ABOUT AJMR

The African Journal of Microbiology Research (AJMR) (ISSN 1996-0808) is published Weekly (one volume per year) by Academic Journals.

African Journal of Microbiology Research (AJMR) provides rapid publication (weekly) of articles in all areas of Microbiology such as: Environmental Microbiology, Clinical Microbiology, Immunology, Virology, Bacteriology, Phycology, Mycology and Parasitology, Protozoology, Microbial Ecology, Probiotics and Prebiotics, Molecular Microbiology, Biotechnology, Food Microbiology, Industrial Microbiology, Cell Physiology, Environmental Biotechnology, Genetics, Enzymology, Molecular and Cellular Biology, Plant Pathology, Entomology, Biomedical Sciences, Botany and Plant Sciences, Soil and Environmental Sciences, Zoology, Endocrinology, Toxicology. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Contact Us

Editorial Office: ajmr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://academicjournals.org/AJMR
Submit manuscript online http://ms.academicjournals.me/
Dr. Xiaohui Zhou
Molecular Microbiology, Industrial Microbiology, Environmental Microbiology, Pathogenesis, Antibiotic resistance, Microbial Ecology, Washington State University, Bustad Hall 402 Department of Veterinary Microbiology and Pathology, Pullman, USA

Dr. R. Balaji Raja
Department of Biotechnology, School of Bioengineering, SRM University, Chennai, India

Dr. Aly E Abo-Amer
Division of Microbiology, Botany Department, Faculty of Science, Sohag University, Egypt.

Editorial Board

Dr. Haoyu Mao
Department of Molecular Genetics and Microbiology College of Medicine University of Florida Florida, Gainesville USA.

Dr. Rachna Chandra
Environmental Impact Assessment Division Environmental Sciences Sálim Ali Center for Ornithology and Natural History (SACON), Anaikatty (PO), Coimbatore-641108, India

Dr. Yongxu Sun
Department of Medicinal Chemistry and Biomacromolecules Qiqihar Medical University, Qiqihar 161006 Heilongjiang Province P.R. China

Dr. Ramesh Chand Kasana
Institute of Himalayan Bioresource Technology Palampur, Distt. Kangra (HP), India

Dr. S. Meena Kumari
Department of Biosciences Faculty of Science University of Mauritius Reduit

Dr. T. Ramesh
Assistant Professor Marine Microbiology CAS in Marine Biology Faculty of Marine Sciences Annamalai University Parangipettai - 608 502 Cuddalore Dist. Tamilnadu, India

Dr. Pagano Marcela Claudia
Post-doctoral Fellowship at Department of Biology, Federal University of Ceará - UFC, Brazil.

Dr. EL-Sayed E. Habib
Associate Professor, Dept. of Microbiology, Faculty of Pharmacy, Mansoura University, Egypt.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand

Dr. Gokul Shankar Sabesan
Microbiology Unit, Faculty of Medicine, AIMST University Jalan Bedong, Semeling 08100, Kedah, Malaysia

Dr. Kwang Young Song
Department of Biological Engineering, School of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, China.
Dr. Kamel Belhamel
Faculty of Technology,
University of Bejaia
Algeria

Dr. Sladjana Jevremovic
Institute for Biological Research
Sinisa Stankovic,
Belgrade,
Serbia

Dr. Tamer Edirne
Dept. of Family Medicine, Univ. of Pamukkale
Turkey

Dr. R. Balaji Raja M.Tech (Ph.D)
Assistant Professor,
Department of Biotechnology,
School of Bioengineering,
SRM University,
Chennai.
India

Dr. Minglei Wang
University of Illinois at Urbana-Champaign, USA

Dr. Mohd Fuat ABD Razak
Institute for Medical Research
Malaysia

Dr. Davide Pacifico
Istituto di Virologia Vegetale – CNR
Italy

Prof. Dr. Akrum Hamdy
Faculty of Agriculture, Minia University, Egypt
Egypt

Dr. Ntobeko A. B. Ntusi
Cardiac Clinic, Department of Medicine,
University of Cape Town and
Department of Cardiovascular Medicine,
University of Oxford
South Africa and
United Kingdom

Prof. N. S. Alzoreky
Food Science & Nutrition Department,
College of Agricultural Sciences & Food,
King Faisal University,
Saudi Arabia

Dr. Chen Ding
College of Material Science and Engineering,
Hunan University,
China

Dr Svetlana Nikolić
Faculty of Technology and Metallurgy,
University of Belgrade,
Serbia

Dr. Sivakumar Swaminathan
Department of Agronomy,
College of Agriculture and Life Sciences,
Iowa State University,
Ames, Iowa 50011
USA

Dr. Alfredo J. Anceno
School of Environment, Resources and Development (SERD),
Asian Institute of Technology,
Thailand

