ABOUT AJBR

African Journal of Biochemistry Research (AJBR) provides rapid publication (monthly) of articles in all areas of Biochemistry such as Nutritional biochemistry, Analytical biochemistry, Clinical Biochemistry, Human and Plant Genetics, Molecular and Cell Biology, Enzymology, Toxicology, Plant Biochemistry, Biochemistry Education etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajbr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at ajbr@academicjournals.org.
Editor

Prof. Johnson Lin
School of Biochemistry, Genetics, Microbiology and Plant Pathology
University of KwaZulu-Natal (Westville)
Private Bag X 54001, Durban
Republic of South Africa

Associate Editors

Gregory Lloyd Blatch
Dept Biochemistry Microbiology & Biotechnology
Rhodes University Grahamstown 6140
South Africa

Dr. Serap Yalin
Mersin University,
Faculty of Pharmacy,
Department of Biochemistry,
Yenisehir Kampusu,
Mezitli 33161
Mersin/Turkey

Dr. Om Prakash Gupta
Directorate of Wheat Research (ICAR)
Post Box-158, A grasain Marg, Karnal-132001, Haryana, India
Editorial Board

Dr. Desouky A.M. Abd-El-Haleem
Biological Sciences Department,
College of Arts and Sciences,
Qatar University, Doha,
Qatar

Dr. S.K. Trigun
Biochemistry and Molecular Biology Section,
Banaras Hindu University
Varanasi-221005,
India

Dr. Imed Gallouzi
McGill University,
Biochemistry Department,
3655 Promenade Sir William OslerMontreal,
Quebec, H3G 1Y6,
Canada

Dr. Ashraf A Khalil
Protein Technology Lab, Mubarak City for Science,
New Borg Elarab,
Alexandria,
Egypt.

Dr. Stanley Mukanganyama
Department of Biochemistry,
University of Zimbabwe, Box MP 167,
Mount Pleasant, Harare,
Zimbabwe

Prof. Salah A. Sheweita
Taibah University, Faculty of Medicine,
Department of Biochemistry, PO Box 30001,
Madinah,
Saudi Arabia

Dr. Robert L. Brown
USDA ARS,
Southern Regional Research Center
1100 Robert E. Lee Blvd.,
New Orleans, LA 70124

Dr. Edward Etoshola
Biomedical Engineering Center
Davis Heart and Lung Research Institute
Ohio State University
473 W. 12th Avenue
Columbus, OH 43210

G. Suresh Kumar
Senior Scientist and Head
Biophysical Chemistry Laboratory
Indian Institute of Chemical Biology
Council of Scientific and Industrial Research
Jadavpur,
Kolkata 700 032,
India

Xu Lu
Department of Biochemistry and Molecular Biology
Colorado State University
Fort Collins,
CO 80523-1870
USA

Mohammed A.A Sarhan
Dept. Biological Sciences
Faculty of Science
King Khalid University
Saudi Arabia

Mehrdad Behmanesh
Department Of Genetics
School Of Science
P.O.Box 114-175 Tehran Iran
Iran

Hans Verhagen
Po Box 1 3720 Ba Bilthoven
The Netherlands

P.K. Sumodan
Post Graduate Department Of Zoology
Government College Madappally India
India

