ABOUT AJMR

The African Journal of Microbiology Research (AJMR) (ISSN 1996-0808) is published Weekly (one volume per year) by Academic Journals.

African Journal of Microbiology Research (AJMR) provides rapid publication (weekly) of articles in all areas of Microbiology such as: Environmental Microbiology, Clinical Microbiology, Immunology, Virology, Bacteriology, Phycology, Mycology and Parasitology, Protozoology, Microbial Ecology, Probiotics and Prebiotics, Molecular Microbiology, Biotechnology, Food Microbiology, Industrial Microbiology, Cell Physiology, Environmental Biotechnology, Genetics, Enzymology, Molecular and Cellular Biology, Plant Pathology, Entomology, Biomedical Sciences, Botany and Plant Sciences, Soil and Environmental Sciences, Zoology, Endocrinology, Toxicology. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author.

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajmr@academicjournals.org.

With questions or concerns, please contact the Editorial Office at ajmr@academicjournals.org.
Editors

Prof. Dr. Stefan Schmidt,
Applied and Environmental Microbiology
School of Biochemistry, Genetics and Microbiology
University of KwaZulu-Natal
Private Bag X01
Scottsville, Pietermaritzburg 3209
South Africa.

Prof. Fukai Bao
Department of Microbiology and Immunology
Kunming Medical University
Kunming 650031,
China

Dr. Jianfeng Wu
Dept. of Environmental Health Sciences,
School of Public Health,
University of Michigan
USA

Dr. Ahmet Yilmaz Coban
OMU Medical School,
Department of Medical Microbiology,
Samsun,
Turkey

Dr. Seyed Davar Siadat
Pasteur Institute of Iran,
Pasteur Square, Pasteur Avenue,
Tehran,
Iran.

Dr. J. Stefan Rokem
The Hebrew University of Jerusalem
Department of Microbiology and Molecular Genetics,
P.O.B. 12272, IL-91120 Jerusalem,
Israel

Prof. Long-Liu Lin
National Chiayi University
300 Syuefu Road,
Chiayi,
Taiwan

N. John Tonukari, Ph.D
Department of Biochemistry
Delta State University
PMB 1
Abraka, Nigeria

Dr. Thaddeus Ezeji
Assistant Professor
Fermentation and Biotechnology Unit
Department of Animal Sciences
The Ohio State University
1680 Madison Avenue
USA.

Associate Editors

Dr. Mamadou Gueye
MIRCEN/ Laboratoire commun de microbiologie
IRD-ISRA-UCAD, BP 1386,
DAKAR, Senegal.

Dr. Caroline Mary Knox
Department of Biochemistry, Microbiology and Biotechnology
Rhodes University
Grahamstown 6140
South Africa.

Dr. Hesham Elsayed Mostafa
Genetic Engineering and Biotechnology Research Institute (GEBRI)
Mubarak City For Scientific Research,
Research Area, New Borg El-Arab City,
Post Code 21934, Alexandria, Egypt.

Dr. Wael Abbas El-Naggar
Head of Microbiology Department,
Faculty of Pharmacy,
Mansoura University,
Mansoura 35516, Egypt.

Dr. Abdel Nasser A. El-Moghazy
Microbiology, Molecular Biology, Genetics Engineering and Biotechnology
Dept of Microbiology and Immunology
Faculty of Pharmacy
Al-Azhar University
Nasr city,
Cairo, Egypt
Editorial Board

Dr. Haoyu Mao
Department of Molecular Genetics and Microbiology
College of Medicine
University of Florida
Florida, Gainesville
USA.

Dr. Rachna Chandra
Environmental Impact Assessment Division
Environmental Sciences
Sálim Ali Center for Ornithology and Natural History (SACON),
Anaikatty (PO), Coimbatore-641108, India

Dr. Yongxu Sun
Department of Medicinal Chemistry and Biomacromolecules
Qiqihar Medical University, Qiqihar 161006
Heilongjiang Province
P.R. China

Dr. Ramesh Chand Kasana
Institute of Himalayan Bioresource Technology
Palampur, Distt. Kangra (HP), India

Dr. S. Meena Kumari
Department of Biosciences
Faculty of Science
University of Mauritius
Reduit

Dr. T. Ramesh
Assistant Professor
Marine Microbiology
CAS in Marine Biology
Faculty of Marine Sciences
Annamalai University
Parangipettai - 608 502
Cuddalore Dist. Tamilnadu, India

Dr. Pagano Marcela Claudia
Post doctoral fellowship at Department of Biology,
Federal University of Ceará - UFC, Brazil.
Dr. EL-Sayed E. Habib
Associate Professor,
Dept. of Microbiology,
Faculty of Pharmacy,
Mansoura University,
Egypt.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Warin Chamrap, Ubon Ratchathani 34190,
Thailand

Dr. Gokul Shankar Sabesan
Microbiology Unit, Faculty of Medicine,
AIMST University
Jalan Bedong, Semeling 08100,
Kedah,
Malaysia

Dr. Kwang Young Song
Department of Biological Engineering,
School of Biological and Chemical Engineering,
Yanbian Universityof Science and Technology,
Yanji,
China.

Dr. Kamel Belhamel
Faculty of Technology,
University of Bejaia
Algeria

Dr. Sladjana Jevremovic
Institute for Biological Research
Sinisa Stankovic,
Belgrade,
Serbia

Dr. Tamer Edirne
Dept. of Family Medicine, Univ. of Pamukkale
Turkey

Dr. R. Balaji Raja M.Tech (Ph.D)
Assistant Professor,
Department of Biotechnology,
School of Bioengineering,
SRM University,
Chennai.
India

Dr. Minglei Wang
University of Illinois at Urbana-Champaign,USA

Dr. Mohd Fuat ABD Razak
Institute for Medical Research
Malaysia

Dr. Davide Pacifico
Istituto di Virologia Vegetale – CNR
Italy

Prof. Dr. Akrum Hamdy
Faculty of Agriculture, Minia University, Egypt
Egypt

Dr. Ntobeko A. B. Ntusi
Cardiac Clinic, Department of Medicine,
University of Cape Town and
Department of Cardiovascular Medicine,
University of Oxford
South Africa and
United Kingdom

Prof. N. S. Alzoreky
Food Science & Nutrition Department,
College of Agricultural Sciences & Food,
King Faisal University,
Saudi Arabia

Dr. Chen Ding
College of Material Science and Engineering,
Hunan University,
China

Dr Svetlana Nikolić
Faculty of Technology and Metallurgy,
University of Belgrade,
Serbia

Dr. Sivakumar Swaminathan
Department of Agronomy,
College of Agriculture and Life Sciences,
Iowa State University,
Ames, Iowa 50011
USA

Dr. Alfredo J. Anceno
School of Environment, Resources and Development (SERD),
Asian Institute of Technology,
Thailand

Dr. Iqbal Ahmad
Aligarh Muslim University,
Aligrah
India
Dr. Josephine Nketsia-Tabiri
Ghana Atomic Energy Commission
Ghana

Dr. Juliane Elisa Welke
UFRGS – Universidade Federal do Rio Grande do Sul
Brazil

Dr. Mohammad Nazrul Islam
NIMR; IPH-Bangalore & NIUM
Bangladesh

Dr. Okonko, Iheanyi Omezuruike
Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria

Dr. Giuliana Noratto
Texas A&M University
USA

Dr. Phanikanth Venkata Turlapati
Washington State University
USA

Dr. Khaleel I. Z. Jawasreh
National Centre for Agricultural Research and Extension, NCARE
Jordan

Dr. Babak Mostafazadeh, MD
Shaheed Beheshty University of Medical Sciences
Iran

Dr. S. Meena Kumari
Department of Biosciences
Faculty of Science
University of Mauritius
Mauritius

Dr. S. Anju
Department of Biotechnology, SRM University, Chennai-603203
India

Dr. Mustafa Maroufpor
Iran

Prof. Dong Zhichun
Professor, Department of Animal Sciences and Veterinary Medicine, Yunnan Agriculture University, China

Dr. Mehdi Azami
Parasitology & Mycology Dept, Baghaeei Lab., Shams Abadi St. Isfahan Iran

Dr. Anderson de Souza Sant’Ana
University of São Paulo. Brazil.

Dr. Juliane Elisa Welke
UFRGS – Universidade Federal do Rio Grande do Sul
Brazil

Dr. Paul Shapshak
USA

Dr. Jorge Reinheimer
Universidad Nacional del Litoral (Santa Fe)
Argentina

Dr. Qin Liu
East China University of Science and Technology
China

Dr. Xiao-Qing Hu
State Key Lab of Food Science and Technology
Jiangnan University
P. R. China

Prof. Branislava Kocic
Specialist of Microbiology and Parasitology University of Nis, School of Medicine Institute for Public Health Nis, Bul. Z. Djindjica 50, 18000 Nis Serbia

Dr. Rafel Socías
CITA de Aragón, Spain
Prof. Kamal I. Mohamed
State University of New York at Oswego
USA

Dr. Adriano Cruz
Faculty of Food Engineering-FEA
University of Campinas (UNICAMP)
Brazil

Dr. Mike Agenbag (Michael Hermanus Albertus)
Manager Municipal Health Services,
Joe Gqabi District Municipality
South Africa

Dr. D. V. L. Sarada
Department of Biotechnology,
SRM University, Chennai-603203
India.

Dr. Samuel K Ameyaw
Civista Medical Center
United States of America

Prof. Huaizhi Wang
Institute of Hepatopancreatobiliary Surgery of PLA Southwest Hospital,
Third Military Medical University
Chongqing400038
P. R. China

Prof. Bakhiet AO
College of Veterinary Medicine,
Sudan
University of Science and Technology
Sudan

Dr. Saba F. Hussain
Community, Orthodontics and Pediatric Dentistry Department
Faculty of Dentistry
Universiti Teknologi MARA
40450 Shah Alam, Selangor
Malaysia

Prof. Dr. Zohair I.F.Rahemo
State Key Lab of Food Science and Technology
Jiangnan University
P. R. China

Dr. Afework Kassu
University of Gondar
Ethiopia

Prof. Isidro A. T. Savillo
ISCOF
Philippines

Dr. How-Yee Lai
Taylor’s University College
Malaysia

Dr. Nidheesh Dadheech
MS. University of Baroda, Vadodara, Gujarat, India.
India

Dr. Omitoyin Siyanbola
Bowen University,
Iwo
Nigeria

Dr. Franco Mutinelli
Istituto Zooprofilattico Sperimentale delle Venezie
Italy

Dr. Chanpen Chanchao
Department of Biology,
Faculty of Science,
Chulalongkorn University
Thailand

Dr. Tsuyoshi Kasama
Division of Rheumatology,
Showa University
Japan

Dr. Kuender D. Yang, MD.
Chang Gung Memorial Hospital
Taiwan

Dr. Liane Raluca Stan
University Politehnica of Bucharest,
Department of Organic Chemistry “C.Nenitzescu”
Romania

Dr. Muhamed Osman
Senior Lecturer of Pathology & Consultant Immunopathologist
Department of Pathology,
Faculty of Medicine,
Universiti Teknologi MARA,
40450 Shah Alam, Selangor
Malaysia

Dr. Mohammad Feizabadi
Tehran University of medical Sciences
Iran
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ahmed H Mitwalli</td>
<td>State Key Lab of Food Science and Technology</td>
</tr>
<tr>
<td></td>
<td>Jiangnan University</td>
</tr>
<tr>
<td></td>
<td>P. R. China</td>
</tr>
<tr>
<td>Dr. Mazyar Yazdani</td>
<td>Department of Biology,</td>
</tr>
<tr>
<td></td>
<td>University of Oslo,</td>
</tr>
<tr>
<td></td>
<td>Blindern,</td>
</tr>
<tr>
<td></td>
<td>Oslo,</td>
</tr>
<tr>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Dr. Ms. Jemimah Gesare Onsare</td>
<td>Ministry of Higher, Education</td>
</tr>
<tr>
<td></td>
<td>Science and Technology</td>
</tr>
<tr>
<td></td>
<td>Kenya</td>
</tr>
<tr>
<td>Dr. Babak Khalili Hadad</td>
<td>Department of Biological Sciences,</td>
</tr>
<tr>
<td></td>
<td>Roudehen Branch,</td>
</tr>
<tr>
<td></td>
<td>Islamic Azad University,</td>
</tr>
<tr>
<td></td>
<td>Roudehen</td>
</tr>
<tr>
<td></td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Ehsan Sari</td>
<td>Department of Plan Pathology,</td>
</tr>
<tr>
<td></td>
<td>Iranian Research Institute of Plant Protection,</td>
</tr>
<tr>
<td></td>
<td>Tehran,</td>
</tr>
<tr>
<td></td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Snjezana Zidovec Lepej</td>
<td>University Hospital for Infectious Diseases</td>
</tr>
<tr>
<td></td>
<td>Zagreb,</td>
</tr>
<tr>
<td></td>
<td>Croatia</td>
</tr>
<tr>
<td>Dr. Dilshad Ahmad</td>
<td>King Saud University</td>
</tr>
<tr>
<td></td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Adriano Gomes da Cruz</td>
<td>University of Campinas (UNICAMP)</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Hsin-Mei Ku</td>
<td>Agronomy Dept. NCHU 250 Kuo</td>
</tr>
<tr>
<td></td>
<td>Kuang Rd, Taichung,</td>
</tr>
<tr>
<td></td>
<td>Taiwan</td>
</tr>
<tr>
<td>Dr. Fereshteh Naderi</td>
<td>Physical chemist,</td>
</tr>
<tr>
<td></td>
<td>Islamic Azad University,</td>
</tr>
<tr>
<td></td>
<td>Shahre Ghods Branch</td>
</tr>
<tr>
<td></td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Adibe Maxwell Ogochukwu</td>
<td>Department of Clinical Pharmacy and Pharmacy</td>
</tr>
<tr>
<td></td>
<td>Management,</td>
</tr>
<tr>
<td></td>
<td>University of Nigeria,</td>
</tr>
<tr>
<td></td>
<td>Nsukka,</td>
</tr>
<tr>
<td></td>
<td>Nigeria</td>
</tr>
<tr>
<td>Dr. William M. Shafer</td>
<td>Emory University School of Medicine</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Michelle Bull</td>
<td>CSIRO Food and Nutritional Sciences</td>
</tr>
<tr>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>Prof. Dr. Márcio Garcia Ribeiro</td>
<td>School of Veterinary Medicine and Animal Science-UNESP,</td>
</tr>
<tr>
<td></td>
<td>Dept. Veterinary Hygiene and Public Health,</td>
</tr>
<tr>
<td></td>
<td>State of Sao Paulo,</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
</tr>
<tr>
<td>Prof. Dr. Sheila Nathan</td>
<td>National University of Malaysia (UKM)</td>
</tr>
<tr>
<td></td>
<td>Malaysia</td>
</tr>
<tr>
<td>Prof. Ebiamadon Andi Brisibe</td>
<td>University of Calabar</td>
</tr>
<tr>
<td></td>
<td>Calabar,</td>
</tr>
<tr>
<td></td>
<td>Nigeria</td>
</tr>
<tr>
<td>Dr. Julie Wang</td>
<td>Burnet Institute</td>
</tr>
<tr>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>Dr. Jean-Marc Chobert</td>
<td>INRA- BIA, FIPL</td>
</tr>
<tr>
<td></td>
<td>France</td>
</tr>
<tr>
<td>Dr. Zhilong Yang, PhD</td>
<td>Laboratory of Viral Diseases</td>
</tr>
<tr>
<td></td>
<td>National Institute of Allergy and Infectious Diseases,</td>
</tr>
<tr>
<td></td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>Dr. Dele Raheem</td>
<td>University of Helsinki</td>
</tr>
<tr>
<td></td>
<td>Finland</td>
</tr>
<tr>
<td>Dr. Li Sun</td>
<td>PLA Centre for the treatment of infectious diseases,</td>
</tr>
<tr>
<td></td>
<td>Tangdu Hospital,</td>
</tr>
<tr>
<td></td>
<td>Fourth Military Medical University</td>
</tr>
<tr>
<td></td>
<td>China</td>
</tr>
</tbody>
</table>
Dr. Biljana Miljkovic-Selimovic
School of Medicine, University in Nis, Serbia; Referent laboratory for Campylobacter and Helicobacter, Center for Microbiology, Institute for Public Health, Nis Serbia

