African Journal of Biochemistry Research
Volume 9 Number 8, September 2015
ISSN 1996-0778
ABOUT AJBR

African Journal of Biochemistry Research (AJBR) provides rapid publication (monthly) of articles in all areas of Biochemistry such as Nutritional biochemistry, Analytical biochemistry, Clinical Biochemistry, Human and Plant Genetics, Molecular and Cell Biology, Enzymology, Toxicology, Plant Biochemistry, Biochemistry Education etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajbr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at ajbr@academicjournals.org.
Editor

Prof. Johnson Lin
School of Biochemistry, Genetics, Microbiology and Plant Pathology
University of KwaZulu-Natal (Westville)
Private Bag X 54001, Durban
Republic of South Africa

Associate Editors

Gregory Lloyd Blatch
Dept Biochemistry Microbiology & Biotechnology
Rhodes University Grahamstown 6140
South Africa

Dr. Serap Yalin
Mersin University,
Faculty of Pharmacy,
Department of Biochemistry,
Yenisehir Kampusu,
Mezitli 33161
Mersin/Turkey

Dr. Om Prakash Gupta
Directorate of Wheat Research (ICAR)
Post Box-158, A grasain Marg, Karnal-132001, Haryana, India
Editorial Board

Dr. Desouky A.M. Abd-El-Haleem
Biological Sciences Department,
College of Arts and Sciences,
Qatar University, Doha,
Qatar

Dr. S.K. Trigun
Biochemistry and Molecular Biology Section,
Banaras Hindu University
Varanasi-221005,
India

Dr. Imed Gallouzi
McGill University,
Biochemistry Department,
3655 Promenade Sir William OslerMontreal,
Quebec, H3G 1Y6,
Canada

Dr. Ashraf A Khalil
Protein Technology Lab, Mubarak City for Science,
New Borg Elarab,
Alexandria,
Egypt.

Dr. Stanley Mukanganyama
Department of Biochemistry,
University of Zimbabwe, Box MP 167,
Mount Pleasant, Harare,
Zimbabwe

Prof. Salah A. Sheweita
Taibah University, Faculty of Medicine,
Department of Biochemistry, PO Box 30001,
Madinah,
Saudi Arabia

Dr Oluwafemi O Oguntibeju
Department of Clinical Biochemistry,
School of Medicine,
Spartan Health Sciences University,
P.O. Box 324, Vieux Fort, St Lucia,
West Indies

Dr. Robert L. Brown
USDA ARS,
Southern Regional Research Center
1100 Robert E. Lee Blvd.,
New Orleans, LA 70124

Dr. Edward Etshoala
Biomedical Engineering Center
Davis Heart and Lung Research Institute
Ohio State University
473 W. 12th Avenue
Columbus, OH 43210

G. Suresh Kumar
Senior Scientist and Head
Biophysical Chemistry Laboratory
Indian Institute of Chemical Biology
Council of Scientific and Industrial Research
Jadavpur,
Kolkata 700 032,
India

Xu Lu
Department of Biochemistry and Molecular Biology
Colorado State University
Fort Collins,
CO 80523-1870
USA

Mohammed A.A Sarhan
Dept. Biological Sciences
Faculty of Science
King Khalid University
Saudi Arabia

Mehrdad Behmanesh
Department Of Genetics
School Of Science
P.O.Box 114-175 Tehran Iran
Iran

Hans Verhagen
Po Box 1 3720 Ba Bilthoven
The Netherlands
Netherlands

P.K. Sumodan
Post Graduate Department Of Zoology
Government College Madappally India
India

Baleseng Moseki
University Of Botswana
Botswana
Bhaskar C. Behera
Agharkar Research Institute
Plant Science Division India
India

Luiz Claudio Miletti
Universidade Do Estado De Santa Catarina
Brasil

Oladipo Gabriel Sunday
University Of Port Harcourt
Port Harcourt-Nigeria
Nigeria

Basiouny Ahmed El-Gamal
Biochemistry Department
Faculty Of Science
Alexandria University
Egypt