Baleseng Moseki
University Of Botswana
Botswana
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhaskar C. Behera</td>
<td>Agharkar Research Institute</td>
<td>Plant Science Division India, India</td>
</tr>
<tr>
<td>Luiz Claudio Miletti</td>
<td>Universidade Do Estado De Santa Catarina Brasil</td>
<td></td>
</tr>
<tr>
<td>Oladipo Gabriel Sunday</td>
<td>University Of Port Harcourt</td>
<td>Port Harcourt, Nigeria</td>
</tr>
<tr>
<td>Basiouny Ahmed El-Gamal</td>
<td>Biochemistry Department</td>
<td>Alexandria University, Egypt</td>
</tr>
<tr>
<td>Aminigo Ebiokpo Rebecca</td>
<td>University Of Port Harcourt</td>
<td>Port Harcourt, Nigeria</td>
</tr>
<tr>
<td>Jia Zeng</td>
<td>Department Of Bioengineering</td>
<td>Central South University, Changsha Hunan 410083 P.R.China, China</td>
</tr>
<tr>
<td>Adenike Kuku</td>
<td>Obafemi Awolowo University</td>
<td>Department Of Biochemistry, Nigeria</td>
</tr>
<tr>
<td>Elsayed Hafez</td>
<td>Genetic Engineering and Biotechnology Research Institute</td>
<td>Egypt</td>
</tr>
<tr>
<td>Gabriella Castoria</td>
<td>Via L. De Crecchio 7 - 80138 Naples</td>
<td>Department Of General Pathology Italy</td>
</tr>
<tr>
<td>Salwa Seddik Abdel-Latif</td>
<td>21 Elbatal Ahmed Abdel Aziz Elmohandesien Giza</td>
<td>Egypt</td>
</tr>
<tr>
<td>Erasto Vitus Mbugi</td>
<td>Muhimbili University</td>
<td>Biochemistry Department, School Of Medicine, India</td>
</tr>
<tr>
<td>Mohamed Rholam</td>
<td>Université Paris7 - Denis-Diderot</td>
<td></td>
</tr>
<tr>
<td>Hooi Ling Foo</td>
<td>Universiti Putra Malaysia</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Jayanth Rao</td>
<td>Biochemistry And Nutrition</td>
<td>Cftri Mysore, India</td>
</tr>
<tr>
<td>Maznah Ismail</td>
<td>Universiti Putra</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Svetlana Lutsenko</td>
<td>Oregon Health & Science University</td>
<td>USA</td>
</tr>
<tr>
<td>Gabriel Ugwem</td>
<td>Rivers State University Of Science And Technology</td>
<td>P.M.B. 5080 Port Harcourt, Nigeria</td>
</tr>
<tr>
<td>Hari Chhatpar</td>
<td>Dept. Of Microbiology & Biotechnology Centre</td>
<td>M.S.University Of Baroda, Vadodara 390 002 Baroda India</td>
</tr>
<tr>
<td>Mahiuddin Alamgir</td>
<td>The University Of New South Wales</td>
<td>Sydney Nsw-2052, Australia</td>
</tr>
<tr>
<td>Sheeja Samuel Edwin</td>
<td>B.R Nahata College of Pharmacy & Research Centre</td>
<td>India</td>
</tr>
<tr>
<td>William Cho</td>
<td>Room 1305 13/F Block R Department of Clinical Oncology</td>
<td>Queen Elizabeth Hospital, 30 Gascoigne Road Kowloon Hong Kong</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Address/Location</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ass. Prof. Tzong-Jih Cheng</td>
<td>Department of Bio-Industrial Mechatronics</td>
<td>National Taiwan University, Taiwan</td>
</tr>
<tr>
<td>Dr. Zuyong Xia</td>
<td>Department of Radiology, 1201 Welch Rd, Room P089, Stanford, CA 94301</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Pratap Kumar Das</td>
<td>Indian Institute of Chemical Biology, India</td>
<td></td>
</tr>
<tr>
<td>Dr. Vasudeo Pandharinath Zambare</td>
<td>Advanced Enzyme Technologies Ltd</td>
<td>India</td>
</tr>
<tr>
<td>Dr. A M Mujumdar</td>
<td>Agharkar Research Institute, India</td>
<td></td>
</tr>
<tr>
<td>Prof. Christine Clayton</td>
<td>ZMBH</td>
<td>Im Neuenheimer Feld 282, 69120 Heidelberg</td>
</tr>
<tr>
<td>Prof. Rekik Boulbaba</td>
<td>ESA Mateur</td>
<td>Germany</td>
</tr>
<tr>
<td>Dr. Farhad Mirzaei</td>
<td>National Dairy Research Institute, NDRI, Karnal, India</td>
<td></td>
</tr>
<tr>
<td>Dr. ROUABHI Rachid</td>
<td>Biology Department, Tebessa University, Algeria</td>
<td></td>
</tr>
<tr>
<td>Prof. Vaclav Vetvicka</td>
<td>University of Louisville, USA</td>
<td></td>
</tr>
<tr>
<td>Dr. Ramesh Putheti, Ph.D</td>
<td>Research scientist, Actavis Pharmaceuticals</td>
<td>10065 red run blvd, Owings Mills Blvd, Maryland, USA, 21030 USA</td>
</tr>
<tr>
<td>Prof. Dr. Mustafa NAZIROGLU</td>
<td>Head of Department of Biophysics, Medical (TIP) Faculty, Suleyman Demirel</td>
<td>Cunur, TR-32260 Isparta, TURKEY</td>
</tr>
<tr>
<td>Dr. José Luis Arias Mediano</td>
<td>Grupo Investigación Farmacia Práctica (CTS-205), Dept. Farmacia y Tecnología Farmaceutica</td>
<td>Campus Universitario de Cartuja, s/n Universidad de Granada 18071 Granada.</td>
</tr>
<tr>
<td>Ahmed Malki, PhD</td>
<td>Lecturer of Biochemistry and Molecular Biology, Biochemistry Department</td>
<td>Alexandria University, Alexandria, Egypt</td>
</tr>
<tr>
<td>Dr. Alireza Seidavi (PhD)</td>
<td>Assistant Professor of Animal and Poultry Nutrition, Department of Animal Science, Islamic Azad University, Rasht Branch, Rasht, Iran</td>
<td></td>
</tr>
<tr>
<td>Amani S. Awaad</td>
<td>Professor of Pharmacognosy, Chemistry Department, Faculty of Sciences, King Saud University, Riyadh, KSA. P.O. Box 22452, Riyadh 11495, Saudi Arabia</td>
<td></td>
</tr>
<tr>
<td>Dr. Abdel-Tawab Mossa</td>
<td>Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre, Dokki, Egypt</td>
<td></td>
</tr>
</tbody>
</table>
Dr. Saad Tayyab
Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Dr. Shijun Fu
Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China

