ABOUT AJB

The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals.

African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer-reviewed.

Submission of Manuscript

Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author

Click here to Submit manuscripts online

If you have any difficulty using the online submission system, kindly submit via this email ajb@academicjournals.org.

With questions or concerns, please contact the Editorial Office at ajb@academicjournals.org.
Editor-In-Chief

George Nkem Ude, Ph.D
Plant Breeder & Molecular Biologist
Department of Natural Sciences
Crawford Building, Rm 003A
Bowie State University
14000 Jericho Park Road
Bowie, MD 20715, USA

Associate Editors

Prof. Dr. AE Aboulata
Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt
30 D, El-Karama St., Alf Maskan, P.O. Box 1567,
Ain Shams, Cairo,
Egypt

Dr. S.K Das
Department of Applied Chemistry
and Biotechnology, University of Fukui,
Japan

Prof. Okoh, A. I.
Applied and Environmental Microbiology Research Group (AEMREG),
Department of Biochemistry and Microbiology,
University of Fort Hare.
P/Bag X1314 Alice 5700,
South Africa

Dr. Ismail TURKOGLU
Department of Biology Education,
Education Faculty, Firat University,
Elazığ,
Turkey

Prof T. K. Raja, PhD FRSC (UK)
Department of Biotechnology
PSG COLLEGE OF TECHNOLOGY (Autonomous)
(Affiliated to Anna University)
Coimbatore-641004, Tamilnadu,
INDIA.

Dr. George Edward Mamati
Horticulture Department,
Jomo Kenyatta University of Agriculture and Technology,
P. O. Box 62000-00200,
Nairobi, Kenya.

Dr. Gitonga
Kenya Agricultural Research Institute,
National Horticultural Research Center,
P.O Box 220,
Thika, Kenya.

Editor

N. John Tonukari, Ph.D
Department of Biochemistry
Delta State University
PMB 1
Abraka, Nigeria
Editorial Board

Prof. Sagadevan G. Mundree
Department of Molecular and Cell Biology
University of Cape Town
Private Bag Rondebosch 7701
South Africa

Dr. Martin Fregene
Centro Internacional de Agricultura Tropical (CIAT)
Km 17 Cali-Palmira Recta
AA6713, Cali, Colombia

Prof. O. A. Ogunseitan
Laboratory for Molecular Ecology
Department of Environmental Analysis and Design
University of California, Irvine, CA 92697-7070, USA

Dr. Ibrahima Ndoye
UCAD, Faculte des Sciences et Techniques
Departement de Biologie Vegetale
BP 5005, Dakar, Senegal.
Laboratoire Commun de Microbiologie
IRD/ISRA/UCAD
BP 1386, Dakar

Dr. Bamidele A. Iwalokun
Biochemistry Department
Lagos State University
P.M.B. 1087. Apapa – Lagos, Nigeria

Dr. Jacob Hodeba Mignouna
Associate Professor, Biotechnology
Virginia State University
Agricultural Research Station Box 9061
Petersburg, VA 23806, USA

Dr. Bright Ogheneovo Agindotan
Plant, Soil and Entomological Sciences Dept
University of Idaho, Moscow
ID 83843, USA

Dr. A.P. Njukeng
Département de Biologie Végétale
Faculté des Sciences
B.P. 67 Dschang
Université de Dschang
Rep. du CAMEROUN

Dr. E. Olatunde Farombi
Drug Metabolism and Toxicology Unit
Department of Biochemistry
University of Ibadan, Ibadan, Nigeria

Dr. Stephen Bakiamoh
Michigan Biotechnology Institute International
3900 Collins Road
Lansing, MI 48909, USA

Dr. N. A. Amusa
Institute of Agricultural Research and Training
Obafemi Awolowo University
Moor Plantation, P.M.B 5029, Ibadan, Nigeria

Dr. Desouky Abd-El-Haleem
Environmental Biotechnology Department & Bioprocess Development Department,
Genetic Engineering and Biotechnology Research Institute (GEBRI),
Mubarak City for Scientific Research and Technology Applications,
New Burg-Elarab City, Alexandria, Egypt.

Dr. Simeon Onoli Kotchoni
Department of Plant Molecular Biology
Institute of Botany, Kirschallee 1,
University of Bonn, D-53115 Germany.

Dr. Eriola Betiku
German Research Centre for Biotechnology,
Biochemical Engineering Division,
Mascheroder Weg 1, D-38124,
Braunschweig, Germany

Dr. Daniel Masiga
International Centre of Insect Physiology and Ecology,
Nairobi, Kenya

Dr. Essam A. Zaki
Genetic Engineering and Biotechnology Research Institute, GEBRI,
Research Area,
Borg El Arab, Post Code 21934, Alexandria Egypt
Dr. Alfred Dixon
International Institute of Tropical Agriculture (IITA)
PMB 5320, Ibadan
Oyo State, Nigeria

Dr. Sankale Shompole
Dept. of Microbiology, Molecular Biology and Biochemistry,
University of Idaho, Moscow,
ID 83844, USA.

Dr. Mathew M. Abang
Germplasm Program
International Center for Agricultural Research in the Dry Areas (ICARDA)
P.O. Box 5466, Aleppo, SYRIA.

Dr. Solomon Olawale Odemuyiwa
Pulmonary Research Group
Department of Medicine
550 Heritage Medical Research Centre
University of Alberta
Edmonton
Canada T6G 2S2

Prof. Anna-Maria Botha-Oberholster
Plant Molecular Genetics
Department of Genetics
Forestry and Agricultural Biotechnology Institute
Faculty of Agricultural and Natural Sciences
University of Pretoria
ZA-0002 Pretoria, South Africa

Dr. O. U. Ezeronye
Department of Biological Science
Michael Okpara University of Agriculture
Umudike, Abia State, Nigeria.

Dr. Joseph Hounhouigan
Maître de Conférence
Sciences et technologies des aliments
Faculté des Sciences Agronomiques
Université d’Abomey-Calavi
01 BP 526 Cotonou
République du Bénin

Prof. Christine Rey
Dept. of Molecular and Cell Biology,
University of the Witwatersand,
Private Bag 3, WITS 2050, Johannesburg, South Africa

Dr. Kamel Ahmed Abd-Elsalam
Molecular Markers Lab. (MML)
Plant Pathology Research Institute (PPathRI)
Agricultural Research Center, 9-Gamma St., Orman,
12619,
Giza, Egypt

Dr. Jones Lemchi
International Institute of Tropical Agriculture (IITA)
Onne, Nigeria

Prof. Greg Blatch
Head of Biochemistry & Senior Wellcome Trust Fellow
Department of Biochemistry, Microbiology & Biotechnology
Rhodes University
Grahamstown 6140
South Africa

Prof. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Dr. Jackie Hughes
Research-for-Development
International Institute of Tropical Agriculture (IITA)
Ibadan, Nigeria

Dr. Robert L. Brown
Southern Regional Research Center,
U.S. Department of Agriculture,
Agricultural Research Service,
New Orleans, LA 70179.

Dr. Deborah Rayfield
Physiology and Anatomy
Bowie State University
Department of Natural Sciences
Crawford Building, Room 003C
Bowie MD 20715, USA
Dr. Marlene Shehata
University of Ottawa Heart Institute
Genetics of Cardiovascular Diseases
40 Ruskin Street
K1Y-4W7, Ottawa, ON, CANADA

Dr. Hany Sayed Hafez
The American University in Cairo, Egypt

Dr. Clement O. Adebooye
Department of Plant Science
Obafemi Awolowo University, Ile-Ife
Nigeria

Dr. Ali Demir Sezer
Marmara Üniversitesi Eczacilik Fakültesi,
Tibbiye cad. No: 49, 34668, Haydarpaşa, İstanbul, Turkey

Dr. Ali Gazanchain
P.O. Box: 91735-1148, Mashhad, Iran.

Dr. Anant B. Patel
Centre for Cellular and Molecular Biology
Uppal Road, Hyderabad 500007
India

Prof. Arne Elofsson
Department of Biophysics and Biochemistry
Bioinformatics at Stockholm University,
Sweden

Prof. Bahram Goliaei
Departments of Biophysics and Bioinformatics
Laboratory of Biophysics and Molecular Biology
University of Tehran, Institute of Biochemistry and Biophysics
Iran

Dr. Nora Babudri
Dipartimento di Biologia cellulare e ambientale
Università di Perugia
Via Pascoli
Italy

Dr. S. Adesola Ajayi
Seed Science Laboratory
Department of Plant Science
Faculty of Agriculture
Obafemi Awolowo University
Ile-Ife 220005, Nigeria

Dr. Yee-Joo TAN
Department of Microbiology
Yong Loo Lin School of Medicine,
National University Health System (NUHS),
National University of Singapore
MD4, 5 Science Drive 2,
Singapore 117597
Singapore

Prof. Hidetaka Hori
Laboratories of Food and Life Science,
Graduate School of Science and Technology,
Niigata University,
Niigata 950-2181, Japan

Prof. Thomas R. DeGregori
University of Houston,
Texas 77204 5019, USA

Dr. Wolfgang Ernst Bernhard Jelkmann
Medical Faculty, University of Lübeck,
Germany

Dr. Moktar Hamdi
Department of Biochemical Engineering,
Laboratory of Ecology and Microbial Technology
National Institute of Applied Sciences and Technology.
BP: 676. 1080, Tunisia

Dr. Salvador Ventura
Department de Bioquímica i Biologia Molecular
Institut de Biotecnologia i de Biomedicina
Universitat Autònoma de Barcelona
Bellaterra-08193
Spain

Dr. Claudio A. Hetz
Faculty of Medicine, University of Chile
Independencia 1027
Santiago, Chile

Prof. Felix Dapare Dakora
Research Development and Technology Promotion
Cape Peninsula University of Technology,
Room 2.8 Admin. Bldg. Keizersgracht, P.O. 652,
Cape Town 8000,
South Africa
Dr. Geremew Bultosa
Department of Food Science and Post harvest Technology
Haramaya University
Personal Box 22, Haramaya University Campus
Dire Dawa, Ethiopia

Dr. José Eduardo Garcia
Londrina State University
Brazil

Prof. Nirbhay Kumar
Malaria Research Institute
Department of Molecular Microbiology and Immunology
Johns Hopkins Bloomberg School of Public Health
E5144, 615 N. Wolfe Street
Baltimore, MD 21205

Prof. M. A. Awal
Department of Anatomy and Histplogy,
Bangladesh Agricultural University,
Mymensingh-2202, Bangladesh

Prof. Christian Zwieb
Department of Molecular Biology
University of Texas Health Science Center at Tyler
11937 US Highway 271
Tyler, Texas 75708-3154
USA

Prof. Danilo López-Hernández
Instituto de Zoología Tropical, Facultad de Ciencias,
Universidad Central de Venezuela.
Institute of Research for the Development (IRD), Montpellier,
France

Prof. Donald Arthur Cowan
Department of Biotechnology,
University of the Western Cape Bellville 7535
Cape Town, South Africa

Dr. Ekhaise Osaro Frederick
University Of Benin, Faculty of Life Science
Department of Microbiology
P. M. B. 1154, Benin City, Edo State, Nigeria.

Dr. Luísa Maria de Sousa Mesquita Pereira
IPATIMUP R. Dr. Roberto Frias, s/n 4200-465 Porto
Portugal

Dr. Min Lin
Animal Diseases Research Institute
Canadian Food Inspection Agency
Ottawa, Ontario, Canada K2H 8P9

Prof. Nobuyoshi Shimizu
Department of Molecular Biology,
Center for Genomic Medicine
Keio University School of Medicine,
35 Shinanomachi, Shinjuku-ku
Tokyo 160-8582, Japan

Dr. Adewunmi Babatunde Idowu
Department of Biological Sciences
University of Agriculture Abia
Abia State, Nigeria

Dr. Yifan Dai
Associate Director of Research
Revivicor Inc.
100 Technology Drive, Suite 414
Pittsburgh, PA 15219
USA

Dr. Zhongming Zhao
Department of Psychiatry, PO Box 980126,
Virginia Commonwealth University School of Medicine,
Richmond, VA 23298-0126, USA

Prof. Giuseppe Novelli
Human Genetics,
Department of Biopathology,
Tor Vergata University, Rome, Italy

Dr. Moji Mohammadi
402-28 Upper Canada Drive
Toronto, ON, M2P 1R9 (416) 512-7795
Canada
Prof. Jean-Marc Sabatier
Directeur de Recherche Laboratoire ERT-62
Ingénierie des Peptides à Visée Thérapeutique,
Université de la Méditerranée-Ambrilia
Biopharma inc.,
Faculté de Médecine Nord, Bd Pierre Dramard,
13916, Marseille cédex 20.
France

Dr. Fabian Hoti
PneumoCarr Project
Department of Vaccines
National Public Health Institute
Finland

Prof. Irina-Draga Caruntu
Department of Histology
Gr. T. Popa University of Medicine and Pharmacy
16, Universitatii Street, Iasi,
Romania

Dr. Dieudonné Nwaga
Soil Microbiology Laboratory,
Biotechnology Center. PO Box 812,
Plant Biology Department,
University of Yaoundé 1, Yaoundé,
Cameroon

Dr. Gerardo Armando Aguado-Santacruz
Biotechnology CINVESTAV-Unidad Irapuato
Departamento Biotecnología
Km 9.6 Libramiento norte Carretera Irapuato-León Irapuato,
Guanajuato 36500
Mexico

Dr. Abdolkaim H. Chehregani
Department of Biology
Faculty of Science
Bu-Ali Sina University
Hamedan,
Iran

Dr. Abir Adel Saad
Molecular oncology
Department of Biotechnology
Institute of graduate Studies and Research
Alexandria University,
Egypt

Dr. Azizul Baten
Department of Statistics
Shah Jalal University of Science and Technology
Syhlet-3114,
Bangladesh

Dr. Bayden R. Wood
Australian Synchrotron Program
Research Fellow and Monash Synchroscopy
School of Chemistry Monash University Wellington Rd. Clayton,
3800 Victoria,
Australia

Dr. G. Reza Balali
Molecular Mycology and Plant Pthology
Department of Biology
University of Isfahan
Isfahan
Iran

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Prof. H. Sunny Sun
Institute of Molecular Medicine
National Cheng Kung University Medical College
1 University road Tainan 70101,
Taiwan

Prof. Ima Nirwana Soelaiman
Department of Pharmacology
Faculty of Medicine
Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur,
Malaysia

Prof. Tunde Ogunsanwo
Faculty of Science,
Olabisi Onabanjo University,
Ago-Iwoye.
Nigeria

Dr. Evans C. Egwim
Federal Polytechnic,
Bida Science Laboratory Technology Department,
PMB 55, Bida, Niger State,
Nigeria
Prof. George N. Goulielmos
Medical School,
University of Crete
Voutes, 715 00 Heraklion, Crete,
Greece

Dr. Uttam Krishna
Cadila Pharmaceuticals Limited,
India 1389, Tarsad Road,
Dhalka, Dist: Ahmedabad, Gujarat,
India

Prof. Mohamed Attia El-Tayeb Ibrahim
Botany Department, Faculty of Science at Qena,
South Valley University, Qena 83523,
Egypt

Dr. Nelson K. Ojjio Olang'o
Department of Food Science & Technology,
JKUAT P. O. Box 62000, 00200, Nairobi,
Kenya

Dr. Pablo Marco Veras Peixoto
University of New York NYU College of Dentistry
345 E. 24th Street, New York, NY 10010
USA

Prof. T E Cloete
University of Pretoria Department of
Microbiology and Plant Pathology,
University of Pretoria,
Pretoria,
South Africa

Prof. Djamel Saidi
Laboratoire de Physiologie de la Nutrition et de
Sécurité Alimentaire Département de Biologie,
Faculté des Sciences,
Université d’Oran, 31000 - Algérie
Algeria

Dr. Tomohide Uno
Department of Biofunctional chemistry,
Faculty of Agriculture Nada-ku,
Kobe., Hyogo, 657-8501,
Japan

Dr. Ulises Urzúa
Faculty of Medicine,
University of Chile Independencia 1027, Santiago,
Chile

Dr. Aritua Valentine
National Agricultural Biotechnology Center,
Kawanda
Agricultural Research Institute (KARI)
P.O. Box, 7065, Kampala,
Uganda

Prof. Yee-Joo Tan
Institute of Molecular and Cell Biology 61 Biopolis
Drive,
Proteos, Singapore 138673
Singapore

Prof. Viroj Wiwanitkit
Department of Laboratory Medicine,
Faculty of Medicine, Chulalongkorn University,
Bangkok
Thailand

Dr. Thomas Silou
Universit of Brazzaville BP 389
Congo

Prof. Burtram Clinton Fielding
University of the Western Cape
Western Cape,
South Africa

Dr. Brnčić (Brncic) Mladen
Faculty of Food Technology and Biotechnology,
Pierottijeva 6,
10000 Zagreb,
Croatia.