Aminigo Ebiokpo Rebecca
University Of Port Harcourt
Port Harcourt-Nigeria
Nigeria

Jia Zeng
Department Of Bioengineering
Central South University
Changsha Hunan 410083 P.R.China
China

Adenike Kuku
Obafemi Awolowo University
Department Of Biochemistry
Nigeria

Elsayed Hafez
Genetic Engineering and Biotechnology Research Institute
Egypt

Gabriella Castoria
Via L. De Crecchio 7 -80138 Naples
Department Of General Pathology
Italy

Salwa Seddik Abdel-Latif
21 Elbatal Ahmed Abdel Aziz
Elmohandesien Giza
Egypt

Erasto Vitus Mbugi
Muhimbili University
Biochemistry Department
School Of Medicine
India

Mohamed Rholam
Université Paris7 - Denis-Diderot
France

Hooi Ling Foo
Universiti Putra Malaysia
Malaysia

Jayanth Rao
Biochemistry And Nutrition
Cftri Mysore
India

Maznah Ismail
Universiti Putra
Malaysia

Svetlana Lutsenko
Oregon Health & Science University
USA

Gabriel Ugwem
Rivers State University Of Science And Technology
P.M.B. 5080 Port Harcourt
Nigeria

Hari Chhatpar
Dept. Of Microbiology & Biotechnology Centre
Faculty Of Science
M.S.University Of Baroda
Vadodara 390 002
Baroda India