Dr. Iqbal Ahmad
Aligarh Muslim University,
Aligrah
India

Dr. Josephine Nketsia-Tabiri
Ghana Atomic Energy Commission
Ghana

Dr. Juliane Elisa Welke
UFRGS – Universidade Federal do Rio Grande do Sul
Brazil

Dr. Mohammad Nazrul Islam
NIMR; IPH-Bangalore & NIUM
Bangladesh

Dr. Okonko, Iheanyi Omezuruike
Department of Virology,
Faculty of Basic Medical Sciences,
College of Medicine,
University of Ibadan,
University College Hospital,
Ibadan,
Nigeria
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Giuliana Noratto</td>
<td>Texas A&M University</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Phanikanth Venkata Turlapati</td>
<td>Washington State University</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Khaleel I. Z. Jawasreh</td>
<td>National Centre for Agricultural Research and Extension, NCARE</td>
<td>Jordan</td>
</tr>
<tr>
<td>Dr. Babak Mostafazadeh, MD</td>
<td>Shaheed Beheshty University of Medical Sciences</td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. S. Meena Kumari</td>
<td>Department of Biosciences, Faculty of Science, University of Mauritius</td>
<td>Mauritius</td>
</tr>
<tr>
<td>Dr. S. Anju</td>
<td>Department of Biotechnology, SRM University, Chennai-603203</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Mustafa Maroufpor</td>
<td></td>
<td>Iran</td>
</tr>
<tr>
<td>Prof. Dong Zhichun</td>
<td>Professor, Department of Animal Sciences and Veterinary Medicine,</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Mehdi Azami</td>
<td>Parasitology & Mycology Dept, Baghaei Lab., Shams Abadi St. Isfahan</td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Anderson de Souza Sant’Ana</td>
<td>University of São Paulo.</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Juliane Elisa Welke</td>
<td>UFRGS – Universidade Federal do Rio Grande do Sul</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Paul Shapshak</td>
<td>USF Health, Depts. Medicine (Div. Infect. Disease & Internat Med) and Psychiatry & Beh Med.</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Jorge Reinheimer</td>
<td>Universidad Nacional del Litoral (Santa Fe)</td>
<td>Argentina</td>
</tr>
<tr>
<td>Dr. Qin Liu</td>
<td>East China University of Science and Technology, Jiangnan University</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Xiao-Qing Hu</td>
<td>State Key Lab of Food Science and Technology, Jiangnan University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Prof. Branislava Kocic</td>
<td>Specialist of Microbiology and Parasitology, University of Nis, School of Medicine Institute for Public Health Nis, Bul. Z. Djindjica 50, 18000 Nis Serbia</td>
<td>Serbia</td>
</tr>
<tr>
<td>Dr. Rafel Socias</td>
<td>CITA de Aragón, Spain</td>
<td>Spain</td>
</tr>
<tr>
<td>Prof. Kamal I. Mohamed</td>
<td>State University of New York at Oswego</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Adriano Cruz</td>
<td>Faculty of Food Engineering-FEA, University of Campinas (UNICAMP)</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Mike Agenbag (Michael Hermanus Albertus)</td>
<td>Manager Municipal Health Services, Joe Gqabi District Municipality</td>
<td>South Africa</td>
</tr>
<tr>
<td>Dr. D. V. L. Sarada</td>
<td>Department of Biotechnology, SRM University, Chennai-603203</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Samuel K Ameyaw</td>
<td>Civista Medical Center</td>
<td>United States of America</td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Location</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Prof. Huaizhi Wang</td>
<td>Institute of Hepatopancreatobiliary Surgery of PLA Southwest Hospital, Third Military Medical University, Chongqing 400038, P. R. China</td>
<td></td>
</tr>
<tr>
<td>Prof. Bakhiet AO</td>
<td>College of Veterinary Medicine, Sudan University of Science and Technology, Sudan</td>
<td></td>
</tr>
<tr>
<td>Dr. Saba F. Hussain</td>
<td>Community, Orthodontics and Pediatric Dentistry Department, Faculty of Dentistry, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Zohair I.F.Rahemo</td>
<td>State Key Lab of Food Science and Technology, Jiaogan University, P. R. China</td>
<td></td>
</tr>
<tr>
<td>Dr. Afework Kassu</td>
<td>University of Gondar, Ethiopia</td>
<td></td>
</tr>
<tr>
<td>Prof. Isidro A. T. Savillo</td>
<td>ISCOF, Philippines</td>
<td></td>
</tr>
<tr>
<td>Dr. How-Yee Lai</td>
<td>Taylor’s University College, Malaysia</td>
<td></td>
</tr>
<tr>
<td>Dr. Nidheesh Dadheech</td>
<td>MS. University of Baroda, Vadodara, Gujarat, India. India</td>
<td></td>
</tr>
<tr>
<td>Dr. Omitoyin Siyanbola</td>
<td>Bowen University, Iwo, Nigeria</td>
<td></td>
</tr>
<tr>
<td>Dr. Franco Mutinelli</td>
<td>Istituto Zooprofilattico Sperimentale delle Venezie, Italy</td>
<td></td>
</tr>
<tr>
<td>Dr. Chanpen Chanchao</td>
<td>Department of Biology, Faculty of Science, Chulalongkorn University, Thailand</td>
<td></td>
</tr>
<tr>
<td>Dr. Tsuyoshi Kasama</td>
<td>Division of Rheumatology, Showa University, Japan</td>
<td></td>
</tr>
<tr>
<td>Dr. Kuender D. Yang, MD.</td>
<td>Chang Gung Memorial Hospital, Taiwan</td>
<td></td>
</tr>
<tr>
<td>Dr. Liane Raluca Stan</td>
<td>University Politehnica of Bucharest, Department of Organic Chemistry “C.Nenitzescu”, Romania</td>
<td></td>
</tr>
<tr>
<td>Dr. Muhamed Osman</td>
<td>Senior Lecturer of Pathology & Consultant Immunopathologist, Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia</td>
<td></td>
</tr>
<tr>
<td>Dr. Mohammad Feizabadi</td>
<td>Tehran University of Medical Sciences, Iran</td>
<td></td>
</tr>
<tr>
<td>Prof. Ahmed H Mitwalli</td>
<td>State Key Lab of Food Science and Technology, Jiaogan University, P. R. China</td>
<td></td>
</tr>
<tr>
<td>Dr. Mazyar Yazdani</td>
<td>Department of Biology, University of Oslo, Blindern, Oslo, Norway</td>
<td></td>
</tr>
<tr>
<td>Dr. Ms. Jemimah Gesare Onsare</td>
<td>Ministry of Higher, Education Science and Technology, Kenya</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Dr. Babak Khalili Hadad</td>
<td>Department of Biological Sciences, Roudehen Branch, Islamic Azad University, Roudehen Iran</td>
<td></td>
</tr>
<tr>
<td>Dr. Ehsan Sari</td>
<td>Department of Plan Pathology, Iranian Research Institute of Plant Protection, Tehran, Iran.</td>
<td></td>
</tr>
<tr>
<td>Dr. Snjezana Zidovec Lepej</td>
<td>University Hospital for Infectious Diseases, Zagreb, Croatia</td>
<td></td>
</tr>
<tr>
<td>Dr. Dilshad Ahmad</td>
<td>King Saud University, Saudi Arabia</td>
<td></td>
</tr>
<tr>
<td>Dr. Adriano Gomes da Cruz</td>
<td>University of Campinas (UNICAMP), Brazil</td>
<td></td>
</tr>
<tr>
<td>Dr. Hsin-Mei Ku</td>
<td>Agronomy Dept. NCHU 250 Kuo, Kuang Rd, Taichung, Taiwan</td>
<td></td>
</tr>
<tr>
<td>Dr. Fereshteh Naderi</td>
<td>Physical chemist, Islamic Azad University, Shahre Ghods Branch, Iran</td>
<td></td>
</tr>
<tr>
<td>Dr. Adibe Maxwell Ogochukwu</td>
<td>Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, Nigeria</td>
<td></td>
</tr>
<tr>
<td>Dr. William M. Shafer</td>
<td>Emory University School of Medicine, USA</td>
<td></td>
</tr>
<tr>
<td>Dr. Michelle Bull</td>
<td>CSIRO Food and Nutritional Sciences, Australia</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Márcio Garcia Ribeiro (DVM, PhD)</td>
<td>School of Veterinary Medicine and Animal Science-UNESP, Dept. Veterinary Hygiene and Public Health, State of Sao Paulo, Brazil</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Sheila Nathan</td>
<td>National University of Malaysia (UKM), Malaysia</td>
<td></td>
</tr>
<tr>
<td>Prof. Ebiamadon Andi Brisibe</td>
<td>University of Calabar, Calabar, Nigeria</td>
<td></td>
</tr>
<tr>
<td>Dr. Julie Wang</td>
<td>Burnet Institute, Australia</td>
<td></td>
</tr>
<tr>
<td>Dr. Jean-Marc Chobert</td>
<td>INRA- BIA, FIPL, France</td>
<td></td>
</tr>
<tr>
<td>Dr. Zhilong Yang, PhD</td>
<td>Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health</td>
<td></td>
</tr>
<tr>
<td>Dr. Dele Raheem</td>
<td>University of Helsinki, Finland</td>
<td></td>
</tr>
<tr>
<td>Dr. Li Sun</td>
<td>PLA Centre for the treatment of infectious diseases, Tangdu Hospital, Fourth Military Medical University, China</td>
<td></td>
</tr>
<tr>
<td>Dr. Biljana Miljkovic-Selimovic</td>
<td>School of Medicine, University in Nis, Serbia; Referent laboratory for Campylobacter and Helicobacter, Center for Microbiology, Institute for Public Health, Nis, Serbia</td>
<td></td>
</tr>
<tr>
<td>Dr. Xinan Jiao</td>
<td>Yangzhou University, China</td>
<td></td>
</tr>
</tbody>
</table>
Dr. Endang Sri Lestari, MD.
Department of Clinical Microbiology,
Medical Faculty,
Diponegoro University/Dr. Kariadi Teaching Hospital,
Semarang
Indonesia

Dr. Hojin Shin
Pusan National University Hospital
South Korea

Dr. Yi Wang
Center for Vector Biology, 180 Jones Avenue
Rutgers University, New Brunswick, NJ 08901-8536
USA

Dr. Heping Zhang
The Key Laboratory of Dairy Biotechnology and Engineering,
Ministry of Education,
Inner Mongolia Agricultural University.
China

Prof. Natasha Potgieter
University of Venda
South Africa

Dr. Alemzadeh
Sharif University
Iran

Dr. Sonia Arriaga
Instituto Potosino de Investigación Científica y Tecnológica/División de Ciencias Ambientales
Mexico

Dr. Armando Gonzalez-Sanchez
Universidad Autonoma Metropolitana Cuajimalpa
Mexico

Dr. Pradeep Parihar
Lovely Professional University, Phagwara, Punjab.
India

Dr. William H Roldán
Department of Medical Microbiology,
Faculty of Medicine,
Peru

Dr. Kanzaki, L I B
Laboratory of Bioprospection. University of Brasilia
Brazil

Prof. Philippe Dorchies
Laboratory of Bioprospection. University of Brasilia
Brazil

Dr. C. Ganesh Kumar
Indian Institute of Chemical Technology,
Hyderabad
India

Dr. Farid Che Ghazali
Universiti Sains Malaysia (USM)
Malaysia

Dr. Samira Bouhdid
Abdelmalek Essaadi University,
Tetouan,
Morocco

Dr. Zainab Z. Ismail
Department of Environmental Engineering, University of Baghdad.
Iraq

Dr. Ary Fernandes Junior
Universidade Estadual Paulista (UNESP)
Brasil

Dr. Papaevangelou Vassiliki
Athens University Medical School
Greece

Dr. Fangyou Yu
The first Affiliated Hospital of Wenzhou Medical College
China

Dr. Galba Maria de Campos Takaki
Catholic University of Pernambuco
Brazil

Dr. Kwabena Ofori-Kwakye
Department of Pharmaceutics,
Kwame Nkrumah University of Science & Technology, KUMASI
Ghana