Dr. Meltem Sesli
College of Tobacco Expertise,
Turkish Republic, Celal Bayar University 45210,
Akhisar, Manisa,
Turkey.

Dr. Idress Hamad Attitalla
Omar El-Mukhtar University,
Faculty of Science,
Botany Department,
El-Beida, Libya.

Dr. Linga R. Gutha
Washington State University at Prosser,
24106 N Bunn Road,
Prosser WA 99350-8694.
Dr Helal Ragab Moussa
Bahnay, Al-bagour, Menoufia, Egypt.

Dr VIPUL GOHEL
DuPont Industrial Biosciences
Danisco (India) Pvt Ltd
5th Floor, Block 4B, DLF Corporate Park
DLF Phase III
Gurgaon 122 002
Haryana (INDIA)

Dr. Sang-Han Lee
Department of Food Science & Biotechnology, Kyungpook National University
Daegu 702-701, Korea.

Dr. Bhaskar Dutta
DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI)
U.S. Army Medical Research and Materiel Command
2405 Whittier Drive
Frederick, MD 21702

Dr. Muhammad Akram
Faculty of Eastern Medicine and Surgery, Hamdard Al-Majeed College of Eastern Medicine, Hamdard University, Karachi.

Dr. M. Murugananandam
Department of Biotechnology
St. Michael College of Engineering & Technology, Kalayarkoil, India.

Dr. Gökhan Aydin
Suleyman Demirel University, Atabey Vocational School, Isparta-Türkiye,

Dr. Rajib Roychowdhury
Centre for Biotechnology (CBT), Visva Bharati, West-Bengal, India.

Dr Takuji Ohyama
Faculty of Agriculture, Niigata University

Dr Mehdi Vasfi Marandi
University of Tehran

Dr Fügen DURLU-ÖZKAYA
Gazi University, Tourism Faculty, Dept. of Gastronomy and Culinary Art

Dr. Reza Yari
Islamic Azad University, Boroujerd Branch

Dr Zahra Tahmasebi Fard
Roudehen branche, Islamic Azad University

Dr Albert Magri
Giro Technological Centre

Dr Ping ZHENG
Zhejiang University, Hangzhou, China

Dr. Kgomotso P. Sibeko
University of Pretoria

Dr Greg Spear
Rush University Medical Center

Prof. Pilar Morata
University of Malaga

Dr Jian Wu
Harbin Medical University, China

Dr Hsiu-Chi Cheng
National Cheng Kung University and Hospital.

Prof. Pavel Kalac
University of South Bohemia, Czech Republic

Dr Kürsat Korkmaz
Ordu University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition

Dr. Shuyang Yu
Department of Microbiology, University of Iowa
Address: 51 newton road, 3-730B BSB bldg. Iowa City, IA, 52246, USA

Dr. Binxing Li
Dr. Mousavi Khaneghah
College of Applied Science and Technology - Applied Food Science, Tehran, Iran.

Dr. Qing Zhou
Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University Portland.

Dr Legesse Adane Bahiru
Department of Chemistry, Jimma University, Ethiopia.

Dr James John
School Of Life Sciences, Pondicherry University, Kalapet, Pondicherry
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author's name should be mentioned, followed by 'et al'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $650 handling fee. Publication of an article in the African Journal of Biotechnology is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2015, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties
In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJB, whether or not advised of the possibility of damage, and on any theory of liability.
This publication is provided “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLES

Inflorescence bulbils of tiger lily in vivo and bulbils culture in vitro
Hassan M. Asker

Effects of different culture conditions (photoautotrophic, photomixotrophic) and the auxin indole-butyric acid on the in vitro acclimatization of papaya (Carica papaya L. var. Red Maradol) plants using zeolite as support
Laisyn Posada Pérez, Yenny Padrón Montesinos, Justo González Olmedo, Romelio Rodríguez Sánchez, Osvaldo Norman Montenegro, Raul Barbón Rodriguez, Ortelio Hurtado Ribalta Rene Carlos Rodríguez Escriba, Dion Daniels and Rafael Gómez-Kosky

The effects of exotic weed Flaveria bidentis with different invasion stages on soil bacterial community structures
Chaohe Huangfu, Huiyan Li, Xinwei Chen, Hongmei Liu and Dianlin Yang

Extraction and characterization of Retama monosperma fibers
AIZI Djamel Eddine and KAID HARCHE Meriem
Inflorescence bulbils of tiger lily in vivo and bulbils culture in vitro

Hassan M. Asker

Floriculture Unit, University of Baghdad, Baghdad, Iraq.

Received 19 March, 2015; Accepted 31 August, 2015

The present study includes two experiments; the physiological and the biotechnological experiments. The physiological experiment was designed to investigate the most interesting rare natural phenomenon of the development of vegetative reproductive organs (bulbils) in the inflorescence of tiger lily. In the other hand, the biotechnological experiment was carried out to evaluate the regeneration potential of bulbils culture in vitro. In the first experiment, the plants of tiger lily *Lilium lancifolium* var. Flore Pleno which were grown in greenhouse showed that the Pseudo viviparous phenomenon at the end of flowering when vegetative bulbils were induced in the inflorescence. These bulbils as pseudo viviparous structures were precisely formed in place of flowers and along the floral stalks. The flower head was completely surrounded by the extensive numbers of these bulbils; some of them continued in growth and produced new shoots. The tissue culture experiment of tiger lily var. Flore Pleno was carried out using bulbils culture for eight weeks of culture in vitro. The results indicate that the bulbils was shown to be a good choice as explants for micropropagation but the potential of these bulbils to produce bulblets, shoots and roots was greatly influenced by the concentrations of naphthalene acetic acid (NAA) and benzyl aminopurine (BA) in culture. However, the concentration of 1 mg/l BA combined with 0.1 mg/l NAA was shown to be the optimum for micropropagation of tiger lily var. Flore Pleno.

Key words: Bulbils, pseudo viviparous phenomenon, tiger lily, in vitro, micropropagation, growth regulators.

INTRODUCTION

The bulbils formation in the inflorescence is a rare phenomenon that occurs in certain plants in nature. This natural phenomenon is called Pseudo vivipary which is a kind of a specific asexual reproductive way that some plant can achieve under some conditions when the flowering process is aborted and developmental changes occurred to produce new plantlets or bulbils in place of flower instead of floral organ and seeds. This kind of asexual reproduction is widely recorded in some monocots plants in many families such as Liliaceae Alliaceae, Agavaceae, Pocceae, Saxifragaceae and polygonaceae particularly in some grasses (Elmqvist and...
Cox, 1996; Kuzmanovic et al., 2012; Moore et al., 1976; Tooke et al., 2005; Szarek and Holmesley, 1996). While, most lilies produce many types of reproductive structures for their vegetative reproduction during growing, such as daughters and bulblets, but some lilies can produce aerial black tiny bulbils commonly along the stem at the point where leaves join the stems. However, the varieties of tiger lily (Lilium lancifolium), Splendens, Flore Pleno and Fortuni are well known for their tiny black bulbils production on stem plant. The asexual reproductive structures which were produced in plants during growing can be increased by application of flower buds removal practices (Dantuluri et al., 2002; Leclerc et al., 2005), and they can be used to propagate the plants in a traditional way in nursery or in vitro however, the aerial bulbils is considered to be a good source of explants without the contamination problem of soil borne diseases (Lian et al., 2009; Shu and Park, 1993; Kasai et al., 2000).

In lily micropropagation, various organs as explants were used such as pedicel, filament, leaf, root, bulb-scale and several studies concerned the effect of cytokinin and auxin concentrations on the regeneration ability of these explants to produce bulblets, shoots and roots (Kumar et al., 2006; Duong et al., 2001). It is well known that the cytokinin together with auxin play an essential role in plant morphogenesis, they have great influence on the formation of roots and shoots they have great the ratio of these two hormones can determine the kind of plant development (Werner and Schmülling, 2009; Bartrina et al., 2011). The objective of this paper was to study the development of bulbils in the inflorescence and to investigate the use of these bulbils as explants in vitro for micropropagation of tiger lily.

MATERIALS AND METHODS

The present studies included two experiments; the first was designed to investigate the development of bulbils during plants growing for two tiger lilies and to evaluate the application of bud removal practice for increasing the bulbils production of plants, second experiment was carried out to determine the potential of bulbils as explants for micro propagation in vitro of tiger lily var. Flore Pleno. The first experiment was carried out at the computerized greenhouses with environmental control systems in school of biomedical and biological sciences, University of Plymouth during 2014 at temperature around 25°C. Healthy Bulbs of the tiger lilies were grown by John Innes mixture no.3 as growing medium and the experiment included four treatments; two varieties of tiger lilies L. lancifolium (Lilium tigrinum) var. Splendens and var. Flore Pleno with or without flower buds removal practice; the flower buds were removed when they became 2 cm long, each treatment contained 12 plants. In tissue cultural experiment, the whole bulbils of tiger lily var. "Flore Pleno" were used as explants; these explants were carefully washed and sterilized with 10% v:v bleach solution (5.25% sodium hypochlorite) for 15 min and washed 3 to 4 times with sterilized distilled water before culturing. The explants were then cultured on Murashige and Skoog (MS) basal medium containing 30 g L⁻¹ sucrose, 8 g L⁻¹ agar, pH 5.7, supplemented with naphthalene acetic acid (NAA) and benzyl aminopurine (BA) in different concentrations; all cultures were incubated in a Gallenkamp growth cabinet under 16 h photoperiod, provided by cool-white flourescent lamps with an irradiance of 100 μmol m⁻² s⁻¹ at a constant temperature of 25°C for 8 weeks. All explants were placed in a vertical position on the agar, and this experiment contained six treatments with 12 explants per treatment, and the concentrations of BA and NAA were (1 mg/l BA) (1 mg/l BA+ 0.1 mg NAA), (0.5 mg/l BA), (0.5 mg/l BA+ 0.1 mg NAA), (1 mg/l NAA) and control.

The healthy bulbs were purchased from Hyde and Sons Nursery-UK; nutrient solution and chemicals were from Sigma-Aldrich Company Ltd. Data of greenhouse experiment, number and weight (g) of bulbils per plant were collected at flowering time while number and weight (g) of daughters, bulblets and weight (g) of bulb roots, stem roots, per plant were collected after 16 weeks from planting. Data of tissue culture experiment, number and weight (g) of bulblets, roots and number, weight (g), length (cm) of shoots per bulbils were collected after eight weeks of culture. The statistical analysis system (SAS, 2012) was used to show the effect of different factors in the study parameters. Significant difference-LSD test was used in this study to significant compare between means at the (0.05) level of significance.

RESULTS

In Plates 1 and 2, the tiger lilies L. lancifolium (L. tigrinum) var. Splendens and var. Flore Pleno grown in greenhouse produced a large numbers of common tiny black bulbils on plant stem and more black bulbils were recorded as Pseudo viviparous propagules after flowering in the inflorescence of var. Flore Pleno plants. The results in Table 1 indicates that the application of flower bud removal practice greatly increased the production of bulbils and daughters, and differential response to this practice was shown between the two varieties. Higher response was found in Flore Pleno compared to the other when the bulbils production was increased by No. (56.45%) Wt. (103.9%) and bulblets No. (21.99%) and Wt.(127.4%).

The treated plants of Flore Pleno showed the maximum values of bulbils No. (48.75) weight (7.85 g), bulblets No. (2.33) Wt. (3.32 g), daughters Wt. (44.66 g), ground roots Wt. (7.78 g) and stem roots Wt. (3.08 g) per plant, while the minimum values of bulbils No. (28.5) Wt. (2.07 g), bulblets No. (1.83) Wt. (1.41 g), daughters Wt. (14.85 g), ground roots Wt. (3.38 g) and stem roots Wt. (1.18 g) per plant were found in untreated plants of Splendens. Plate 3 shows the in vitro bulbil culture of tiger lily var. Flore Pleno for eight weeks of culture using whole bulbils as explants.

The results in Figure 1 indicate that the different concentrations of Naphthalene acetic acid (NAA) and Benzyl aminopurine (BA) showed different results related to potential of bulbils to produce bulblets, shoots and roots, however, the concentration of 1 mg/l BA combined with 0.1 mg/l NAA was shown to be the optimum for micropropagation of tiger lily var. Flore Pleno which achieved the maximum values of bulbils number (3.83) Wt. (0.19 g) (Figure 1A) and the shoots No. (6.17) Wt. (0.39 g) length (28.33 cm) (Figure 1B) while the maximum number of roots (4.67) Wt. (0.28 g) were observed at concentration of 1 mg/l NAA (Figure 1C).
Plate 1. The formation of pseudo viviparous bulbils after flowering in the inflorescence of double tiger lily var. Flore Pleno plants grown in greenhouse. A, B, C) Pseudo viviparous bulbils appeared on the heads of flowers, these flower heads were completely surrounded by the extensive numbers of bulbils, each head contains nearly 20 to 25 Pseudo viviparous bulbils instead of floral organs these kind of bulbils formed after flowers senescence. D) Pseudo viviparous bulbils also observed a long floral stalk at branching point where pedicel joins peduncle. E) Some of these bulbils continued in growth and produced new shoots while still attached to parent plant.

