and K. pneumoniae) bacteria. The combinatory action of antibiotics and plant-derived products has been indicated as a new approach in the fight against bacteria, mainly to counteract the phenomenon of resistance (Hemaiswarya et al., 2008; Zuo et al., 2011). Synergistic effects may result from (i) multi-target effects (each compound has a different target); (ii) improvement of pharmacokinetic or physico-chemical features (such as solubility, bioavailability, target recognition and binding); (iii) inhibition of resistance mechanisms (e.g., drug efflux inhibition) (Wagner and Ulrich-Merzenich, 2009). Furthermore, several plants have been shown to be sources of compounds which are potentially able to increase the action of different kinds of antibiotics (Adwan et al., 2009; Bezerra dos Santos et al., 2015).

The best fraction/drug interaction was found with the protein inhibitor gentamicin, having ΣFIC values of 0.01 (for both S. aureus and B. subtilis) and 0.25 (E. coli and K. pneumoniae), these results represent synergistic effects for all tested bacteria. When combined with ciprofloxacin, the ethyl acetate fraction had synergistic (ΣFIC values of 0.02 for B. subtilis and 0.50 for E. coli and S. aureus) and additive (K. pneumoniae, ΣFIC= 1.0) effects. Combination with erythromycin resulted in synergistic effects against S. aureus, E. coli and K. pneumonia (ΣFIC value of 0.02, 0.5 and 0.16, respectively), while for B. subtilis non-interactive effects were observed (ΣFIC= 1.13). The fraction was also able to enhance the action of tetracycline against B. subtilis (ΣFIC= 0.25), E. coli (ΣFIC= 0.13) and K. pneumoniae (ΣFIC= 0.13), but showed an antagonistic effect against S. aureus (Figure 1). Similarly, combination with neomycin resulted in synergistic (ΣFIC of 0.03 against B. subtilis), non-interactive (ΣFIC of 2.02 for S. aureus and faecalis) (Table 1).

Figure 1. Combinatory effects of ethyl acetate fraction and antibiotics against B. subtilis (A), S. aureus (B), E. coli (C), K. pneumoniae (D). Amp: Ampicillin; Kan: kanamycin; Cip: ciprofloxacin; Cam: chloramphenicol; Ery: erythromycin; Gen: gentamicin; Neo: neomycin; Tet: tetracycline; non: non-interactive effect; add: additive effect; syn: synergistic effect; ant: antagonistic effect.
E. coli) and antagonistic (FIC of 4.02 for K. pneumoniae) effects, while both synergistic and antagonistic effects were found for ampicillin and kanamycin, with FIC values (respectively) of 0.07 and 4.02 for S. aureus; 5.03 and 0.02 for B. subtilis; 1.0 and 8.0 for E. coli; 8.25 and 4.01 for K. pneumoniae. Non-active and antagonistic effects were also found for the combination of the ethyl acetate fraction with chloramphenicol against all tested pathogens (Figure 1).

Generally, ethyl acetate was able to enhance the activity (by synergetic or additive effects) of 6 antibiotics against B. subtilis, 5 antibiotics against E. coli and 4 antibiotics against both S. aureus and Klebsiella pneumoniae. The synergetic effect of some constituents of M. urundeuva leaves have been reported, for example protocatechuic acid and gallic acid increased the action of sulfamethoxazole against the Gram-negative bacteria Pseudomonas aeruginosa. Gallic acid also increased the activity of tetracycline against this pathogen (Jayaraman et al., 2010). Our results showed that ethyl acetate fraction had synergetic effect when combined with tetracycline against all tested Gram negative bacteria. Additionally, the combinatory effects of ethanolic extract and essential oils from M. urundeuva leaves were evaluated against S. aureus and E. coli. Both samples were only able to enhance the activity of gentamicin, amikacin and clindamycin against S. aureus (Figueiredo et al., 2013). In this sense, compounds present in the bark seem to be more effective as drug enhancers.

Conclusion

This study demonstrates that all fractions obtained from a methanolic extract of M. urundeuva bark are sources of antimicrobial compounds able to improve the activity of some commercial antimicrobials, especially gentamicin, erythromycin, tetracycline and ciprofloxacin. The development of pharmaceutical preparations containing products derived of M. urundeuva bark constitute a possible sustainable alternative to overcome resistance and others undesirable effects related to conventional antibiotics therapy. Further studies aiming to identify the active compounds and action mechanisms involved should be performed.

Conflicts of interest

The authors declare that they have no conflicts of interest.

ACKNOWLEDGEMENTS

The authors thank the Brazilian Agencies Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support. They are very grateful to the “Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)” for authorizing collections in PARNA do Catimbau (Sisbio 16.806). They also express their gratitude to Scott V. Heald, a native of the United States and certified English language examiner, for correcting the English of the manuscript.

REFERENCES

Lucena RFDP, Medeiros PMD, Araújo EDL, Alves AGC, Albuquerque UPD (2012). The ecological aparence hypothesis and the importance