Prof. Dr. Liesel Brenda Gende
Arthropods Laboratory, School of Natural and Exact Sciences, National University of Mar del Plata
Buenos Aires,
Argentina.
Dr. Adeshina Gbonjubola
Ahmadu Bello University,
Zaria.
Nigeria

Prof. Dr. Stylianos Chatzipanagiotou
University of Athens – Medical School
Greecc

Dr. Dongqing BAI
Department of Fishery Science,
Tianjin Agricultural College,
Tianjin 300384
P. R. China

Dr. Dingqiang Lu
Nanjing University of Technology
P. R. China

Dr. L. B. Sukla
Scientist –G & Head, Biominerals Department,
IMMMT, Bhubaneswar
India

Dr. Hakan Parlakpinar
MD. Inonu University, Medical Faculty, Department
of Pharmacology, Malatya
Turkey

Dr Pak-Lam Yu
Massey University
New Zealand

Dr Percy Chimwamurombe
University of Namibia
Namibia

Dr. Euclésio Simionatto
State University of Mato Grosso do Sul-UEMS
Brazil

Dr. Hans-Jürg Monstein
Clinical Microbiology, Molecular Biology Laboratory,
University Hospital, Faculty of Health Sciences, S-581
85 Linköping
Sweden

Dr. Ajith, T. A
Associate Professor Biochemistry, Amala Institute of
Medical Sciences, Amala Nagar,
Thrissur, Kerala-680 555
India

Dr. Feng-Chia Hsieh
Biopesticides Division, Taiwan Agricultural Chemicals
and Toxic Substances Research Institute, Council of
Agriculture
Taiwan

Prof. Dra. Suzan Pantaroto de Vasconcellos
Universidade Federal de São Paulo
Rua Prof. Artur Riedel, 275 Jd. Eldorado, Diadema, SP
CEP 09972-270
Brasil

Dr. Maria Leonor Ribeiro Casimiro Lopes Assad
Universidade Federal de São Carlos - Centro de
Ciências Agrárias - CCA/UFSCar
Departamento de Recursos Naturais e Proteção Ambiental
Rodovia Anhanguera, km 174 - SP-330
Araras - São Paulo
Brasil

Dr. Pierangeli G. Vital
Institute of Biology, College of Science, University of
the Philippines
Philippines

Prof. Roland Ndip
University of Fort Hare, Alice
South Africa

Dr. Shawn Carraher
University of Fort Hare, Alice
South Africa

Dr. José Eduardo Marques Pessanha
Observatório de Saúde Urbana de Belo Horizonte/Faculdade de Medicina da Universidade Federal de Minas Gerais
Brasil

Dr. Yuanshu Qian
Department of Pharmacology, Shantou University Medical College
China

Dr. Helen Treichel
URI-Campus de Erechim
Brazil
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Xiao-Qing Hu</td>
<td>State Key Lab of Food Science and Technology, Jiangnan University, P. R. China</td>
</tr>
<tr>
<td>Dr. Olli H. Tuovinen</td>
<td>Ohio State University, Columbus, Ohio, USA</td>
</tr>
<tr>
<td>Prof. Stoyan Groudev</td>
<td>University of Mining and Geology “Saint Ivan Rilski”, Sofia, Bulgaria</td>
</tr>
<tr>
<td>Dr. G. Thirumurugan</td>
<td>Research lab, GIEE School of Pharmacy, NH-5, Chaitanya nagar, Rajahmundry-533294, India</td>
</tr>
<tr>
<td>Dr. Charu Gomber</td>
<td>Thapar University, India</td>
</tr>
<tr>
<td>Dr. Jan Kuever</td>
<td>Bremen Institute for Materials Testing, Department of Microbiology, Paul-Feller-Str. 1, 28199 Bremen, Germany</td>
</tr>
<tr>
<td>Dr. Nicola S. Flanagan</td>
<td>Universidad Javeriana, Cali, Colombia</td>
</tr>
<tr>
<td>Dr. André Luiz C. M. de A. Santiago</td>
<td>Universidade Federal Rural de Pernambuco, Brazil</td>
</tr>
<tr>
<td>Dr. Dhruva Kumar Jha</td>
<td>Microbial Ecology Laboratory, Department of Botany, Gauhati University, Guwahati 781 014, Assam, India</td>
</tr>
<tr>
<td>Dr. N Saleem Basha</td>
<td>M. Pharm (Pharmaceutical Biotechnology), Eritrea (North East Africa)</td>
</tr>
<tr>
<td>Prof. Dr. João Lúcio de Azevedo</td>
<td>Dept. Genetics-University of São Paulo-Faculty of Agriculture- Piracicaba, 13400-970, Brasil</td>
</tr>
<tr>
<td>Dr. Julia Inés Fariña</td>
<td>PROIMI-CONICET, Argentina</td>
</tr>
<tr>
<td>Dr. Yutaka Ito</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Dr. Cheruiyot K. Ronald</td>
<td>Biomedical Laboratory Technologist, Kenya</td>
</tr>
<tr>
<td>Prof. Dr. Ata Akcil</td>
<td>S. D. University, Turkey</td>
</tr>
<tr>
<td>Dr. Adhar Manna</td>
<td>The University of South Dakota, USA</td>
</tr>
<tr>
<td>Dr. Cícero Flávio Soares Aragão</td>
<td>Federal University of Rio Grande do Norte, Brazil</td>
</tr>
<tr>
<td>Dr. Gunnar Dahlen</td>
<td>Institute of odontology, Sahlgrenska Academy at University of Gothenburg, Sweden</td>
</tr>
<tr>
<td>Dr. Pankaj Kumar Mishra</td>
<td>Vivekananda Institute of Hill Agriculture, (I.C.A.R.), ALMORA-263601, Uttarakhand, India</td>
</tr>
<tr>
<td>Dr. Benjamas W. Thanomsub</td>
<td>Srinakharinwirot University, Thailand</td>
</tr>
<tr>
<td>Dr. Maria José Borrego</td>
<td>National Institute of Health – Department of Infectious Diseases, Portugal</td>
</tr>
<tr>
<td>Dr. Catherine Carrillo</td>
<td>Health Canada, Bureau of Microbial Hazards, Canada</td>
</tr>
<tr>
<td>Dr. Marcotty Tanguy</td>
<td>Institute of Tropical Medicine, Belgium</td>
</tr>
</tbody>
</table>
Dr. Han-Bo Zhang
Laboratory of Conservation and Utilization for Bio-
resources
Key Laboratory for Microbial Resources of the
Ministry of Education,
Yunnan University, Kunming 650091.
School of Life Science,
Yunnan University, Kunming,
Yunnan Province 650091.
China

Dr. Ali Mohammed Somily
King Saud University
Saudi Arabia

Dr. Nicole Wolter
National Institute for Communicable Diseases and
University of the Witwatersrand,
Johannesburg
South Africa

Dr. Marco Antonio Nogueira
Universidade Estadual de Londrina
CCB/Depto. De microbiologia
Laboratório de Microbiologia Ambiental
Caixa Postal 6001
86051-980 Londrina.
Brazil

Dr. Bruno Pavoni
Department of Environmental Sciences University of
Venice
Italy

Dr. Shih-Chieh Lee
Da-Yeh University
Taiwan

Dr. Satoru Shimizu
Horonobe Research Institute for the Subsurface
Environment,
Northern Advancement Center for Science &
Technology
Japan

Dr. Tang Ming
College of Forestry, Northwest A&F University,
Yangling
China

Dr. Olga Gortzi
Department of Food Technology, T.E.I. of Larissa
Greece

Dr. Mark Tarnopolsky
Mcmaster University
Canada

Dr. Sami A. Zabin
Al Baha University
Saudi Arabia

Dr. Julia W. Pridgeon
Aquatic Animal Health Research Unit, USDA, ARS
USA

Dr. Lim Yau Yan
Monash University Sunway Campus
Malaysia

Prof. Rosemeire C. L. R. Pietro
Faculdade de Ciências Farmacêuticas de Araraquara,
Univ Estadual Paulista, UNESP
Brazil

Dr. Nazime Mercan Dogan
PAU Faculty of Arts and Science, Denizli
Turkey

Dr Ian Edwin Cock
Biomolecular and Physical Sciences
Griffith University
Australia