Table 1. The effect of the flower buds removal practice on the development of bulbils, bulblets, daughters, shoots and roots in plants of tiger lilies var. splendens and var. Flore pleno.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Parameters</th>
<th>Bulbils</th>
<th>Bulblets</th>
<th>Daughters</th>
<th>Bulb roots</th>
<th>Stem roots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT.(g) No. WT.(g) No. WT.(g) No. WT.(g) No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 1</td>
<td>29.83 2.96 1.87 1.44 1.67 21.24 4.11 1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 2</td>
<td>39.33 5.19 2.13 2.41 1.75 31.01 5.09 1.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD value</td>
<td>-- 6.91 1.40 1.10 NS 1.40 NS 0.27 NS 4.75 1.05 NS 0.954 NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety SP.</td>
<td>29.21 2.3 1.87 1.46 1.79 16.1 2.89 0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety FL.</td>
<td>39.96 5.85 2.13 2.39 1.63 36.14 6.31 2.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD value</td>
<td>-- 6.91 1.40 1.103 NS 1.40 NS 0.270 NS 4.75 * 1.05* 0.954*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treat. x Variety SP. 1</td>
<td>28.5 2.07 1.83 1.41 1.75 14.85 3.38 1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treat. x Variety FL. 1</td>
<td>31.16 3.85 1.91 1.46 1.58 27.62 4.84 1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treat. x Variety SP. 2</td>
<td>29.91 2.53 1.92 1.51 1.83 17.35 2.39 0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treat. x Variety FL. 2</td>
<td>48.75 7.85 2.33 3.32 1.67 44.66 7.78 3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD value</td>
<td>-- 9.77 1.98 1.55 NS 1.99 NS 0.382 NS 6.72 1.49 1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LSD test was used to significantly compare between means at the 5% level of significance. *, NS, significant and not significant at p < 0.05 respectively. Treatment 1, Control; Treatment 2, Flower buds removal; SP., Splendens; FL, Flore Pleno.
Plates 3. The effect of different concentrations of naphthalene acetic acid (NAA) and benzylaminopurine (BA) on the regeneration of bulblets, shoots and roots in bulbils culture in vitro of tiger lily var. Flore Pleno after 8 weeks of culture. A and B) Large shoots were regenerated in bulbils culture in some treatments dependently on the concentrations of BA and NAA. C and D) Great growth of roots system was found in bulbils culture in some treatments and that highly dependents on the concentrations of BA and NAA. E and F) High bulblets regeneration was recorded in bulbils culture in some treatments dependently on the concentrations of BA and NAA.

DISCUSSION

While, the tiger lilies (L. lancifolium) var. Splendens and var. Flore Pleno produced bulbils before flowering along the stem at the point where leaves join the stems as common bulbils, but at the end of flowering, more bulbils appeared in the inflorescence of Flore Pleno plants as Pseudo viviparous structures precisely in place of flowers and along the floral stalks. This natural Pseudo viviparous phenomenon was widely recorded in some monocots plants which belong to many families such as Liliaceae Alliaceae, Agavaceae, Pocceae, Saxifragaceae and polygonaceae (Elmqvist and Cox, 1996; Kuzmanovic et al., 2012; Moore et al., 1976; Tooke et al., 2005). It may be that the formation of these bulbils in the inflorescence of double tiger lily was, instead of seeds because this lily is commonly believed to be sterile and not capable of producing seeds as fertilization was unsuccessful. However, many studies reported that this asexual kind of reproductive way occasionally happen in...
Figure 1B. The effect of different concentrations of BA and NAA on the regeneration of shoots in in vitro bulbils culture of tiger lily var. Flore Pleno after 8 weeks of culture.

<table>
<thead>
<tr>
<th>Concentrations of NAA and BA mg/L</th>
<th>Shoots No.</th>
<th>Shoots Length(cm)</th>
<th>Shoots Wt. (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BA</td>
<td>2.33</td>
<td>13.08</td>
<td>0.23</td>
</tr>
<tr>
<td>IBA-0.1 NAA</td>
<td>6.17</td>
<td>16.25</td>
<td>0.39</td>
</tr>
<tr>
<td>GBA</td>
<td>3</td>
<td>13.41</td>
<td>0.23</td>
</tr>
<tr>
<td>0.5BA-0.1 NAA</td>
<td>0.2</td>
<td>6.25</td>
<td>0.09</td>
</tr>
<tr>
<td>1 NAA</td>
<td>1.75</td>
<td>3.46</td>
<td>0.03</td>
</tr>
<tr>
<td>0BA-0.1 NAA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LSD 7.53*

Figure 1C. The effect of different concentrations of BA and NAA on the regeneration of roots in in vitro bulbils culture of tiger lily var. Flore Pleno after 8 weeks of culture. LSD test was used to significantly compare between means at the 5% level of significance. *, NS. Significant at p < 0.05 and not significant, respectively.

<table>
<thead>
<tr>
<th>Concentrations of BA and NAA mg/L</th>
<th>Roots No.</th>
<th>Roots Wt.(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BA</td>
<td>0.83</td>
<td>0.01</td>
</tr>
<tr>
<td>IBA-0.1 NAA</td>
<td>0.92</td>
<td>0.03</td>
</tr>
<tr>
<td>GBA</td>
<td>1.25</td>
<td>0.02</td>
</tr>
<tr>
<td>0.5BA-0.1 NAA</td>
<td>2.25</td>
<td>0.05</td>
</tr>
<tr>
<td>1 NAA</td>
<td>4.67</td>
<td>0.28</td>
</tr>
<tr>
<td>0BA-0.1 NAA</td>
<td></td>
<td>0.2</td>
</tr>
</tbody>
</table>

LSD 0.919*

LSD 0.067

LSD 0.067* mg/L)}}
nature in specific conditions in some plants when the flowering process is aborted and some developmental changes occur to produce new plantlets or bulbils in place of flower instead of floral organ and seeds (Arizaga et al., 1995; Maria et al., 2010; Pierce et al., 2003; Tooke et al., 2005; Wang and Cronk, 2003). The results also show that the bulbils production of tiger lilies can be increased by application of flower buds removal practice and that may be due to increasing the supply of assimilates to the propagules, and this results agree with those of previous studies (Dantuluri et al., 2002; Leclerc et al., 2005).

In the study of bulbils culture in vitro of tiger lily var. Flore Pleno for eight weeks of culture, the results of this study show that the potential of bulbils to regenerate bulblets, shoot and roots was greatly influenced by the concentrations of NAA and BA in culture. Different concentrations of NAA and BA showed different results related to growth rate of bulblets, shoots and roots. Similar results of this effect of the growth regulators were found in several studies (Kumar et al., 2006; Duong et al., 2001), however, the concentration of 1 mg/l BA combined with 0.1 mg/l NAA was shown to be the optimum to produce bulblets and shoots while the highest growth rate of roots system as weight (g) were observed at concentration of 1 mg/l NAA. The results indicate that the bulbils is to be a good source for micropropagation of tiger lily var. Flore Pleno particularly with no contamination problem of soil borne diseases and that agree with previous studies (Lian et al. 2009; Shu and Park, 1993; Kasai et al., 2000).

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGEMENTS

The author would like to express his appreciation to Professor M.P. Fuller for his invitation to visit the School of Biological Sciences, Plymouth University, Plymouth, Devon, PL4 8 AA, UK and to give him the opportunity to carry out his research work at his laboratory.

REFERENCES

Full Length Research Paper

Effects of different culture conditions (photoautotrophic, photomixotrophic) and the auxin indole-butyric acid on the in vitro acclimatization of papaya (*Carica papaya* L. var. Red Maradol) plants using zeolite as support

Laisyn Posada Pérez¹, Yenny Padrón Montesinos¹, Justo González Olmedo², Romelio Rodríguez Sánchez², Osvaldo Norman Montenegro³, Raul Barbón Rodríguez¹, Ortelio Hurtado Ribalta¹ Rene Carlos Rodríguez Escriba², Dion Daniels⁴ and Rafael Gómez-Kosky¹*

¹Instituto de Biotecnología de las Plantas. Universidad Central “Marta Abreu” de Las Villas. Carretera a Camajuaní Km 5 ½, Santa Clara, Villa Clara, Cuba.
²Centro de Bioplantas. Universidad de Ciego de Ávila, Carretera a Morón km 9, Ciego de Ávila, Cuba.
³Centro de Bioactivos Químicos. Universidad Central “Marta Abreu” de Las Villas, Carretera a Camajuaní Km 5 ½. Santa Clara, Villa Clara, Cuba.
⁴University of Belize, Hummingbird Avenue, Belmopan, Cayo District, Belize, Central America.

Received 23 June, 2015; Accepted 31 August, 2015

Plant regeneration of papaya via organogenesis and somatic embryogenesis has been successful; however, the biggest problem of *in vitro* culture of this species is the acclimatization of regenerated plants, where over 70% of the plants are lost before being planted in the field. Decreasing the relative humidity inside the culture vessel and thus increasing the ventilation, appears to have a greater effect on the adaptation of papaya plants, strengthening the function of the stomata and with this, allowing better control of water loss from the leaves. The aim of this study was to determine the effects of different concentrations of sucrose and indole-butyric acid (IBA) on rooting and *in vitro* acclimatization of plants using sterile zeolite as support and culture vessels with increased ventilation. Three concentrations of sucrose (0, 10 and 20 g L⁻¹) were studied with and without auxin and as the control treatment, the rooting culture medium with agar during 17, 27 and 37 culture days. The highest percentage of rooting was recorded at 37 culture days in the treatment without sucrose and IBA with 80.0% and zeolite as support. The best photosynthetic values were achieved when *in vitro* shoots were grown in culture medium with auxin and different concentrations of sucrose, even though they were also high in the treatment without the presence of IBA and without sucrose at 17 days of culture. The combined effect of the zeolite, auxin (IBA), without sucrose in the culture medium and increased ventilation allowed photoautotrophic culture conditions which had effect of the increasing plant survival under *ex vitro* acclimatization conditions.

Key words: *Carica papaya*, photosynthesis, roots formation.
INTRODUCTION

In Cuba, the most commercially important variety is the 'Red Maradol' and crop production exceeded 1.7 million tons in 2013 (FAOSTAT, 2014). In addition, it is sown in other countries in the Caribbean and Central America. Regeneration of papaya plants via somatic embryogenesis has been successful; however, the somatic embryos in germination have problems with root development due to the presence of a basal callus, which prevents the formation of roots or its connection to the stem, besides the low percentage of acclimatization of rooted plants (Fitch and Manchardt, 1990; Dhekney et al., 2007; Sekeli et al., 2013). Another critical aspect has been the adaptation to environmental conditions because of the high relative humidity that this species need to achieve high survival rates (Chen et al., 1991). The biggest problem that exists globally in in vitro papaya culture is the ex vitro acclimatization of regenerated plants, where more than 70% of in vitro plants produced are lost before being planted in the field (Malabadi et al., 2011). A plant that originated in vitro, differs in many aspects from those formed in vivo (Pierik, 1990), since its environmental conditions, substrate, light, and nutrition, are very different. It is also important to note that the growth in vitro is heterotrophic, while the conditions in vivo are autotrophic. The in vitro atmosphere, with a high relative humidity, low or zero gas exchange, shortage of CO2 during most of the period, ethylene production and low photosynthetic rate, induce changes in plants grown under these conditions. After transferring the plants to ex vitro environment, plants have to correct all of these abnormalities in order to acclimatize to the new environment, either in greenhouse or into the field (Kadleček et al., 2001).

Furthermore, the anatomy of the leaves is influenced by light and humidity, differing anatomically from those originated from in vivo conditions (Brainerd et al., 1981). Because of this, the acclimatization is an important factor in the subsequent survival rates of the plants, since it is a critical stage in the process, in which the larger loss occurs. In this stage, the relative humidity should begin to decrease gradually, to allow in addition to stomata closure, better cuticle formation and reduced water loss. Moreover, for best results in in vivo establishment, it is necessary to have root in vitro development (Pierik, 1990). Decreasing the relative humidity inside the culture vessel and thus the increased ventilation, appear to have a greater effect on the adaptation of grape plants (Vitis vinifera L.), enhancing the stomata function and thereby enable better control of water loss from the leaves (Gribaudo et al., 2001).

In vitro photoautotrophic can be induced excluding carbohydrates from the culture medium and increasing gas exchange in the culture vessel (Kozai, 2010; Xiao et al., 2011). Photoautotrophic micropropagation is defined as micropropagation without sucrose in the culture medium, where the accumulation of carbohydrates in in vitro tissues cultured and their subsequent growth is completely dependent on photosynthesis and inorganic nutrients (Zobayed et al., 2004; Kozai, 2010). Therefore this may also be called photosynthetic micropropagation in culture medium devoid of sugar (Xiao et al., 2011). In photoautotrophic micropropagation, acclimatization can also be completed in the culture vessel, which is called in vitro acclimatization (Kozai et al., 2005).

Although the growth and physiological changes in some plant species with photoautotrophic growth have been studied (Norikane et al., 2010; Badr et al., 2011; Shin et al., 2013), there are very few reports of studies on the in vitro propagation of papaya and none specifically on its most critical phase - rooting. For this reason, this study aims to evaluate the effects of different concentrations of sucrose and the auxin indole-butyric acid to achieve in vitro acclimatization in a growth chamber with sunlight, greater ventilation of the culture vessels and using zeolite as a support for increased survival rates ex vitro of papaya plants obtained by somatic embryogenesis.

MATERIALS AND METHODS

Plant material and culture media

As plant material, in vitro shoots of papaya - variety Maradol Roja were used. These were regenerated from somatic embryos, originating from the fourth subculture in the elongation culture medium proposed by Posada-Perez et al. (2007). This culture medium contained Murashige and Skoog (MS) (1962) salt at 100% concentration supplemented with 1 mg L⁻¹ of thiamine, 1.2 µM of 6-benzyl aminopurine (BAP), 1.5 µM of naphthaleneacetic acid (NAA), 100 mg L⁻¹ of myo-inositol, 30 g L⁻¹ of sucrose, 1 µM of riboflavin and 5 g L⁻¹ of Agargel (Sigma Co.) and adjusted to a pH of 5.8. Shoots with a size between 3.0 to 5.0 cm in length, of which only the last three leaves were left, were placed in culture vessels containing three concentrations of sucrose (0, 10 and 20 g L⁻¹) combined with the presence or absence of the growth regulator, indole-butyric acid (IBA) at a concentration of 9.8 µM for in vitro rooting and acclimatization of shoots, using a support to the mineral zeolite (natural aluminum-silicate with excellent ionic exchange properties and a high absorption power) 1 to 3 mm granulation (Table 1). To each glass culture vessel, 97 g of zeolite

*Corresponding author. E-mail: kosky@ibp.co.cu, kosky2015@gmail.com.

Abbreviations: IBA, Indole-butyric acid; BAP, 6-benzyl aminopurine; NAA, naphthaleneacetic acid.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
Table 1. Physical-chemical characteristics of natural zeolite (Tasajera Deposit, Villa Clara, Cuba).

<table>
<thead>
<tr>
<th>Chemical composition (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon oxide (SiO₂)</td>
<td>70.10</td>
</tr>
<tr>
<td>Aluminium oxide III (Al₂O₃)</td>
<td>11.20</td>
</tr>
<tr>
<td>Iron oxide III (Fe₂O₃)</td>
<td>2.20</td>
</tr>
<tr>
<td>Iron oxide II (FeO)</td>
<td>0.30</td>
</tr>
<tr>
<td>Magnesium oxide (MgO)</td>
<td>0.60</td>
</tr>
<tr>
<td>Calcium oxide (CaO)</td>
<td>4.50</td>
</tr>
<tr>
<td>Sodium oxide (Na₂O)</td>
<td>1.50</td>
</tr>
<tr>
<td>Potassium oxide (K₂O)</td>
<td>1.30</td>
</tr>
<tr>
<td>Diphosphorus pentoxide (P₂O₅)</td>
<td>0.07</td>
</tr>
<tr>
<td>Water (H₂O)</td>
<td>4.70</td>
</tr>
</tbody>
</table>

Mineral composition %
- Clinoptilolite | 40.00 |
- Mordenite | 40.00 |
- Others (Calcite, quartz, feldspar) | 20.00 |

Physical properties Value
- Size of the particle | 1.0-3.0 mm |
- Density (δ) | 0.37 g cm⁻³ |
- Density of the solid phase (γ) | 1.77 g cm⁻³ |
- Total porosity (TP) | 80.59% vol. |

Evaluation of morphological and physiological variables

After 17, 27 and 37 days of culture, in vitro shoots and plants were evaluated for the following morphological variables: length of the plant (cm), number of leaves, number of internodes, fresh mass of in vitro plant (gFM), leaf area (by the method proposed by Cardoza et al. (2009) to estimate the leaf area of papaya plants), presence or absence of basal callus, number of roots, length of the roots (cm) and presence of roots (%). For the evaluations of the physiological indicators of in vitro shoots and plants, the contents of the pigments chlorophyll a, b and carotenoids were determined at 17, 27 and 37 days of culture using the same plants which had been used to assess the morphological variables. To determine the net photosynthetic activity and total transpiration, in vitro plants at 17 days of culture were used.