Dr. Xinan Jiao
Yangzhou University, China

Dr. Endang Sri Lestari, MD.
Department of Clinical Microbiology, Medical Faculty, Diponegoro University/Dr. Kariadi Teaching Hospital, Semarang, Indonesia

Dr. Hojin Shin
Pusan National University Hospital, South Korea

Dr. Yi Wang
Center for Vector Biology, 180 Jones Avenue, Rutgers University, New Brunswick, NJ 08901-8536, USA

Dr. Heping Zhang
The Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, China

Prof. Natasha Potgieter
University of Venda, South Africa

Dr. Alemzadeh
Sharif University, Iran

Dr. Sonia Arriaga
Instituto Potosino de Investigación Científica y Tecnológica/División de Ciencias Ambientales, Mexico

Dr. Armando Gonzalez-Sanchez
Universidad Autonoma Metropolitana Cuajimalpa, Mexico

Dr. Pradeep Parihar
Lovely Professional University, Phagwara, Punjab, India

Dr. William H Roldán
Department of Medical Microbiology, Faculty of Medicine, Peru

Dr. Kanzaki, L I B
Laboratory of Bioprospection. University of Brasilia, Brazil

Prof. Philippe Dorchies
Laboratory of Bioprospection. University of Brasilia, Brazil

Dr. C. Ganesh Kumar
Indian Institute of Chemical Technology, Hyderabad, India

Dr. Farid Che Ghazali
Universiti Sains Malaysia (USM), Malaysia

Dr. Samira Bouhdid
Abdelmalek Essaadi University, Tetouan, Morocco

Dr. Zainab Z. Ismail
Department of Environmental Engineering, University of Baghdad, Iraq

Dr. Ary Fernandes Junior
Universidade Estadual Paulista (UNESP), Brasil

Dr. Papaevangelou Vassiliki
Athens University Medical School, Greece

Dr. Fangyou Yu
The first Affiliated Hospital of Wenzhou Medical College, China

Dr. Galba Maria de Campos Takaki
Catholic University of Pernambuco, Brazil
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Kwabena Ofori-Kwakye</td>
<td>Department of Pharmaceutics, Kwame Nkrumah University of Science & Technology, KUMASI, Ghana</td>
</tr>
<tr>
<td>Prof. Dr. Liesel Brenda Gende</td>
<td>Arthropods Laboratory, School of Natural and Exact Sciences, National University of Mar del Plata, Buenos Aires, Argentina.</td>
</tr>
<tr>
<td>Dr. Adeshina Gbonjubola</td>
<td>Ahmadu Bello University, Zaria, Nigeria</td>
</tr>
<tr>
<td>Prof. Dr. Stylianos Chatzipanagiotou</td>
<td>University of Athens – Medical School, Greece</td>
</tr>
<tr>
<td>Dr. Dongqing BAI</td>
<td>Department of Fishery Science, Tianjin Agricultural College, Tianjin 300384, P. R. China</td>
</tr>
<tr>
<td>Dr. Dingqiang Lu</td>
<td>Nanjing University of Technology, P. R. China</td>
</tr>
<tr>
<td>Dr. L. B. Sukla</td>
<td>Scientist – G & Head, Biominerals Department, IMMT, Bhubaneswar, India</td>
</tr>
<tr>
<td>Dr. Hakan Parlakpinar</td>
<td>MD. Inonu University, Medical Faculty, Department of Pharmacology, Malatya, Turkey</td>
</tr>
<tr>
<td>Dr Pak-Lam Yu</td>
<td>Massey University, New Zealand</td>
</tr>
<tr>
<td>Dr Percy Chimwamurombe</td>
<td>University of Namibia, Namibia</td>
</tr>
<tr>
<td>Dr. Euclésio Simionatto</td>
<td>State University of Mato Grosso do Sul-UEMS, Brazil</td>
</tr>
<tr>
<td>Dr. Hans-Jürg Monstein</td>
<td>Clinical Microbiology, Molecular Biology Laboratory, University Hospital, Faculty of Health Sciences, S-581 85 Linköping, Sweden</td>
</tr>
<tr>
<td>Dr. Ajith, T. A</td>
<td>Associate Professor Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur, Kerala-680 555, India</td>
</tr>
<tr>
<td>Dr. Feng-Chia Hsieh</td>
<td>Biopesticides Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Taiwan</td>
</tr>
<tr>
<td>Prof. Dra. Suzan Pantaroto de Vasconcellos</td>
<td>Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275 Jd. Eldorado, Diadema, SP CEP 09972-270, Brasil</td>
</tr>
<tr>
<td>Dr. Maria Leonor Ribeiro Casimiro Lopes Assad</td>
<td>Universidade Federal de São Carlos - Centro de Ciências Agrárias - CCA/UFSCar, Departamento de Recursos Naturais e Proteção Ambiental, Rodovia Anhanguera, km 174 - SP-330, Araras - São Paulo, Brasil</td>
</tr>
<tr>
<td>Dr. Pierangeli G. Vital</td>
<td>Institute of Biology, College of Science, University of the Philippines, Philippines</td>
</tr>
<tr>
<td>Prof. Roland Ndip</td>
<td>University of Fort Hare, Alice, South Africa</td>
</tr>
<tr>
<td>Dr. Shawn Carraher</td>
<td>University of Fort Hare, Alice, South Africa</td>
</tr>
<tr>
<td>Dr. José Eduardo Marques Pessanha</td>
<td>Observatório de Saúde Urbana de Belo, Horizonte/Faculdade de Medicina da Universidade Federal de Minas Gerais, Brasil</td>
</tr>
</tbody>
</table>
Dr. Yuanshu Qian
Department of Pharmacology, Shantou University Medical College
China

Dr. Helen Treichel
URI-Campus de Erechim
Brazil

Dr. Xiao-Qing Hu
State Key Lab of Food Science and Technology
Jiangnan University
P. R. China

Dr. Olli H. Tuovinen
Ohio State University, Columbus, Ohio
USA

Prof. Stoyan Groudev
University of Mining and Geology “Saint Ivan Rilski”
Sofia
Bulgaria

Dr. G. Thirumurugan
Research lab, GIEET School of Pharmacy, NH-5, Chaitanya nagar, Rajahmundry-533294.
India

Dr. Charu Gomber
Thapar University
India

Dr. Jan Kuever
Bremen Institute for Materials Testing, Department of Microbiology, Paul-Feller-Str. 1, 28199 Bremen
Germany

Dr. Nicola S. Flanagan
Universidad Javeriana, Cali
Colombia

Dr. André Luiz C. M. de A. Santiago
Universidade Federal Rural de Pernambuco
Brazil

Dr. Dhruva Kumar Jha
Microbial Ecology Laboratory, Department of Botany, Gauhati University, Guwahati 781 014, Assam
India

Dr. N Saleem Basha
M. Pharm (Pharmaceutical Biotechnology)
Eritrea (North East Africa)

Prof. Dr. João Lúcio de Azevedo
Dept. Genetics-University of São Paulo-Faculty of Agriculture- Piracicaba, 13400-970
Brasil

Dr. Julia Inés Fariña
PROIMI-CONICET
Argentina

Dr. Yutaka Ito
Kyoto University
Japan

Dr. Cheruiyot K. Ronald
Biomedical Laboratory Technologist
Kenya

Prof. Dr. Ata Akcil
S. D. University
Turkey

Dr. Adhar Manna
The University of South Dakota
USA

Dr. Cícero Flávio Soares Aragão
Federal University of Rio Grande do Norte
Brazil

Dr. Gunnar Dahlen
Institute of odontology, Sahlgrenska Academy at University of Gothenburg
Sweden

Dr. Pankaj Kumar Mishra
Vivekananda Institute of Hill Agriculture, (I.C.A.R.), ALMORA-263601, Uttarakhand
India