Dr. Shiming Zhang
Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA

Dr. Thomas Efferth
Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Heidelberg, 55128 Mainz, Germany
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The **Discussion** should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The **Acknowledgments** of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (email attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the African Journal of Biochemistry Research is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJBR, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Research Articles:

Diastatic enzymes malting process optimisation of African finger millet for biotechnological uses
Adejoke N. Kolawole and Ayodele O. Kolawole
Full Length Research Paper

Diastatic enzymes malting process optimisation of African finger millet for biotechnological uses

Adejoke N. Kolawole* and Ayodele O. Kolawole
Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, Nigeria.

Received 16 June, 2015; Accepted 30 July, 2015

This study sought to understand the importance of variation of steeping and germination conditions (temperature, pH and salts) on the quality of African finger millet malt in terms of diastic power (α-amylase and β-amylase), endo- (1,3) (1,4)-β-D-glucanase, β-glycan content and protein profile. The results show that the physiological responses of African finger millet malted seeds are correlated to pH (acidity and alkalinity) but inversely correlated to temperature stress. The effect of the stresses on the activity of α-amylase, β-amylase and endo-(1,3)(1,4)-β-D-glucanase as well as β-glycan content was significantly different in magnitude except for the β-amylase activities obtained after acidic and alkaline treatment at 40°C which are not statistically different. Alkaline pH and heat stress at 30°C were the dominant factors for malting optimization from the result of diastic power indices. α-Amylase activity is a better predictor of diastic power. The grains subjected to the steeping and germination process carried out in Tris-HCl buffer solution (25 mM, pH 9) containing 100 mM NaCl at 30°C during 96 h showed higher α-amylase and β-amylase activity. This shows that for a salt–alkali-heat mix stress, a reciprocal enhancement among salt stress, alkali and heat stress was a characteristic feature with no significant change in the hordein protein expression. The influential effect of the stress conditions indicate that alkaline pH steeping and 30°C malting is the most effective condition for producing malted African millet flour with a promising potential of distinct malting quality metrics.

Key words: African finger millet, diastic enzymes, malting, stresses.

INTRODUCTION

African finger millet (Eleusine coracana (L.) Gaertn. subsp. coracana) is an important cereal in West Africa and India. African finger millet is grown mainly by subsistence farmers in Nigeria and serves as a food security crop because of its high-nutritional value, flavor and excellent storage qualities (Mbithi-Mwikya et al., 2000). It is used either in its native or processed forms in the preparation of weaning foods, pharmaceutical products and low cost ready-to-eat food items (Narayanaswamy et al., 1971). African finger millet sprout flour has been used as a source of enzyme for production of togwa, a traditional nonalcoholic beverage consumed in East Africa (Yasuyuki and Kitabatake, 2003).