Mahiuddin Alamgir
The University Of New South Wales
Sydney Nsw-2052
Australia

Sheeja Samuel Edwin
B.R Nahata College of Pharmacy & Research Centre
India

William Cho
Room 1305 13/F Block R Department of Clinical Oncology
Queen Elizabeth Hospital
30 Gascoigne Road Kowloon
Hong Kong
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Additional Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Suraini Abd-Aziz</td>
<td>University Putra Malaysia</td>
</tr>
<tr>
<td>Dr. Mustafa Numan Bucak</td>
<td>Lalahan Livestock Central Research Institute</td>
</tr>
<tr>
<td>Alparslan Kadir Devrim</td>
<td>Department Of Biochemistry</td>
</tr>
<tr>
<td>Vasudev R. Thakkar</td>
<td>Sardar Patel University</td>
</tr>
<tr>
<td>Prof. Emmanuel Anosike</td>
<td>Department Of Biochemistry</td>
</tr>
<tr>
<td>Dr. Usama Beshay</td>
<td>New Bourg El-Arab City, Research Area</td>
</tr>
<tr>
<td>Dr. Ramar Perumal Samy</td>
<td>Department of Anatomy</td>
</tr>
<tr>
<td>Dr. Shin-ichi ONO</td>
<td>Laboratory of Clinical Pharmacy</td>
</tr>
<tr>
<td>Prof. Lawal Bilbis</td>
<td>Biochemistry Department</td>
</tr>
<tr>
<td>Dr. Adriana G. Chicco</td>
<td>Department of Biochemistry</td>
</tr>
<tr>
<td>Prof. Zia-Ur-Rahman</td>
<td>Department Of Physiology and Pharmacology</td>
</tr>
<tr>
<td>Dr. Oluwole Ariyo</td>
<td>Allen University</td>
</tr>
<tr>
<td>Prof. Francisco Torrens</td>
<td>Institut Universitari de Ciência Molecular</td>
</tr>
<tr>
<td>Prof. Belkhodja Moulay</td>
<td>University of Senia Oran</td>
</tr>
<tr>
<td>Dr. Hossam M Ashour</td>
<td>Department of Microbiology and Immunology</td>
</tr>
<tr>
<td>Dr. Fidelis Ocloo</td>
<td>Biotechnology and Nuclear Agriculture Research Institute/GAEC</td>
</tr>
<tr>
<td>Ass. Prof. Alfonso Baldi</td>
<td>Dept. Biochemistry, Sect. Pathology</td>
</tr>
<tr>
<td>Dr. Anandh Babu Pon Velayutham</td>
<td>Department of Human Nutrition</td>
</tr>
<tr>
<td>Dr. Tapan K. Chaudhuri</td>
<td>Department of Biochemical Engineering and Biotechnology</td>
</tr>
<tr>
<td>Dr. Rong Zhang</td>
<td>Shenyang Pharmaceutical University</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ass. Prof. Tzong-Jih Cheng</td>
<td>Department of Bio-Industrial Mechatronics, National Taiwan University, Taiwan</td>
</tr>
<tr>
<td>Dr. Zuyong Xia</td>
<td>Department of Radiology, 1201 Welch Rd, Room P089, Stanford, CA 94301 USA</td>
</tr>
<tr>
<td>Dr. Pratap Kumar Das</td>
<td>Indian Institute of Chemical Biology, India</td>
</tr>
<tr>
<td>Dr. Vasudeo Pandharinath Zambare</td>
<td>Advanced Enzyme Technologies Ltd, India</td>
</tr>
<tr>
<td>Dr. A M Mujumdar</td>
<td>Agharkar Research Institute, India</td>
</tr>
<tr>
<td>Prof. Christine Clayton</td>
<td>ZMBH, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany</td>
</tr>
<tr>
<td>Prof. Rekik Boulbaba</td>
<td>ESA Mateur, Département des sciences et techniques de productions animales, Tanzania</td>
</tr>
<tr>
<td>Dr. Farhad Mirzaei</td>
<td>National Dairy Research Institute, NDRI, Karnal, India</td>
</tr>
<tr>
<td>Dr. Rouabhi Rachid</td>
<td>Biology Department, Tebessa University, Algeria</td>
</tr>
<tr>
<td>Prof. Vaclav Vetvicka</td>
<td>University of Louisville, USA</td>
</tr>
<tr>
<td>Dr. Ramesh Putheti, Ph.D</td>
<td>Research scientist, Actavis Pharmaceuticals, 10065 red run blvd, Owings Mills Blvd, Maryland USA 21030 USA</td>
</tr>
<tr>
<td>Prof. Dr. Mustafa Naziroglu</td>
<td>Head of Department of Biophysics, Medical (TIP) Faculty, Suleyman Demirel University, Cunur, TR-32260 Isparta, TURKEY</td>
</tr>
<tr>
<td>Dr. José Luis Arias Mediano</td>
<td>Grupo Investigación Farmacia Práctica (CTS-205), Dept. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Campus Universitario de Cartuja, s/n Universidad de Granada, 18071 Granada</td>
</tr>
<tr>
<td>Ahmed Malki, PhD</td>
<td>Lecturer of Biochemistry and Molecular Biology, Biochemistry Department, Alexandria University, Alexandria, Egypt</td>
</tr>
<tr>
<td>Dr. Alireza Seidavi (PhD)</td>
<td>Assistant Professor of Animal and Poultry Nutrition, Department of Animal Science, Islamic Azad University, Rasht Branch, Rasht, Iran</td>
</tr>
<tr>
<td>Amani S. Awaad</td>
<td>Professor of pharmacognosy, Chemistry Department, Faculty of Sciences, King Saud University, Riyadh, KSA, P.O. Box 22452, Riyadh 11495, Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Abdel-Tawab Mossa</td>
<td>Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre, Dokki, Egypt</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. Amal A. Mohamed</td>
<td>Plant Biochemistry Department, Agriculture Division - National Research Center, 31-El-Tahrir St., Dokki, Cairo – Egypt</td>
</tr>
<tr>
<td>Dr. Anabella Gaspar</td>
<td>Department of Biochemistry, University of Pretoria, South Africa</td>
</tr>
<tr>
<td>Dr. Anna Janecka</td>
<td>Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland</td>
</tr>
<tr>
<td>Dr. Caser Abdel</td>
<td>Horticulture Department, Dohuk University, Iraq</td>
</tr>
<tr>
<td>Dr. David Sheehan</td>
<td>Dept Biochemistry, University College Cork, Ireland</td>
</tr>
<tr>
<td>Dr. Dayananda Chandrappa</td>
<td>Center for Bioenergy, Department of Life and Physical Sciences, Cooperative Research, Lincoln University, Jefferson City, USA</td>
</tr>
<tr>
<td>Dr. Elsayed Abdelaal</td>
<td>Special Graduate Faculty, University of Guelph, Onatrio, Canada</td>
</tr>
<tr>
<td>Dr. Etienne Marbaix</td>
<td>CELL Unit, de Duve Institute, UCL-75.41, 75 avenue Hippocrate, B-1200 Bruxelles, Belgium</td>
</tr>
<tr>
<td>Dr. Gary L. Firestone</td>
<td>Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA</td>
</tr>
<tr>
<td>Dr. Henryk Zielinski</td>
<td>Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Poland</td>
</tr>
<tr>
<td>Dr. Irshad A. Nawchoo</td>
<td>Department of Botany, University of Kashmir, India</td>
</tr>
<tr>
<td>Dr. Luchai Butkhup</td>
<td>Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham 44000, Thailand</td>
</tr>
<tr>
<td>Dr. Luminita Vladescu</td>
<td>Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Romania</td>
</tr>
<tr>
<td>Dr. Mira Debnath</td>
<td>School of Biochemical Engineering, Institute of Technology - Banaras Hindu University, Varanasi, India</td>
</tr>
<tr>
<td>Dr. Nilesh S. Panchal</td>
<td>Department of Biosciences, Saurashtra University, Rajkot-360005, Gujarat, India</td>
</tr>
<tr>
<td>Dr. Rayappa A. Balikai</td>
<td>University of Agricultural Sciences, Dharwad, Karnataka- 580 005, India</td>
</tr>
</tbody>
</table>
Dr. Saad Tayyab
Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Dr. Shijun Fu
Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China