Prof. N K Dubey
Banaras Hindu University
India

Dr. S. Hemalatha
Department of Pharmaceutics, Institute of
Technology, Banaras Hindu University, Varanasi.
221005 India

Dr. J. Santos Garcia A.
Universidad A. de Nuevo Leon
Mexico India

Dr. Somboon Tanasupawat
Department of Biochemistry and Microbiology, Faculty
of Pharmaceutical Sciences, Chulalongkorn University,
Bangkok 10330 Thailand
Dr. Vivekananda Mandal
Post Graduate Department of Botany,
Darjeeling Government College,
Darjeeling – 734101.
India

Dr. Shihua Wang
College of Life Sciences,
Fujian Agriculture and Forestry University
China

Dr. Victor Manuel Fernandes Galhano
CITAB-Centre for Research and Technology of Agro-
Environment and Biological Sciences, Integrative
Biology and Quality Research Group,
University of Trás-os-Montes and Alto Douro,
Apartado 1013, 5001-801 Vila Real
Portugal

Dr. Maria Cristina Maldonado
Instituto de Biotecnologia. Universidad Nacional de
Tucuman
Argentina

Dr. Alex Soltermann
Institute for Surgical Pathology,
University Hospital Zürich
Switzerland

Dr. Dagmara Sirova
Department of Ecosystem Biology, Faculty Of Science,
University of South Bohemia,
Branisovska 37, Ceske Budejovice, 37001
Czech Republic

Dr. E. O Igbinosa
Department of Microbiology,
Ambrose Alli University,
Ekpoma, Edo State,
Nigeria.

Dr. Hodaka Suzuki
National Institute of Health Sciences
Japan

Dr. Mick Bosilevac
US Meat Animal Research Center
USA

Dr. Nora Lía Padola
Imunoquímica y Biotecnología - Fac Cs Vet-UNCPBA
Argentina

Dr. Maria Madalena Vieira-Pinto
Universidade de Trás-os-Montes e Alto Douro
Portugal

Dr. Stefano Morandi
CNR-Istituto di Scienze delle Produzioni Alimentari
(ISPA), Sez. Milano
Italy

Dr. Line Thorsen
Copenhagen University, Faculty of Life Sciences
Denmark

Dr. Ana Lucia Falavigna-Guilherme
Universidade Estadual de Maringá
Brazil

Dr. Baoqiang Liao
Dept. of Chem. Eng., Lakehead University, 955 Oliver
Road, Thunder Bay, Ontario
Canada

Dr. Ouyang Jinping
Patho-Physiology department,
Faculty of Medicine of Wuhan University
China

Dr. John Sorensen
University of Manitoba
Canada

Dr. Andrew Williams
University of Oxford
United Kingdom

Dr. Chi-Chiang Yang
Chung Shan Medical University
Taiwan, R.O.C.

Dr. Quanming Zou
Department of Clinical Microbiology and Immunology,
College of Medical Laboratory,
Third Military Medical University
China

Prof. Ashok Kumar
School of Biotechnology,
Banaras Hindu University, Varanasi
India
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Chung-Ming Chen</td>
<td>Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Dr. Jennifer Furin</td>
<td>Harvard Medical School</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Julia W. Pridgeon</td>
<td>Aquatic Animal Health Research Unit, USDA, ARS</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Alireza Seidavi</td>
<td>Islamic Azad University, Rasht Branch</td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Thore Rohwerder</td>
<td>Helmholtz Centre for Environmental Research UFZ</td>
<td>Germany</td>
</tr>
<tr>
<td>Dr. Daniela Billi</td>
<td>University of Rome Tor Vergat</td>
<td>Italy</td>
</tr>
<tr>
<td>Dr. Ivana Karabegovic</td>
<td>Faculty of Technology, Leskovac, University of Nis</td>
<td>Serbia</td>
</tr>
<tr>
<td>Dr. Flaviana Andrade Faria</td>
<td>IBILCE/UNESP</td>
<td>Brazil</td>
</tr>
<tr>
<td>Prof. Margareth Linde Athayde</td>
<td>Federal University of Santa Maria</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Guadalupe Virginia Nevarez Moorillon</td>
<td>Universidad Autonoma de Chihuahua</td>
<td>Mexico</td>
</tr>
<tr>
<td>Dr. Tatiana de Sousa Fiuza</td>
<td>Federal University of Goias</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Indrani B. Das Sarma</td>
<td>Jhulelal Institute of Technology, Nagpur</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Guanghua Wang</td>
<td>Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Renata Vadkertiova</td>
<td>Institute of Chemistry, Slovak Academy of Science</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Dr. Charles Hocart</td>
<td>The Australian National University</td>
<td>Australia</td>
</tr>
<tr>
<td>Dr. Guoqiang Zhu</td>
<td>University of Yangzhou College of Veterinary Medicine</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Guilherme Augusto Marietto Gonçalves</td>
<td>São Paulo State University</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Mohammad Ali Faramarzi</td>
<td>Tehran University of Medical Sciences</td>
<td>Iran</td>
</tr>
<tr>
<td>Dr. Suppasil Maneerat</td>
<td>Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai</td>
<td>Thailand</td>
</tr>
<tr>
<td>Dr. Francisco Javier Las heras Vazquez</td>
<td>Almeria University</td>
<td>Spain</td>
</tr>
<tr>
<td>Dr. Cheng-Hsun Chiu</td>
<td>Chang Gung memorial Hospital, Chang Gung University</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Dr. Ajay Singh</td>
<td>DDU Gorakhpur University, Gorakpur-273009 (U.P.)</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Karabo Shale</td>
<td>Central University of Technology, Free State</td>
<td>South Africa</td>
</tr>
<tr>
<td>Dr. Lourdes Zélia Zanoni</td>
<td>Department of Pediatrics, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul</td>
<td>Brazil</td>
</tr>
<tr>
<td>Dr. Tulin Askun</td>
<td>Balikesir University</td>
<td>Turkey</td>
</tr>
</tbody>
</table>
Dr. Marija Stankovic
Institute of Molecular Genetics and Genetic Engineering
Republic of Serbia

Dr. Scott Weese
University of Guelph
Dept of Pathobiology, Ontario Veterinary College,
University of Guelph,
Guelph, Ontario, N1G2W1,
Canada

Dr. Sabiha Essack
School of Health Sciences
South African Committee of Health Sciences
University of KwaZulu-Natal
Private Bag X54001
Durban 4000
South Africa

Dr. Hare Krishna
Central Institute for Arid Horticulture,
Beechwal, Bikaner-334 006, Rajasthan,
India

Dr. Anna Mensuali
Dept. of Life Science,
Scuola Superiore
Sant’Anna

Dr. Ghada Sameh Hafez Hassan
Pharmaceutical Chemistry Department,
Faculty of Pharmacy, Mansoura University,
Egypt

Dr. Kátia Flávia Fernandes
Biochemistry and Molecular Biology
Universidade Federal de Goiás
Brasil

Dr. Abdel-Hady El-Gilany
Public Health & Community Medicine
Faculty of Medicine,
Mansoura University
Egypt

Dr. Hongxiong Guo
STD and HIV/AIDS Control and Prevention,
Jiangsu provincial CDC,
China

Dr. Konstantina Tsaousi
Life and Health Sciences,
School of Biomedical Sciences,
University of Ulster

Dr. Bhavnaben Gowan Gordhan
DST/NRF Centre of Excellence for Biomedical TB Research
University of the Witwatersrand and National Health Laboratory Service
P.O. Box 1038, Johannesburg 2000,
South Africa

Dr. Ernest Kuchar
Pediatric Infectious Diseases,
Wroclaw Medical University,
Wroclaw Teaching Hospital,
Poland

Dr. Hongxiong Guo
STD and HIV/AIDS Control and Prevention,
Jiangsu provincial CDC,
China

Dr. Mar Rodriguez Jovita
Food Hygiene and Safety, Faculty of Veterinary Science.
University of Extremadura,
Spain

Dr. Jes Gitz Holler
Hospital Pharmacy,
Aalesund. Central Norway Pharmaceutical Trust
Professor Brochs gt. 6. 7030 Trondheim,
Norway

Prof. Chengxiang FANG
College of Life Sciences,
Wuhan University
Wuhan 430072, P.R.China