Dr. Benjamas W. Thanomsub
Srinakharinwirot University
Thailand

Dr. Maria José Borrego
National Institute of Health – Department of Infectious Diseases
Portugal
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Catherine Carrillo</td>
<td>Health Canada, Bureau of Microbial Hazards, Canada</td>
</tr>
<tr>
<td>Dr. Marcotty Tanguy</td>
<td>Institute of Tropical Medicine, Belgium</td>
</tr>
<tr>
<td>Dr. Han-Bo Zhang</td>
<td>Laboratory of Conservation and Utilization for Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091. School of Life Science, Yunnan University, Kunming, Yunnan Province 650091. China</td>
</tr>
<tr>
<td>Dr. Ali Mohammed Somily</td>
<td>King Saud University, Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Marc Antonio Nogueira</td>
<td>Universidade Estadual de Londrina, CCB/Depto. De microbiologia, Laboratório de Microbiologia Ambiental, Caixa Postal 6001, 86051-980 Londrina, Brazil</td>
</tr>
<tr>
<td>Dr. Bruno Pavoni</td>
<td>Department of Environmental Sciences University of Venice, Italy</td>
</tr>
<tr>
<td>Dr. Shih-Chieh Lee</td>
<td>Da-Yeh University, Taiwan</td>
</tr>
<tr>
<td>Dr. Satoru Shimizu</td>
<td>Horonobe Research Institute for the Subsurface Environment, Northern Advancement Center for Science & Technology, Japan</td>
</tr>
<tr>
<td>Dr. Tang Ming</td>
<td>College of Forestry, Northwest A&F University, Yangling, China</td>
</tr>
<tr>
<td>Dr. Olga Gortzi</td>
<td>Department of Food Technology, T.E.I. of Larissa, Greece</td>
</tr>
<tr>
<td>Dr. Mark Tarnopolsky</td>
<td>McMaster University, Canada</td>
</tr>
<tr>
<td>Dr. Sami A. Zabin</td>
<td>Al Baha University, Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Julia W. Pridgeon</td>
<td>Aquatic Animal Health Research Unit, USDA, ARS, USA</td>
</tr>
<tr>
<td>Dr. Lim Yau Yan</td>
<td>Monash University Sunway Campus, Malaysia</td>
</tr>
<tr>
<td>Prof. Rosemeire C. L. R. Pietro</td>
<td>Faculdade de Ciências Farmacêuticas de Araraquara, Univ Estadual Paulista, UNESP, Brazil</td>
</tr>
<tr>
<td>Dr. Nazime Mercan Dogan</td>
<td>PAU Faculty of Arts and Science, Denizli, Turkey</td>
</tr>
<tr>
<td>Dr. Ian Edwin Cock</td>
<td>Biomolecular and Physical Sciences, Griffith University, Australia</td>
</tr>
<tr>
<td>Prof. N K Dubey</td>
<td>Banaras Hindu University, India</td>
</tr>
<tr>
<td>Dr. S. Hemalatha</td>
<td>Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, 221005, India</td>
</tr>
<tr>
<td>Dr. J. Santos Garcia A.</td>
<td>Universidad A. de Nuevo Leon, Mexico, India</td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Address</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. Somboon Tanasupawat</td>
<td>Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330 Thailand</td>
</tr>
<tr>
<td>Dr. Vivekananda Mandal</td>
<td>Post Graduate Department of Botany, Darjeeling Government College, Darjeeling – 734101, India</td>
</tr>
<tr>
<td>Dr. Shihua Wang</td>
<td>College of Life Sciences, Fujian Agriculture and Forestry University China</td>
</tr>
<tr>
<td>Dr. Victor Manuel Fernandes Galhano</td>
<td>CITAB-Centre for Research and Technology of Agro-Environment and Biological Sciences, Integrative Biology and Quality Research Group, University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real Portugal</td>
</tr>
<tr>
<td>Dr. Maria Cristina Maldonado</td>
<td>Instituto de Biotecnologia. Universidad Nacional de Tucuman Argentina</td>
</tr>
<tr>
<td>Dr. Alex Soltermann</td>
<td>Institute for Surgical Pathology, University Hospital Zürich, Switzerland</td>
</tr>
<tr>
<td>Dr. Dagmara Sirova</td>
<td>Department of Ecosystem Biology, Faculty Of Science, University of South Bohemia, Branisovska 37, Ceske Budejovice, 37001 Czech Republic</td>
</tr>
<tr>
<td>Dr. E. O Igbinosa</td>
<td>Department of Microbiology, Ambrose Alli University, Ekpoma, Edo State, Nigeria.</td>
</tr>
<tr>
<td>Dr. Hodaka Suzuki</td>
<td>National Institute of Health Sciences, Japan</td>
</tr>
<tr>
<td>Dr. Mick Bosilevac</td>
<td>US Meat Animal Research Center, USA</td>
</tr>
<tr>
<td>Dr. Nora Lía Padola</td>
<td>Imunoquímica y Biotecnología- Fac Cs Vet-UNCPBA, Argentina</td>
</tr>
<tr>
<td>Dr. Maria Madalena Vieira-Pinto</td>
<td>Universidade de Trás-os-Montes e Alto Douro, Portugal</td>
</tr>
<tr>
<td>Dr. Stefano Morandi</td>
<td>CNR-Istituto di Scienze delle Produzioni Alimentari (ISPA), Sez. Milano, Italy</td>
</tr>
<tr>
<td>Dr Line Thorsen</td>
<td>Copenhagen University, Faculty of Life Sciences, Denmark</td>
</tr>
<tr>
<td>Dr. Ana Lucia Falavigna-Guilherme</td>
<td>Universidade Estadual de Maringá, Brazil</td>
</tr>
<tr>
<td>Dr. Baoqiang Liao</td>
<td>Dept. of Chem. Eng., Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada</td>
</tr>
<tr>
<td>Dr. Ouyang Jinping</td>
<td>Patho-Physiology department, Faculty of Medicine of Wuhan University, China</td>
</tr>
<tr>
<td>Dr. John Sorensen</td>
<td>University of Manitoba, Canada</td>
</tr>
<tr>
<td>Dr. Andrew Williams</td>
<td>University of Oxford, United Kingdom</td>
</tr>
<tr>
<td>Dr. Chi-Chiang Yang</td>
<td>Chung Shan Medical University, Taiwan, R.O.C.</td>
</tr>
<tr>
<td>Dr. Quanming Zou</td>
<td>Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, China</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Prof. Ashok Kumar</td>
<td>School of Biotechnology, Banaras Hindu University, Varanasi, India</td>
</tr>
<tr>
<td>Dr. Chung-Ming Chen</td>
<td>Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan</td>
</tr>
<tr>
<td>Dr. Jennifer Furin</td>
<td>Harvard Medical School, USA</td>
</tr>
<tr>
<td>Dr. Julia W. Pridgeon</td>
<td>Aquatic Animal Health Research Unit, USDA, ARS, USA</td>
</tr>
<tr>
<td>Dr. Alireza Seidavi</td>
<td>Islamic Azad University, Rasht Branch, Iran</td>
</tr>
<tr>
<td>Dr. Thore Rohwerder</td>
<td>Helmholtz Centre for Environmental Research UFZ, Germany</td>
</tr>
<tr>
<td>Dr. Daniela Billi</td>
<td>University of Rome Tor Vergat, Italy</td>
</tr>
<tr>
<td>Dr. Ivana Karabegovic</td>
<td>Faculty of Technology, Leskovac, University of Nis, Serbia</td>
</tr>
<tr>
<td>Dr. Flaviana Andrade Faria</td>
<td>IBILCE/UNESP, Brazil</td>
</tr>
<tr>
<td>Prof. Margareth Linde Athayde</td>
<td>Federal University of Santa Maria, Brazil</td>
</tr>
<tr>
<td>Dr. Guadalupe Virginia Nevarez Moorillon</td>
<td>Universidad Autonoma de Chihuahua, Mexico</td>
</tr>
<tr>
<td>Dr. Tatiana de Sousa Fiuza</td>
<td>Federal University of Goias, Brazil</td>
</tr>
<tr>
<td>Dr. Indrani B. Das Sarma</td>
<td>Jhulelal Institute of Technology, Nagpur, India</td>
</tr>
<tr>
<td>Dr. Guanghua Wang</td>
<td>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Dr. Renata Vadkertiova</td>
<td>Institute of Chemistry, Slovak Academy of Science, Slovakia</td>
</tr>
<tr>
<td>Dr. Charles Hocart</td>
<td>The Australian National University, Australia</td>
</tr>
<tr>
<td>Dr. Guoqiang Zhu</td>
<td>University of Yangzhou College of Veterinary Medicine, China</td>
</tr>
<tr>
<td>Dr. Guilherme Augusto Marietto Gonçalves</td>
<td>São Paulo State University, Brazil</td>
</tr>
<tr>
<td>Dr. Mohammad Ali Faramarzi</td>
<td>Tehran University of Medical Sciences, Iran</td>
</tr>
<tr>
<td>Dr. Suppasil Maneerat</td>
<td>Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Thailand</td>
</tr>
<tr>
<td>Dr. Francisco Javier Las heras Vazquez</td>
<td>Almeria University, Spain</td>
</tr>
<tr>
<td>Dr. Cheng-Hsun Chiu</td>
<td>Chang Gung memorial Hospital, Chang Gung University, Taiwan</td>
</tr>
<tr>
<td>Dr. Ajay Singh</td>
<td>DDU Gorakhpur University, Gorakhpur-273009 (U.P.), India</td>
</tr>
<tr>
<td>Dr. Karabo Shale</td>
<td>Central University of Technology, Free State, South Africa</td>
</tr>
<tr>
<td>Dr. Lourdes Zélia Zanoni</td>
<td>Department of Pediatrics, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil</td>
</tr>
</tbody>
</table>
Dr. Tulin Askun
Balikesir University
Turkey

Dr. Marija Stankovic
Institute of Molecular Genetics and Genetic Engineering
Republic of Serbia

Dr. Scott Weese
University of Guelph
Dept of Pathobiology, Ontario Veterinary College,
University of Guelph,
Guelph, Ontario, N1G2W1,
Canada

Dr. Sabiha Essack
School of Health Sciences
South African Committee of Health Sciences
University of KwaZulu-Natal
Private Bag X54001
Durban 4000
South Africa

Dr. Hare Krishna
Central Institute for Arid Horticulture,
Beechwal, Bikaner-334 006, Rajasthan,
India

Dr. Anna Mensuali
Dept. of Life Science,
Scuola Superiore Sant’Anna

Dr. Ghada Sameh Hafez Hassan
Pharmaceutical Chemistry Department,
Faculty of Pharmacy, Mansoura University,
Egypt

Dr. Kátia Flávia Fernandes
Biochemistry and Molecular Biology
Universidade Federal de Goiás
Brasil

Dr. Abdel-Hady El-Gilany
Public Health & Community Medicine
Faculty of Medicine,
Mansoura University
Egypt

Dr. Hongxiong Guo
STD and HIV/AIDS Control and Prevention,
Jiangsu provincial CDC,
China

Dr. Konstantina Tsaousi
Life and Health Sciences,
School of Biomedical Sciences,
University of Ulster

Dr. Bhavnaben Gowan Gordhan
DST/NRF Centre of Excellence for Biomedical TB Research
University of the Witwatersrand and National Health Laboratory Service
P.O. Box 1038, Johannesburg 2000,
South Africa

Dr. Ernest Kuchar
Pediatric Infectious Diseases,
Wroclaw Medical University,
Wroclaw Teaching Hospital,
Poland

Dr. Hongxiong Guo
STD and HIV/AIDS Control and Prevention,
Jiangsu provincial CDC,
China

Dr. Mar Rodriguez Jovita
Food Hygiene and Safety, Faculty of Veterinary Science.
University of Extremadura,
Spain

Dr. Jes Gitz Holler
Hospital Pharmacy,
Aalesund. Central Norway Pharmaceutical Trust
Professor Brochs gt. 6. 7030 Trondheim,
Norway

Prof. Chengxiang FANG
College of Life Sciences,
Wuhan University
Wuhan 430072, P.R.China

Dr. Anchalee Tungtrongchitr
Siriraj Dust Mite Center for Services and Research
Department of Parasitology,
Faculty of Medicine Siriraj Hospital,
Mahidol University
2 Prannok Road, Bangkok Noi,
Bangkok, 10700, Thailand
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the Journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJMR to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the African Journal of Microbiology Research is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2015, Academic Journals. All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJMR, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Physiological and sanitary potential of peanut seed treated with cinnamon powder
Adrielle Naiana Ribeiro Soares, Edilma Pereira Gonçalves, Jeandson Silva Viana, Priscila Cordeiro Souto and Mácio Farias de Moura

Congruence between the drug resistance pattern of Escherichia coli and Proteus spp. isolated from humans and those from wild animals
Eze, E. A., Mustapha, J. K., Eze, C.N. and Enebe, M. C.

Carbon dioxide mitigation by microalga in a vertical tubular reactor with recycling of the culture medium
Michele Greque de Morais, Cleber Klasener da Silva, Adriano Arruda Henrard and Jorge Alberto Vieira Costa

Plasmid profile of Staphylococcus aureus from orthopaedic patients in Ahmadu Bello University Teaching Hospital Zaria, Nigeria
Obajuluwa, A. F., Olayinka, B. O., Adeshina, G. O., Onaolapo, A. and Afolabi-Balogun, N. B.
Physiological and sanitary potential of peanut seed treated with cinnamon powder

Adrielle Naiana Ribeiro Soares, Edilma Pereira Gonçalves*, Jeandson Silva Viana, Priscila Cordeiro Souto and Mácio Farias de Moura

Received 10 April, 2015; Accepted 8 June, 2015

This study aimed to assess the physiological and sanitary potential of peanut seeds cv. BR1, treated with powdered cinnamon (Cinnamomum zeylanicum). The experiment was conducted in the laboratories of the Seed and Plant Pathology and Microbiology at the Federal Rural University of Pernambuco / Academic Unit of Garanhuns (UFRPE / UAG). The experimental design was completely randomized, with four replications of 50 seeds. The treatments consisted of treating the seeds with cinnamon powder at different doses (0: control; 2, 4, 6, 8 and 10 g) in the ratio of 2 g powder and 81.2 g. The seeds were soaked in 1% sodium hypochlorite for 3 min, and then immediately subjected to the following tests: germination, speed of germination index, seedling length, seedling dry matter and seed health testing. Fungi of the genus Aspergillus, Penicillium and Rhizopus were detected greatly in the treatments with the highest dose. Sodium hypochlorite was effective in combating fungal growth, but damaged the physiology of the seeds. Using cinnamon powder of 5 g was efficient in controlling fungi and did not affect the seed quality of peanuts.

Key words: Arachis hypogaea, natural fungal control, Cinnamomum zeylanicum.

INTRODUCTION

Peanut (Arachis hypogaea L.) belongs to the family Fabaceae; subfamily Papilionidae, and gender Arachis. The economic importance of peanuts is linked to their having pleasant taste and seeds having rich oil (40 to 50%) and protein (22 to 30%) (Silveira et al., 2011). In Brazil, production is more significant in São Paulo, which is the largest producer; it accounted for 96.67% of the country’s total production in the 2012/2013 crop season, followed by Bahia State, with 3.33% (Conab, 2013). In the semiarid region of Pernambuco State, it has been tested that doing intercropping with cactus leads to achieving high yields (Andrade et al., 2015).

Peanut crop is propagated by seeds, which constitutes a major component production. It is of great importance to maintain the quality of seeds used in the implementation of this culture, especially regarding its genetic, physical, physiological and phytosanitary attributes (Grigoletto et al., 2012). Seed quality is of
utmost importance in the production process of any plant species, because it influences the development of culture.

The physiological quality of peanut seeds can be compromised, and even lost gradually. This can happen through deterioration influenced by fungus contamination (especially those of the genus *Aspergillus, Penicillium, Fusarium* and *Rhizopus*) during the stages of maturation and harvest (Pitt et al., 1991), post-harvest, drying (Fernandez et al., 1997) and processing (Almeida et al., 1998).

In conventional production, seeds are often treated with chemical fungicides. This reduces seed and seedling losses caused by seed-borne and soil-borne diseases. Most seed protectants are not an option for organic growers. Herbal and plant extracts treatment and the use of hot water can be used by organic farmers to improve seeds’ performance. It is therefore necessary to search for control measures that are cheap, ecologically sound and environmentally safe to eliminate or reduce the incidence of these economic important pathogens, so as to increase seed germination.

The losses caused by pathogens has been reduced, mainly by the use of chemicals, either pre- or post-harvest; however, the use of agrochemicals has led the emergence of numerous high severity problems such as the emergence of microorganisms resistant to fungicides, environmental damage and harm to human health (Cruz et al., 2009). Alternatively, the use of pesticides has been researched as natural products. Shah et al. (1992) reported that *Argemone mexicana* seed extract was effective in eliminating most of the seed-borne fungi of cowpea but was not effective against *Alternaria alternata, Curvularia lunata, Mucor* sp. and *Macrophomina phaseolina*.

Some plants have in their chemical composition active substances that can act as fungitoxic in plant-pathogen interactions with other antimicrobial activities; they can even activate the defense mechanisms of the host plant with pathogen control programs, thus reducing the indiscriminate use of pesticides (Silva et al., 2011).

In this sense, medicinal plants have been extensively studied for the control of various pathogens, due to the active principles present with potential fungicidal and / or bactericidal. Among them, we can mention Cinnamon (*Cinnamomum zeylanicum* L.); in addition to its use as a spice or condiment for providing flavor and aroma in food, it has fungitoxic properties; the main antimicrobial constituent, cinnamaldehyde (Ranasinghe et al., 2002).

There is a growing need to evaluate the sanitary quality of peanut seeds, in order to select highly physiological quality and pathogen free ones. Thus, this study aims to evaluate the physiological and sanitary quality of peanut seeds cv. BR1 treated with cinnamon powder.