Dr. Shiming Zhang
Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA

Dr. Thomas Efferth
Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Heidelberg, 55128 Mainz, Germany
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the African Journal of Biochemistry Research is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJBR, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
Research Articles:

Association of single nucleotide polymorphism of Hsp90ab1 gene with thermotolerance and milk yield in Sahiwal cows
Lalrengpuii Sailo, I. D. Gupta, Archana Verma, Ramendra Das and M. V. Chaudhari
Full Length Research Paper

Association of single nucleotide polymorphism of Hsp90ab1 gene with thermotolerance and milk yield in Sahiwal cows

Lalrengpuii Sailo¹*, I. D. Gupta², Archana Verma², Ramendra Das² and M. V. Chaudhari²

¹AG Division, IVRI, Izzatnagar, India.
²DCB Division, NDRI, Karnal, India.

Received 18 April, 2015; Accepted 27 July, 2015

Heat shock proteins play a critical role in the development of thermotolerance and protection from cellular damage associated with heat stresses. The study was undertaken to investigate the association of single nucleotide polymorphisms (SNPs) of Hsp90ab1 gene with thermo-physiological parameters viz, respiration rate (RR), rectal temperature (RT), heat tolerance coefficient (HTC) and total milk yield in Sahiwal cows. The RR and RT were recorded once in different seasons, viz., winter, spring, and summer, at the probable extreme hot hours of the day. Polymorphism of Hsp90ab1 gene, evaluated by comparative sequencing revealed five SNPs, viz., T17871421C, C17871485del, C17872061T, T17872112C and T17872148G. Individuals with CT genotype recorded significantly (P≤0.01) lower RT (°C) than CC genotype in Sahiwal cows. The CT genotype animals also had better production parameter in terms of total milk yield (TMY) (P<0.01). Therefore, our results inferred that CT genotype in Sahiwal cows may be an aid to selection and breeding to enhance thermo-tolerance.

Key words: Hsp90ab1, SNPs, respiration rate, rectal temperature, total milk yield, Sahiwal.

INTRODUCTION

Climate change is likely to be a major threat to the viability and sustainability of livestock production systems in many regions of the world. Increased in temperature impairs production and reproduction performance, metabolic, health status and immune response (St-Pierre et al., 2003; Rosenzweig et al., 2007). The negative effects of heat stress will become more apparent in the future if climate change continues. Moreover, due to the close relationship between metabolic heat generation and production level, development in the genetic programs that enhance production traits may increase an animal’s susceptibility to high environmental temperatures (Nardone et al., 2010). One possible approach for reducing the impact of heat stress on cattle productivity is to exploit the genetic variability underlying relative thermotolerance (Hoffmann, 2010).