Dr. Anchalee Tungtrongchitr
Siriraj Dust Mite Center for Services and Research
Department of Parasitology,
Faculty of Medicine Siriraj Hospital,
Mahidol University
2 Prannok Road, Bangkok Noi,
Bangkok, 10700, Thailand
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the Journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJMR to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or PowerPoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001) References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the African Journal of Microbiology Research is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2015, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the AJMR, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoderma: A scientific approach against soil borne pathogens</td>
<td>2377</td>
</tr>
<tr>
<td>Mukesh Srivastava, Mohammad Shahid, Sonika Pandey, Vipul Kumar,</td>
<td></td>
</tr>
<tr>
<td>Anuradha Singh, Shubha Trivedi, Y. K. Srivastava and Shivram</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobial activity of Taverniera Abyssinica A. Rich against</td>
<td>2385</td>
</tr>
<tr>
<td>human pathogenic bacteria and fungi</td>
<td></td>
</tr>
<tr>
<td>Gemechu Ameya Buli, Abdella Gure and Engda Dessalegn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aflatoxin B1 in commercial granolas</td>
<td>2391</td>
</tr>
<tr>
<td>Marta Rejane Ribeiro dos SANTOS, Francisco das Chagas CARDOSO</td>
<td></td>
</tr>
<tr>
<td>FILHO, Rodrigo Maciel CALVET, Raylender Ribeiro ANDRADE,</td>
<td></td>
</tr>
<tr>
<td>Rosana Martins Carneiro PIRES, Maria Marlúcia Gomes PEREIRA,</td>
<td></td>
</tr>
<tr>
<td>Amilton Paulo Raposo COSTA, Maria Christina Sanches MURATORI</td>
<td></td>
</tr>
</tbody>
</table>
Review

Trichoderma: A scientific approach against soil borne pathogens

Mukesh Srivastava*, Mohammad Shahid, Sonika Pandey, Vipul Kumar, Anuradha Singh, Shubha Trivedi, Y. K. Srivastava and Shivram

Biocontrol Laboratory, Department of Plant Pathology, Chandra Shekhar Azad (CSA) University of Agriculture and Technology, Kanpur-208002, Uttar Pradesh, India.

Received 1 October, 2015; Accepted 3 November, 2015

The members of the genus *Trichoderma* are widely used as bioagent for the control of phytopathogenic fungi in agriculture sectors. The members of this genus are reproducing asexually by the formation of cyanide and chlamydospore, in wild habitats they reproduce by formation of ascospores. *Trichoderma* species are well known for the production of cell wall degrading enzymes (CWDEs). These CWDEs, play a major role in biocontrol mechanism. We all know that all living organisms are made up of genes that code for a particular function. Similarly, in *Trichoderma*, some genes are responsible for the secretion of these CWDEs. These genes, which aid in the biocontrol action, are called biocontrol genes. These bacterial genes code for a particular enzyme and protein that degrade the pathogen cell wall. These biocontrol genes can be isolated and cloned for large scale commercial production. It has also been found that some of the genes of *Trichoderma* are also helpful in the abiotic and biotic stress. The mechanisms which are employed by *Trichoderma* for the phytopathogenic action are generally included atbiosis, mycoparasistism, competition for nutrients, etc.

Key words: *Trichoderma*, biocontrol, phytopathogen, lytic enzymes, biocontrol mechanisms, biocontrol agent.

INTRODUCTION

In recent times, excessive use of chemical pesticides has posed a threat on the environment. *Trichoderma* based biocontrol agents have better ability to promote plant defense response, promote plant growth and soil remediation. *Trichoderma* species has gained wide acceptance as effective biocontrol agents against several phytopathogens. Micropropagules of *Trichoderma* spp. in the form of conidia are preferred over chlamydospores and mycelia biomass because of its viability and stability in field application (Rosane et al., 2008; Chet, 1987).

The genus *Trichoderma* are commonly found in soils and on decaying wood and vegetable matter. Strains of *Trichoderma* are rarely associated with diseases of living plants, although an aggressive strain of *Trichoderma* causes a significant disease of the commercial mushroom and soil borne pathogens. Samuels (1996) provides a comprehensive review of *Trichoderma* spp. for enzyme production and biological control mechanisms. In *Trichoderma* spp., sexual reproduction not present are believed to be mitotic and clonal. The main

Corresponding author. E-mail: biocontrol.csa@gmail.com

Author(s) agree that this article remains permanently open access under the terms of the [Creative Commons Attribution License 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
problem with the nomenclature of *Trichoderma* is pleomorphism present within the genus. In *Trichoderma*, there are two stages, the sexual stage is called Hypocrea (telomorphic) and the asexual stage is called *Trichoderma* (anamorphic). The genus is called Hypocrea/Trichoderma (Druzhinina et al., 2011). However, despite these significant advances in our knowledge about this genus, the full taxonomic history of *Trichoderma* is still not complete, and the detailed description of the taxonomic history of *Trichoderma* remains problematic. A refined classification and identification is necessary for predictive indications about ecology.

Trichoderma is widely used for the control of many soil borne plant pathogens. *Trichoderma* spp. are the efficient producer of cell wall degrading enzymes (Srivastava et al., 2014a); some of these enzymes are of commercial importance. Many research workers have proved that *Trichoderma* spp. possess some biocontrol genes that can be isolated and cloned for commercial large scale production (Massart and Jijakli, 2007).

The biocontrol ability of *Trichoderma* is of much importance as it does not accumulate in food chain and thus do not harm plants, animals and humans. The genes involved in the biocontrol mechanisms of *Trichoderma* are of great importance.

TAXONOMY OF TRICHODERMA

Although the genus *Trichoderma* has been known since the 19th century. Its association with Hypocrea Fr. was discovered by the Tulasne brothers in 1865; its taxonomy has remained obscure until recent decades. Bisby (1939) thought that the morphological variation could be ascribed to a single species, *Trichoderma viride*. The first serious attempt to morphologically distinguish species, or rather "species aggregate", was made by Rifai (1969). Some new species subsequently described were keyed out by Domsch et al. (1980). Teleomorph connections were established by means of ascospore isolates by Dingley (1957) and Webster and Rifai (1968). In Japan, Doi (1969a, 1972b) studied a number of telemorphs and described them with cultural and anamorph characters, but no cultures were preserved from that study. After this, no morphological differentiation was given. Bissett (1984, 1991b, c) gave a detailed description of the morphological studies, who distinguished about 21 taxa. These studies have shown that the delimitation of biological species is extremely difficult in this genus on morphological grounds alone.

Apart from morphological studies, there are many other methods that are used in the taxonomy, such as study of secondary metabolites; this has shown a great diversity in this genus (Okuda et al., 1982). Physiological features that are detected by the microtiter plate assay are the useful tools that are used for the identification. Isoenzyme profiles are also used for taxonomic classification (Samuels et al., 1994; Leuchtmann et al., 1996). In modern era molecular techniques, such as sequences of its region of ribosomal DNA and fingerprinting techniques provide the finest resolution of taxonomic entities (Meyer et al., 1992; Fujimori and Okuda, 1994; Muthumeenakshi et al., 1994).

BIOCONTROL GENES OF TRICHODERMA

Trichoderma is widely used for the control of many soil borne plant pathogens (Table 1). *Trichoderma* spp. Are efficient producers of cell wall degrading enzymes (Srivastava et al., 2014a), some of which are of commercial importance. Many research workers have proved that *Trichoderma* spp. possess some biocontrol genes that can be isolated and cloned for commercial large scale production (Massart and Jijakli, 2007).

Kuc (2001) has proved that some genes, providing resistance to abiotic and biotic stress are present in *Trichoderma* (Table 2). Mycoparasistism (Figure 1), antibiosis and competition for the nutrients are the main strategies employed by *Trichoderma* for the phytopathogenic action (Janisiewicz and Korsten, 2002). Among the different species tested, *Trichoderma harzianum* was found to be the most promising strain (Gao et al., 2002).

GENOMICS OF TRICHODERMA

The genome size of filamentous fungi is very small as it is about 25 to 50 Mb. However, with the advancement of pulse field gel electrophoresis, karyotyping of filamentous fungi is possible. Karyotyping is helpful in the detection, translocations and variations in chromosome numbers. Through pulsed-field gel electrophoresis (PFGE), chromosomal DNA was separated from *Trichoderma* (Gilly and Sands, 1991; Mäntylä et al., 1992; Hayes et al., 1993; Herrera-Estrella et al., 1993). The expected genome size and chromosome number of *Trichoderma* ranges from 31 to 39 Mb and from 3 to 7, respectively. From the data obtained through DNA homology, it was found that *T. harzianum* and *Trichoderma veins* are closely related, and it was concluded that they may have the same phylogenetic origin (Herrera-Estrella et al., 1993). On the other hand, Mäntylä et al. (1992) determined molecular karyotypes of various strains of *Trichoderma reesei* that had undergone mutagenesis and screening for the hyper production of cellulase enzyme. The authors found that extensive alteration in the genome organization of these strains occurred.