Malting of African finger millet is a well-known household process involving steeping, germination, kilning and cleaning. This process is associated with a change in the nutritional and functional quality of the cereal grains. The conversion of starch into sugars by α-amylase allows nutritionally rich food for both human consumption and animal feed. The malting process optimisation of African finger millet is associated with a change in quality of the cereal grains. The increase in the nutritional and functional quality of the cereal grains is achieved by the change in the enzymatic activities of α-amylase, β-amylase, endo- (1,3) (1,4)-β-D-glucanase, β-glycan content and protein profile. The optimisation of the malting process can only be achieved by understanding the interaction of key factors affecting the malting process.
technology in West and East Africa and India (Gimbi and Kitabatake, 2002). The traditional malting technique of African finger millet and sorghum are similar (Nout and Davies, 1982). This involves 24 h continuous immersion steeping, 2-3 days germination and lastly 1 or 2 days solar dehydration at 25-30°C. This has posited to improve the nutritional quality and reduce the level of anti-nutrients in African finger millet flour (Mbithi-Mwikya et al., 2000). Malting is the controlled and partial germination of cereals grains under conducive to control environmental conditions of steeping, germination and kilning (Mark et al., 2013). The biotechnology of malting uses the natural germination events to provide favourable mashing material hence, intact enzymes, starch availability and viability of the seeds are the main criteria for malt quality (Gorzelka et al., 2012). The primary objective of cereal malting is to promote the development of hydrolytic enzymes. However, some malted cereals may contain low activity of starch-hydrolysing enzymes (β-amylase and α-amylase) and low activity of desirable enzymes degrading endosperm cells walls like β-glucanase (Agu and Palmer, 1997). In addition, the possibility of successfully eliminating specific fractions of non-digestible soluble fibre such as β-glucan, from different types of cereals or cereal by-products has also posed challenges to maltsters (Charalampopoulos et al., 2002). The findings of Hounhouigan et al. (2007) showed that malt enzymatic power is highly variable with the variety of grain in consideration and the malting (steeping, germination and drying) conditions employed. The joint amylolytic activity of primarily β-amylase and α-amylase, termed diastatic power, is a major malting quality parameter of malted products (Clancy et al., 2003). In the same vein, the extent of endosperm cell wall degradation by the β-glucanase enzymatic activity and the β-glucan content left after processing are vital determinant factors of malting quality especially in the friability of the malt product (Wang et al., 2004). The protein content of malted products is also pivotal to the determination to their quality (Jamar et al., 2011). The full knowledge on these parameters and conditions which bring about their improvement is very important to maltsters. The quality of the malt is of primary significance in the manufacture of brewed products. To increase the brewing yield and efficiency, malts with high extract values, high enzymatic activities, and good modification are essential. To produce malt that meets these requirements, the grains are expected to be able to germinate rapidly and uniformly (Riss and Bang-Olsen, 1991), producing a correspondingly high diastatic power, high β-glucanase activity and low protein content. Lately, attention has been placed on optimization of African finger millet malting process for quality malt (Gimbi and Kitabatake, 2002). In Nigeria, attempt is underway to use malted African millet for beer production. This prompted a high and incessant demand for malted African finger millet flours for beer brewing, preparation of non-alcoholic beverages, weaning foods, infant foods formula (Nzeibe and Agbojo, 2005; Hounhouigan et al., 2007) and for the development of novel foods in cereal based industries (Charalampopoulos et al., 2002).

The study seeks to understand the importance of variation of steeping and germination conditions (temperature, pH and salts) on the quality of African finger millet malt in terms of diastatic power (α-amylase and β-amylase), endo- (1,3) (1,4)-β-D-glucanase, β-glucan content and protein profile. The study revealed that careful control of germination environments and conditions coupled with monitoring and optimizing diastatic enzymes (α-amylase, β-amylase), β-glucanase activities and reducing the β-glucan and protein contents, one will be able to reliably produce malt with finely tuned characteristics as well as an appropriate physical state that together meet the needs of their brewing customers.