Chlorophyll and carotenoid pigments measurement

At 27 days, chlorophyll a, chlorophyll b and total carotenoid pigments were determined in the leaves from in vitro plants using the Meyer-Berthénarch’s method, modified by Stirban (1985). The absorbance of the extracts was measured at 663, 645 and 472 nm by spectrophotometry (GENESYS 6; Thermo Electronic Corporation Visionlite Vision 2.1).

Photosynthetic activity, total transpiration and stomatal conductance

For these measurements, fully extended leaves of the same position (leaves 2 and 3) of in vitro plants at the end of the experiment, 4 to 5 h after the start of the photoperiod were used. All measurements were performed with three leaves from different plants. The maximum photosynthetic capacity (µmol CO₂ m⁻² s⁻¹), the total transpiration (mmol H₂O m⁻² s⁻¹) and stomatal conductance (mmol m⁻² s⁻¹) were measured with the equipment CIRAS-2 (Portable Photosynthesis System, UK), coupled to a universal bucket PLC6 2.5 cm³. The area of the tray was completely covered with the leaf (1.7 cm²). The concentration of CO₂, air temperature and relative humidity (80 to 90%) were environmental values taken into consideration. The light equipment, intensity was set at 900 µmol m⁻² s⁻¹. Measurements were always done on all in vitro plants between 9:00 to 10:00 a.m.

Ex vitro acclimatization conditions

The environmental acclimatization conditions are characterized by averaged daytime temperature of 30 ± 2°C, 65 to 70% relative humidity and light intensity ranging between 224 and 457 µmol m⁻² s⁻¹ measured with a light meter EXTECH 401.025 (USA). The experiments were repeated twice. The relative humidity inside the culture vessel covered with aluminum foil and two holes was between 72 to 68% and in control with culture vessel lids with plastic was 90 to 85%.

Culture conditions

The culture vessels with the shoots were placed in growth rooms at a temperature of 27 ± 2°C with sunlight and a photoperiod of 13 / 11 h, light / dark with a light intensity ranging between 48.0 and 62.5 µmol m⁻² s⁻¹ measured with a light meter EXTECH 401.025 (USA). The experiments were repeated twice. The relative humidity inside the culture vessel covered with aluminum foil and two holes was between 72 to 68% and in control with culture vessel lids with plastic was 90 to 85%.

Statistical analysis

For the statistical analysis of the data, the package SPSS version 17.0 for Windows 2008 was used. For analysis of the normality of

previously sterilized in an oven at 180°C for 2 h were added. Glass culture vessels with a total volume of 250 mL with 30 mL of liquid culture medium were used. They were covered with aluminum foil of 20 µm thickness. After three days of culture, the ventilation of the culture vessels was increased by opening holes on the aluminum foil covering the culture vessels in the different treatments. A second hole was made three days after the opening of the first (Figure 1A). As the control treatment, a modified version of the culture medium for rooting proposed by Posada-Pérez et al. (2007) was used. This culture medium was composed of MS salts at 50% concentration, 9.8 µM of IBA, 0.4 mg L⁻¹ of thiamine, 1.0 µM of riboflavin, 40 g L⁻¹ of sucrose, 7.0 g L⁻¹ of agar and pH of 5.8 prior to sterilization. The culture vessels and the volume of culture medium were the same as previously mentioned, but these were covered with plastic lid (poly carbonate). Forty five vessels were used with two shoots each per each variant of culture medium. Of each variant 15 culture vessels were randomly selected every 10 days, from 17 to 37 days of culture for evaluations of the morphological and physiological indicators of plants, including contamination. Survival (%) in ex vitro acclimatization conditions was done with plants after 17 days of in vitro culture conditions. This evaluation was done 20 days after being transplanted.
Figure 1. Rooting and in vitro acclimatization of papaya (Carica papaya L. var. Red Maradol) shoots obtained by somatic embryogenesis under different culture conditions. (A) Culture vessel with increased ventilation. (B–C) Plastic trays (polycarbonate) with zeolite as support used for ex vitro acclimatization plants after 17 days of in vitro culture. (D) Aspects of in vitro plants at the end of the experiment (37 days) in photoautotrophic culture conditions. (E) In vitro papaya plants with the formation of basal callus cultured in culture medium with agar and sucrose. (F) Stimulus of rhizogenesis in the presence or absence of auxin and sucrose at 37 days of culture.
Table 2. Effects of the interaction sucrose and IBA on growth and rooting of \textit{in vitro} papaya (\textit{Carica papaya} L. var. Red Maradol) plants growing in culture vessel with increased ventilation and zeolite as a support at 17 days of culture.

<table>
<thead>
<tr>
<th>IBA (µM)</th>
<th>Sucrose (g L(^{-1}))</th>
<th>Height (cm)</th>
<th>No. of leaves</th>
<th>Leaf area (cm(^2))</th>
<th>Fresh weight plant (gFW)</th>
<th>No. Internodes</th>
<th>Length of roots (cm)</th>
<th>No. of roots</th>
<th>Rooting (%)</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3.63±0.58(^{a})</td>
<td>3.10±0.99(^{c})</td>
<td>1.04±0.15(^{a})</td>
<td>0.37±0.12(^{a})</td>
<td>6.2±1.03(^{a})</td>
<td>0.0(^{b})</td>
<td>0.0(^{c})</td>
<td>0.0(^{c})</td>
<td>13.0(^{c})</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>3.31±0.37(^{b})</td>
<td>3.63±0.92(^{b})</td>
<td>1.02±0.11(^{a})</td>
<td>0.36±0.16(^{a})</td>
<td>7.8±1.45(^{a})</td>
<td>0.0(^{b})</td>
<td>0.0(^{c})</td>
<td>0.0(^{c})</td>
<td>6.6(^{e})</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>3.43±0.50(^{a})</td>
<td>4.12±0.83(^{b})</td>
<td>1.00±0.14(^{a})</td>
<td>0.40±0.26(^{a})</td>
<td>8.5±2.44(^{a})</td>
<td>0.0(^{b})</td>
<td>0.0(^{c})</td>
<td>0.0(^{c})</td>
<td>0.0(^{d})</td>
</tr>
<tr>
<td>9.8</td>
<td>0</td>
<td>3.20±0.27(^{a})</td>
<td>3.70±0.82(^{b})</td>
<td>1.08±0.12(^{a})</td>
<td>0.20±0.12(^{a})</td>
<td>7.9±1.73(^{a})</td>
<td>0.14±0.18(^{a})</td>
<td>0.50±0.53(^{a})</td>
<td>40.0(^{a})</td>
<td>60.0(^{a})</td>
</tr>
<tr>
<td>9.8</td>
<td>10</td>
<td>3.26±0.33(^{a})</td>
<td>4.25±1.16(^{a})</td>
<td>1.05±0.14(^{a})</td>
<td>0.29±0.99(^{a})</td>
<td>9.3±2.55(^{a})</td>
<td>0.13±0.35(^{a})</td>
<td>0.13±0.35(^{b})</td>
<td>13.3(^{b})</td>
<td>33.0(^{b})</td>
</tr>
<tr>
<td>9.8</td>
<td>20</td>
<td>3.86±0.43(^{a})</td>
<td>3.00±0.53(^{b})</td>
<td>1.00±0.15(^{a})</td>
<td>0.48±0.28(^{b})</td>
<td>11.4±4.92(^{a})</td>
<td>0.0(^{b})</td>
<td>0.0(^{c})</td>
<td>0.0(^{c})</td>
<td>20.0(^{b})</td>
</tr>
<tr>
<td>9.8 (Agar control)</td>
<td>40</td>
<td>3.75±1.06(^{a})</td>
<td>4.50±0.70(^{a})</td>
<td>0.95±0.13(^{a})</td>
<td>0.85±0.77(^{a})</td>
<td>10.0±5.65(^{a})</td>
<td>0.0(^{b})</td>
<td>0.0(^{c})</td>
<td>0.0(^{c})</td>
<td>0.0(^{d})</td>
</tr>
</tbody>
</table>

Different letters within a column indicate significant differences at \(p \leq 0.05\) by Kruskal-Wallis/Mann-Whitney test (\(n = 15\)). Values ± SD.

RESULTS AND DISCUSSION

Effects of sucrose and auxin on rooting and \textit{in vitro} acclimatization

Results on management leading to increased rooting and which favor photoautotrophic culture conditions are shown in Tables 2, 3 and 4, which reflect the response of the different treatments on morphological variables recorded with increased ventilation during 10, 20 and 30 days. From the earliest morphological evaluations, the positive effect of the combination that represented the treatment without sucrose and 9.8 µM IBA over other treatments was significant. For the three times that \textit{in vitro} papaya plants were measured, the largest number of roots and increased root length were obtained with the treatment with 10 g L\(^{-1}\) of sucrose and 9.8 µM of IBA, at 17 and 27 days of culture. It is also noteworthy that in the evaluation at 27 days of culture, high values in fresh mass were achieved in the \textit{in vitro} plants grown in zeolite without sucrose and 9.8 µM IBA, although there were no significant differences observed in the treatments without sucrose and without IBA; with 10 g L\(^{-1}\) sucrose and without IBA and the agar control. This was due to, in the case of agar control, the presence of big basal callus (Figure 1D). The callus did not form or their presence was minimal in the other treatments evaluated (photoautotrophic and photomixotrophic conditions) using zeolite as a support and with increased ventilation in culture vessels regardless of the presence or absence of auxin in the \textit{in vitro} culture medium. In this regard Kozai et al. (2005) reported that the species Calla Lily (\textit{Zantedeschia elliotian} L.) in photoautotrophic culture conditions prevented the formation of basal callus of \textit{in vitro} shoots, which is the cause of the poor rooting and limited uptake of water and nutrients by the plants. Zhang et al. (2009) in the Chinese medicinal species (\textit{Momordica grosvenorii} Swingle) indicated that no callus was formed in those plants grown in culture medium without sucrose, free of growth regulators and photoautotrophic culture conditions. With respect to the leaf area at 27 and 37 days of culture (Figure 1E) in the treatment without sucrose (photoautotrophic culture conditions) and with the presence of IBA, the \textit{in vitro} plants showed higher values with significant differences with the other treatments (Tables 3 and 4).

Teixeira de Silva (2014) shows that photoautotrophic culture of \textit{in vitro} plants was possible in papaya in two varieties (Rainbow and Sunrise Solo) using plants from \textit{in vitro} germinated seed and transferred to culture vessels Vitron® type and using as support rock wool. To the culture vessels, constant CO\(_2\) at a concentration of 3,000 ppm was added. In the photoautotrophic conditions evaluated, plants of both varieties had a higher number of leaves and number of roots with respect to the photoheterotrophic and photomixotrophic treatments.
Afreen-Zobayed et al. (2000) report that the photoautotrophic culture of sweet potato (*Ipomoea batata* L. (Lam)) significantly stimulated the growth of the leaves (leaf area) using vermiculite as substrate with respect to the control in agar. Also, Iarema et al. (2012) noted that the photoautotrophic conditions developed for the micropropagation of the Brazilian ginseng (*Platilia glutometata* (Spreng.) Pedersen) appears to increase the leaf area of *in vitro* plants using culture medium solidified with agar. In *Limonium* spp. plants, Lian et al. (2002) report that growth in photoautotrophic conditions, the growth of the surface area of the leaf and the number had a superior effect. In *Doritaenopsis* orchid under photoautotrophic culture conditions and with increased CO\textsubscript{2} in the culture vessel, also achieved the best results with respect to heterotrophic culture conditions for the variables leaf area and length (Shin et al., 2013). This was also observed in the present study on papaya. However, photoautotrophic culture conditions are not also suitable for the growth of some *in vitro* plants cultured as in the case of coconut (*Cocos nucifera*).
middle. The highest values in the variables height, 2.6, perlite - e, exchange cations such as Ca, ICI - Acacia, - Doritaenopsis sp. root formation for these photoautotrophic culture conditions attached to that sucrose concentration was increased. It seems that presence of auxin (IBA) root formation was achieved, but papaya shoots were very low or zero. However, in the The results obtained in this study are contrary to reported believe that sucrose enhances the sensitivity to auxin. Free auxin reaches the target cells. There are reasons to require more auxin to give the response and/or that less percentage of plant survival during acclimatization to greenhouse conditions and in the field. The results described in this study may be related to the characteristics conferred by the zeolite. According to Flores et al. (2007), zeolite drastically reduces the leaching of potassium cations (K+) and ammonium (NH4+), also it facilitates solubilization of phosphate by the available phosphorus to plants and therefore stimulates radical development. Zeolite is a crystalline hydrated aluminum silicate with three-dimensional structures, characterized by the ability to hold and release water and exchange ions without modifying their atomic structure, exchange cations such as Ca2+, Mg2+, K+ and NH4+; and various phosphate compounds, ammonium and organic matter components. It has a rigid three-dimensional structure formed by a network of interconnected tunnels creating a large surface area for the cation exchange and moisture adsorption. Similar results in terms of correlation between improved root system, improved growth and high survival rate were obtained in other plant species such as acacia (Acacia mangium) (Ermayanti et al., 1999); coffee (C. arabusta) (Nguyen et al., 1999); sweet potatoes (I. batata L. Lam.) (Afreen-Zobayed et al., 1999); Eucalyptus sp. (Zobayed et al., 2001); four Australian papaya varieties (Kaity et al., 2009) and in the variety Eksotika (Sekeli et al., 2013); Orchid (Doritaenopsis sp.) (Shin et al., 2013) using different types of porous materials (vermiculite, perlite and mixtures of both). This response was also reached in this work in papaya plants using the porous zeolite mineral as substrate. The presence of contaminants (bacteria and fungi) in all the treatments was quantified (Table 5). It is noteworthy that despite the increased exchange through the lid of the culture vessel, the visual presence of contamination in the treatments without sucrose was 0% for the total time of the experiment of 37.
Pérez et al. 2629

Table 5. Contamination in the culture vessel with increased ventilation at different days of culture during rooting and in vitro acclimatization of papaya plants.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Percentage contamination (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBA(µM)</td>
<td>Sucrose (g L⁻¹)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>9.8</td>
<td>0</td>
</tr>
<tr>
<td>9.8</td>
<td>10</td>
</tr>
<tr>
<td>9.8</td>
<td>20</td>
</tr>
<tr>
<td>9.8 (Agar control)</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 6. Effects of the interaction sucrose and IBA on the concentration of chlorophyll a and b and total carotenoids content in the leaves of in vitro papaya (Carica papaya L. var. Red Maradol) plants in culture vessels with increased ventilation and zeolite as a support at 17 days of culture.