*Corresponding author. E-mail: lrp.sailo@gmail.com.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Cellular tolerance to heat stress is mediated by a family of proteins named heat shock proteins (HSPs). HSPs play essential roles in the immunity of organisms, particularly in relation to heat-resistance (Song et al., 2006; You et al., 2013). The chaperone, Hsp90 is one of the most abundant proteins in eukaryotic cells, comprising 1–2% of cellular proteins under non-stress conditions (Craven et al., 1996). There are two major cytoplasmic Hsp90 isoforms, the inducible (Hsp90α/ Hsp90aa1) and the constitutive (Hsp90β/ Hsp90ab1), which have arisen by gene duplication (Chen et al., 2006). A fully functional Hsp90 protein normally associates with other cochaperones, playing an important role in the folding of newly synthesized proteins or stabilizing and refolding denatured proteins after stress (Richter and Buchner, 2001). Recently novel single nucleotide polymorphisms (SNPs) were identified at different positions of the bovine heat shock protein 90 kDa alpha (cytosolic), class member 1 (Hsp90ab1) in Bos taurus (crossbred) and Bos indicus cattle. High prevalence of this gene in tropical cattle (Bos indicus) perform better as compared to temperate breeds or their zebu crossbreds due to higher level of heat tolerance (Charoensook et al., 2012; Deb et al., 2013; Mcmanus et al., 2014; Sajjanar et al., 2015).

The objective of this study was to identify SNPs in the targeted regions of Hsp90ab1 gene in Sahiwal cows and to analyze the association of genetic variants with thermo-physiological parameters and milk yield.

MATERIALS AND METHODS

Experimental animals

The study was conducted on randomly selected 50 lactating Sahiwal cows maintained at Livestock Research Centre of National Dairy Research Institute (Karnal). The animals were different age group, clinically healthy and kept under the same conditions. The experimental design and procedure were carefully planned and approved by the Institutional Animal Ethics Committee.

Recording physiological parameters

Respiration rate (RR) of each animal was recorded by visual observation of inward and outward flank movement. Rectal temperature (RT) was recorded in centigrade with a digital thermometer by keeping the thermometer in contact with rectal mucosa for about 2 min. RR and RT were recorded at 6-8 am, 12-02 pm, and 12-02 pm during winter (January), spring (March) and summer (June) respectively. Recording of each of the parameters was done once in each of the three seasons at the probable extreme hours of day.

Heat tolerance coefficient (HTC) was calculated by Benezra Coefficient of Heat Adaptability (Benezra, 1954) with the following formula:

\[HTC = \frac{RR}{23 + \frac{RT}{38.33}} \]

The denominators 23 and 38.33 in the equation represent the normal RR and RT (°C) of cattle, respectively, under ideal conditions.

Recording milk production data

Data for total milk yield was obtained from the data sheets of the farm records. Milk production records from the entire lactation length of all the individuals were utilized.

Blood collection and DNA extraction

Ten ml blood was collected aseptically from the cows in a sterile Beckton-Dickinson vacutainer containing 0.5 per cent (10 µl/ml of blood) anticoagulant ethylene diamine tetraacetic acid (EDTA). Genomic DNA was extracted using Phenol-chloroform method described by Sambrook and Russel (1989) with minor modifications, and detected by 0.7% agarose gel electrophoresis. The content of DNA was estimated by Bio spec-nano spectrophotometer, and the genome DNA was diluted to a final concentration of 50 ng/µl, and stored at -20°C for PCR amplification.

PCR amplification

Two sets of forward and reverse gene-specific oligonucleotide primers were designed using DNASTAR software and gene specific sequence (ENSBTAT00000001034) available at ensemble genome browser (www.ensembl.org). The working solutions of both forward and reverse primers were prepared to obtain final concentration of 10 pmol for each primer.