MATERIALS AND METHODS

African Finger Millet (Eleusine coracana) (local variety) was acquired from the Farin Gada market, Jos, Nigeria in September 2011. The seeds (moisture content of 11g/100 g and germination capacity of ≥ 92%) were screened to remove broken grains and foreign materials and then stored at ≤ 4°C until used. Enzyme activity kits of α-amylase (K-CERA), β- amylase (K-BETA), endo-(1,3) (1,4)-β-D-glucanase (K-MBGL) and β-glucan (K-BGLU) were obtained from Megazyme International Ireland Ltd., Bray Business Park, Bray, Co. Wicklow, Ireland. All other materials used were of analytical grade from authorized commercial suppliers. All spectrophotometric assays were monitored using Shimadzu UV-1800 double beam UV-visible spectrophotometer. All measurements were performed thrice unless otherwise stated.

The malting procedure

The micro-malting was done as reported elsewhere (Mac Nicol et al., 1993). The grains were then weighed (100 g per group), washed (in distilled water) and sterilized using 1% sodium hypochlorite solution for 20 min at room temperature. The malted grains were pulverized using a thermoline® blender.

Design of simulated acidic, alkaline and salt conditions

The sterilized grain samples, in their respective groups were steeped overnight at 25°C under acidic pH stress condition (25 mM Glycine-HCl Buffer, pH 3.0), alkaline pH stress condition (25 mM Tris-HCl, pH 9.0) and salt stress condition (0 - 200 mM NaCl, a neutral salt, in deionized water). The grains steeped in distilled water serve as a control. The grains were germinated at these stress conditions under constant moisture content at either 30 or 40°C (room temperature was 25°C). Sampling was at 24 h for 96 h and immediately kept at -20°C until used.

Measurement of diastatic enzymes indices

Malt α-amylase, β-amylase and β-glucanase activities were measured according to the enzymatic method of a commercial assay kit (Megazyme International Ireland, Bray, Ireland). The results are expressed as U/g. Total β-glucan content in malted
finger millet was measured according to the enzymatic method of McCleary and Shameer (1987) using a commercial assay kit (Megazyme International Ireland, Bray, Ireland). The calculation of the β-glucan content of the malt was carried out using the Megazyme Mega-Calc® (www.megazyme.com).

Protein content assay and SDS-PAGE

Total protein concentration was determined according to the dye binding method of Bradford (Bradford, 1976) with bovine serum albumin as standard. Aliquots of the millet protein extract were taken from the 96 h germinated samples for SDS-PAGE. This was achieved by mixing 100 mg of each germinated millet sample with 1.0 mL of 20 mM sodium phosphate buffer (pH 6.5) under mechanical stirring for 3 h. The mixtures were centrifuged at 10,000 \times g for 10 min at 4°C. 400 μL of the supernatants containing protein extract were precipitated with 100% trichloroacetic acid (TCA) in cold acetone 1 g/ml (w/v) and stored overnight at 0°C. These were later centrifuged at 10,000 X g to collect the pellets formed. The pellets were washed repeatedly with cold acetone to remove all TCA and then air-dried. The obtained residue was dissolved in electrophoretic sample buffer containing 20 g/L SDS, 0.0625 mol L$^{-1}$ Tris, 100 mM L$^{-1}$ glycerol and 0.1 g L$^{-1}$ bromophenol blue (pH 6.8) and boiled at 100°C for a minute. The hordeins were similarly extracted three times for 1 h each with 55% (v/v) propan-2-ol, 1% (v/v) acetic acid and 2% (v/v) 2-mercaptoethanol (15–30 ml) at 60°C. The hordein fraction was reduced with 1% (v/v) 2-mercaptoethanol and alkylated with 1.5% (v/v) 4- vinyl-pyridine to disrupt permanently the disulphide bonds within the B and D hordeins. The discontinuous Tris-HCl/glycine buffer system was employed (Laemmli, 1970), with 12% SDS-PAGE.

Gels were scanned and the digital pictures subjected to densitometric analysis using the Gene Tools software 3.07.03 Package (Synoptics, Cambridge, England).

Statistical analysis

Data from triplicate results was presented as mean values ± standard deviation (SD). The results were statistically evaluated by one way analysis of variance analysis (ANOVA) followed by Duncan's New Multiple Range Test (DMRT) using SPSS 16.0 (SPSS Inc., Chicago, IL, USA) statistical package. LSD test as post hoc tests with a $p = 0.05$ significance, to compare the treatment effect. Graphical analysis was performed with performed using Kaleidagraph 4.1 (Synergy software).