<table>
<thead>
<tr>
<th>IBA (µM)</th>
<th>Sucrose (g L⁻¹)</th>
<th>Chlorophyll a (mg g⁻¹FW)</th>
<th>Chlorophyll b (mg g⁻¹FW)</th>
<th>Carotenoids (mg g⁻¹FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.842±0.07ᵃ</td>
<td>0.519±0.04ᵃ</td>
<td>0.397±0.03ᵃ</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0.407±0.17ᵃ</td>
<td>0.343±0.14ᵃ</td>
<td>0.296±0.05ᵃ</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>0.554±0.03ᵃ</td>
<td>0.526±0.02ᵃ</td>
<td>0.358±0.00ᵃ</td>
</tr>
<tr>
<td>9.8</td>
<td>0</td>
<td>0.578±0.15ᵃ</td>
<td>0.551±0.10ᵃ</td>
<td>0.311±0.07ᵃ</td>
</tr>
<tr>
<td>9.8</td>
<td>10</td>
<td>0.464±0.14ᵃ</td>
<td>0.449±0.13ᵃ</td>
<td>0.266±0.08ᵃ</td>
</tr>
<tr>
<td>9.8</td>
<td>20</td>
<td>0.765±0.08ᵃ</td>
<td>0.682±0.15ᵃ</td>
<td>0.319±0.07ᵃ</td>
</tr>
<tr>
<td>9.8 (Agar control)</td>
<td>40</td>
<td>0.599±0.07ᵃ</td>
<td>0.471±0.70ᵃ</td>
<td>0.286±0.14ᵃ</td>
</tr>
</tbody>
</table>

Different letters within a column indicate significant differences at p ≤ 0.05 by Tukey test (n=15). Values ± SD.

Physiological parameters: Chlorophyll a, b and carotenoids

In terms of the quality of in vitro plants, the effects of the factors involved in the management of the contents of the active pigments in the photosynthetic process are analyzed. No significant differences were observed for the variables chlorophyll a, chlorophyll b and carotenoids for the factors auxin and sucrose for in vitro shoots of papaya at 17 days of culture between the different treatments and the control (Table 6); significant differences were however observed in the assessments at 27 and 37 days as shown in Figures 2 and 3. At 27 days of culture there was a significant interaction between auxin and sucrose factors influencing the variable chlorophyll a. In Figure 2A as seen, when there was no sucrose in the culture medium without auxin, the plant produces significantly more chlorophyll a. Also, at 27 days there was a significant interaction between auxin and sucrose factors influencing the response of the variable chlorophyll b. As shown in Figure 2B when no sucrose was added to the culture medium, the plant produces significantly more chlorophyll b when there was no auxin than when the medium was supplemented with it. In the presence of sucrose, production levels of chlorophyll a and b decreased independently of the presence of auxin. With increasing levels of sucrose in the culture medium, production levels of chlorophyll a and b remain low regardless of the presence or absence of auxin. The response is quite similar for both molecules in this species. There was no interaction between the factors sucrose and auxin, only that sucrose was significant, influencing the response of the variable carotenoids content. When no sucrose was added to the culture medium, the plant produces significantly more carotenoids. As long as there is sucrose in the culture medium, this production was reduced significantly, although between the concentrations between 10 and 20 g L⁻¹ of sucrose this decrease is not significant (Figure 2C).
Figure 2. Effect of sucrose and IBA on the concentration of chlorophyll a, b, and total carotenoids content in the leaf of *in vitro* papaya (*Carica papaya* L. var. Red Maradol) plants growing in culture vessel with increased ventilation and zeolite as support at 27 days of culture (A) Chlorophyll a (B) Chlorophyll b and (C) Carotenoids content. Reference: (0) without IBA and (1) 9.8 µM of IBA. Statistical difference between means according to the Fisher LSD test at p ≤ 0.05.

At 37 days of culture, there was a significant interaction between the factors sucrose and auxin influencing the response of the variable chlorophyll a (Figure 3A). When there is no sucrose in the culture medium, the plant produces significantly more chlorophyll a than when there is no auxin. In the presence of sucrose, the production...
Figure 3. Effect of sucrose and IBA on the content of chlorophyll a, b, and total carotenoids content in the leaf of *in vitro* papaya (*Carica papaya* L. var. Red Maradol) plants growing in culture vessel with increased ventilation and zeolite as support at 37 days of culture (A) chlorophyll a (B) chlorophyll b and (C) carotenoids content. Reference: (0) without IBA and (1) 9.8 µM of IBA. Statistical difference between means according to the Fisher LSD test at $p \leq 0.05$.

Levels of chlorophyll a decreased regardless of the presence of auxin, but this decrease is significant in the case that there is no auxin for the greater concentration for sucrose, without differences in the case of 10 g L$^{-1}$. Sucrose alone had a significant influence on the content of chlorophyll b (Figure 3B). When there was no sucrose
added to the culture medium, the plants produced significantly more chlorophyll b. As long as there is sucrose in the culture medium, this production decreased, without being significant between the concentrations of 10 and 20 g L⁻¹ sucrose. Sucrose alone had a significant influence on chlorophyll b at 37 days of culture. It is observed that when there is no sucrose in the culture medium, the plant produces significantly more chlorophyll b. Sucrose also had a significant effect influencing the variable carotenoids. When there was no sucrose in the culture medium, the plant produces significantly more carotenoids (Figure 3C). As long as there is the presence of sucrose in the culture medium, the production of these chlorophyll pigments decreased significantly, even though between the two concentrations of sucrose this decrease is not significant.

Physiological parameters: Photosynthesis and transpiration

Best photosynthetic values were achieved when the *in vitro* shoots were grown in culture medium with auxin and different concentrations of sucrose, even though they were also high in the treatment without the presence of IBA and without sucrose at 17 days of culture. In photomixotrophic culture conditions, transpiration levels were low with respect to the heterotrophic and photomixotrophic conditions. This is due to the presence of sucrose in the culture medium which the plant used as an energy source and it was not required for an increase in the photosynthetic activity and thus the opening and closing of the stomata, which made the transpiration levels so low. Nevertheless, the lowest levels of transpiration was obtained in plants grown in 20 g L⁻¹ sucrose since the osmotic potential of the culture medium was higher, therefore for *in vitro* plants it is more difficult to take up water and hence transpiration rate was lower. For photomixotrophic conditions in the absence of the auxin, the plants did not have any roots at 17 days of culture, which resulted in a high rate of photosynthesis, but also high transpiration and having no roots to take up water for photosynthesis they had to have a greater stomata activity for the intake of CO₂, causing a greater transpiration (Table 7).

Plants grown in photomixotrophic conditions and without auxin, presented the lowest values of photosynthesis. In this regard, Rolland et al. (2002), Amiard et al. (2005); Jo et al. (2009) refer to plants that were grown in culture medium with sucrose, exhibited reduced photosynthesis, probably due to the presence of a sufficient energy source (sugar) and other metabolic activities. Franck et al. (2006) reported that sucrose plays a central role in the mechanism mediating control of the regulation by decreasing photosynthesis. The low rate of substrate regeneration for the carboxylation of ribulose bisphosphate (RuBP) due to the accumulation of soluble sugars in the leaves is the possible result in the inhibition of photosynthesis (Azcon-Bieto, 1983).

However, results obtained by these authors indicate that a greater amount of starch granules found in the chloroplasts of leaves of plants grown in the greenhouse probably were part of the storage product. On the contrary, in *in vitro* seedlings they did not show any starch granules, probably because the rate of photosynthesis is low or exogenous sucrose caused a negative feedback on the enzyme level of the plastid for starch biosynthesis (Krapp and Stitt, 1994). However, plants grown in photomixotrophic conditions and auxin, had high photosynthetic rate equal to those grown in photomixotrophic conditions, this might be because these plants began to develop their rooting system, which offset the loss of water for photosynthesis, making efficient use of water (Table 7).

Photosynthesis in plants grown on agar (heterotrophic control) was very low compared with their high transpiration rate, a reason that adds to the justification for the zero survival assessed at 17 days after planting in the acclimatization phase. This demonstrates the low ability to control water loss of these plants in heterotrophic

Table 7. Effects of the interaction sucrose AIB on the photosynthetic activity (µmol CO₂ m⁻²s⁻¹) and transpiration (mmol H₂O m⁻²s⁻¹) in *in vitro* papaya plants (*Carica papaya* L. var. Red Maradol) cultured in culture vessels with increased ventilation and zeolite as a support at 17 days of culture.

<table>
<thead>
<tr>
<th>IBA (µM)</th>
<th>Sucrose (g L⁻¹)</th>
<th>Photosynthesis (µmol CO₂ m⁻²s⁻¹)</th>
<th>Transpiration (mmol H₂O m⁻²s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>8.360±3.05<sup>b</sup></td>
<td>11.221±1.05<sup>a</sup></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>3.766±1.56<sup>b</sup></td>
<td>3.335±0.81<sup>a</sup></td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>3.611±1.30<sup>b</sup></td>
<td>2.767±1.28<sup>b</sup></td>
</tr>
<tr>
<td>9.8</td>
<td>0</td>
<td>8.892±1.47<sup>c</sup></td>
<td>4.701±0.91<sup>c</sup></td>
</tr>
<tr>
<td>9.8</td>
<td>10</td>
<td>8.957±1.30<sup>a</sup></td>
<td>3.881±0.73<sup>b</sup></td>
</tr>
<tr>
<td>9.8</td>
<td>20</td>
<td>8.716±1.65<sup>d</sup></td>
<td>1.936±1.07<sup>d</sup></td>
</tr>
<tr>
<td>9.8 (Agar control)</td>
<td>40</td>
<td>3.643±2.75<sup>b</sup></td>
<td>8.194±1.56<sup>b</sup></td>
</tr>
</tbody>
</table>

Different letters within a column indicate significant differences at p ≤ 0.05 by Tukey test (n=15). Values ± SD.
culture conditions. The levels of photosynthetic pigments also corresponded with this result given their involvement in the photosynthetic process. When sucrose was zero, the contents of carotenoids and chlorophylls were high and also appear to achieve good performances of the collecting antennas and the light producing complexes which integrate the photosystems involved and which constitute the pigments analyzed and other components. Although, the content of chlorophyll is not a direct indicator related to the photosynthetic capacity (Fujiiwara et al., 1992); this is a good indicator of the state of the photosynthetic apparatus (Seon et al., 2000). This happened when the in vitro papaya plants were evaluated at 17 days of culture in the different treatments with and without photoautotrophic culture conditions where there were no significant differences observed among them; however, when determining the photosynthetic rate, there were significant differences between the different treatments as shown in Table 7. In this regard, Iarema et al. (2012) obtained the same response on analyzing the content of chlorophyll pigments and carotenoids of in vitro plants of Brazilian ginseng [P. glometata (Spreng.) Pedersen] cultured in the absence of sucrose and in the culture vessel with greatest level of exchange or ventilation and hence had an increase in the photosynthetic activity.

However, other authors reported the increase of photosynthetic pigments and increased photosynthetic activity in in vitro shoot cultured of Limonium spp. (Lian et al., 2002) and in Dendrobium candidum Wall. ex Lind (Xiao et al., 2007). The results obtained in this study support those reported by Kozai and Kubota (2005) on the benefits of photoautotrophic micropropagation over conventional micropropagation. The benefits from a biological point of view include: (1) promoting growth and photosynthesis; (2) high rates of survival and a smooth transition to environmental conditions ex vitro; (3) elimination of morphological and physiological disorders; (4) no callus formation at the base of the explant and (5) less plant lost due to contamination by microorganisms.

Ex vitro acclimatization

The treatment without sucrose and 9.8 µM IBA reached the highest percentage of survival which are suitable for rooting percentage that had in vitro papaya plants at 17 days of culture (Table 2 and Figure 1F). The treatments with the presence of auxin had the highest percentages of rooting, which corresponded to those of the greatest survival. The problem of very low survival is confirmed if appropriate management strategies are not performed that guarantee better quality of in vitro plants, with emphasis on their rooting pattern, and treatments without IBA at 17 days of culture (Table 2). Afreen-Zobayed et al. (2000) report that, in sweet potato 90% achieved survival of plants cultured in vitro in photoautotrophic conditions compared to 73% of those grown on agar. Kozai et al. (2005) reported in the species Calla Lily (Zantedeschia eliottian L.), 95% survival (photoautotrophic conditions) at 12 days after transplanting to acclimatization phase relative to 60% of plants grown in heterotrophic conditions. Also, in the species China fir (Cunninghamia lanceolata (Lambert) Hooker) only 16% survival in in vitro plants cultured in heterotrophic conditions was obtained and 95% in photoautotrophic. However, Jo et al. (2009) report that the best results in ex vitro acclimatization was reached for Alocasia amazonica plants cultured with 3.0% sucrose and not those that were cultured in autotrophic conditions.

Conclusion

The management of papaya plants var. Red Maradol obtained through somatic embryogenesis during the transition in vitro-ex vitro integrated by using zeolite as a support, the combination of zero or low levels of sucrose, increased ventilation and use of auxin IBA (9.8 µM) as an inducer of rooting, improve the quality of the plants and thus their survival.

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGEMENTS

We are also grateful to MD. Terrence Gilliard, from Biotechnology Lab, of Saint Lucia Island for his kind help in revising the English language.

REFERENCES

Calamar A, de Klerk GJ (2002). Effect of sucrose on adventitious root

Full Length Research Paper

The effects of exotic weed *Flaveria bidentis* with different invasion stages on soil bacterial community structures

Chaohe Huangfu, Huiyan Li, Xinwei Chen, Hongmei Liu and Dianlin Yang*

Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China.

Received 22 April, 2015; Accepted 31 August, 2015

A new exotic weed, *Flaveria bidentis*, is spreading in central China where it forms dense monospecific patches modifying the structure of different native ecosystems and threatening native aboveground biodiversity. However, little is known about the consequences of such an invasion for soil bacterial community, especially its effect pattern at different invasion stages. In this study, soil samples were taken in native ecosystems that were uninvaded, partially invaded (transition), and severely invaded by *F. bidentis*. The bacterial richness and diversity in *F. bidentis* invasion rhizospheres soil was evaluated using denaturing gradient gel electrophoresis (DGGE) analysis. Different stages of *F. bidentis* invasion can trigger changes in soil physicochemical properties in particularly in available N and P. *F. bidentis* invasion significantly decreased the richness of soil bacterial community, and the decline contents were positively correlated with invasion progress. In the invaded soils, bacterial species in *Proteobacteria*, *Chloroflexi* and *Actinomycetes* decreased with invasion, with the greatest reduction in relative abundance occurring for *Proteobacteria*, which was the dominant species in the native soils. Invasion of *F. bidentis* corresponded with an alteration in the structure of soil bacterial community, and soil microbial biomass as well, thus soil environment modification was expected to promote spreading of this exotic weeds in turn.

Key words: Biological invasion, *Flaveria bidentis*, soil nutrients, soil bacteria, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE).