The first member of the genus sequenced was *T. reesei* (Table 3). This fungus is the first choice, because the genome size of this organism is very small (33 Mb) and has only seven chromosomes. Fungal genomics laboratory of NCSU has expressed sequence tag (EST),
<table>
<thead>
<tr>
<th>Plant</th>
<th>Causative agent</th>
<th>Trichoderma spp. used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigna mungo (Black gram) (Raguchander et al., 1997; Dubey et al., 2012; Mishra et al., 2011)</td>
<td>Macrophomina phaseolina, Alternaria alternate</td>
<td>T. viride, T. harzianum</td>
</tr>
<tr>
<td>Cicer arietinum (Chickpea) (Mukherjee et al., 1997; Haware et al., 1999; Pandey et al., 2003; Poddar et al., 2004)</td>
<td>Fusarium oxysporum, Rhictonia solani, Aspergillus niger, Chaetomium spp., Sclerotium rolfsii, Penicillium spp. Macrophomina phaseolina</td>
<td>T. harzianum, T. viride</td>
</tr>
<tr>
<td>Capsicum annuum L. (Chilli), (Rini and Sulochana, 2006; Kapoor, 2008; Vasanthakumari and Shivanna, 2013)</td>
<td>Sclerotium rolfsii, Fusarium oxysporum, Pythium spp., Rhizoctonia solani pseudokoningii 2013</td>
<td>T. viride, T. harzianum</td>
</tr>
<tr>
<td>Cocos nucifera L (Coconut) (Karthikeyan et al., 2006)</td>
<td>Ganoderma lucidum</td>
<td>T. harzianum, T. viride</td>
</tr>
<tr>
<td>Coffea arabica L. (Coffee) (Deb et al., 1999)</td>
<td>Phomopsis theaeae, Glomerella cingulata</td>
<td>T. harzianum</td>
</tr>
<tr>
<td>Vigna sinensis (Cowpea) (Pan and Das, 2011)</td>
<td>Rhictonia solani</td>
<td>T. harzianum</td>
</tr>
<tr>
<td>Arachis hypogaea L. (Groundnut) (Biswas and Sen, 2010; Kishore et al., 2001; Rakholiya and Jadeja, 2010; Bagwan, 2011; Sreedevi et al., 2011)</td>
<td>Thievaliopsis basicola, Sclerotium rolfsii Sacc., Aspergillus niger, Rhictonia solani, Pythium aphanidermatum, Macrophomina phaseolina</td>
<td>T. harzianum, T. viride, T longibrachiatum</td>
</tr>
<tr>
<td>Agaricus bisporus (Mushroom) (Rawal et al., 2013)</td>
<td>Rhizopus stolonifer, Coprinopsis kimuraee, Penicillium glabrum, Fusarium oxysporum</td>
<td>T. viride</td>
</tr>
<tr>
<td>Cajanus cajan (Pigeon pea) (Hukma and Pandey, 2011)</td>
<td>Fusarium udum</td>
<td>T. viride, T. harzianum</td>
</tr>
<tr>
<td>Solanum lycopersicum (Tomato) (Sreenivasaprasad and Manibhushanrao, 1990; Dutta and Das, 2002; Jayaraj et al., 2006)</td>
<td>Fusarium oxysporum f. sp. lycopersici, Pythium aphanidermatum, Rhictonia solani, Sclerotium rolfsii</td>
<td>T. harzianum, T. viride, T longibrachiatum, T. virens</td>
</tr>
<tr>
<td>Oryza sativa (Rice) (Chakravarthy et al., 2011; Bhramaramba and Nagamani, 2013; Biswas and Datta, 2013; Gangwar and Sharma, 2013)</td>
<td>Rhictonia solani, Fusarium spp</td>
<td></td>
</tr>
<tr>
<td>Capsicum annuum L. (Capsicum) (Kapoor, 2008)</td>
<td>Alternaria alternata</td>
<td>T. viride T. harzianum</td>
</tr>
</tbody>
</table>
Table 1. Contd.

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Pathogens and Microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brassica oleracea (Cauliflower) (Sharma and Sain, 2004, 2005; Ahuja et al., 2012)</td>
<td>Rhictonia solani, Pythium aphanidermatum</td>
</tr>
<tr>
<td>Citrus (Kalita et al., 1996; Singh et al., 2000)</td>
<td>Fusarium solani</td>
</tr>
<tr>
<td>Gossypium hirsutum (Cotton) (Sreenivasaprasad and Manibushanrao, 1990; Gaur et al., 2005)</td>
<td>Rhictonia solani, Sclerotium rolfsii, Pythium aphanidermatum</td>
</tr>
<tr>
<td>Zingiber officinale (Ginger) (Gupta et al., 2010)</td>
<td>Pythium aphanidermatum</td>
</tr>
<tr>
<td>Sesamum indicum L (Sesame) (Tamimi and Hadvan, 1985; Sankar and Jeyarajan, 1996; Jeyalakshmi et al., 2013)</td>
<td>Aspergillus flavus, Curvularia lunata, Pythium notatum, Pythium chrysogenum, Fusarium moniliforme, Fusarium oxysporum, Rhictonia nigricans, Macrophomia phaseolina</td>
</tr>
</tbody>
</table>

Table 2. Some biocontrol genes of *Trichoderma* and their function (Srivastava et al., 2014a, b).

<table>
<thead>
<tr>
<th>Name of gene</th>
<th>Source organism</th>
<th>Function</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvsp1</td>
<td>Trichoderma virens</td>
<td>This gene encodes for serine protease. Rhizoctonia solani which affects the cotton seedlings has been controlled biologically by serine protease.</td>
<td></td>
</tr>
<tr>
<td>tr5</td>
<td>Trichoderma harzianum</td>
<td>This gene is responsible for the synthesis of trichotheccene which inhibits the protein and DNA synthesis in the cells of the pathogens and inhibits their growth.</td>
<td></td>
</tr>
<tr>
<td>TgaA and TgaB</td>
<td>Trichoderma virens</td>
<td>This gene exhibits antagonist activity against R. solani and Sclerotium rolfsii</td>
<td></td>
</tr>
<tr>
<td>ThPG1</td>
<td>Trichoderma harzianum</td>
<td>This gene encodes for endopoly-galacturonase. This enzyme is involved in the cell wall degradation of the pathogens like R. solani and P. ultimum</td>
<td></td>
</tr>
<tr>
<td>Th-Chit</td>
<td>Trichoderma harzianum</td>
<td>This gene is responsible for the antifungal activity in transgenic tobacco plant.</td>
<td></td>
</tr>
<tr>
<td>tri5</td>
<td>Trichoderma brevicompactum</td>
<td>This gene helps in the production of Trichoderma in which shows antifungal activity against S. cerevisiae, Kluyveromyces marxianus, Candida albicans, C. glabrata, C. tropicalis and Aspergillus fumigates.</td>
<td></td>
</tr>
<tr>
<td>erg1</td>
<td>Trichoderma harzianum</td>
<td>This gene encodes an enzyme named squalene peroxidase, which helps in the synthesis of ergosterol and silencing of this gene provides resistance to terbinafine, an antifungal compound.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Contd.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Origin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TvgST</td>
<td>Trichoderma virens</td>
<td>This gene is responsible for cadmium tolerance</td>
</tr>
<tr>
<td>Thkel1</td>
<td>Trichoderma harzianum</td>
<td>This gene codes for putative kelch-repeat protein which helps in regulating the glucosidase activity and enhances tolerance to salt and osmotic stresses in Arabidopsis thaliana plants</td>
</tr>
<tr>
<td>egl1.</td>
<td>Trichoderma longibrachiatum</td>
<td>This gene showed biocontrol activity against P. ultimum in damping-off of cucumber</td>
</tr>
<tr>
<td>qid74</td>
<td>Trichoderma harzianum CECT 2413</td>
<td>This gene plays a significant role in cell protection and provide adherence to hydrophobic surfaces that helps the fungus in mycoparasitic activity against R. solani pathogen</td>
</tr>
<tr>
<td>Taabc2</td>
<td>Trichoderma atroviride</td>
<td>This gene has a significant role in ATP binding cassette (ABC) transporter in cell membrane pump that helps in the mycoparasitic activity</td>
</tr>
<tr>
<td>tac1</td>
<td>Trichoderma virens</td>
<td>This gene has its role in mycoparasitic activity against R. solani and P. ultimum</td>
</tr>
<tr>
<td>TrCCD1</td>
<td>Trichoderma reesei</td>
<td>This gene is involved in carotenoid metabolism that helps in the development of conidiospores and hyphal growth in T. reesei</td>
</tr>
</tbody>
</table>

Table 3. Summary of some features of the sequenced genomes.