RESULTS

α-Amylase

The result of α-amylase activity malted African finger millet during various stress condition is shown in Figure 1. A steady increase (from 0 to 96 h) in the α-amylase activity was noticed at 30°C at alkaline pH stress condition. The highest activity (180.04±0.20 U/g) was observed at 96 h for alkaline pH steeped and germinated at 30°C. At 40°C, the highest activity (136.11 ± 2.02 U/g) for the malted Finger millet was at alkaline pH at 48 h.

β-Amylase activity

The results of the effect of pH and heat stresses on β-amylase activity is shown in Figure 2. There was increase in the activity at alkaline and acidic pH at 30°C. The optimum β-amylase activity (136.27 ± 2.0 U/g) was at 30°C at alkaline pH condition at 96h. At 40°C germinating condition, there was a decline in β-amylase activity after 48 h and 72 h at acidic and alkaline pH stress conditions, respectively.

β-Glucanase content

The result in Figure 3 shows the effect of heat stress and pH stress on β-glucanase activity in African finger millet malt. Malting at 30°C showed optimum β-glucanase activity compared with 40°C. There was statistically significant increase for pH stress conditions from 0 to 48 h period.

β-Glucan content estimation

The result of the effect of heat and pH stresses on the β-glucan activity of the malted African finger millet grain is presented in Figure 4. There was a general increase in the β-glucan content at 40°C compared to 30°C.

Salinity treatment

The simulated salt–alkaline-30°C stress conditions were a combinatorial approach employed to study the complex salt–alkaline (30°C) stress conditions in malting (Figure 5). α-Amylase assay was used as indicator, because of its sensitivity, to monitor the effect. The result indicates an increase in the α-amylase activity from 0–100 mM but no further significant change till 200 mM. β-amylase activity was further used to revalidate the result of the α-amylase activity. The result showed to be the same.

Protein profile of malted Finger millet using SDS-PAGE

SDS-PAGE separation of hordein polypeptides from individual 96 h malted African finger millet grains in alkaline pH at 30°C, alkaline pH at 40°C, acidic pH at 30°C and distilled water at 30°C is shown in Figure 6. The hordein fraction expressions were not significantly different from the stress conditions applied. It is predominantly characterised by 44-66 kDa hordein and 20-27 kDa hordein fractions. This indicates hordein B and hordein A respectively.

DISCUSSION

There has been a high and constant demand for malted cereals for beverage production, infant foods formulation
Figure 1. α-amylase Activity in malted Finger millet grains at 30°C (a) and 40°C (b). Each bar represents mean ± SD values of independent experiment performed in triplicate. Alkaline pH, the grains subjected to the steeping process carried out in Tris-HCl Buffer (25 mM, pH 9); acidic pH, the grains subjected to the steeping process carried out in Glycine-HCl Buffer (25 mM, pH 3); control, the grains steeped in autoclaved distilled water serves as control.

Figure 2. β-amylase Activity in malted Finger millet at 30°C (a) and 40°C (b). Each bar represents mean ± SD values of independent experiment performed in triplicate. Alkaline pH, the grains subjected to the steeping process carried out in Tris-HCl Buffer (25 mM, pH 9); acidic pH, the grains subjected to the steeping process carried out in Glycine-HCl Buffer (25 mM, pH 3); control, the grains subjected to the steeping process carried out in autoclaved distilled water.

and for novel food development in cereal based industries (Charalampopoulos et al., 2002). However, the problems usually encountered are inadequate expressed enzyme levels of starch-hydrolysing enzymes and endosperm cell wall degrading enzymes (Agu and Palmer, 1997). In addition, the possibility of successfully eliminating non-digestible β-glucan fractions from different types of cereals or cereal by-products has also posed challenges to industrialists and technologists (Charalampopoulos et al., 2002). Malt enzymatic power is highly variable within
Figure 3. β-glucanase activity in malted Finger millet at 30°C (a) and 40°C (b). Each bar represents mean ± SD values of independent experiment performed in triplicate. Alkaline pH, the grains subjected to the steeping process carried out in Tris-HCl Buffer (25 mM, pH 9); acidic pH, the grains subjected to the steeping process carried out in Glycine-HCl Buffer (25 mM, pH 3); Control, the grains subjected to the steeping process carried out in autoclaved distilled water.