INTRODUCTION

Biological invasion has become a global ecological and economic problem. Understanding the impact of invasive species on the local ecological systems has gained increased attention in invasive ecology (Ehrenfeld et al., 2001). Invasive species employ very complex and multiple mechanisms and strategies (Mack et al., 2000). Once establishing in a new environment, exotic weeds can replace the native species, causing above vegetable...
structural changes in the native ecological system. Soil microorganisms play an important role in the successful spread of exotic weeds (Hierro et al., 2005). Altered soil microbial communities and resulting effects on ecosystem processes may be an invisible legacy of exotic weed invasions by rhizosphere microbe and the host plants have an inter-dependent and mutual constraint relationship, which is the reason that why certain rhizosphere microbial communities only co-exist with specific plant species (Schloter, 2003). It has also been suggested that exotic weeds could disrupt mutualistic associations within native microbial communities (Richardson et al., 2000; Callaway and Ridenour, 2004; Stinson et al., 2006). Alteration in the structure and function of soil microbial communities could eventually lead to changes in the vegetation structures (Callaway et al., 2013). Among soil microbial communities, bacteria associated with plant roots are fundamentally important in plant nutrition, growth promotion, and disease interactions (Marschner et al., 2001). For this reason, there has been considerable interest in characterizing the structure and function of rhizosphere communities. The bacterial community composition in the rhizosphere is important for the performance of the plant, as bacterial species can have beneficial, neutral or harmful relationships with the roots (Atkinson and Watson, 2000; Sylvia and Chellermi, 2001). It is well accepted that different plant species can be selected for specific rhizosphere communities (Burke et al., 2002; Costa et al., 2006). The differences in root-derived substrates are claimed to explain the plant specific rhizosphere bacterial communities that have been observed for different plant species grown under similar conditions (Marschner et al., 2001; 2002; Smalla et al., 2001).

A new exotic weed, *Flaveria bidentis* (L.) Kuntze, commonly called "yellowtop", is increasing spreading in central China. This species originated from South Africa and was first found in 2001 in suburbs of Tianjin and a few cities of Hebei province (Liu, 2005). It invades roadsides, abandoned field or even arable fields, out-competes natural vegetation, and forms a dense population (Huangfu et al., 2011). This weed tolerates environmental stresses of salinity and cold temperature, and could become troublesome for the development of sustainable agriculture (Gao, 2004). The function and population of rhizosphere microbes also undergo various alterations to allow the establishment of the invasive species. However, there is little information on the impact on soil bacterial diversity and mechanism upon invasion by the exotic weeds (Lorenzo et al., 2010).

This study aimed (1) to examine the effects of different stages of *F. bidentis* invasion on soil physicochemical properties and (2) detect the effects of different degrees of *F. bidentis* invasion on the community structure of bacteria in soils. We hypothesize that (1) increasing stages of *F. bidentis* invasion enhance soil nutrient element concentrations (especially soil N) because invasive plants have high nutrient cycling rates, especially for N (van Kleunen et al., 2010; Laungani and Knops, 2009; Jones and Chapman, 2011), and that (2) *F. bidentis* invasion significantly increases the richness and diversity of the soil bacterial community along the invasion gradients. Also, the changes in soil bacterial communities were associated with soil physicochemical properties. Towards these aims, we used the PCR-DGGE approach together with cloning and sequence analysis of 16S rRNA fragments of soil bacteria upon the invasion process by *F. bidentis*. In our findings will provide fundamental knowledge for soil bacteria diversity upon invasion by alien plant species.

MATERIALS AND METHODS

Site description and sampling

The sampling sites were collected in wasteland ecosystems, a typical system *F. bidentis* infestation (Zhang et al., 2010), located in the Xian County in north China (38°15'30"N, 115°57'50"E) with temperate continental monsoon climate, mean annual precipitation of 560 mm, mean annual temperature of 12.3°C, and its average frostless period lasts 189 days. Geographically, the experimental site had flat land, a uniform landscape, and a similar terrain and soil origin with very minor disturbance by human and animals, and very minimal habitat variation. The soil is alluvial type where *F. bidentis* plants grown as monocultures had formed alternate successions. The following three sites (soil types) with three different levels of invasion by *F. bidentis* were sampled: (a) native soils (the control) mainly dominated by native herbaceous plants, including *Setaria viridis* (L.) Beauv., *Digitaria ciliaris*, *Phragmites australis* and *Echinochloa crusgalli* with coverage of over 60%; (b) transition soils where *F. bidentis* plants covered 10 to 30% of the plot, and (c) invaded soils where *F. bidentis* covered over 60% of the plot. Soil samples were collected on August 10 in 2009. In each of the sampling sites, six plots (repetitions) were randomly chosen each covering 3 × 3 m area with about 10 to 20 m apart from each other. The five points Quincunx sampling scheme was used to collect soil samples in each plots at the 0 to 20 cm depths, and soils within the same plot were pooled and mixed together equally as one replication, thus 18 soil samples collected in total were placed in plastic bags for transport to laboratory. Prior to sampling, all plants and organic matter debris on the ground were removed. Samples were stored at -20°C until analysis. From 1000 g of each soil sample, 20 g were homogenized and subsamples of 5 g were taken for further analysis. To verify the impact pattern found with this invasive plant, sampling was done in following year. Twice sampling data was pooled for soil physicochemical parameters analyses and only once PCR-DGGE fingerprinting was presented given the fact that there were no inter-year differences between treatments detected.

Determination of soil nutrients

Soil NH₄⁺ and NO₃⁻ were extracted by shaking 20 g of fresh soil in 100 ml of 2 M KCl solution for 1 h. Soil extracts were analyzed with the FIAstar 5000 Auto Analyzer system. Total N and P in soil samples were analyzed with oven-dried samples, 48 h at 70°C. The Kjeldahl method was used for analyzing the total nitrogen (N) content of the soil. Soil mineral N was extracted using 2 mol L⁻¹ KCl, then the concentrations of NO₃⁻-N and NH₄⁺-N in the KCl extracts were determined by hydrazine sulfate colorimetry and the concentrations...
of NH₄⁺-N by indophenol blue colorimetry (Mulvaney, 1996). Total phosphorus (P) was extracted using the HClO₄-H₂SO₄ method, and available P was determined using the sodium bicarbonate method.

DNA extraction from soil samples

Total DNA was isolated from soil samples using the PowerSoil® DNA Isolation Kit (MO BIO Laboratories, Inc., CA), following the instruction of the maximum yield method. After a final purification, the soil DNA was visualized on 1% (w/v) agarose gels to assess its purity and molecular size. The final DNA extracts obtained from the soils were color-free, indicating that they did not contain high amounts of humic compounds.

Specific PCR of 16s rRNA gene fragments

For amplification of 16s rRNA fragments, a pair of universal primers consisting of the 357f- GC and 518r (Muyzer et al., 1993) were used to amplify the V3 region of bacterial 16S rRNA. Primer sequences were 357f- GC (5’-GCClamp-CCTACGGGAGGCAGCAG-3’), and 518r (5’-ATTACCCGCG GCTGCTGG-3’). The PCR reaction were carried out in a final volume of 50 μl containing 2 μM of MgCl₂, 200 μM of each dNTP, 0.5 μM of each primer, 50 ng of isolated DNA, 5 μl 10 × PCR buffer, and 2.5U of Ex Taq™ polymerase (Takara Inc., Dalian, China). Touch-down PCR procedure was performed for increasing both the specificity and sensitivity of PCR assays in a thermal cycler (Bio-Rad) (Labbe et al., 2007). After preincubation at 95°C for 5 min, samples were amplified with denaturation for 1 min at 94°C, annealing for 1 min (temperature decreasing 0.5°C per cycle from 65 to 55°C, and then 15 cycles at 55°C), primer extension for 3 min at 72°C, followed by one final extension at 72°C for 15 min. Aliquots (5 μL) of PCR mixture were examined by electrophoresis in an agarose gel (1%, w/v) stained with ethidium bromide to check fragment size and integrity.

DGGE Patterns

DGGE was performed with 8% (w/v) acrylamide gels containing a linear chemical gradient ranging from 40 to 60%.The gels were allowed to polymerize overnight. DNA samples containing 20 μl of the PCR products were electrophoresed in 1× TAE buffer at 60°C at a constant voltage of 120 V for 8 h, and all DGGE analysis was done in the Dcode Universal Mutation Detection System (Bio-Rad, Hercules, CA, USA). After electrophoresis, the gels were stained for 30 min with SYBR gold nucleic acid gel stain (Invitrogen Molecular Probes, Eugene, USA) (10,000-fold diluted in 1× TAE) and photographed under UV light with a video imaging system. Band detection and quantification of band intensity was performed using Quantity One 4.62 software (Bio-Rad, USA). DNA band intensity was normalized by dividing the band intensity of each band by the mean band intensity of the gel. Therefore, both band position and intensity are expressed as relative values. Each peak represents individual groups of species having 16S rRNA sequences with similar melting behavior. The band intensity indicates the relative abundance of the group under these PCR conditions.

Sequence analysis of DGGE bands and phylogenetic analysis

Selected DGGE bands that occurred in majority of samples were excised from the gels and eluted (Kowalchuk et al., 1997). The criteria for selection of bands were that (i) they appeared as a single band in the pool of lanes, (ii) they represented bands in high abundance in the community or (iii) they were of relatively low abundance in the DGGE pattern. It is noteworthy that, in some cases where multiple clones were generated from a given excised band, more than one phyotype was detected from that band. In total, we sequenced 20 different clones, corresponding to 17 excised DNA fragments. These sequences of 16S rRNA genes obtained were submitted to the GenBank to determine the closest known relatives of the partial 16S rRNA sequences and the phylogenetic affiliations are shown in Table 2. Eluted DNA was then amplified using the 518r and 357f primer pair without GC clamp, and PCR products were ligated onto pMD19-T vector (Takara) and transferred into Escherichia coli JM109 competent cells. After positive cloning selection, the white colonies were further screened with vector primer pMD19-T to confirm the positive clones. The positive colonies were cultured in LB broth overnight at 37°C with constant shaking. Aliquots of 500 μL bacterial stocks were mixed with sterile glycerine (50%) and stored at -70°C. The clones of each of excised bands were chosen for sequencing. Sequencing was carried out at Shanghai Biotech Company. Searches in GenBank with the BLAST program (Altschul et al., 1997) were performed to determine the closest known relatives of the partial 16S rRNA sequences obtained. Multiple alignments of the sequences were performed using Clustal X (Thompson et al., 1997). A phylogenetic tree was constructed by the neighbor-joining method in MEGA 4.1 (Tamura et al., 2007). The confidence values for the branches of the phylogenetic tree were determined using bootstrap analysis (Felsenstein, 1985) based on 1000 resamplings. The similarity between sequences was calculated using the GENETYX computer program (Yumoto et al., 1999).

Measurement of soil microbial biomass carbon and nitrogen

Microbial biomass carbon (MBC) and nitrogen (MBN) were measured by a chloroform-fumigation extraction method modified from Vance et al. (1987). Six aliquots of wet soil from each sampling replications equal to 20 g dry weight were placed into 100 ml beakers. Three samples were fumigated whereas the other three were not. Soil was placed on top of the internal shelf in a vacuum desiccators drier that had internal diameter of 29 cm. Below the shelf, 60 ml HPLC grade chloroform and glass beads (to prevent explosion) were put into a 100 ml beaker. After addition of 50 ml 1 mol/L NaOH, the soil was covered with a few layers of wet filter paper. After sealing the drier with Vacuum, asphalt was taken on and chloroform started to boil. Degas was stopped after 5 min, and the samples were stored in darkness at 25°C for 24 h. After removal of the beaker containing chloroform, the soil was degassed again to remove chloroform residuals. The non-steaming treated soil was placed into a separate drier, and the chloroform was replaced with distilled water. After putting the fumigated soil into a 150 ml flask and addition of 60 ml 0.5 mol/l K₂SO₄ (soil: water = 1:4), the mixture was shaken at 25°C and 200 rpm for 30 min. The extracts were filtered through mid-speed filter paper, and the filtrates were measured immediately or stored at -15°C for later analysis. Soil microbial biomass carbon and nitrogen contents were measured using a multi NC3100 TOC/TN instrument (Analytik Jena AG, Germany). MBC and MBN of soil microbes were calculated using the differences in organic carbon and nitrogen between fumigated and non-fumigated soil, divided by the conversion factor of 0.45 (Joergensen, 1996). Data from the same soil type were pooled for analysis.

Statistical analysis

One-way ANOVA and Duncan’s Test as post hoc test were used to check the differences in soil nutrients and microbial biomass C and N, bacterial richness and diversity between different soil types. Richness, defined as number of species, was calculated as the total
Table 1. Changes in soil nutrient contents of different type of soil in *F. bidentis* invaded area.

<table>
<thead>
<tr>
<th>Type of soils</th>
<th>NS<sup>a</sup></th>
<th>TS</th>
<th>IS<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter (g·kg<sup>-1</sup>)</td>
<td>76.02±0.83<sup>b</sup></td>
<td>77.56±0.06<sup>b</sup></td>
<td>80.36±0.51<sup>a</sup></td>
</tr>
<tr>
<td>Total N (g·kg<sup>-1</sup>)</td>
<td>0.81±0.02<sup>b</sup></td>
<td>0.86±0.01<sup>b</sup></td>
<td>1.00±0.01<sup>a</sup></td>
</tr>
<tr>
<td>Total P (g·kg<sup>-1</sup>)</td>
<td>0.75±0.05<sup>a</sup></td>
<td>0.73±0.41<sup>a</sup></td>
<td>0.64±0.13<sup>a</sup></td>
</tr>
<tr>
<td>NH<sub>4</sub>-N (mg·kg<sup>-1</sup>)</td>
<td>7.40±0.49<sup>c</sup></td>
<td>12.92±1.53<sup>b</sup></td>
<td>19.33±0.81<sup>a</sup></td>
</tr>
<tr>
<td>NO<sub>3</sub>-N (mg·kg<sup>-1</sup>)</td>
<td>2.30±0.03<sup>c</sup></td>
<td>4.72±0.06<sup>b</sup></td>
<td>6.28±0.06<sup>a</sup></td>
</tr>
<tr>
<td>Available P (mg·kg<sup>-1</sup>)</td>
<td>9.20±0.25<sup>a</sup></td>
<td>6.50±0.10<sup>b</sup></td>
<td>4.63±0.03<sup>c</sup></td>
</tr>
</tbody>
</table>

^aIS, invaded soils; TS, transition soils; NS, native soils; ^bdifferent lowercase letter within same row means difference at *P* = 0.05 level.

Table 2. Phylogenetic affiliation of sequences retrieved from DGGE bands.