MATERIALS AND METHODS

The experiment was conducted at the Seed Analysis Laboratories of Embrapa Cotton - Campina Grande, Brazil, and Plant Pathology and Microbiology, Federal Rural University of Pernambuco / Academic Unit of Garanhuns (UFRPE/UAG), Pernambuco State. The peanut seeds cv. BR1 used were purchased from Embrapa Cotton - Campina Grande, Brazil.

At the Seed Analysis Laboratory, the peanut cultivar BR1 seeds were treated as follows: the control (0) and the experimental seeds were immersed in sodium hypochlorite for 3 min, according to Brasil (2009), using different doses of cinnamon powder (*Cinnamomum zeylanicum* L.): 2, 4, 6, 8 and 10 g. Seeds treated with cinnamon powder dose remained conditioned for 24 h in a plastic bag together with dust. Treatment with 1% sodium hypochlorite solution was done according to the recommendations given for Sanitary Analysis Manual seeds (Brasil, 2009). To obtain the hypochlorite 297 mL of distilled water was mixed with 3 mL of sodium hypochlorite. After the treatments, there was the germination and health test.

Physiological quality test

The germination test was performed according to guidelines of the Rules for Seed Analysis-RAS (Brasil, 2009), using germination chambers type Biochemical Oxygen Demand (B.O.D), equipped with fluorescent lamps. It was done under constant temperature of 30°C in substrate, Germitest brand; it was sterilized for 20 min at 105°C ± 3°C and moistened with distilled water. The amount was equivalent to 2.5 times the weight of the paper.

The percentage of germination was carried out at 10 days after sowing. Seedlings with well-developed essential structures were considered as normal (Brasil, 2009).

First count

First count was held on the fifth day after the beginning of the experiment, corresponding normal seedlings.

Speed of germination index

Speed of germination index was carried out simultaneously with the germination test; daily counts were done from the fifth day. At the end of the test, the index was calculated using the formula:

\[IVG= \frac{G1}{N1}+\frac{G2}{N2}+...\frac{Gn}{Nn} \]

where IVG = germination rate index; G1, G2 and Gn = number of normal seedlings, computed in the first, second... and last count, respectively; N1, N2, Nn = number of days from sowing to first, second... and last count, respectively (Maguire, 1982).

Seedling length

Seedling length seedlings were measured on the 10th day after sowing, using a ruler graded in centimeters, measuring from the root to the epicotyl; the result was divided by the number of seedlings.

Dry mass of seedlings

Seedlings were wrapped in paper bags without the cotyledons, put in oven at 80°C for 24 h, and then weighed on an analytical balance; the result is expressed in grams (Nakagawa, 1999).

Health test

The seeds were distributed on two sheets of paper germitest,
Figure 1. Germination (A) and germination speed index (B) of Arachis hypogaea seeds treated with cinnamon powder (Cinnamomum zeylanicum L.).

sterilized for 20 min in an oven at 105 ± 3°C and moistened with distilled water (control) and the concentrations of the extract. The amount is equivalent to 2.5 times the weight of the paper. The rolls were maintained in a growth chamber (B.O.D.), equipped with fluorescent lights at 20°C temperature. The test duration was 8 days; the evaluations were done on the eighth day after the beginning of the experiment, according to the rules of Sanitary Analysis Manual Seeds (Brasil, 2009).

To identify and quantify the percentage of fungi, each seed was visualized with the aid of a magnifying glass (60 times magnification) and an optical microscope, allowing the detection of fungal structures. The aggregation of fungi was performed by percentage of seeds contaminated, resulting in the average per treatment.

For physiological and health quality tests, we used the completely randomized design with four replications of 50 seeds, totalling 200 seeds per treatment. The data of the variables measured in the experiment were subjected to analysis of variance using the F test and the means compared by Dunnett “t” test at 5% probability. Quantitative dice was submitted to polynomial regression analysis, testing the linear and quadratic model, choosing the highest R^2. The analyses were done using the software SAEG (Ribeiro, 2001).

RESULTS AND DISCUSSION

Figure 1 shows the results of germination (A) and germination rate index (B) on Arachis hypogaea seed cv. BR1 treated with doses of cinnamon powder. When the seeds were treated with a dose of 5.0 g of powder, there was an increase in the percentage of germination (71%); the highest rate was 5.6 at a dose of 4.5 g. It can be seen that the treatment of seeds with cinnamon powder did not impair germination and germination speed index. Ferreira and Aquila (2000) found that germination is less sensitive to allelochemicals compared to the growth of seedlings. The better performance of treated seeds compared to the control is because cinnamon powder is reliable to control fungi.

The answer to the interference of allelochemicals on seed germination depends on the concentration used (Ciarka et al., 2002). Furthermore, the influence of the type of extract also depends on the sensitivity of the tested plant to allelopathic compounds present; with certain substances it can inhibit germination or growth, and with others it can be the same or stimulating innocuous (Almeida et al., 1998).

This study confirms that natural mycoflora present in seeds of Arachis hypogaea was capable of causing poor seed germination and had negative influence on seedling growth. C. zeylanicum L. increase germination and germination speed index in some doses. This could be attributed to the suppression of the incidence of the seed borne fungi that could have killed the embryo of the seeds. This result is consistent with that of Parimelazhagan and Francis (1999) who established that leaf extracts of Clerodendrum viscosum increased seed germination and improved seedling development of rice seeds.

Cinnamon has a chemical composition in the presence of substances such as cinnamic aldehyde (75-90%), aldehyde benzoic acid, cinnamic acid, coumarin, methyl-ortocumaraldeido, salicylic acid methyl ester to cinnamic acid (Gerhardt, 1973). The cinnamaldehyde is the main component in fungal activity present in cinnamon extracts. Other chemicals have additive or synergistic effect of totally fungitoxicity (Jham et al., 2005).

The values for the length (A) and seedling dry weight (B) derived from peanut seeds treated with cinnamon powder are shown in Figure 2. It was observed that when the seeds were treated with 5.2 g of powder, there was the greatest seedling length of 7.7 cm and the greatest value for the dry mass was 0.025 g at a dose of 4.8 g. That dose reduced early growth and dry mass. Probably, this interference is related to the high concentration of allelochemicals present in cinnamon powder, as cinnamic acid. The compound (E) - cinnamaldehyde (97.7%) was
found in large amounts (97.7%) in the essential oil of *C. zeylanicum*, being considered as the main component (Singh et al., 2007). The initial growth phase appears to be more sensitive to allelochemicals than germination, which may lead to abnormal seedlings, root necrosis, or alterations in the growth (Ferreira and Borghetti, 2004). The influence of natural extracts on the growth of seedlings shows the ability of compounds acting at this stage of development (Lousada et al., 2012). The potential of natural products to inhibit the growth of seedlings may be related to the chemical constituents present in the plant or the interaction of its components (An et al., 1993).

The results obtained by Nwachukwu and Umechuruba (2001) showed that crude extracts from all the plant leaves tested increased seed germination, led to the emergence of African yam bean seeds and gave significant (*P* ≤ 0.05) reduction of mycelial growth of all the fungi tested compared to their aqueous extracts. Leaf extracts of neem, basil, bitter leaf and paw-paw, which are cheap and environmentally safe, are promising for protecting African yam bean seeds against major seed-borne fungi and can also improve the crop. Perelló et al. (2013) suggest that seeds treated with garlic juice had a relatively better germination percentage, plumule and radicle length, and seedlings than those seeds treated with high inoculum density of the target pathogen, *Bipolaris sorokiniana*. The inoculum level of naturally infected wheat seeds could be reduced through the use of garlic juice as seed dressing biofungicide, before sowing. Kiran et al. (2010) and Yassin et al. (2012) recorded the efficacy of the antifungal properties of some herbaceous and medicinal plants against cereal seed-borne mycoflora. The variation in results related to seedling growth can be explained by the fact that there is a pattern of response to the concentration. Certain extracts even at low concentrations can interfere with growth of some species and not others. Hence, there is need to always perform specific tests involving species of plants and extracts concentrations (Premasthira and Zungsontiporn, 1996).

Figure 3 shows the results for the control of phytopathogens using peanut seeds treated with cinnamon powder. The use of cinnamon powder proved to be efficient in controlling these types of fungi (*Aspergillus niger*, *Penicillium* spp. and *Rhizopus* spp.); it led to a marked decrease in the percentage of these fungi with increasing doses. This result agrees with the findings of Zaman et al. (1997), that the efficacy of garlic, neem, ginger and onion extracts on seed borne fungi of mustard declined with increased dilution.

Similar results were found by Mamprim et al. (2013) on plant extracts of cinnamon, rue (*Ruta graveolens*), cinnamon (*Melia azedarach*), rosemary (*Rosmarinus officinalis*), lemon grass (*Cymbopogon citratus*) and citronella (*Cymbopogon winterianus*), which caused a reduction in diameter growth of *Metarhizium anisopliae* (Metsch.) Sorok from 1.8 to 7.6%. The essential oils of cinnamon and oregano (*Origanum vulgare*) at a concentration of 100 ppm have antifungal effect against *Aspergillus flavus* (Camarilho et al., 2006).

The results observed in the physiological quality test (Figures 1, 2 and 3) indicate that the control treatment showed lower seed behavior for germination and vigor compared to those treated with cinnamon powder. This can be justified by the presence of fungi in seeds untreated. The incidence of seed-borne pathogens can affect the physiological quality and, in some cases, inhibit seed germination. It is therefore necessary to search for control measures that are cheap, ecologically sound and...
environmentally safe to eliminate or reduce the incidence of these economic important pathogens, so as to increase seed germination.

Chavan and Kakde (2008) reported that fungi such as *A. niger*, *Aspergillus flavus*, *Alternaria dianthicola*, *Curvularia lunata*, *Curvularia pellescens*, *Fusarium oxysporum*, *Fusarium equiseti*, *Macrophomina phaseolina*, *Rhizopus stolonifer*, *Penicillium digitatum* and *Penicillium chrysogenum* cause discoloration, rotting, shrinking, seed necrosis, loss in germination capacity and toxification to oil seeds. *Aspergillus* is a common mould in tropical and sub-tropical countries and causes aflatoxin contamination as a result of moulding of badly stored commodities, such as groundnut, cereal and cotton seeds.

Saha et al. (2014) concluded that seeds like garlic tablet, allamanda tablet or neem leaf extract can be recommended for okra seed treatment to get higher germination and healthy seedling that will eventually produce more fruit.

Aspergillus spp. and *Penicillium* spp. are storage fungi. The interaction of seeds with these fungi can significantly increase the speed of reducing the quality of seeds (Neergaard, 1979). Also, the genus *Rhizopus* spp. is also considered a storage fungus that hinders the identification of other pathogens present in peanut seeds, due to its rapid growth. It covers the seed surface. The growth of storage fungi in seeds can cause death of the embryo, reduce twinning, overturning and cause rot (Mazzani and Layrisse, 1992; Bhattacharya and Raha, 2002). Thus, assessment of health quality is extremely important to check the quality of seeds.

Several studies have been developed in the search for natural products with fungitoxicity and their application in the control of fungi that cause damage to crops of economic interest (Hillen et al., 2012). Among these products is cinnamon. Cinnamic aldehyde is present in high concentration (77.72%) of cinnamon; it is the main chemical component, and is primarily responsible for inhibiting the growth of pathogenic micro-organisms (Andrade et al., 2012).

Table 1 shows the results of the variables analyzed for germination, as well as the vigor and health of peanut seeds immersed in sodium hypochlorite and those treated with cinnamon powder doses. The first count, the germination speed index and the germination of treated peanut seeds showed significant effects compared to those seeds immersed in sodium hypochlorite solution 1%, for 3 min; except for those treated with 10 g, they were no significant differences. In addition, we observed higher number of abnormal seedlings when seeds were immersed in sodium hypochlorite and higher number of normal seedlings from seeds subjected to doses of cinnamon powder.

These results indicate that cinnamon powder doses were superior to the control and sodium hypochlorite treatment; and even though the use of sodium hypochlorite is a method recommended by RAS, it impaired the germination of peanut seed; this is presumably because soaking causes damage to seed membranes. Evangelista et al. (2007) state that the membranes can suffer from injuries when they are immersed in water when the seeds have water content less than 12%. The first soaking is considered critical because there is a rapid release of electrolytes to achieve a balance in the membranes. In that work, the peanut seeds were under 10% humidity (Kraft, 1997). The seeds of this species have a high degree of susceptibility to injury caused by rapid soaking through immersion in distilled water.
Table 1. Arachis hypogaea seeds treated with cinnamon powder dose (Cinnamomum zeylanicum) and immersed in sodium hypochlorite (1%).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control (sodium hypochlorite)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FC (%)</td>
</tr>
<tr>
<td>2 (Control)</td>
<td>22.0*</td>
</tr>
<tr>
<td>3 (Dose 2 g - NaCl)</td>
<td>27.5*</td>
</tr>
<tr>
<td>4 (Dose 2 g - NaCl)</td>
<td>25.5*</td>
</tr>
<tr>
<td>5 (Dose 4 g - NaCl)</td>
<td>25.5*</td>
</tr>
<tr>
<td>6 (Dose 6 g - NaCl)</td>
<td>16.5*</td>
</tr>
<tr>
<td>7 (Dose 8 g - NaCl)</td>
<td>21.5*</td>
</tr>
</tbody>
</table>

FC, First germination count; G, germination; GSI, germination speed index; SL, seedling length; DS, dry seedling mass; SN, normal seedlings; ABS, abnormal seedlings; AS, percentage of Aspergillus niger; PEN, percentage of Penicillium spp.; RIZ, percentage of Rhizopus spp. ns and * = not significant, * significant at the 5% probability by Dunnett’s test.

For coffee beans (Coffea arabica L.), Sofiatti et al. (2009) found that seed soaked in sodium hypochlorite at concentrations of 4, 5, and 6% caused a reduction in seed germination and vigor.