Figure 4. β-glucan concentration in malted Finger millet at 30°C (a) and 40°C (b). Each bar represents mean ± SD values of independent experiment performed in triplicate. Alkaline pH: the grains subjected to the steeping process carried out in Tris-HCl Buffer (25 mM, pH 9). Acidic pH: the grains subjected to the steeping process carried out in glycine-HCl Buffer (25 mM, pH 3). Control, the grains subjected to the steeping process carried out in distilled water.

The acidic and alkaline pH treatment during steeping and germination of African finger millet grains at 30°C induced higher α-amylase activity compared to control (grains steeped in autoclaved distilled water). Samples of malted African finger millet grains treated at pH 9.0 during 96 h at 30°C showed higher α-amylase activity. Malted grains containing high α-amylase activity is
Figure 5. The effect of Salt (NaCl) concentrations (0-200 mM) on (a) α-amylase and β-amylase activities in 96 h malted Finger millet at 30°C in alkaline pH (25 mM Tris-HCl Buffer, pH 9.0). Each bar represents mean ± SD values of independent experiment performed in triplicate.

Figure 6. 12% SDS-PAGE of hordein polypeptide pattern extracted from 96 h Malted African finger millet. Lane A, germinated Finger millet grains at alkaline pH at 30°C; lane B, germinated finger millet grains at alkaline pH at 40°C; lane C, germinated Finger millet grains at acidic pH at 30°C; lane D, germinated Finger millet grains in distilled water at 30°C.
important for the hydrolysis of starch and production of maltose, maltotriose and dextrin (Kanenski et al., 2013). Previous study showed that the maximum development of \(\alpha\)-amylase activity usually occurs after 96 h in germinating millet (Mbithi-Mwikya et al., 2000). This is of great value because the proper development of the enzyme ultimately leads to complete saccharification and high extract yield (Ukwuru, 2010). Heat stress of 40°C appears not to be appropriate compared to 30°C from the result of \(\alpha\)-amylase activity. 30°C could be a more suitable temperature for the production of high levels of reducing sugars. This is in agreement with earlier report (Agu and Palmer, 1997).

The \(\beta\)-amylase activity in the malted millet is not well expressed compared to \(\alpha\)-amylase. This is not unusual. Similar result was obtained from malted sorghum (Uri and Eigel, 1999). They posited that low \(\beta\)-amylase activity is attributed to the interaction of \(\beta\)-amylase with polyphenols to form insoluble polyphenol enzyme complexes. \(\beta\)-amylase activities is the best expressed at 30°C as against those of 40°C. The malted African finger millet grains treated at pH 3 and pH 9.0 showed lower \(\beta\)-amylase activity (125 and 130 U/g), compared to \(\alpha\)-amylase activity (143 and 180 U/g), respectively, after 96 h incubation at 30°C. Dreier et al. (1995) reported that \(\beta\)-amylase activity is known to increase in response to heat stress. In contrast, it was observed that the activity of \(\beta\)-amylase in the millet species malted was rather low as the temperature increased from 30 to 40°C. As suggested by Bwagangwa et al. (2012), this may be due to the synthesis rate of the enzyme which is easily influenced by the germination temperature. (Taylor and Robbins, 1993) reported that a low temperature is optimal to obtain high \(\beta\)-amylase activities. This requirement of a relatively low germination temperature may be related to the fact that the \(\beta\)-amylase is thermostable. It is glaringly evident that \(\alpha\)-amylase and \(\beta\)-amylase activities work in tandem in the malted millet grains during the heat and pH stresses. Both \(\alpha\)-amylase and \(\beta\)-amylase, have a joint amylolytic function in that \(\alpha\)-amylase catalyses the hydrolysis of internal \(\alpha\)-1, 4-O-glycosidic bonds in polysaccharides to produce soluble oligosaccharides with retained \(\alpha\)-anomeric configuration which are in turn hydrolysed by \(\beta\)-amylase, liberating maltose; this joint amylolytic activity is known as the diastatic power (Usha et al., 2011).