<table>
<thead>
<tr>
<th>Band</th>
<th>Closest relative</th>
<th>Similarity %</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kaistobacter sp.</td>
<td>99</td>
<td>FJ889336.1</td>
</tr>
<tr>
<td>2</td>
<td>Bacteroidetes bacterium clone</td>
<td>100</td>
<td>GU552199.1</td>
</tr>
<tr>
<td>3-7</td>
<td>Actinobacterium</td>
<td>98</td>
<td>EU328001.1</td>
</tr>
<tr>
<td>3-9</td>
<td>Legionella sp.</td>
<td>98</td>
<td>GU598197.1</td>
</tr>
<tr>
<td>4-1</td>
<td>Uncultured bacterium clone</td>
<td>99</td>
<td>EU133920.1</td>
</tr>
<tr>
<td>4-2</td>
<td>Nitrosospira sp. clone</td>
<td>100</td>
<td>GU472862.1</td>
</tr>
<tr>
<td>5</td>
<td>Acinetobacter sp.</td>
<td>97</td>
<td>GU827519.1</td>
</tr>
<tr>
<td>6</td>
<td>Mycobacterium houstonense</td>
<td>94</td>
<td>EU977810.1</td>
</tr>
<tr>
<td>7</td>
<td>Chloroflexus sp.</td>
<td>94</td>
<td>AB257633.1</td>
</tr>
<tr>
<td>8</td>
<td>gamma proteobacterium</td>
<td>94</td>
<td>FJ568411.1</td>
</tr>
<tr>
<td>9</td>
<td>Devosia sp.</td>
<td>100</td>
<td>FJ594685.1</td>
</tr>
<tr>
<td>10</td>
<td>Streptomyces rochei strain</td>
<td>100</td>
<td>HM153701.1</td>
</tr>
<tr>
<td>11</td>
<td>Rhodocyclaceae bacterium</td>
<td>99</td>
<td>EF606817.1</td>
</tr>
<tr>
<td>12</td>
<td>Bacillus sp.</td>
<td>98</td>
<td>EU043767.1</td>
</tr>
<tr>
<td>13</td>
<td>Chloroflexaceae bacterium enrichment</td>
<td>94</td>
<td>EU918581.1</td>
</tr>
<tr>
<td>14</td>
<td>Acidobacteriaceae</td>
<td>99</td>
<td>AM936873.1</td>
</tr>
<tr>
<td>15-17</td>
<td>Chelatococcus sp</td>
<td>98</td>
<td>AM412118.1</td>
</tr>
<tr>
<td>15-19</td>
<td>Uncultured bacterium clone</td>
<td>97</td>
<td>EU546566.1</td>
</tr>
<tr>
<td>16</td>
<td>Nocardioides sp.</td>
<td>100</td>
<td>GU202324.1</td>
</tr>
<tr>
<td>17</td>
<td>Uncultured alpha proteobacterium clone</td>
<td>98</td>
<td>GU552196.1</td>
</tr>
</tbody>
</table>

RESULTS

Changes in soil nutrient contents status

Compared with native soils, the *F. bidentis* invaded soils had obviously higher contents of soil organic carbon, total nitrogen, NO₃-, and NH₄+, but lower contents of soil available phosphorus (*P*<0.05). For example, it was increased by 5.7 and 23.4% in soil organic carbon and total nitrogen, respectively, while available phosphorus was reduced by 49.6% in invaded soil (*P* < 0.05, Table 1).

Impact of invasion by *F. bidentis* on bacteria diversity

16S rRNA fragments amplified from DNA extracted directly from soil samples were compared and only three...
replications of each site were presented due to a relatively high similarity of the DGGE patterns obtained for each of the replicates, which also suggested a low degree of variability caused by sampling (Figure 1). DGGE profiles of amplified 16S rRNA fragments from DNA extracted from the rhizosphere bacterial fractions revealed significant differences of the bacterial fingerprints from different *F. bidentis* invasion stages. Both the strains and number of bacterial reduced in well-invaded soils (Figure 1). Bands that were shared among all the soil samples included bands 2, 4, 6, 12 and 16, indicating that bacteria carrying these genes were common to all types of soil and were not affected by the invasion. The H' were ranked in descending order as native soils (2.96) > transition soils (2.58) > invaded soils (2.33) ($P < 0.05$). Consequently, compared with the control (native soils), the invasion of *F. bidentis* reduced bacterial diversity with invasion progress.

Analysis of the DGGE profiles found were different in soil bacterial community between different soils. The transition soils and the native soils were clustered firstly at similarity index of 0.89 as one group, while the invaded soils distinctly separated from them with similarity of 0.68 ($P < 0.05$). The impact of this exotic weed on soil bacteria was a continuous process; as the invasion intensified some bacterial strains diminished in the soil. By comparing sequencing results, it was found that 20 sequences belonged to six different bacterial phyla with the majority in the division of *Proteobacteria* (Table 2). The similarity of the closest relatives of the partial 16S rRNA fragments of all sequenced bands ranged between 94 and 100%. Bands 2, 4-2, 7, 9, 10 and 16 showed the highest sequence similarity of 100%, respectively. On the other hand, other bands have various similarities with the
similar sequences in the NCBI database. The bands 1, 11 and 14 showed the higher sequence similarity (99%) with those of genus *Kaistobacter*, *Rhodocyclaceae* and *Acidobacteriaceae*, respectively, while bands 6, 8 and 13 only got 94% similarities with assigned sequences, respectively. According to the intensity of the band, a bacterial species that exhibited the higher sequence similarity to genus *Kaistobacter* (99% similarity) (band 1) was one of the most predominant during invasion of *F. bidentis*.

Impact of *F. bidentis* invasion on soil MBC and MBN

This result indicates that *F. bidentis* invasion led to alteration of microbial carbon metabolism in the soil (Figure 2). Upon the invasion of *F. bidentis*, soil MBC increased accordingly. The MBC content was ranked in descending order as following: invaded soils > transition soils > native soils. MBC was almost 200% higher in the invaded soils than that of native soils (Figure 2a, $P < 0.05$). The same pattern was found for MBN which increased significantly after invasion by the exotic weed (Figure 2b). However, non-significant effect was detected between the transition soils and the native ones in MBN. Based on MBC and MBN, invasion of *F. bidentis* increased soil nutrient level as suggested in Table 1.

DISCUSSION

The results obtained partially support our original hypothesis. Firstly, invasion of *F. bidentis* lead to significant increases in soil N, organic matter, but decrease in available P. Because the genus of *Flaveria* is extensively cloned by arbuscular mycorrhizal fungi, the fungi known to help plant uptaking phosphorus from soils that are P-deficient for plant growth (Aziz et al., 1995; Bagayoko et al., 2000), further research should focus on possible competitive relationship in uptake of phosphorus between *F. bidentis* and native plant species. As a result, the decrease of phosphorus was attributed to the high uptake by this exotic weeds and the competition of exotic weeds with the soil community. Secondly, we found that invasion of *F. bidentis* was associated with significant increases in total soil N, C, organic matter and exchangeable P, but reduced soil bacterial diversity index, contrary to findings of Sanon et al. (2009). According to the positive feedback hypothesis, exotic weeds may cause soil-based ecosystem processes change following invasion, and such changes could establish positive feedbacks that enhance the spread of the exotic (Ehrenfeld et al., 2001). Our study suggests that number and diversity of soil bacteria changed, that the invasion of *F. bidentis* propagated certain groups of bacteria while suppressing others. Even some bacterial were common to all type soils, but plant species will eventually alter structure of soil bacterial community (Briones et al., 2002).

Many phytopathogenic organisms, bacteria as well as fungi, have coevolved with plants and show a high degree of host specificity (Raaijmakers et al., 2009). As the invasion progressed, the soil bacterial community structures also underwent significant changes as suggested by similarity analysis of the DGGE fingerprints where invaded soils clustered separately from native soils in the cluster analysis.

A decrease of bacterial diversity and increase of microbial biomass could be also caused by an increase of fungal biomass (Schimel et al., 1999). Alteration of native microbial community composition may further decrease competition from native plants and therefore support *F. bidentis* dominance as suggested by Rudgers and Orr (2009). *F. bidentis* can release allelopathic compounds (kaempferol, quercetin) (Xie et al., 2010; Iwashina, 2003), which may inhibit the growth of many microorganisms. It was found that extracts of *F. bidentis* from both leaves and roots reduced seed germination and seedling growth of native plant species (Huangfu et al., 2011). Therefore, allelopathic compounds produced

![Figure 2](image-url). Mean microbial biomass (±SE) carbon (a), and nitrogen (b) for the different soil communities. NS, native soils; TS, transition soils; IS, invaded soils.
by *F. bidentis* may be responsible for alterations in microbial biomass pools but further study is needed.

Our previous study has shown that *F. bidentis* invasion significantly decreases soil pH values (Zhang et al., 2010). This result may be mainly attributed to the fact that this invasive plant has high ammonium uptake rates as suggested by our study (unpublished data). The metabolic activities and community structure of soil microorganisms were highly correlated with soil pH values (Hackl et al., 2005; Högberg et al., 2007). Thus, we believe that changes in soil pH values mediated by *F. bidentis* invasion can enhance the succession of soil microbial communities in the rhizosphere and facilitate further invasion. With the widespread introduction and invasion of exotic weeds there are many studies that investigate alteration of basic ecosystem structure and function.

However, studies concerning invasive processes, information about changes in the impact over time is rarely available (Souza-Alonso et al., 2015). Some studies found that changes in soil properties as C or N contents and microbial properties soil ecosystem parameters are more pronounced after a long period of invasion (Marchante et al., 2008). Nevertheless, recent findings suggest that both ecological and adaptation processes may increase or attenuate the impact of invaders on the resident community, and that the impact of an invasive species on soil characteristics and on the structure and function of microorganisms does not necessarily remain constant or accumulate over the course of invasion (Strayer, 2012; Dostál et al., 2013). Our study sought to determine the effects of different stages of plant invasion on soil bacterial communities to better understand the mechanism of plant invasion. Different stages of *F. bidentis* invasion can trigger changes in soil physicochemical properties, in particularly in available N and P. *F. bidentis* invasion significantly decreased the richness of soil bacterial community, and the decline contents were positively correlated with invasion progress. Changes in the soil physicochemical properties and community structure of soil bacterial communities mediated by *F. bidentis* invasion may play an important role in facilitating further invasion.

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGMENTS

This research was financially supported by the Natural Science Foundation of Tianjin (12JCNJJC09800), and Special Fund for Agro-scientific Research in the Public Interest (201103027).

REFERENCES

the transforming growth factor-beta and Wnt pathways in mammmary and intestinal tumorigenesis. Cancer Res. 67: 75–84.

Extraction and characterization of *Retama monosperma* fibers

AIZI Djamel Eddine* and KAID HARCHE Meriem

Laboratoire des productions valorisations végétales et microbiennes (LP2VM), université des sciences et de la technologie d’Oran Mohamed Boudiaf, B.P. 1505 El M’Naouar, Oran 31000, Algérie.

Received 22 June, 2015; Accepted 31 August, 2015

The aims of this study were to determine the good conditions for fibers extraction from *Retama monosperma* leaves and their mechanical, physical and chemical characteristics. The fibers were extracted using a range of NaOH concentration from 1 to 16% in a period of treatment of 1 to 24 h, coupled with a physical treatment. For the evaluation of physico-mechanical characteristics, 200 samples were performed in the tensile test. The biochemical composition of the fibers was determined after separation of the parietal compounds. The results show that the best fiber yield was 11.51% obtained by a treatment of 14% NaOH for 8 h, followed by a physical treatment. The fibers biocomposition was 87.3% of cellulose, 7.5% of hemicelluloses and 1% of lignin. The Young’s modulus was 13.3 GPa, tensile strength was 110 MPa and density was 1.3 g/cm³. The average fiber length was 155.7 mm. The fibers yield and characteristics showed that *R. monosperma* plant may in future be suitable source for natural fibers.

Key words: *Retama monosperma* young stems, fibers, extraction, characterization.

INTRODUCTION

The composites industry began since the 20th century, and in the same time, fibers industry saw an exponential growth. In that period, the most fibers used frequently in composite industry were synthetic fibers such as carbon, graphite, and glass fibers. The impact of this industry on the environment was very heavy. Today, natural fibers seem to be an effective solution for the production of fully biodegradable materials for replacing of some synthetic fibers (Belaadi et al., 2013; Mylsamy and Rajendran, 2010). Among the natural fibers, vegetable fibers have many advantages: availability, recyclability, low-cost, eco-friendly, no toxicity, biodegradability, mechanical performance and easy extractability (Bledzki and Gassan, 1999; Reddy and Young, 2005; Béakou et al., 2008). Without cotton and wood fibers, the annual world production of vegetable fibers is 6200 kt (Rajendran, 2011). The Jute fibers are half of the global production, followed with coco 16 and flax 13% (FAO, 2010). At present, the most used plant in the extraction of fibers are sisal, hemp, flax and bamboo by using different plants parts such as: bast, leaf, seed, fruit, wood, stalk, and grass fibers (Mawaikambo, 2006). Currently, researchers do many studies on the characterization of new lignocellulosic fibers as Okra (De Rosa,
2010; De Rosa, 2011), *Posidonia oceanica* (Khiari et al., 2011), *Artichoke* (Fiore et al., 2011) and *Grewia tilifolia* (Jayaramudu et al., 2010). In Algeria, there are many plants which can be used in the extraction of fibers (Kaid-Harche, 1985; Kaid-Harche et al., 1990; Benahmed et al., 2006) but until now there are any studies on these plants. In this study we focused on *Retama monosperma*; this plant is natively from North Africa and some parts of southern Europe. In Algeria, this plant occupies a considerable area (Thoma, 1968). To the best of our knowledge, actually, the only use of this plant is for dune fixation and for fighting against desertification.

The aims of this study were the establishment of a fiber extraction protocol from *R. monosperma* leaves and characterization of extracted fibers. In general, for fibers extraction there are three different ways; chemical, mechanical and biological. In this study we used coupling techniques, chemical and physical. After extraction, the fibers were characterized with the different tests.

MATERIALS AND METHODS

Plant materials

In this study, we used a freshly harvested young leaves.

Fibers extraction

Physicochemical procedure

For the first time, an extraction protocol of *R. monosperma* fibers is established. The determination of the extraction parameters appears mandatory to define the appropriate protocol for the best fibers yield. The procedure used to obtain fibers is based on the principle of treatment combination, (chemical and physical) unfolding in four steps: pretreatment, chemical dissociation, physical dissociation and post-treatment.

Pretreatment

Pretreatment aims to eliminate the protoplasmic content. To this end three samples of 25 g were studied: i. the first sample (T1), was treated for 24 h with a mixture of chloroform / methanol (v/v); ii. the second sample (T2), was placed in an acetone bath for 10 min followed by another bath of isopropanol for 10 min as well. The sample was then transferred into an ethanol bath for 20 min at 90°C and last, it was washed with water; iii. The third sample (T), non-treated was used as a control.

Chemical dissociation

Alkaline dissociation was carried out by using sodium hydroxide (NaOH) at 14% for 24 h at 70°C. Then, the three samples were washed with water to neutralize them, and to finally separate the fibers.

Physical dissociation

It consists in proceeding to an autoclaving. Pressure and temperature are important factors in fibers dissociation. The three samples underwent the same treatment for 30 min at a pressure of 1.0 bar and a temperature of 121°C.

Post-treatment

After drying in ambient air, the fibers were separated by a manual carding. This step consists in removing the impurities and obtaining fine fibers.

Optimization of extraction conditions

Effect of NaOH concentration

Different concentrations of NaOH were tested (4, 6, 8, 10, 12, 14 and 16%) to determine the optimal concentration for the best dissociation of fibers. The treatment for each one has been 24 h.

Effect of processing time

The experience to determine the reaction time of the alkaline solution was carried out at different periods: 1, 2, 3, 4, 6, 12 and 24 h.

The effect of pressure

The experiment was conducted on two samples; one underwent a pressure of 2.2 bar at a temperature of 121°C, while the second (control) underwent no pressure.

Fiber characterization

Density

The fibers were dried at 100°C for 24 h, cut at the same length and put in pycnometer for density.

Fibers tenacity

The strength of fibers was determined with a Zwick tensile testing machine. The fibers were placed with clips between two rods separated with 2 cm. A tensile force was applied to the fiber breakage. The test was repeated 200 times.

Fineness

According to Fiore et al. (2011), fiber fineness was defined by the separation degree expressing the number of fiber bundles contained in 1 mg of raw material. The fibers were manually parallelized and cut to a length of 1 cm each. The fiber bundles were placed one by one on a balance with a clamp, until the weight of all fibers reached 1 mg. The number of fibers counted represents the separation degree.