For the length of peanut seedlings, only 8 and 10 g cinnamon powder was superior to sodium hypochlorite treatment. The dry weight of seedlings from seeds treated with cinnamon powder dose showed significant results, except for the dose of 10 g; and when compared to seedling dry matter from the control with those of hypochlorite sodium, it was observed that, despite having a significant effect, bleach gave the best result. This is due to pathogen control.

Conflict of interests

The authors did not declare any conflict of interest.

REFERENCES

Full Length Research Paper

Congruence between the drug resistance pattern of *Escherichia coli* and *Proteus* spp. isolated from humans and those from wild animals

Eze, E. A., Mustapha, J. K., Eze, C.N. and Enebe, M. C.*

Department of Microbiology, University of Nigeria, Nsukka, Nigeria.

Received 13 May, 2015; Accepted 20 July, 2015

As human populations grow and transform landscapes, contact with wildlife concomitantly increases. Disease emergence has been an important consequence of these contacts, with many of emerging infectious diseases in humans arising from wildlife reservoirs. Drug resistance is a very important dimension of disease emergence and tracing the source is a veritable containment strategy. *Escherichia coli* and *Proteus* spp. have important roles in the increasing cases and dissemination of antibiotic resistance, potentially acquiring resistance determinants and acting as reservoirs for resistance genes. This study was conducted to determine the similarity or otherwise of the drug resistance pattern of *Escherichia coli* and *Proteus* spp. isolated from humans and those from wild animals (a source with only minimal, hypothetical or no antibiotic exposure). The human samples were obtained from two human groups: persons not on antibiotics and humans on antibiotics. Animal samples were taken from rats (*Rattus* spp.), grasscutters (*Thryonomys swinderianus*), squirrels (*Xerus erythropus*) antelopes (*Tragelephus scriptus*), rabbits (*Oryctolagus cuniculus*) and farm lizards (*Agama* spp.). Organisms were isolated and identified based on basic microbiological methods and subjected to antibiotic disc diffusion tests and electrophoretic plasmid analysis. Results show that *E. coli* strains isolated from persons on antibiotics were resistant to ampicillin (46.62%), augmentin (39.72%), clarithromycin (5.16%); while resistance to antibiotics by *E. coli* isolated from those that are not on antibiotics were ampicillin (27.27%), augmentin (20.00%), ceftriaxone (18.18%) and nitrofurantoin (14.55%). Also, *E. coli* strains isolated from wild life were resistant to ampicillin (85.71%) and clarithromycin (14.29%). *Proteus* spp. isolated from human sources were susceptible to all test antibiotics except ampicillin; while those from wildlife were resistant to ampicillin (54.17%), chloramphenicol (16.67%), nitrofurantoin (8.33%), clarithromycin (8.33%), ofloxacin (4.17%), augmentin (4.17%) and pefloxacin (4.17%). The correlation matrices determined at p (≤ 0.05), revealed high resistance correlation among the different genera of bacteria isolated from one source to those from the other sources. Resistance plasmid analysis revealed the presence of 23 kb plasmid DNA in organisms obtained from the different sources. This suggests the possibility of bidirectional resistant gene transmission at the human–wildlife interface, indicating congruence between the drug resistance pattern of *E. coli* and *Proteus* spp. isolated from humans and wild animals. This calls for a holistic and forward-looking approach that will take the complex interconnections among species into full account, recognizing the important link between humans, animals and the environment in a bid to contain antibiotic resistance.

Key words: Drug resistance, humans, wild animals, *Escherichia coli*, *Proteus* spp., resistance plasmids.
INTRODUCTION

As human populations grow and transform landscapes, contact with wildlife concomitantly increases. Human modification of the environment is seen as the primary driver of the emergence of zoonotic diseases, through providing the opportunity for direct and indirect contact between humans and (sympatric) wildlife and increasing pathogen exposure and transmission potential (Mayer, 2000; Deem and Karesh, 2001; Pesapane et al., 2013). Disease emergence has been an important consequence of this escalation in interaction, with the majority of emerging infectious diseases in humans arising from wildlife reservoirs (Jones and Petel, 2008). These changes can induce immediate as well as long-term effects on pathogen transmission dynamics, modifying genetic and biological characteristics, biophysical elements, ecological dynamics, and socioeconomic, as well as host(s)–pathogen interactions (Smolinski and Hamburg, 2003).

Although controversy continues to surround the origin of many infectious diseases (Pearce-Duver, 2006), many of humanity’s most serious infections seem to have been the result of increasingly close and frequent contact with a new array of potentially zoonotic pathogens from animals intentionally domesticated for human use. Indeed, some of the most devastating and persistent human pathogens can be traced to zoonotic origins.

While environmental fecal waste may be an important source of pathogen exposure for both wildlife and humans, we still have a limited understanding of the complex process of pathogen spillover between wildlife and humans. The relative infrequency of pathogen spillover events limits our ability to evaluate the complexity of interacting and cascading factors driving this process (Goldberg et al., 2008).

Similarly, the genus Proteus, (an opportunistic infectious agent) which occur worldwide have been isolated from domestic dogs and cats around the world (Turkyilmaz, 2008; August, 1988). As opportunistic pathogens, they produce infections in humans only when they leave the intestinal tract. They are found in urinary tract infections, bacteremia, pneumonia and local lesions in debilitated patients or those receiving intravenous infusion. Proteus spp. are also alleged in food poisoning (Al-Mutairi, 2011).

E. coli and Proteus spp. have important roles in the increasing cases and dissemination of antibiotic resistance, potentially acquiring resistance determinants and acting as reservoirs for resistance genes (Reuben et al., 2013). Determining the resistance profile of these two organisms isolated from two different and diverse sources is the subject of this study. The study was aimed at comparing the resistance patterns of these two organisms from humans (presumably exposed to antibiotic selective pressure) and those from wild animals (with at most conjectural exposure to antibiotics).

MATERIALS AND METHODS

Study population and sample collection

Human population aged 10 and above, and Wild animals (such as squirrels, farm lizards, grass cutters, rabbits, antelopes and rats) were analyzed for drug resistant bacterial load. The evaluation was carried out from January, 2011 to March, 2013. Stool samples were collected from human subjects after informed consents were obtained from both the individuals and the hospital authority. Rectal and intestinal swabs were collected from dead or sacrificed wild animals caught with traps or bought from hunters. The clinical human samples were collected from Bishop Shanahan Hospital, Nsukka and the wild life samples were obtained from Okutu, Okpuje, Ede-oballa, Allor uno, Opi, Opi agu and Obollo communities in Enugu state, Nigeria. Human samples were obtained from two human groups, designated as Human not on antibiotics and Human on antibiotics. Human not on antibiotics represented persons who had not used antibiotics for 3 months prior to sample collection while Human on antibiotics represented groups that have had antibiotics therapy within 3 months.

Isolation and identification of bacteria

Each sample was directly inoculated onto separate nutrient and MacConkey agar plates. The inoculated plates were incubated for 24 h at 37°C. The colonies obtained were isolated and further purified until pure cultures were obtained. Colonies obtained from MacConkey agar were classified as either lactose fermenters or non-lactose fermenters based on the pigmentation. All the isolates were Gram stained and examined microscopically. Biochemical tests were carried out based on the Gram reactions. Among the tests carried out were sugar fermentation, catalase, indole, oxidase, coagulase, H2S and motility test. CHROMagar™ (orientation) was used to further confirm the identity of the isolates.

Antibiotic susceptibility testing and plasmid profiling

Resistance to commonly used antibiotics was determined using the Kirby-Bauer disc diffusion method with the following Gram negative susceptibility disc: ciprofloxacin (CPX) (10 µg/ml), gentamicin (GEN) (10 µg/ml), ofloxacin (OFX) (10 µg/ml), augmentin (AUG) (30 µg/ml), pefloxacin (PEF) (10 µg/ml), clarithromycin (CMN) (30 µg/ml), chloramphenicol (CMP) (10 µg/ml), ampicillin (AMP) (30 µg/ml), nitrofurantoin (NIT) (100 µg/ml) and ceftriaxone (CTN) (30 µg/ml) (Poltes Med. Lab. Enugu, Nigeria). Isolates were scored as susceptible or resistant based on the interpretive criteria of the Clinical and Laboratory Standards Institute (CLSI) 2008. Escherichia coli (ATCC 25922) was used as reference (control) strain. Antibiotic resistant strains were subjected to plasmid profiling using the agarose gel electrophoretic separation of DNA materials (Kraft et al., 1988; Kado and Liu, 1981).

*Correspondence author. E-mail: enebematthew@yahoo.com. Tel: +2347034288686.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Data analysis

Data obtained were subjected to analysis of variance (ANOVA) and Pearson Correlation Analysis using the Statistical Package for Social Sciences (SPSS 16.0) Inc. (444N Michigan USA). Correlation was carried out as a measure of the number of test isolates of a genus from a particular source that are resistant to the test drugs in relation to the isolates from same and the other sources.

RESULTS

Antibiotic sensitivity

E. coli isolated from persons on antibiotics showed resistance to ampicillin (46.62%), augmentin (39.72%), clarithromycin (5.16%); while resistance to antibiotics by E. coli isolated from those persons that are not on antibiotics were against ampicillin (27.27%), augmentin (20.00%), cetriaxone (18.18%) and nitrofurantoin (14.55%) (Figure 1).

All members of the genus Proteus isolated were susceptible to all the test antibiotics, except the Proteus sp. isolated from one individual on antibiotics that exhibited resistance to ampicillin.

The microbial resistance pattern exhibited by each of

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>E. coli</th>
<th>Proteus spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL(n=6)</td>
<td>WL(n=13)</td>
<td></td>
</tr>
<tr>
<td>CPX</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GEN</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>OFX</td>
<td>0.00</td>
<td>4.17</td>
</tr>
<tr>
<td>AUG</td>
<td>0.00</td>
<td>4.17</td>
</tr>
<tr>
<td>PEF</td>
<td>0.00</td>
<td>4.17</td>
</tr>
<tr>
<td>CMN</td>
<td>14.29</td>
<td>8.33</td>
</tr>
<tr>
<td>CMP</td>
<td>0.00</td>
<td>16.67</td>
</tr>
<tr>
<td>AMP</td>
<td>85.71</td>
<td>54.17</td>
</tr>
<tr>
<td>NIT</td>
<td>0.00</td>
<td>8.33</td>
</tr>
<tr>
<td>CTN</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CPX = Ciprofloxacin; GEN = Gentamycin; OFX = Ofloxacin; AUG = Augmentin; PEF = Pefloxacin; CMN = Clarithromycin; CMP = Chloramphenicol; AMP = Ampicillin; NIT = Nitrofurantoin; CTN = Ceftriaxone. 0.00 = No resistance that is all susceptible.

Figure 1. Antibiotic resistance pattern of E. coli isolated from the two human groups. CPX = Ciprofloxacin; GEN = Gentamycin; OFX = Ofloxacin; AUG = Augmentin; PEF = Pefloxacin; CMN = Clarithromycin; CMP = Chloramphenicol; AMP = Ampicillin; NIT = Nitrofurantoin, CTN = Ceftriaxone. HN=Human not on Antibiotics. HA= Human on Antibiotics.
Figure 2. Antibiotic resistance pattern of *E. coli* isolated from the human and wild life sources. CPX = Ciprofloxacin; GEN = gentamycin; OFX = ofloxacin; AUG = Augumentin; PEF = pefloxacin; CMN = clarithromycin; CMP = chloramphenicol; AMP = ampicillin; NIT = nitrofurantoin, CTN = ceftriaxone. HN = Human not on antibiotics; HA = human on antibiotics.

PEF, CTN and CPX. Strains of *E. coli* isolated from wild life were more resistant to AMP (85.71%) than CMN (14.29%). They were susceptible to every other test antibiotic. In the same vein, *E. coli* isolated from Human sources also exhibited resistance against AMP (36.95%), AUG (29.86%) and CTN (10.80%). The comparative resistance pattern is shown in the Figure 2.

Species of *Proteus* isolated from human sources were susceptible to all antibiotics except AMP. Those isolated from wildlife were resistant to AMP (54.17%), CMP (16.67%), NIT (8.33%), CMN (8.33%), OFX (4.17%), AUG (4.17%) and PEF (4.17%) (Figure 3).

Correlation of resistance

A further analysis using correlation matrix showed that a strong direct relationship existed in the resistance pattern of the *E. coli* (0.704) regardless of the source of the isolate while the lowest correlate existed among *E. coli* and *Proteus* spp isolated from HN and HA (0.543) respectively.

In general, the analysis showed that there existed a high correlation in the resistance pattern of all the microorganisms obtained from both sources.

The correlates also examined the relationship between isolates from wildlife and human on antibiotics, as well as wild life and human not on antibiotics. Significance of correlation on the matrices was determined at p (≤0.05).

From the correlation matrix, high correlation coefficient was observed among the different genera of bacteria isolated from one source to those from different sources. For instance, the correlation matrix between isolates from persons on antibiotics and those from wild life revealed a correlate of 0.986 between *Proteus* (from those on antibiotics) and *E. coli* (from wildlife). In the same vein, a correlation coefficient of 0.948 existed between wildlife isolates of *E. coli* and *Proteus*.

Plasmid profile

The plasmid isolation and electrophoretic separation revealed the presence of plasmid DNA in some of the isolates. The plasmid DNAs were isolated from both resistant and susceptible organisms. Agarose gel electrophoresis of plasmid DNA (plates not shown) revealed the presence of relatively large plasmids in few of the test organisms.

The molecular weights of most of the plasmids were
Figure 3. Antibiotic resistance pattern of Proteus isolated from human and wildlife sources. CPX = Ciprofloxacin; GEN = gentamycin; OFX = ofloxacin; AUG = Augmentin; PEF = pefloxacin; CMN = clarithromycin; CMP = chloramphenicol; AMP = ampicillin; NIT = nitrofurantoin, CTN = ceftriaxone. HN = Human not on antibiotics. HA = human on antibiotics.

Table 2. Distribution of the plasmid DNAs in E. coli and Proteus spp.