The significance of the results obtained in the present study is that the finger millet grains that were subjected to alkaline pH stress at 30°C have a correspondingly high diastatic activity when compared to that of the other groups due to their respective \(\alpha\)-amylase activity levels. Since the \(\alpha\)-amylase activity is a good indicator of the diastatic power in the malted millets. In line with these observations, reports have it that diastatic activity increase is caused by an increase in activity of the amylase enzymes developed during germination (McCleary and Shamer, 1987). Another significance of the high \(\alpha\)-amylase activity recorded in the present study is that the different fractions of the oligosaccharides obtained from the starch hydrolysis could also be separated and their functionality could be tested and patented in the food industry. Some infant products contain them in the hope that they might provide some of the benefits attributed to oligosaccharides in human milk (Rivero and Santamaria, 2001).

There is no significant difference in the endo-(1,3)(1,4)-\(\beta\)-D-glucanase enzyme activities in the finger millet grains subjected to alkaline and acidic pH stress and germinating at 30°C, especially those sampled between 0 to 24 h of germination. Figure 3 illustrates that malted millet grains obtained from steeping process in autoclaved distilled water (control) at 30°C showed highest \(\beta\)-glucanase activity, while at the same temperature the enzyme appeared to be stable under the acid stress conditions at the 48th and 72nd h of germination. From their work, Gupta et al. (2010), observed that better malting performance is expected to be associated with lower levels of \(\beta\)-glucan in grains and higher levels of \(\beta\)-glucanase in malt. Recent findings also show that the degradation of endosperm cell walls and subsequent changes in \(\beta\)-glucan levels during malting is to a great extent, related to \(\beta\)-glucanase activity, which depolymerizes \(\beta\)-glucan (Gupta et al., 2010). Such levels of \(\beta\)-glucanase activity as observed among millet grains steeped under alkaline and acid pH stress conditions and germinated at 30°C (Figure 3) with a corresponding decrease in \(\beta\)-glucan concentration (Figure 4) suggests the possibility of the malted products being of good quality and may be a useful alternative to the malted products produced from other cereals or under other conditions. The quality (in terms of its viscosity) of the malt produced in the present study could be predicted from the results obtained on the \(\beta\)-glucan content of the malted finger millet grains (Figure 4). This is due to the fact that \(\beta\)-glucan molecules have the ability to self-associate and form aggregates, hence contributing to increased viscosity (Cui and Wood, 2000). Moreover, the starch content and alpha-amylase and beta-amylase activity may also influence the viscosity of the malted grains since poor degradation of \(\beta\)-glucans and poor hydrolysis of starch can lead to slow wort filtration, reduced extraction efficiency and haze development of the finished brewed product (Correia et al., 2008).

Stress due to salinity generally might not be unconnected to osmotic stress and possibly ion-induced imbalance (Munns, 2002). Our results show the induction of the amylolytic enzymes under this present study and attain saturation above 100 mM NaCl. Our result is not unusual. Salt stress has been reported to stimulate induction of \(\beta\)-amylase protein accumulation and activity in maize, pearl millet and barley (Kaplan et al., 2006). Here, there appear to an added effect of salinity to alkali stress. The synergistic comparative mechanism of salinity-alkaline pH stress still remains unclear. However it is plausible to suggest that ionic imbalance and pH homeostasis could stimulate the induction of amylolytic enzymes to enhance
matting. Malting quality is related to the hordein (cereal storage protein) fractions (Echart-Almedia and Cavalli-Molina, 2001). There was no significant change in the expression of the predominantly hordein polypeptide A and B during the stress conditions applied. There were no significant changes in polypeptide fractions of hordein A and B after acid and alkaline treatment of African finger millet malted grain. Here, it becomes clearer that change in hordein fraction might not be a good variable to matting potential in African finger millet.

In summary, the findings from this study reveals that, steeping practices are critical for good malt production when considering finger millet as the grain source. Finger millet malt quality is significantly affected by pH and temperature. Malt quality within the range of parameters studied increases with steeping time (24-72 h), the most effective condition for producing malted millet flour could be under alkaline pH (pH 9.0) and at 30°C. Thus, finger millet if properly harnessed under optimized conditions could be a very promising replacement for barley malt.

Conflict of interests

The authors did not declare any conflict of interest.

REFERENCES

African Journal of Biochemistry Research

Related Journals Published by Academic Journals

- *International Journal of Plant Physiology and Biochemistry*
- *Current Research in Biochemistry and Molecular Biology*
- *African Journal of Biotechnology*
- *Journal of Developmental Biology and Tissue Engineering*
- *Journal of Enzymology and Metabolism*