Swelling test

Swelling of fibers due to water absorption was observed with a microscope provided with graduate objective. Three fibers removed from fiber bundles were placed in parallel direction on a glass slide. The fiber diameter was measured after 2 h distilled water immersion. Fibers diameter measurements were taken before and after immersion. The percentage in fiber diameter due to swelling was determined on 30 different fibers.
Table 1. The result of the extraction of fibers.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Weight (g)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1.41</td>
<td>10.6</td>
</tr>
<tr>
<td>T1</td>
<td>1.27</td>
<td>9.6</td>
</tr>
<tr>
<td>T2</td>
<td>1.07</td>
<td>6.72</td>
</tr>
</tbody>
</table>

Figure 1. Fibers aspect. A. Before combing. B. After combing.

Floatability

Thirty single fibers were subjected to the following treatment: with a metal hook, one fiber was placed horizontally to the surface of deionized water till the fiber touched the water surface. The hook was removed gently, and the behavior of the fiber was observed (floating or sinking) for 5 min.

Chemical composition (Chaa et al., 2008)

A method based on the compounds selective dissolving was applied to determine the amount of each ligno-saccharide components (lignin, pectin, cellulose and hemicelluloses) presents in *R. monosperma* fibers.

Fibers biometrics

Fiber’s length and width of 30 fibers and fibrils were determined under microscopes provided with graduated objective.

RESULTS AND DISCUSSION

Extraction of fibers

Chemical dissociation

In Table 1, the obtained results show that the first batch of samples T (non-treated) presented a yield of 10.6% (w/w) which is higher than the batches T1 (9.6%, w/w) and T2 (6.72%, w/w). The batch T2 gave the lowest yield of fibers. Treatment with acetone and isopropanol caused a considerable decrease in the yield which was estimated at 3.88% (w/w) compared with the untreated samples T (Table 1). T1 also presented a low fiber yield compared to untreated samples. These results show that the preprocessing step for the removal of cellular contents leads to lower fiber yield. That proves that in the process of extracting fibers, sodium hydroxide was sufficient to eliminate the cell content and also to partially separate the fibers.

Physical dissociation

Autoclaving combines pressure and temperature. These two factors are important in the separation of fibers. Such treatment followed by a carding allows to separate fibers from impurities to obtain fine fibers ready to be used in the industry (Figure 1). Table 2 shows that most of the plants used in the production of fibers have yields which do not exceed 9% except for the case of banana leaves, while the *R. monosperma* gave a higher yield 10.6% (Table 1). This is explained by its high fiber content and their facility to extract.
Unlike other treatments, this method uses a solution of NaOH, or a good alkali. The separation of the fibers is achieved only if a mechanical pressure is applied, and at a concentration of 14% of sodium hydroxide, the separation of fibers is impossible. These results show that the concentration of sodium hydroxide has an effect on the separation of fibers. This phenomenon is due to the swelling of the cellulose fiber after the relaxation of the natural crystalline structure of the cellulose. Fengel and Wegener (1983) have reported that the different alkali solution (KOH, Ca(OH)2, NaOH) and its concentration have an effect on the degree of swelling and in the transformation into cellulose-II which affects the quality of the fibers. Also, author researchers reported that treatment with Ca(OH)2 decreased the tenacity of fibers more than treatment with NaOH (Arsene et al., 2007). The treatment with sodium hydroxide changes the topography of the surface of the fibers, removing the components of the cuticle, the pectin, and partially the lignin and the hemicelluloses (Mwaikambo et al., 1999).

Optimization of the extraction of the fibers

Effect of the concentration of NaOH

The results obtained (Table 3) show that the yield of fiber was positively proportional to the concentration of sodium hydroxide. The best yield obtained was 10.60% with a concentration of 14% of Soda. Beyond this concentration, the yield decreases. It is also important to note that at a concentration less than 4% of sodium hydroxide, the separation of the fibers is achieved only if a mechanical pressure is applied, and at a concentration of 1%, the separation of fibers is impossible. These results show that the concentration of sodium hydroxide has an effect on the separation of fibers. This phenomenon is due to the swelling of the cellulose fiber after the relaxation of the natural crystalline structure of the cellulose. The recent studies have shown that Na+ has a favorable diameter for penetrate between crystalline structures and with presence of water molecules to create spaces. In this structure, the -OH groups of the cellulose are converted to -ONa groups, expanding the dimensions of the molecules as it showed on the following reaction:

$$\text{Cell}-\text{OH} + \text{NaOH} \rightarrow \text{Cell} - \text{O}^+\text{Na}^+ \text{H}_2\text{O}^-$$

Subsequent washes with water will remove the Na-ion bonds. NaOH allows a complete transformation of cellulose I network to cellulose II, unlike other alkaline solutions that only lead to a partial transformation of the network (Johnson, 1979; Shenouda, 1979).

Effect of treatment time

Table 4 shows that treatment for 8 h in sodium hydroxide gave the best results than the others treatment time. During the extraction, the reaction of sodium hydroxide disassociates the fibers by breaking the bonds between lignin and polysaccharides of the cell walls (Wang and Sain, 2007). The extraction rate changes in relation to the concentration of NaOH and processing time. Table 4 shows that the ideal time for *R. monosperma* fibers extraction was 8 h. More or less than 8 h processing time, the yield was low, because less than 8 h was insufficient for the reaction of fiber extraction and over than 8 h, the NaOH has degraded the cellulosic fibers, which was undesirable. Sandy and Bacon (2001) reported that alkaline extraction can cause degradation of the cellulose leading to the extraction of nanofibers.

Effect of pressure

The pressure is also an essential element for a good separation of fibers; the pressure facilitates the separation of fibers. The Application of pressure of 2.2 bars gave a yield of 11.51%, whereas without autoclaving the yield was 9.48%.

Fiber’s characterization

Mechanical characteristics

The results of tensile test shows that Young’s modulus of

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Extraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagasse</td>
<td>4.00</td>
</tr>
<tr>
<td>Feuille de Bananier</td>
<td>9.84</td>
</tr>
<tr>
<td>Tronc de bananier</td>
<td>4.46</td>
</tr>
<tr>
<td>Coco</td>
<td>8.77</td>
</tr>
<tr>
<td>Tissu de coco</td>
<td>1.74</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>8.20</td>
</tr>
<tr>
<td>Sisal</td>
<td>1.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NaOH (%)</th>
<th>Weight (g)</th>
<th>Output (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1.30</td>
<td>5.2</td>
</tr>
<tr>
<td>14</td>
<td>2.40</td>
<td>10.6</td>
</tr>
<tr>
<td>12</td>
<td>2.29</td>
<td>9.16</td>
</tr>
<tr>
<td>10</td>
<td>1.72</td>
<td>6.88</td>
</tr>
<tr>
<td>08</td>
<td>1.54</td>
<td>6.16</td>
</tr>
<tr>
<td>04</td>
<td>1.25</td>
<td>5.00</td>
</tr>
<tr>
<td>03</td>
<td>1.25</td>
<td>5.00</td>
</tr>
<tr>
<td>02</td>
<td>1.04</td>
<td>4.16</td>
</tr>
<tr>
<td>01</td>
<td>0.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 2. Extraction rate of fibers in several plant species (Arsene et al., 2007).

Table 3. Yield fibers according to the concentration of NaOH.

<table>
<thead>
<tr>
<th>Treatment time (h)</th>
<th>Output (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>0.0</td>
</tr>
<tr>
<td>08</td>
<td>5.6</td>
</tr>
<tr>
<td>12</td>
<td>4.4</td>
</tr>
<tr>
<td>21</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Table 4. Yield fibers according to treatment time.
Table 5. Mechanical properties of Retama monosperma and some principal fibers (Bledzki and Gassan, 1999; Sandy and Bacon, 2001; Bismarck et al., 2005; Elenga et al., 2009; Elenga, 2009; Agu, 2014).

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Strength (MPa)</th>
<th>Elongation to failure (%)</th>
<th>Young’s modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retama monosperma</td>
<td>110</td>
<td>4.6-4.7</td>
<td>13.3</td>
</tr>
<tr>
<td>Flax</td>
<td>345-1035</td>
<td>1.3-3.3</td>
<td>27.6</td>
</tr>
<tr>
<td>Sisal</td>
<td>600</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Jute</td>
<td>396-773</td>
<td>1.5-1.8</td>
<td>26.5</td>
</tr>
<tr>
<td>Hemp</td>
<td>690</td>
<td>1.6</td>
<td>30-60</td>
</tr>
<tr>
<td>Cotton</td>
<td>287-597</td>
<td>7-8</td>
<td>5.5-12.6</td>
</tr>
<tr>
<td>Raffia texillia</td>
<td>148-660</td>
<td>2</td>
<td>28-36</td>
</tr>
<tr>
<td>Raffia farinifera</td>
<td>500</td>
<td>4</td>
<td>12.3</td>
</tr>
<tr>
<td>Kenaf</td>
<td>700</td>
<td>3</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 6. Density of some vegetable fiber (Sandy and Bacon, 2000; Béakou et al., 2008; Elenga et al., 2009).

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retama monosperma</td>
<td>1.3</td>
</tr>
<tr>
<td>Flax</td>
<td>1.5</td>
</tr>
<tr>
<td>Sisal</td>
<td>1.5</td>
</tr>
<tr>
<td>Jute</td>
<td>1.3</td>
</tr>
<tr>
<td>Hemp</td>
<td>1.15</td>
</tr>
<tr>
<td>Cotton</td>
<td>1.5-1.6</td>
</tr>
<tr>
<td>Rhectohyllum camerunese</td>
<td>0.947</td>
</tr>
<tr>
<td>Raffia texillia</td>
<td>0.75</td>
</tr>
</tbody>
</table>

13.3 GPa was found for R. monosperma fibers (Table 5). Compared to the Raffia farinifera (28-36 GPa), Young’s modulus value of R. monosperma fiber was lower and it was about half that of Jute fiber (26.5 GPa) and Flax fiber (27.6 GPa). But it was higher than cotton which its Young’s modulus ranged between 5.5 and 12.6 GPa according to the literature (Agu, 2014). Thus, the R. monosperma fibers appears to be more flexible than R. farinifera, flax and jute but more rigid than cotton. R. monosperma fibers tensile strength was 110 MPa (Table 5). Mechanical properties have a direct relationship with cellulose crystallinity (Sanadi, 2004; Sena Neto et al., 2013), length (Morlier and Khenfer, 1991), microfibrillar angle, cellulose content, molecular structure (Mukherjee and Satyanarayana, 1986), and fibers orientation (Djoudi et al., 2009). The elongation to failure was about 4.6 to 4.7%. It was higher than Flax (1.3 to 3.3%), Sisal (2 to 2.5%) and Hemp 1.6% but it was lower than cotton (7 to 8%).

Density

R. monosperma fibers density was 1.3 g/cm³. Table 6 shows that R. monosperma fibers density was same like that of jute and sisal fibers but lower than Flax and Sisal fibers density. Raffia texillia fibers density is lower than all vegetable fibers (Elenga et al., 2009). There are a negative correlation between the density and Young’s modulus. When the density is lower, the young’s modulus and strength are higher. In general, vegetable fibers present densities lower than synthetic’s fiber like glass fibers (2.5 g/cm³) (Bledzki and Gassan, 1999).

Swelling test using optical microscope

The absorption capacity of R. monosperma fibers was lower than that of all vegetable fibers represented in Table 7. It was three times lower than Bamboo fibers.

Floatability

The test shows that R. monosperma fibers had a hydrophobic character, which was due to its hydrophobic surface. The hydrophobic surface and the limited absorptive character may be due to treatment with NaOH.

Chemical composition

Polysaccharides composition of R. monosperma fibers was: 87.3% cellulose, 7.5% hemicelluloses, 4.2% pectin...
Table 8. Fiber wall chemical composition (Bledzki and Gassan, 1999).

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Lignine</th>
<th>Hemicellulose</th>
<th>Cellulose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flax</td>
<td>2</td>
<td>12</td>
<td>64.1</td>
</tr>
<tr>
<td>Sisal</td>
<td>9.9</td>
<td>12</td>
<td>65.8</td>
</tr>
<tr>
<td>jute</td>
<td>11.8</td>
<td>12</td>
<td>64.4</td>
</tr>
<tr>
<td>Ramie</td>
<td>0.6</td>
<td>13.1</td>
<td>68.6</td>
</tr>
<tr>
<td>Retama monosperma</td>
<td>1</td>
<td>7.5</td>
<td>87.3</td>
</tr>
</tbody>
</table>

and 1% lignin. The results show that *R. monosperma* fibers were rich in cellulose 87.3%; richer in cellulose than Flax 64.1% and Ramie 68.6%. Fibers with a higher cellulose fraction are more suitable for fibrous applications (Sena Neto et al., 2013). Cellulose is the main structural component of the lignocellulosic fibers, as it provides strength and stability to the cell walls and to all the fiber structure (Paster et al., 2005). Therefore, the cellulose content in a fiber or fiber bundle affects its properties and consequently, its applications. On the contrary, the percentage of the fraction of the hemicelluloses of *R. monosperma* fibers was lower compared to other plants (Table 8).

Morphometric characterization

R. monosperma fibers had an average length of 155.7 mm (Table 1). Compared to kenaf fibers (3 to 7 mm) (James et al., 1999) and to cotton fibers (0.83 mm) (Ververis et al., 2004), *Retama monosperma* fibers were longer. This characteristic interested the textile and biocomposites industry. The morphological characteristics of fibers, length and width are important factors in mechanical characteristics of fibers (rigidity or flexibility). In general, the length of plant fibers is between 100 and 150 mm and width from 10 to 50 µm (Fogtdal, 1990) (Table 9).

Morphology and ultrastructure of *R. monosperma* fibers

Figures 2a and 2b shows the morphological difference between fiber and fiber cell. A fiber (Figure 2b) is composed of many fibers cell called elementary fibers (Figure 2a). The microscopic observation (Figure 2c) shows that elementary fibers have a lumen (indicated with arrow). This characteristic is very interesting for thermal and acoustic insulation. Although, no study has been performed on the insulation performance for each plant fiber. Kymäläinen and Sjöberg (2008) and Hepworth and Brus (2000) reported that there is a link between fiber porosity and thermal property. The SEM observations show clearly the morphology, shape and microstructure of *R. monosperma* fibers (Figure 3a, b and c). One of these fibers was separated from the bundle (Figure 3, a, arrow).

Conclusion

This is the first published paper on the extraction of *R. monosperma* fibers from leaves. Our study shows that this species is very rich in fiber and it is easy to extract them with an interesting yield compared to several plants already exploited, which makes possible its valuation for industrial purposes, especially, if it is a wild plant.
widespread in Algeria and which requires little water. Also, their fibers exhibit interesting properties such as higher cellulose content (86%), high elasticity (4.6 to 4.7%) and low density (1.3mg/cm³). These characteristics enable R. monosperma fibers to be the preferable plant fibers in textile and composite industry. Finally, we recommend further studies for better understanding of the chemical, physical and mechanical characteristics. Furthermore, structural studies such as cellulose crystallinity as well as plant age and seasonal variation are needed for efficient exploitation of this species in Algeria.

Conflict of interests

The authors did not declare any conflict of interest.

REFERENCES

African Journal of Biotechnology

Related Journals Published by Academic Journals

- Biotechnology and Molecular Biology Reviews
- African Journal of Microbiology Research
- African Journal of Biochemistry Research
- African Journal of Environmental Science and Technology
- African Journal of Food Science
- African Journal of Plant Science
- Journal of Bioinformatics and Sequence Analysis
- International Journal of Biodiversity and Conservation