<table>
<thead>
<tr>
<th>Bacteria Isolates</th>
<th>Number of Isolates tested</th>
<th>Number with plasmids</th>
<th>Antibiotic Profile</th>
<th>Mol. wt. of plasmid (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>10</td>
<td>3</td>
<td>MDR & MDS</td>
<td>23.1</td>
</tr>
<tr>
<td>Proteus</td>
<td>10</td>
<td>4</td>
<td>MDR & MDS</td>
<td>23.1</td>
</tr>
</tbody>
</table>

MDR, Multi drug resistant; MDS, multi drug sensitive.

In this study, E. coli and Proteus were isolated and studied for the congruence in resistance pattern exhibited by both against commonly used antibiotics. Human and Wildlife isolates of E. coli and Proteus were examined for resistance to some antibacterial agents and by extension their potentials as reservoirs of multidrug resistance traits. These enterics were selected in the study because of their ubiquity and the diversity of the ecological environments of their hosts. Particularly, wildlife samples were chosen because it is expected that they have around 23.1 kb. The distribution of the plasmid DNA is shown in Table 2.

DISCUSSION

In this study, E. coli and Proteus were isolated and studied for the congruence in resistance pattern exhibited...
negligible, if any, previous exposure to antibiotics.

E. coli was predominantly isolated from all the samples examined in the study, while the recovery rate of *Proteus* was relatively low. Both genera of bacteria have been previously reported to be commensals in humans except where they become opportunistic pathogens as a result of immunological challenges on the host(s) or other factors (Costa et al., 2013). In some cases they are found in the blood system where they cause blood sepsis and in urinary and genital tracts where they cause varying degrees of urinogenital disorders (Aibinu et al., 2003; Kruthi, 2006). Because these bacteria are found in large numbers in intestinal tract, they are transmitted most often via the faecal/oral route.

Tests of the ability of the *E. coli* and *Proteus* to resist commonly used antibiotics, using the disc diffusion test, revealed no observable significant difference in the resistance pattern between organisms isolated from persons on antibiotics and those that are not. This indicates that the ability of these organisms to resist some antibiotics is not only a function of previous exposure to antibiotics. It may also suggest a possible robust two-way transmission and colonization of these human groups by these organisms. Increasing microbiological and clinical evidences reveal that resistant bacteria or resistance determinants may be passed from animals to humans resulting in infections that are more difficult to treat (Sayah et al., 2004). The fact that ecological overlap increases the risks of microbial exchange between humans and wildlife gives credence to this. Infectious agents transmitted between humans and wildlife pose a risk to both human and animal. Human behavior such as hunting modifies and enhances this risk (Goldberg et al., 2007). Hunting (which made sample collection in this study easy) is a common feature in the study areas. This will definitely make it possible for wildlife borne organisms to be transferred to people through the food chain or direct contact and subsequent colonization, proliferation and development of difficult –to-treat or even untreatable diseases (Barbosa and Levy, 2000).

Typically, *E. coli* has been said to exhibit different resistance patterns (Reuben et al., 2013) without experiencing significant selection pressure (Goldberg et al., 2007). In Nigeria, data has shown that the prevalence of resistance to most drugs tested against *E. coli* isolates from apparently healthy students is within high range and has increased from 1986 to 1998. The observed increase in prevalence of resistance to beta-lactams and aminoglycosides were statistically significant (Okeke et al., 2000). The combined effects of fast growth rates to large densities of cells, genetic processes of mutation and selection, and the ability to exchange genes, account for the extraordinary rates of adaptation and evolution that can be observed in the bacteria. For these reasons *E. coli* adaptation (resistance) to the antibiotic environment seems to take place very rapidly.

The results of this study support this impression. The difference in resistance between wildlife and human bacterial isolates was analyzed statistically to determine whether it was systematic or random. Being systematic implies that the mechanisms are similar if not the same (Mach and Grimes, 1982). High resistance correlations noticed among some bacteria of different genera isolated from the two sources are indicative of systematic rather than random variation. These results strongly suggest that the antibiotic resistance patterns in these bacterial groups are similar, perhaps showing similar mechanisms for the development of this resistance with a difference only in the rate. Specifically, this points to the presence of a common or closely related genetic trait as responsible for resistance among these bacteria. Support for this is found in the molecular weights of the plasmids isolated from the test organisms that were obtained from different ecological sources. Large plasmids in bacteria are important in public health perspective because they mediate more than one mechanism of resistance among their host bacteria. For example, Gram negative efflux pump genes are widely distributed and associated with large plasmids (Byarugaba, 2010). Their common presence in these isolates is indicative of congruence between the drug resistant pattern of *E. coli* clones and *Proteus* spp. isolated humans and wild animals.

In light of these, it is necessary to seriously consider strategies to prevent the emergence and dissemination of antimicrobial resistant bacteria and develop a more holistic and forward-looking approach that will take the complex interconnections among species into full account, recognizing the important link between humans, animals and the environment. This is our recommendation.

Conflict of interests

The authors did not declare any conflict of interest.

REFERENCES

http://dx.doi.org/10.1016/S0195-5616(88)50076-1

http://dx.doi.org/10.1054/drup.2000.0167

 standards for antimicrobial susceptibility testing. Eighteenth informational supplement usa.

Carbon dioxide mitigation by microalga in a vertical tubular reactor with recycling of the culture medium

Michele Greque de Morais¹*, Cleber Klasener da Silva¹, Adriano Arruda Henrard² and Jorge Alberto Vieira Costa²

¹Microbiology and Biochemistry Laboratory, School of Chemistry and Food, Federal University of Rio Grande, P.O. Box 474, Rio Grande, RS, Brazil.
²Biochemistry Engineering Laboratory, School of Chemistry and Food, Federal University of Rio Grande, P.O. Box 474, Rio Grande, RS, Brazil.

Received 19 June, 2015; Accepted 10 August, 2015

Microalgae use photosynthesis as their principal metabolic mechanism to obtain organic carbon from the inorganic carbon contained in CO₂ using solar energy. This process releases oxygen into the atmosphere. The aim of this study was to determine the most appropriate biomass concentration for growing *Spirulina* sp. LEB 18 (Cyanobacteria) in a vertical tubular photobioreactor with biomass removal and recycling of the medium to maximize CO₂ biofixation. The maximum CO₂ biofixation was obtained when the culture was maintained at 600 mg L⁻¹ biomass concentration. Under this condition, the highest CO₂ biofixation value was 186.8 ± 73.1 mg L⁻¹ d⁻¹, and the maximum productivity was 85.9 ± 6.0 mg L⁻¹ d⁻¹.

Key words: Biofixation, carbon dioxide, microalgae, recycling, tubular photobioreactor.

INTRODUCTION

The increase in industrialization and urban population has led to a large demand by society for energy, which has increased the emission of atmospheric pollutants (CO₂, SOₓ, NOₓ and other gases). According to NOAA (2013), atmospheric CO₂ has increased from 280 to 400 ppm over the last 215 years. The burning of fossil fuels for energy generation is the main source of the emissions of these pollutants.

Many alternatives have been studied to reduce CO₂ emissions into the atmosphere. One of the methods that is most suitable for reducing CO₂ emissions is the cultivation of microalgae. The photoautotrophic capability of these microorganisms converts CO₂ in biomass efficiently, minimizing environmental problems and the cost of carbon in the culture. Microalgae develop rapidly and can be grown in engineering systems, such as photobioreactors (Chiu et al., 2009). In addition to the ability to fix CO₂, the biomass of microalgae is rich in minerals, vitamins, lipids, pigments and proteins, with industrial and/or commercial applicability (Khan et al., 2009).

Microalgae are photosynthetic microorganisms that use
inorganic carbon for growth and can be used for CO\textsubscript{2} mitigation. The process of mitigation by microalgae has many purposes: the capture of fossil carbon dioxide; the production of renewable energy with additional services to the environment (water treatment); and the generation of bioproducts (animal feed and fertilizers) (Kumar et al., 2010).

Spirulina is a filamentous cyanobacterium with a spiral format. Cyanobacteria are photosynthetic prokaryotic microorganisms that appeared more than 3 million years ago, forming the current atmosphere with oxygen, and since then have regulated the biosphere of the planet by removing CO\textsubscript{2} and releasing O\textsubscript{2} (Romano et al., 2000).

The photobioreactor configuration is one of the most important factors in controlling the biomass yield from photosynthetic cultures (Carvalho et al., 2011). The efficiency of light transmission per unit volume of culture, photosynthetic capacity, gas exchange and use of substrates are affected by the photobioreactor geometry and the homogenization of the culture medium with the added microalgae and gases, which are controlled by design and operation. To design a photobioreactor with an appropriate gas transfer system, the substrate must be effectively dissolved in the liquid medium to create a non-limitation situation for the cells (Pandey et al., 2014).

The use of a vertical tubular photobioreactor increases the time that the gas remains in the medium, the area of contact between the light and culture, the photosynthetic rate, and consequently, the CO\textsubscript{2}-use efficiency (Morais and Costa, 2007). With microalgal cultures, recycling the medium allows the microalgae to use the nutrients until they are exhausted, with less exposure to the environment of the residues after biomass harvesting.

This study aimed to assess the most suitable biomass concentration in which to cultivate the Cyanobacteria *Spirulina* sp. in a vertical tubular photobioreactor, with biomass removal and the recycling of the medium, to obtain the maximum CO\textsubscript{2} mitigation.

MATERIALS AND METHODS

Microorganisms and culture medium

This study used the microalgae *Spirulina* sp. LEB 18 isolated from Mangueira Lagoon (33°30'12"S, 53°08'58"W). Zarrouk culture medium (Zarrouk, 1966) (Table 1) modified by Morais and Costa (2007b) was used to maintain the inoculum without the original carbon source of the culture medium (NaHCO\textsubscript{3}). The inoculum was acclimatized with air mixed with 1% (w/w) CO\textsubscript{2} for 168 h with a 0.3 vvm flow rate.

Culture conditions

Spirulina sp. LEB 18 was grown in a 2 L (net volume 1.8 L, \(\varnothing = 0.07 \) m) vertical tubular photobioreactor (VTPB) (Figure 1) at 30°C with a 12 h light/dark photoperiod. The 1200 Lux illuminance was provided by daylight-type fluorescent lamps (40 W).

Aeration was carried out by mixing compressed air with CO\textsubscript{2} through an industrial cylinder (White Martins - Brazil) with a flow rate of 0.3 vvm and a concentration of 12% (v/v) CO\textsubscript{2}. The gas was added to cultures for 15 min every h during the light period (Morais and Costa, 2008).

Table 1. Zarrouk medium composition.

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Amount (g L-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaHCO\textsubscript{3}</td>
<td>16.8</td>
</tr>
<tr>
<td>K\textsubscript{2}HPO\textsubscript{4}</td>
<td>0.50</td>
</tr>
<tr>
<td>NaNO\textsubscript{3}</td>
<td>2.5</td>
</tr>
<tr>
<td>K\textsubscript{2}SO\textsubscript{4}</td>
<td>1.00</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.00</td>
</tr>
<tr>
<td>MgSO\textsubscript{4}. 7H\textsubscript{2}O</td>
<td>0.20</td>
</tr>
<tr>
<td>CaCl\textsubscript{2}</td>
<td>0.04</td>
</tr>
<tr>
<td>FeSO\textsubscript{4}. 7H\textsubscript{2}O</td>
<td>0.01</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.08</td>
</tr>
<tr>
<td>Solution A5</td>
<td>1 mL</td>
</tr>
<tr>
<td>Solution B6</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Solution A5: (g L-1): H\textsubscript{3}BO\textsubscript{3}, 2.86; MnCl\textsubscript{2}.4H\textsubscript{2}O, 1.81; ZnSO\textsubscript{4}.7H\textsubscript{2}O, 0.222; Na\textsubscript{2}MoO\textsubscript{4}.2H\textsubscript{2}O, 0.390; CuSO\textsubscript{4}.5H\textsubscript{2}O, 0.079. Solution B6: (mg L-1): NH\textsubscript{4}VO\textsubscript{3}, 22.86; KCr(SO\textsubscript{4})\textsubscript{2}.12H\textsubscript{2}O, 192; NiSO\textsubscript{4}.6H\textsubscript{2}O, 44.8; Na\textsubscript{2}WO\textsubscript{4}.2H\textsubscript{2}O, 17.94; TiOSO\textsubscript{4}.8H\textsubscript{2}O, 61.1; Co(NO\textsubscript{3})\textsubscript{2}.6H\textsubscript{2}O, 43.98.

![Figure 1. VTPB dimensions (mm).](image-url)
All of the tests were duplicated, and the initial biomass concentrations were 200, 400, 600, 800 and 1000 mg L\(^{-1}\). Daily, the produced biomass was removed from cultures, and the cells were returned to their initial concentration. The produced biomass and the cultivation medium were separated by filtration, and the medium without microalgae was returned to the culture (medium recycling). The duration of cultures was 185 h.

Analytical assessments

Every 24 h, samples were collected aseptically to monitor cell concentration, which was calculated by measuring the optical density at 670 nm in a spectrophotometer (Femto 700 Plus, Brazil). The calibration curve was used to relate the optical density and dry weight of the biomass. The pH of the cultures was measured every 24 h with a digital pH meter (Quimis Q400H, Brazil) (Bailey and Ollis, 1986).

Kinetic parameters and carbon dioxide mitigation (CO\(_2\))

The kinetic parameters and CO\(_2\) mitigation were calculated using the mean of the duplicate tests. The cellular concentration was measured daily, before and after biomass removal, and then used to calculate the concentration of produced biomass (X\(_R\), mg), the productivity (P, mg L\(^{-1}\) d\(^{-1}\)) and the mean CO\(_2\) fixation (BF, mg L\(^{-1}\) d\(^{-1}\)). The produced biomass was determined according to the equation X\(_R\) = X\(_t\) / V\(_R\), where X\(_t\) (mg L\(^{-1}\)) is the cell concentration at time (d), and V\(_R\) (L) is the volume of the medium that was withdrawn for the cultivation to return to the initial cell concentration value. The total biomass removal (X\(_R\), mg L\(^{-1}\)) was calculated by totaling the daily removal of biomass. The productivity (P, mg L\(^{-1}\) d\(^{-1}\)) was obtained according to the equation P = (X\(_t\) - X\(_0\)) / t\(^{-1}\), where X\(_t\) is the cellular concentration (mg L\(^{-1}\)) at time t (d), and X\(_0\) (mg L\(^{-1}\)) is the cellular concentration at time t\(_0\) (d) (Bailey and Ollis, 1986).