<table>
<thead>
<tr>
<th>Feature</th>
<th>T. reesei</th>
<th>T. virens</th>
<th>T. atroviride</th>
<th>T. harzianum</th>
<th>T. asperellum</th>
<th>T. longibrachiatum</th>
<th>T. ctrinoviride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome size (Mb)</td>
<td>34.1</td>
<td>39</td>
<td>36.1</td>
<td>40.98</td>
<td>37.46</td>
<td>32.24</td>
<td>33.48</td>
</tr>
<tr>
<td>No of predicted genes</td>
<td>9129</td>
<td>12427</td>
<td>11863</td>
<td>14095</td>
<td>12566</td>
<td>10792</td>
<td>9397</td>
</tr>
<tr>
<td>Glycosyl hydrolases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitinases</td>
<td>23</td>
<td>41</td>
<td>34</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Glucanase</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Secondary metabolites biosynthesis, transport and catabolisms (KOG)</td>
<td>262</td>
<td>440</td>
<td>349</td>
<td>438</td>
<td>358</td>
<td>253</td>
<td>285</td>
</tr>
<tr>
<td>PKS</td>
<td>11</td>
<td>18</td>
<td>18</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NRPS</td>
<td>10</td>
<td>28</td>
<td>16</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PKS-NRPS</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>SSCP3</td>
<td>260</td>
<td>319</td>
<td>301</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Xenobiotics sidegradation and metabolisms (KEGG)</td>
<td>327</td>
<td>519</td>
<td>453</td>
<td>610</td>
<td>432</td>
<td>232</td>
<td>359</td>
</tr>
<tr>
<td>Mating types</td>
<td>MAT1-2</td>
<td>MAT1-2</td>
<td>MAT1-2</td>
<td>MAT1-2</td>
<td>MAT1</td>
<td>MAT1-1</td>
<td>MAT1-2</td>
</tr>
</tbody>
</table>
cDNA collection and bacterial artificial chromosome (BAC) libraries for academic researchers. DNA mediated transformations and gene protocols have been developed for the genomic study of *Trichoderma*.

MASS MULTIPLICATION OF TRICHODERMA

Grains are cheap, easily available and act as best nutritive media for the mass multiplication of many microorganisms. Bajra (*Pennisetum typhoides*) grains should be completely soaked in 2% sucrose solution in water for 6 h. After draining out the excess water, the soaked 250 g seeds of bajra should be filled in autoclavable polypropylene (PP) bags of 30 × 20 cm². The PP bags should be plugged with nonabsorbent cotton followed by autoclaving at 15 lbs pressure for 30 min. After autoclaving, the bags should be left for cooling overnight. The next day, the bags should be individually inoculated by using 5 ml stock solution (10⁶ to 10⁸ CFU/ml) of starter culture grown for 100 days, with syringe. Before inoculation, the place from where the inoculation is to be made should be marked out with a small circle with the help of marker pen. Punctured place of injection of the PP bag must be sealed with cellophane tape. The bags should be incubated at 25 ± 2°C for 15 days in a temperature controlled room. After 15 days of incubation, the contents of the bags should be taken out and kept in hot air oven for drying overnight at 35°C. During the 15 days of incubation visual check every day is essential to ensure detection and elimination of contaminated PP bag(s). Formulation thus prepared should be ground to fine powder, while ensuring that during the process temperature does not go beyond at 35°C. The powdered formulation thus obtained should be mixed with pre-sterilized talc in 1:9 (Trichoderma spore:talc) ratio. Three samples should be taken from each, but lot during production and tested using a standardized method to determine the viability of the active ingredient expressed as colony forming units (CFU). The product thus prepared is ready for packaging at this stage. For storage, the finished product should be stored in vacuum filled plastic bags, covered by paper cartons of different sizes (250, 500 and 1000 g). These packets should then be kept in sealed cartons for transportation purpose.

ADVANTAGES OF TRICHODERMA

(1) *Trichoderma* spp. are very useful for fabric detergent, animal feed production, fuel production, alternative to conventional bleaching, effluent treatment, degradation of organochlorine pesticides and biocontrol of crop diseases.

(2) It is a potential bioagent for the management of fungal seed and soil borne pathogens. It is well known for its antagonistic activity against soil borne pathogens, such as *Fusarium*, *Pythium*, and *Rhizoctonia*.

(3) It is also known to suppress plant parasitic nematodes.

(4) It does not lead to development of resistance in plant pathogens, no phytotoxic effects, do not create any pollution problems as it is eco-friendly, promote plant growth, induces resistance in host, solubilize phosphorus.

Figure 1. Scanning electron micrograph on mycoparasitism of the *F. oxysporum ciceri* hyphae by the hyphae of *T. harzianum* with pincer shaped structure.
and micronutrients and hence increase soil fertility. (5) It significantly minimizes losses due to crop diseases and reduces cost of production, increases yield, quality and profit. (6) Many Trichoderma spp. are of great economic importance producing hydrolytic enzymes, namely, cellulases, chitinases and xylanases, biochemicals and antibiotic products which have been applied to fields, such as food processing and pulp bleaching. In addition, some species produce heterologous proteins and others have been successfully used as biological control agents against a range of phytopathogens.

DISADVANTAGES OF TRICHODERMA

There are many advantages associated with the use of Trichoderma. However, in addition to their useful properties, there are some disadvantages associated with the use of Trichoderma.

(1) Some species of Trichoderma pose a threat to the horticultural industry. For example, reduction in mushroom yield by as much as 50% have been attributed to Trichoderma infection and hence it is considered as a harmful parasite of mushroom.

(2) It also affects the organ (liver) transplanted in human.

(3) The disease is the major constraint in economical production as it inflicts heavy crop losses.

CONCLUSION AND FUTURE RESEARCH

Chemical based control is very effective, but there are some disadvantages associated with the use of these chemicals. The most dangerous thing with the use of these chemicals is the toxicity which they impart to the soil. That is why today people avoid the use of chemical based fungicide. Biosynthetic design of fungicide has present a new era in the development of fungicide. The genes present in the fungi Trichoderma has the ability to enhance host plant’s resistance against phytopathogenic fungi.

Conflict of interests

The authors did not declare any conflict of interest.

ACKNOWLEDGEMENTS

The authors are grateful for the financial support granted by the ICAR under the Niche Area of Excellence on “Exploration and Exploitation of Trichoderma as an antagonist against soil borne pathogen” running in Biocontrol Laboratory, Department of Plant Pathology, C.S.A University of Agriculture and Technology, Kanpur-208002, UP, India.

Antimicrobial activity of *Taverniera Abyssinica* A. Rich against human pathogenic bacteria and fungi

Gemechu Ameya Buli1*, Abdella Gure2 and Engda Dessalegn3

1Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia.
2Department of Plant Pathology, Wondo Genet Colleges of Forestry and Natural Resources, Hawassa University, Hawassa, Ethiopia.
3Department of Chemistry, Hawassa Teachers Training College, Hawassa, Ethiopia.

Received 1 April, 2015; Accepted 8 June, 2015

Medicinal plants represent a rich source of antimicrobial agents. Even though hundreds of plant species have been tested for antimicrobial activities, the enormous mass of them have not been adequately evaluated. *Taverniera abyssinica* A. Rich is a widely used Ethiopian endemic medicinal plant commonly known under the local name of “Dingetegna”. Medicinal plant preparations are generally very popular in developing countries with a long tradition in the use of them. Root of the medicinal plant was extracted by maceration method using three different extraction solvents. Disc diffusion assay and agar dilution method were used to determine antimicrobial activity against *Staphylococcus aureus*, *Enterococcus faecalis* and *Escherichia coli* and clinical isolate of *Candida albicans* and *Aspergillus flavus*. To compare extraction solvents and the difference in sensitivity of test microorganisms, one-way analysis of variance was used. *T. abyssinica* A. Rich extracts exhibited remarkable difference in antimicrobial activity between water and alcohol extract. On the other hand there were little differences in antimicrobial activities of extracts obtained using ethanol and methanol as solvents. As a whole, extracts showed better antimicrobial activity against *S. aureus*, *E. faecalis* and *C. albicans* while *E. coli* and *A. flavus* were the most resistant microorganisms to this medicinal plant. Antimicrobial activity of the medicinal plant varies with extraction solvent and tested microorganisms. Even though the local people are using this medicinal plant in treatment of various types of infectious disease, the medicinal plant has little antimicrobial activity. *S. aureus* was the most sensitive microorganism as compared to other tested microorganisms.