Final reaction mix (25 µl) comprised of forward primer (0.5 µl), reverse primer (0.5 µl), PCR Master Mix (12.5 µl), water (8.5 µl) and template DNA (3.0 µl). PCR amplification was performed using Thermal cycler (MJ research and Biorad T100). Each tube, containing 25 µl PCR reaction cocktail was kept in Thermal Cycler for amplification of target region of bovine Hsp90ab1 gene. PCR conditions involved initial denaturation at 95°C for 1 min, followed by 34 cycles with denaturation at 94°C for 30 s, primer specific annealing temperature of 59°C and 61°C for 30 s to specifically amplify target region 1 and 2 respectively, extension at 72°C for 25 s followed by final extension at 72°C for 6 minutes and 30 s.

Temperature humidity index

The outdoor temperature and the relative humidity (RH) (%) were recorded daily during the experiment to ascertain Temperature humidity index (THI) value. THI was calculated as per National Research Council (NRC, 1971). THI of winter (49.7), spring (64.65), and summer (86.44) obtained from ICAR-CSSRI, Karnal were the three subclasses of THI considered in association analysis.

\[\text{THI} = 0.72 \times (\text{Wb} + \text{Db}) + 40.6 \]

Where, Wb is wet bulb temperature and Db is dry bulb temperature in °C.

Purification and Sequencing

Amplified PCR products of both sets of primers Table 1 were custom sequenced from both ends, i.e. 5’ and 3’ ends. DNA sequencing results for the respective region of bovine Hsp90ab1 gene were visualized and edited using Chromas Lite Software. Each edited sequence was aligned with corresponding reference sequence of Bos taurus using ClustalW multiple sequence alignment program to identify single nucleotide polymorphism (www.ebi.ac.uk/Tools/msa/clustalw2).
Table 1. Sequence of primers, targeted regions and amplicon sizes of bovine Hsp90ab1 gene.

<table>
<thead>
<tr>
<th>Primer set</th>
<th>Primer sequence (5'-3')</th>
<th>Targeted regions</th>
<th>Amplicon size ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F: AGTGAGTATCTTTTGCCCTAATG (23) R:TCTCCTCTAACCAGAATGAAAA (22)</td>
<td>17871343-17871801</td>
<td>459</td>
</tr>
<tr>
<td>2</td>
<td>F: GCTGCTGCGCTATACACG (19) R: GCCCTCTTTGTCACAGA (18)</td>
<td>17871892-17872278</td>
<td>387</td>
</tr>
</tbody>
</table>

1The number within parenthesis indicates base pairs. 2Targeted region 1 includes part of intron 7, exon 8, and part of intron 9, Targeted region 2 includes part of exon 10, intron 10, and exon 11.

Table 2. Genotypic and allelic frequency at each SNP locus of Hsp90ab1 gene in Sahiwal cows.

<table>
<thead>
<tr>
<th>SNPs</th>
<th>Genotype</th>
<th>Genotypic frequency</th>
<th>Allele</th>
<th>Allelic frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP1 T17871421C</td>
<td>TT</td>
<td>-</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>-</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>1(50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNP2 C17871485del</td>
<td>CC</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Del</td>
<td>1(50)</td>
<td>Del</td>
<td>1</td>
</tr>
<tr>
<td>SNP3 C17782061T</td>
<td>CC</td>
<td>0.34(17)</td>
<td>C</td>
<td>0.67</td>
</tr>
<tr>
<td>SNP4 T17782112C</td>
<td>TT</td>
<td>0.78(39)</td>
<td>T</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>0.22(11)</td>
<td>C</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNP5 T17782148G</td>
<td>TT</td>
<td>-</td>
<td>T</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>TG</td>
<td>0.12(04)</td>
<td>G</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>0.88(36)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number within parenthesis indicates number of animals.