A CHNS elemental analyzer (Perkin Elmer 2400, USA) was used to calculate the carbon content. The equipment was calibrated using the default cystine certificate (Perkin Elmer, USA). The results of cystine recovery, taken as a sample, were 100% for carbon (Baumgarten, 2010). The mean CO\(_2\) fixation during cultivation was determined by the ratio between the sums of daily CO\(_2\) fixation and the total number of days, according to the equation BF = (\(X_R V_{FBR} m_{CB} m_{CO2} m_{C} t\)) / (\(X_R V_{FBR} m_{CB} m_{CO2} m_{C} t\)), where X\(_R\) (mg) is the concentration of the produced biomass, V\(_FBR\) (L) is the useful volume of the photobioreactor (PBR), m\(_CB\) (mg mg\(^{-1}\)) is the mass fraction of carbon as determined in microalgial biomass, m\(_{CO2}\) (mg mol\(^{-1}\)) is the molar mass of CO\(_2\), m\(_C\) (g mol\(^{-1}\)) is the molar mass of carbon, and time (d) is the time of cultivation.

RESULTS AND DISCUSSION

The maximum biomass production (365.4 ± 97 mg d\(^{-1}\)) was obtained when the culture was kept at a 600 mg L\(^{-1}\) cellular concentration, followed by the culture being kept at 400 mg L\(^{-1}\) cells (350.9 ± 43 mg d\(^{-1}\)) (Figure 2a).

Figure 2b and 3b show that maximum productivity rates (P) and maximum CO\(_2\) fixation (B\(_{CO2}\)) were obtained in tests at cellular concentrations of 400 mg L\(^{-1}\) (P = 97.3 ± 7.6 mg L\(^{-1}\) d\(^{-1}\), B\(_{CO2}\) = 167.0 ± 18.5 mg L\(^{-1}\) d\(^{-1}\)) and 600 mg L\(^{-1}\) (P = 85.9 ± 6.0 mg L\(^{-1}\) d\(^{-1}\), B\(_{CO2}\) = 186.8 ± 73.1 mg L\(^{-1}\) d\(^{-1}\)), respectively. The total biomass removal was 1954 and 1945 mg L\(^{-1}\) for cultures that kept at cellular concentrations of 400 and 600 mg L\(^{-1}\), respectively.

The experiments that were performed at 200, 800 and 1000 mg L\(^{-1}\) had total biomass removal values of 1517.9, 1567.9 and 1485.1 mg L\(^{-1}\), respectively. According to Travieso et al. (2001), the ideal cell concentration in discontinuous processes for the maximum microalgal productivity is between 500 and 700 mg L\(^{-1}\). In our study, the concentration of 600 mg L\(^{-1}\) had the best results because it was the compensation, or saturation, point of photosynthesis. At this point, there is the maximum
photosynthetic efficiency because of the balance between the photosynthetic rate and respiration (Vonshak, 1997). Pelizer et al. (2003) obtained a maximum productivity of 76 mg L\(^{-1}\) d\(^{-1}\) in discontinuous cultivation that took place in a Raceway with an initial concentration of 100 mg L\(^{-1}\).

The photosynthesis process is the transformation of light energy into chemical energy in the form of ATP, NADPH, carbohydrates, proteins and lipids. The process is called photosynthesis because the coenzymes ATP and NADPH are used to add CO\(_2\) to organic molecules, featuring carbohydrate synthesis, where for each glucose molecule six fixed CO\(_2\) are generated (Alberts, 2010).

In cultures that were grown in an Erlenmeyer flask in semi-continuous mode with an initial concentration of 150 mg L\(^{-1}\), Reichert et al. (2006) obtained a maximum productivity (42.3 mg L\(^{-1}\) d\(^{-1}\)) in a test with a blended concentration of 500 mg L\(^{-1}\) and a renewal rate of 25%. No recycling of the medium took place in the Reichert et al. (2006) cultures; the amount removed was replaced by new medium, which provided rapid cell development. What differed with the tests that were presented in this study, which allowed the generation of higher yields compared to the aforementioned authors, was probably the use of a tubular photobioreactor. According to Morais and Costa (2007b), vertical tubular photobioreactors resulted in better fixation and kinetic results of CO\(_2\) compared to Erlenmeyer-type photobioreactors for *Spirulina* sp., *S. obliquus* and *Chlorella vulgaris* (Chlorophyta) when these microorganisms were supplemented with 0.038, 6, 12 and 18% CO\(_2\).

The advantage with recycling the culture medium is that it reduces costs because the nutrients are used until they are exhausted. However, some microalgae do not develop when this process is adopted. *Nannochloropsis* (Eustigmatophyceae) microalgae release auto-inhibitors during cultivation, affecting the culture’s development and limiting the recycling of the culture medium (Rodolfi et al., 2003).

Under all of the initial cell concentration conditions, the productivity of the tests decreased over time (Figure 2b). The cultures with cell removal provided the microalgae with the increased capacity to utilize the medium nutrients compared to cultures without removal because the microalgal concentration is daily reduced to the initial concentration, thereby decreasing competition for nutrients. However, as new culture medium was not added, there was a reduction in the medium nutrients, which reduced the productivity over time. The consumption of nutrients decreases the osmotic pressure of the medium, which potentially affects the productivity (Poza-Carrion et al., 2001).

The cultures in which the biomass was removed until concentrations of 200, 800 and 1000 mg L\(^{-1}\) were reached had lower CO\(_2\) productivity and mitigation rates than did the cultures with concentrations of 400 and 600 mg L\(^{-1}\). The lower responses that were obtained for the yields and rates of mitigation of CO\(_2\) may have been caused by the phenomenon of photoinhibition in cultures that were maintained at the concentration of 200 mg L\(^{-1}\) and by photolimitation in cultures with concentrations of 800 and 1000 mg L\(^{-1}\).

Photoinhibition is a phenomenon that occurs in the cultivation of microalgae because of a low cellular concentration in the culture, which allows a high incidence of light in the cells (Vonshak, 1997). In photolimitation, dense cultures of cells can block the penetration of light in the culture, limiting growth (Carvalho et al., 2011). In the dark, the rate of CO\(_2\) mitigation is negative because of cell respiration, which interferes with the process of photosynthesis and consequently the rates of mitigation of CO\(_2\) and microalgal growth. The flow of light that is emitted to cause photoinhibition or photolimitation depends on the genus and species of the studied microalgae.

Photosynthesis occurs in two distinct phases: a light phase (photochemical step) and a dark phase (chemical step). In the photochemical phase, radiant energy excites the photosynthetic pigments, and this state of excitation (energy) is transferred with the aid of water until the molecules NADP and ATP (chemical energy) are produced. The primary products of the photochemical step are ATP and NADPH. In this step also the release of oxygen occurs, as a byproduct of dissociation of the water molecule. In the chemical stage, the carbon from a molecule of CO\(_2\) is absorbed by a series of enzymatic reactions using the energy that is stored in the ATP and NADPH molecules, eventually forming the first product of photosynthesis, carbohydrate (CH\(_2\)O) for carbon skeletons (Cox and Nelson, 2014).

The Zarrouk cultivation medium for *Spirulina* microalgae in its original composition had a pH between 10.5 and 11.0. At the beginning of cultivation, the pH of all of the cultures was approximately 7.0 because the carbon source of Zarrouk medium (NaHCO\(_3\)), which is responsible for the alkaline pH, was replaced by 12% CO\(_2\). When Westerhoff et al. (2010) replaced the standard carbon source of the culture medium by CO\(_2\), they also found a reduction in the pH in microalgae cultivation. To avoid this reduction in pH Kumar et al. (2011), suggest the use of buffered systems. The highest-concentration nutrient in Zarrouk medium is sodium bicarbonate (16.8 g L\(^{-1}\)), constituting 40 to 50% of the total nutrient cost (Doucha et al., 2005), which means that if microalgae are used to fix CO\(_2\), there will be a reduction in the cost of nutrients in the culture and in the environmental problems that are caused by this gas.

According to Vonshak (1997), the optimal pH for the development of *Spirulina* is between 9.5 and 10.5. In cultures of *Spirulina* sp. LEB 18, with the removal of biomass and the recycling of the medium, the pH of the cultures varied between 6.83 and 9.11. Although the pH of the culture was within the optimum pH levels that were suggested by Vonshak (1997), there was no cell death.
The experiments under different conditions studied showed daily increases in pH until 88.8 h, followed by decreases at 112.8 and 136.8 h, peaking at 160.8 h and mildly decreasing in the last h of cultivation (Figure 3a). This pH behavior was consistent with the daily production of biomass, which increased until 88.8 h, followed by a decrease in the consecutive 48 h (Figure 2a and 3a). The culture with a cell concentration of 600 mg L\(^{-1}\) had the maximum production of biomass and a higher pH than that of the other cultures. The change in pH affects the solubility and bioavailability of nutrients, the transport of substrates through the cytoplasmic membrane, the enzyme activity and the transport of electrons for photosynthesis and respiration (Poza-Carrion et al., 2001).

Conclusion

When the microalga *Spirulina* sp. LEB 18 was cultivated in a vertical tubular photobioreactor with cell removal and medium recycling at a cellular concentration of 600 mg L\(^{-1}\), the maximum CO\(_2\) mitigation was reached. Under these conditions, the values that were obtained were 85.9 ± 6.0 mg L\(^{-1}\) d\(^{-1}\) biomass productivity and 186.8 ± 73.1 mg L\(^{-1}\) d\(^{-1}\) CO\(_2\) fixation. Therefore, combining the cultivation of microalgae, the fixation of CO\(_2\) and the recycling of the medium can lead to a reduction in the problems caused by the emission of this gas and in the expenses with culture medium and to the generation of biomass that can be used to obtain different products.

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGMENTS

The authors would like to thank CNPq (National Council of Technological and Scientific Development), CGTEE (Company of Thermal Generation of Electric Power) and MCTI (Ministry of Science, Technology and Innovation) for their financial support of this study.

REFERENCES

Full Length Research Paper

Plasmid profile of *Staphylococcus aureus* from orthopaedic patients in Ahmadu Bello University Teaching Hospital Zaria, Nigeria

Obajuluwa, A. F.¹*, Olayinka, B. O.¹, Adeshina, G. O.¹, Onaolapo, J. A.¹ and Afolabi-Balogun, N. B.²

¹Department of Pharmaceutics and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria.
²Biochemistry Unit, Department of Chemical Sciences, College of Natural and Applied Sciences, Fountain University, Osogbo, Nigeria.

Received 20 April, 2015; Accepted 20 July, 2015

The aim of this work was to determine the antibiotic susceptibility pattern of the *Staphylococcus aureus* isolates from orthopaedic patients and their plasmid carriage. A total number of 39 *S. aureus* were isolated from wound, skin and bed of orthopaedic patients in Ahmadu Bello University Teaching Hospital Zaria, Nigeria with the use of API STAPH identification kit. Antibiotics susceptibility test was done using disc agar diffusion test, plasmid analysis was also carried out. A high percentage (97.4%) of the *S. aureus* isolates were susceptible to both vancomycin and gentamicin followed by ciprofloxacin (94.9%) and pefloxacin (84.6%). The *S. aureus* isolates were highly resistant to the following antibiotics: ampicillin (94.9%), ceftriaxone (79.5%), cefoxitin (64.1%) and amoxicillin - clavulanic acid (59%). The antibiotic susceptibility tests showed that 29.4% of *S. aureus* with plasmids were multi-drug resistant being resistant to three or more classes of antibiotics. In the plasmid analysis 60.7% of the *S. aureus* isolates had plasmids with size range 9.2 to 13.3 kb. Plasmid-coded antibiotic resistance encompasses most classes of antibiotics commonly used at the forefront of clinical antibiotic therapy.

Key words: *Staphylococcus aureus*, plasmid, orthopaedic, susceptibility.

INTRODUCTION

Staphylococcus aureus is an important pathogen both in the hospital and in the community. About 35-50% of normal adults carry it in the anterior nares (Arora, 2006); it is skin normal flora, and other sites of colonization include the perineum, axillae and vagina (Arora, 2006). It is still one of the five most common causes of nosocomial infections and is often the cause of post surgical wound infections (Bowersox, 2007). Its remarkable ability to acquire antibiotic resistance has contributed to its emergence as an important pathogen in a variety of...
settings (David et al., 2006; Sampathukumar, 2007; Hotu et al., 2007).

Multidrug-resistant strains of staphylococci have been reported with increasing frequency worldwide, including isolates that are resistant to methicillin, lincosamides, macrolides, aminoglycosides, fluoroquinolones, or combinations of these antibiotics (Von Eiff et al., 2001). Infections by S. aureus are often difficult to treat because of frequency of multiple antibiotic resistance of strains (Alghaithy et al., 2000). S. aureus has a proven ability to adapt to the selective pressure of antibiotics (Chang et al., 2003).

Different patterns of antibiotic resistance and plasmid profiles among strains of S. aureus have been reported (Akinyemi et al., 1997; Bhakta et al., 2003; Diep et al., 2006; Daini and Akano, 2009). Plasmid genes for antimicrobial resistance often control the formation of enzymes capable of destroying antimicrobial drugs. Thus plasmids determine resistance to penicillins and cephalosporin by carrying genes for the formation of β-lactamases.

In orthopaedics, S. aureus has been implicated in surgical site infection, painful infection of joint fluid known as septic or infective arthritis, post operative infection, prosthetic joint infections, implant devices, infection following trauma, chronic osteomyelitis subsequent to an open fracture, meningitis following skull fracture (Donatto, 1998; Goldenberg, 1998, Green, 1991, Zimmeril, 2006).