Statistical analysis

Genotypic and allelic frequencies were calculated using POPGENE software package (Yeh et al., 1999). The association of SNP genotype with rectal temperature (RT), respiration rate (RR), heat tolerance coefficient and total milk yield (TMY) was analyzed using GLM procedure of SAS. The effect of SNP genotype on physiological parameters was analyzed using the following model:

\[Y_{ijklmn} = \mu + T_i + G_j + G_k + G_{lk} + \epsilon_{ijklmn} \]

\[Y_{ijklmn} = \text{nth observation on RR/RT/HTC/TMY of cows in ith THI, jth genotype, kth genotype and mth genotype; } \mu = \text{ overall mean; } T_i = \text{ effect of ith THI; } G_j = \text{ Fixed effect of jth genotype; } G_{lk} = \text{ Fixed effect of kth genotype; } \epsilon_{ijklmn} = \text{ random error associated with } Y_{ijklmn} \text{ observation and assumed to be NID (0, } \sigma^2 \epsilon). \]

RESULTS AND DISCUSSION

The present study targeted 846 bp of bovine Hsp90ab1 gene from each DNA sample. The first targeted region was found to be monomorphic for allele C at SNP locus T17871421C and deletion (-) at SNP locus C17871485del. These were not considered for subsequent analysis. The frequencies of genotypes in the population was in accordance with Hardy-Weinberg equilibrium (P>0.05). Allele and genotype frequencies are displayed in Table 2. The calculated allele frequency indicated that allele “T” (89%) was more predominant than mutant allele “C” at T17872112C locus. The frequency of mutated allele “G” (94%) was more than the wild type at SNP locus T17872148G.

Association between the polymorphism of Hsp90ab1 gene with thermo-physiological parameters

Several studies have shown significant association of SNPs with physiological parameters (RR, PCV, RT and HTC) to evaluate the heat tolerance/stress in cattle (Liu et al., 2010; Liu et al., 2011; Charoensook et al., 2012; Sajjanar et al., 2015). Heat tolerance traits such as RR, RT and HTC of Sahiwal cows differed significantly (p<0.01) in all three THI subclasses of different seasons.
This observed pattern in RR, RT and HTC revealed that with increase in THI level there was increase in these thermoregulatory responses by all the cows. Using GLM procedure of Statistical Analysis System (SAS), we observed a significant association (p<0.01) of SNP3 at locus C1787061T with RT trait in Sahiwal cows. RT (°C) for genotype CC was highest (38.18±0.09°) compared to CT (38.01±0.08°) and TT (38.09±0.11°) in Sahiwal cows. Previous studies reported that allele T at SNP locus T4338C was associated with lower RT in Thai indigenous, Sahiwal and Frieswal cattle in India (Charoensook et al., 2012; Sajjanar et al., 2015). The present study inferred that cows of genotype CT has the least rectal temperature and are able to maintain their body temperature under stress condition compared to other cows (Table 3). Hence, lower RT may indicate an improved thermotolerance. RT is also well described that RT and RR of Bos taurus is higher than Bos indicus cattle and, as a result Bos taurus cattle are more sensitive to heat stress than Bos indicus (Mayengbam, 2008; Singh and Upadhyay, 2009).

Table 3. Association of physiological parameters with different genotypic groups of Hsp90ab1 among Sahiwal cows.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Subclass</th>
<th>RR</th>
<th>RT</th>
<th>HTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>THI</td>
<td></td>
<td>15.74±0.79°</td>
<td>37.30±0.09°</td>
<td>1.66±0.04°</td>
</tr>
<tr>
<td>SNP3</td>
<td>CC (N=17)</td>
<td>20.93±0.79°</td>
<td>38.18±0.09°</td>
<td>1.91±0.04°</td>
</tr>
<tr>
<td></td>
<td>CT (N=33)</td>
<td>21.55±0.69°</td>
<td>38.01±0.08°</td>
<td>1.93±0.03°</td>
</tr>
<tr>
<td>SNP4</td>
<td>TT (N=39)</td>
<td>21.14±0.92°</td>
<td>38.09±0.11°</td>
<td>1.91±0.04°</td>
</tr>
<tr>
<td></td>
<td>TC (N=11)</td>
<td>21.34±0.82°</td>
<td>38.09±0.09°</td>
<td>1.92±0.04°</td>
</tr>
<tr>
<td>SNP5</td>
<td>TG (N=6)</td>
<td>21.27±1.22°</td>
<td>38.06±0.15°</td>
<td>1.92±0.05°</td>
</tr>
<tr>
<td></td>
<td>GG (N=44)</td>
<td>21.21±0.67°</td>
<td>38.13±0.08°</td>
<td>1.92±0.03°</td>
</tr>
</tbody>
</table>

Means within a factor with different superscript differ significantly (p<0.01).