This study was aimed at determining the antibiotic susceptibility pattern of S. aureus isolates from orthopaedic patients in a tertiary institution in Northwestern Nigeria and their plasmid profile.

MATERIALS AND METHODS

Sample collection

One hundred clinical samples were collected aseptically from the wound, skin and bed of orthopaedic patients in Ahmadu Bello University Teaching Hospital Zaria, Nigeria over a period of 5 months. Ethical approval obtained was obtained from the ethical committee of the institution while individual patients' consent was obtained before sample collection.

Purification and preliminary identification of Staphylococcal isolates

A loopful of overnight nutrient broth cultures of the isolates were streaked on previously prepared plates of mannitol salt agar and incubated at 37°C for 24 h. Isolates that produced colonies exhibiting characteristic deep golden yellow colouration were selected and subcultured into nutrient broth incubated at 37°C for 18 h. This was then streaked on nutrient agar slants and later stored in the refrigerator until required for further tests.

Identification of S. aureus isolates

API STAPH identification kit (bioMerieux, Inc, Durham, USA) was used to identify the S. aureus isolates; the procedures were carried out according to the manufacturer's instructions.

Antibiotic susceptibility test

Disk diffusion tests was performed for each of the isolates identified as S. aureus by following the method recommended by the Clinical Laboratory Standard Institute (CLSI, 2007). List of antibiotics used were: Cefoxitin, 30 µg; Ceftriaxone, 30 µg; Vancomycin, 30 µg; Amoxicillin, 10 µg; Gentamicin 10, 1 µg; Pefloxacin, 5 µg; Ciprofloxacin, 5 µg; Amoxicillin-clavulanic acid, 30 µg; Erythromycin, 15 µg and Clindamycin, 2 µg (Oxoid Ltd. Basingstoke, London).

Plasmid profile analysis

Lysate preparation was done according to manufacturer instructions (Plasmid MiniPrep Kit (Norgen Biotek Corporation, Canada): Plasmid DNA were separated by horizontal electrophoresis in 1.5% agarose gel in a Tris-acetic acid-EDTA (TAE) buffer containing 10 µl Green nucleic acid stain at room temperature at 80 volts (50 mA) for 30 min. Briefly, 20 µl of plasmid DNA solution were loaded into the individual well of the gel. DNA bands were visualized and photograph was taken using the gel imaging system. The molecular weight of the unknown plasmid DNA was determined on the basis of its mobility through agarose gel in comparison with molecular weight marker.

RESULTS AND DISCUSSION

A total number of 100 samples were collected from the wound, skin and bed of the orthopaedic ward and the details are presented in Table 1. Out of these clinical samples, 39% were identified as S. aureus being 6, 16 and 17 isolates from wound, skin and bed respectively (Table 1).

The isolation of S. aureus from the patients' beddings in this study is an indication that S. aureus is a cause of nosocomial infection. The majority of nosocomial infection is caused by a patient’s own endogenous microbial flora present upon admission to the hospital.

Table 1. Distribution of S. aureus isolates.

<table>
<thead>
<tr>
<th>Source</th>
<th>Number of sample</th>
<th>Number of S. aureus identified from the sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wound</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Skin</td>
<td>43</td>
<td>16</td>
</tr>
<tr>
<td>Bed</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>39 (39.0%)</td>
</tr>
</tbody>
</table>
Table 2. Percentage susceptibility of *S. aureus* isolates.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>No of sample (%)</th>
<th>n=39</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitive</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Ampicillin (10 µg)</td>
<td>2 (5.1)</td>
<td>0</td>
</tr>
<tr>
<td>Ceftriaxone (30 µg)</td>
<td>8 (20.5)</td>
<td>13 (33.3)</td>
</tr>
<tr>
<td>Cefoxitin (30 µg)</td>
<td>14 (35.9)</td>
<td>0</td>
</tr>
<tr>
<td>Amoxicillin-clavulanic acid (30 µg)</td>
<td>16 (41.0)</td>
<td>0</td>
</tr>
<tr>
<td>Clindamycin (2 µg)</td>
<td>12 (30.8)</td>
<td>13 (33.3)</td>
</tr>
<tr>
<td>Erythromycin (15 µg)</td>
<td>19 (48.7)</td>
<td>10 (25.6)</td>
</tr>
<tr>
<td>Pefloxacin (5 µg)</td>
<td>33 (84.6)</td>
<td>0</td>
</tr>
<tr>
<td>Vancomycin (30 µg)</td>
<td>38 (97.4)</td>
<td>0</td>
</tr>
<tr>
<td>Ciprofloxacin (5 µg)</td>
<td>37 (94.9)</td>
<td>2 (5.1)</td>
</tr>
<tr>
<td>Gentamicin (10 µg)</td>
<td>38 (97.4)</td>
<td>0</td>
</tr>
</tbody>
</table>

(Figure 1. Plasmid extraction on 1.5% agarose gel electrophoresis. Lane 1, Mass ruler ladder; 2, W7b; 3, W51; 4, W39 (2 bands); 5, S46; 6, S1; lane 7, B22; 8, S12; 9, B55; 10, W20; 11, S8; 12, S41; lane 13, B26; 14, B20; 15, B62;16, B16.

(Arif et al., 2007).

Antibiotic susceptibility pattern of isolates

A high percentage (97.4%) of isolates were susceptible to both vancomycin and gentamicin followed by ciprofloxacin (94.9%) and pefloxacin (84.6%). The level of resistance of the *S. aureus* isolates to antibiotics is as follows: ampicillin (94.9%), ceftriaxone (79.5%), cefoxitin (64.1%) and amoxicillin - clavulanic acid (59%) (Table 2).

The resistance to cefoxitin observed indicated that 64.1% of the *S. aureus* isolates were resistant to methicillin. Clinical Laboratory Standards Institute (CLSI) has recommended cefoxitin disc diffusion method for the detection of methicillin resistant *S. aureus* (MRSA) due to its ability to enhance induction of PBP2a (CLSI, 2013). The implication of MRSA in orthopaedic patients include extended length of stay, infection and wound breakdown; loss of alignment of fractured bone, failure of internal fixation, delay or non-union of bone, loss of earnings, pain, anxiety and depression (John and David, 1991; Makoni, 2002).

The image of the plasmid profile on agarose gel from this study is presented in Figures 1 and 2. Seventeen (17) out of the 28 *S. aureus* isolates tested had plasmid bands and their individual plasmid size is presented in Table 3.

In this study, the encountered plasmids sizes were between 9.2 and 13.3 kilobase, this is similar to previous reports (Diep et al., 2006; Uchechi and Erinma, 2007; Adeleke et al., 2010; Akinjogunla and Enabulele, 2010; Tula et al., 2013). The molecular weight of the plasmids observed in this study falls into the category of small multicopy plasmids that carry single resistance (Berg et al., 1998). They can also be described as mobilizable resistant plasmids which are relatively small (often less
Figure 2. Plasmid extraction on gel electrophoresis. Lane 1: B35; 2: B69; 3: S55 (2 bands); 4: B47; 5: W4; lane 6: S27; 7: ATCC 25923; 8: S72; 9: B49; lane 10: W7a; 11: B13; 13: S24; 14: S46s; 15&16: mass ruler ladder.

Table 3. Identification of *S. aureus* isolates and their plasmid profile.

<table>
<thead>
<tr>
<th>Isolates (represented with code)</th>
<th>Number of plasmids</th>
<th>Plasmid size (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W7b</td>
<td>1</td>
<td>12.06</td>
</tr>
<tr>
<td>W51</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>W39</td>
<td>2</td>
<td>11.65 and 9.23</td>
</tr>
<tr>
<td>W20</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>W4</td>
<td>1</td>
<td>12.06</td>
</tr>
<tr>
<td>W7a</td>
<td>1</td>
<td>12.06</td>
</tr>
<tr>
<td>S27</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>S55</td>
<td>2</td>
<td>13.27 and 10.04</td>
</tr>
<tr>
<td>S72</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>ATCC 25923</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>S24</td>
<td>1</td>
<td>12.46</td>
</tr>
<tr>
<td>S46s</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>S8</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>S41</td>
<td>1</td>
<td>9.23</td>
</tr>
<tr>
<td>S46</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>9.23</td>
</tr>
<tr>
<td>S12</td>
<td>1</td>
<td>12.06</td>
</tr>
<tr>
<td>B13</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>B35</td>
<td>1</td>
<td>11.65</td>
</tr>
<tr>
<td>B16</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>B69</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>B22</td>
<td>1</td>
<td>9.23</td>
</tr>
<tr>
<td>B55</td>
<td>1</td>
<td>12.06</td>
</tr>
<tr>
<td>B26</td>
<td>1</td>
<td>9.23</td>
</tr>
<tr>
<td>B20</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>B62</td>
<td>1</td>
<td>9.23</td>
</tr>
<tr>
<td>B47</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>B49</td>
<td>0</td>
<td>No plasmid</td>
</tr>
<tr>
<td>B77</td>
<td>0</td>
<td>No plasmid</td>
</tr>
</tbody>
</table>

than 10 kb in size) encoding only a handful of genes including the resistance genes (Esimone et al., 2010).

The resistant plasmids observed in this study could be due to indiscriminate use of antibiotics in the hospital and
to the over the counter availability of antibiotics. The resistance pattern of plasmid DNA containing isolates are presented in Table 4. Out of the 17 S. aureus with plasmid five (29.4%) were resistant to three or more classes of antibiotics. In this study, the S. aureus isolates were generally resistant to beta lactam antibiotics, this resistance to beta lactam antimicrobials often come concurrently with resistance to other antimicrobial agents such as macrolides (erythromycin), quinolone (poxefloxacin) and clindamycin as observed in this study. This poses a great challenge to the prevention and treatment of S. aureus infections. The resistance pattern of the plasmid borne S. aureus isolates to antibiotics showed that 29.4% of the isolates were multi-drug resistant. Multidrug resistant organisms are defined as organisms which had acquired non-susceptibility to at least one agent in three or more antimicrobial categories (Nikaido, 2009; Magiorakos et al., 2012; CDC, 2013; WHO, 2014). Previous studies have supported the important role plasmids play in staphylococcal multi-drug resistance (Paulsen et al., 1998; O’Brien et al., 2002; Olowe et al., 2007).

Table 4. Resistogram of plasmid DNA containing isolates.

<table>
<thead>
<tr>
<th>Isolates (represented with code)</th>
<th>Resistance Pattern</th>
<th>Number of class of antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>W39</td>
<td>FOX, AMP, CRO, VA, DA</td>
<td>3</td>
</tr>
<tr>
<td>W7a</td>
<td>FOX, AMP, CRO, ERY, DA, AMC</td>
<td>3</td>
</tr>
<tr>
<td>W7b</td>
<td>FOX, AMP, CRO, AMC</td>
<td>1</td>
</tr>
<tr>
<td>S12</td>
<td>FOX, AMP, CRO, AMC</td>
<td>1</td>
</tr>
<tr>
<td>S41</td>
<td>FOX, AMP, CRO, CN, PEF, AMC, ERY</td>
<td>4</td>
</tr>
<tr>
<td>S24</td>
<td>FOX, AMP, CRO, AMC, ERY</td>
<td>2</td>
</tr>
<tr>
<td>B69</td>
<td>FOX, AMP, CRO, ERY, AMC, DA</td>
<td>3</td>
</tr>
<tr>
<td>S55</td>
<td>FOX, AMP, CRO</td>
<td>1</td>
</tr>
<tr>
<td>B13</td>
<td>FOX, AMP, CRO, CIP, AMC, ERY, DA</td>
<td>4</td>
</tr>
<tr>
<td>B16</td>
<td>FOX, AMP, CRO, AMC, ERY</td>
<td>2</td>
</tr>
<tr>
<td>B22</td>
<td>FOX, AMP, CRO, AMC</td>
<td>1</td>
</tr>
<tr>
<td>B35</td>
<td>FOX, AMP, CRO, AMC</td>
<td>1</td>
</tr>
<tr>
<td>B26</td>
<td>FOX, AMP, CRO, AMC</td>
<td>1</td>
</tr>
<tr>
<td>B55</td>
<td>FOX, AMP, CRO, PEF, AMC</td>
<td>2</td>
</tr>
<tr>
<td>B62</td>
<td>AMP</td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td>DA</td>
<td>1</td>
</tr>
<tr>
<td>W4</td>
<td>AMP, CRO</td>
<td>1</td>
</tr>
</tbody>
</table>

AMP: Ampicillin; CRO: Ceftriaxone; FOX: Cefoxitin; ERY: Erythromycin; CN: Gentamicin; PEF: Pefloxacin; AMC: Amoxicillin clavulanate; DA: Clindamycin; PEF: Pefloxacin; VA: Vancomycin

Conclusion

The result of this study shows that the plasmid-coded antibiotic resistance encompasses most classes of antibiotics commonly used at the forefront of clinical antibiotic therapy including the cephalosporins (beta lactams), fluoroquinolones and macrolides. Increasing rate of development of resistance to antibiotics by bacteria is worrisome especially in the developing countries where antibiotics are usually misused due to their presence over the counter and irrational prescriptions. It is therefore suggested that appropriate regulatory policies be put in place by the government and duly enforced to control the use of antibiotics in order to reduce the spread of the resistant strains between individuals in the community.

Conflict of interests

The authors did not declare any conflict of interest.

REFERENCES

Arora DR (2006). Textbook of Microbiology; An imprint of CBS Publisher and Distributor New Delhi, India. pp. 202-211.

CLSI- Clinical and Laboratory Standards Institute (2007). Performance standards for antimicrobial susceptibility testing; 17th informational supplement. CLSI M100-S17. CLSI, Wayne, PA.

African Journal of Microbiology Research

Related Journals Published by Academic Journals

- African Journal of Biotechnology
- African Journal of Biochemistry Research
- Journal of Bacteriology Research
- Journal of Evolutionary Biology Research
- Journal of Yeast and Fungal Research
- Journal of Brewing and Distilling