Table 4. Association of genotypes with total milk yield among Sahiwal cows.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Subclass</th>
<th>Total milk production</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP3</td>
<td>CC (N=17)</td>
<td>1669.71±130.780b</td>
</tr>
<tr>
<td></td>
<td>CT (N=33)</td>
<td>2162.33±153.452a</td>
</tr>
<tr>
<td>SNP4</td>
<td>TT (N=39)</td>
<td>1978.17±257.474</td>
</tr>
<tr>
<td></td>
<td>TC (N=11)</td>
<td>1653.88±127.443</td>
</tr>
<tr>
<td>SNP5</td>
<td>TG (N=6)</td>
<td>1910.51±188.212</td>
</tr>
<tr>
<td></td>
<td>GG (N=44)</td>
<td>1921.54±162.317</td>
</tr>
</tbody>
</table>

Means within a factor with different superscript differ significantly (p<0.01).

Association between the polymorphism of Hsp90ab1 gene and TMY

Table 4 shows the genotype effect on the relative milk production traits in 50 randomly selected Sahiwal cows. SNP3 at locus C1787061T has a significant association (p<0.01) with TMY trait in Sahiwal cows. TMY for genotype CT was highest (2162.33±153.452) compared to CC (1669.71±130.780) in Sahiwal cows. The better relative thermotolerance of CT genotype in Sahiwal cows in terms of their thermo-physiological detrimental effect of heat stress on milk production. Our results inferred that CT genotype in Sahiwal cows had parameters observed earlier reflected in the less better total milk yield than other two genotypes. However, the findings are different from that of Sajjanar et al., 2015 where, they reported TT genotype animals also had better production parameter in terms of total milk yield in both Sahiwal and Frieswal cows.

The heat tolerance is a quantitative trait (Gaughan et al., 2010; Liu et al., 2011). Several studies have been conducted to link between the thermal-stress related phenotypes with genotypes. The ortholog of the mammalian Hsp90 gene, HspB3 of Drosophila was considered for potential quantitative trait loci with important effects on heat stress resistance (Morgan and Mackay, 2006). In sheep, association of genetic variants of Hspaa1 gene with different thermal conditions was observed at position −660 in the 5 flanking region (Marcos-Carcavilla et al., 2010). Singe Nucleotide Polymorphism at nucleotide position 2789 within ATP1A1 messenger RNA is found to be associated with heat tolerance traits in dairy cows (Liu et al., 2010; 2011). Similarly, association of Singe Nucleotide Polymorphisms between the polymorphism of Hsp90ab1 gene and TMY.
in HSP70A1A gene with thermo-tolerance was observed in Chinese Holstein cattle (Liu et al., 2011).

Conclusion

The present study indicates that genotype CT at locus C1787061T improved the heat stress tolerance and total milk production in Sahiwal. Therefore, the results may hint association of allele type at this Hsp90ab1 SNP with relative thermal stress tolerance and total milk production. This finding may be an aid to selection and breeding to enhance thermo-tolerance in Sahiwal cows.

Conflict of interests

The author(s) did not declare any conflict of interest.

ACKNOWLEDGEMENT

The authors are thankful to the Director, NDRI, Karnal and Head, Dairy Cattle Breeding Division, NDRI, Karnal for providing facilities to carry out the research work. Financial support provided by National Initiative on Climate Resilient Agriculture (NICRA) project is highly acknowledged.

REFERENCES

African Journal of Biochemistry Research

Related Journals Published by Academic Journals

- *International Journal of Plant Physiology and Biochemistry*
- *Current Research in Biochemistry and Molecular Biology*
- *African Journal of Biotechnology*
- *Journal of Developmental Biology and Tissue Engineering*
- *Journal of Enzymology and Metabolism*