Key words: Antibacterial, Antifungal, Crude extract, Ethiopia, *Taverniera abyssinica* A. Rich.

INTRODUCTION

Medicinal plants represent a rich source of antimicrobial agents. In different countries, plants are used medicinally and are the source of several effective and powerful drugs (Rahmoun et al., 2012; Gemechu et al., 2015). Even though hundreds of plant species have been tested for antimicrobial activities, the enormous mass of them have not been adequately evaluated (Das et al., 2010; Rahmoun et al., 2013). The antimicrobial agent contained in plants usually extracted using different solvents and the antimicrobial properties of the extracts may vary...
were tested for their antipyretic and analgesic properties extracts showed strong nematicidal activities towards been identified by the findings of fever, discomfort, stomachache and for many other pains been traditionally used for the treatment of various diseases in Ethiopia. A small bundle of the roots are compounds isolated (Kelbessa et al., 1992; Thulin, 1989).

The medicinal importance of *T. abyssinica* A. Rich has been identified by the findings of different chemical compounds isolated from the rootstocks (Noamési et al., 1990; Abera, 2010). The study done on crude extracts and purified substances of *T. abyssinica* A. Rich plant were tested for their antipyretic and analgesic properties (Dange et al., 1990). In other study carried out, the extracts showed strong nematicidal activities towards *C. elegans*. Medicarpin and 4-hydroxymedicarpin were isolated as nematicidal constituents from the extracts (Stadler et al., 1995). The local people are also using this medicinal plant in treatment of various types of infectious disease. Medicinal plant preparations are generally very popular in developing countries with a long tradition in the use of them (Sharma et al., 2013). On the other hand, scientific evidence carried out to assess the antimicrobial activity of medicinal plant is limited. The aim of this study was to evaluate antibacterial and antifungal activity of root of *T. abyssinica* A. Rich (Dingetegna) which is well known endemic medicinal plant in Ethiopian.

MATERIALS AND METHODS

Study design

In-vitro experimental study of antibacterial and antifungal activity of *T. abyssinica* A. Rich was carried out by disc diffusion method and agar dilution method to determine minimum inhibition concentration, minimum bactericidal and fungicidal concentration, respectively. Positive and negative controls were used to monitor antimicrobial activity in all assays. All measurements were repeated three times and mean ± SD was used to describe the measurements.

Collection and extraction of Plant Materials

Root of *T. abyssinica* A. Rich was purchased from local market and authenticated by taxonomist and specimen was deposited at the National Herbarium, Department of Biology, Addis Ababa University Herbarium. The plant materials were washed three times under running tap water followed by rinsing twice with sterile distilled water and then air-dried in an oven at 40°C. Then ground into fine powder with electric grinder (Figure 1). About 25 g of fine powder of the medicinal plant was dissolves in 250 mL of solvents (ethanol, methanol and distilled water) separately in sterilized screw capped 500 mL glass bottles. Then the mixtures were kept in orbital shaker for 12 h at room temperature. Then the extracts were filtered by Whatman No. 1 filter paper. After having filtered extracts, they were evaporated to remove the solvent under vacuum in Rotary Evaporator kept at 40°C. Then the residues from rotary evaporator were allowed to dry in room temperature. The powdered extracts were weighed and dissolved in distilled water to gate stock solution of 200 mg/mL by labeling for each extraction solvents and stored in deep freezer at -20°C for further use (Parekh et al., 2005; Handa et al., 2008).

Determination of disc diffusion assay

To determine disc diffusion assay, *S. aureus* (ATCC-25923), *E. faecalis* (ATCC-29212) and *E. coli* (ATCC-25922), and clinical isolate of *C. albicans* and *A. flavus* were used to screen antimicrobial activity of the medicinal plant. Mueller Hinton agar medium and Sabouraud’s dextrose agar (SDA) were used to carry out disc diffusion assay antibacterial and antifungal activity respectively.

Diffusion discs of approximately 6 mm diameter were prepared from Whatman No. 1 filter paper by puncher and sterilized by autoclave then oven dried in sterile way and each solvent extracts were prepared into a series of concentrations: 10, 20, 40 and 80 mg/mL to determine disc diffusion assay. A 10 µl of each concentration of crude medicinal plant extracts was impregnated in separate sterile disc using sterile micropipette tips and stored at 4°C in separate sterile containers according to their extraction solvents and concentrations. Then disc diffusion assay was carried out using Kirby- Baur disk diffusion method (CLSI, 2009). Gentamycin (10 µg/mL) and Ketoconazole (10 µg/mL) disc were used as positive control for bacteria and fungi respectively. A blank disc impregnated with each solvent was used as negative control. All the tests were conducted in triplicate and the average of the three measurements was used.

Determination of minimum inhibitory concentration

Agar dilutions method was used to determine minimum inhibitory concentration (MIC) of the medicinal plant extracts. For each plant extract, a stock solution of 200 mg/mL was added into a sterilized molten Mueller Hinton agar and SDA after cooled to 45°C in water bath. Then two fold serial dilutions was used to obtain 100, 50, 25, 12.50, 6.25, 3.125 and 1.56 mg/mL concentration of medicinal plant extracts in agar medium. Then the mixture of plant extract and molten agar medium were poured to 90 mm Petri dish and solidified.

Then the plates were inoculated with a loopful of 0.5 McFarland standards diluted suspension of each test microorganisms in small spot. The plates were incubated at 37°C for 24 h and at 27°C for 48
h for bacteria and fungi, respectively. Then the minimum dilution of the plant extracts completely inhibiting the growth of each organism was taken as the MIC. A control comprising the test organism grown on fresh agar medium and agar medium with each solvent were used as control. All the tests were done in triplicates (CLSI, 2009).

Determination of minimum bactericidal and fungicidal concentration

Concentrations of the plant extract determined as MIC, the preceding one and one more concentration between the two concentrations were used to determine of MBC and MFC. Then these concentrations of the plant extracts were adjusted in nutrient broth and a Sabouraud’s dextrose broth and inoculated with test microorganisms then incubated at 37°C for 24 and 48 h for bacteria and fungi, respectively. Then after, a loopful of all broth media was sub-cultured on Mueller-Hinton agar and SDA plates. The inoculated plates were incubated at 37°C for 48 h and at 27°C for 72 h for bacteria and fungi, respectively. A control comprising the test organism grown on fresh agar medium and agar medium containing each solvent were used as control. All the tests were done in triplicate.

Statistical analysis

For each assay, all the measurements were replicated three times and the results were presented as mean ± SD. One way ANOVA followed by Tukey’s test was used to compare extraction solvents and the difference in the sensitivity of the test microorganisms using the statistical package for social sciences (SPSS) version 16 and P-value ≤ 0.05 were considered as statistically significant.

RESULTS

T. abyssinica A. Rich extracts exhibited remarkable difference in antimicrobial activity between water extract and alcohol extract. On the other hand there were little differences in antimicrobial activities of extracts obtained using ethanol and methanol as solvents. In disc diffusion assay, extracts of *T. abyssinica* A. Rich in water exhibited nearly the same amount of antimicrobial activities against *S. aureus* and *E. faecalis*. From tested fungal species, *T. abyssinica* A. Rich showed antifungal activity against *C. albicans* only at 80 mg/mL in water extract. Furthermore, the extracts in water did not exhibit any activity against *E. coli* and *A. flavus* up to 80 mg/mL (Table 1).

T. abyssinica A. Rich root extract in ethanol showed weak antimicrobial activity against *E. coli* and *A. flavus* at 80 mg/mL whereas the plant extract against *S. aureus* and *E. faecalis* were showed antimicrobial activity starting from 20 mg/mL. Likewise, extracts in methanol also exhibited antimicrobial activities at 80mg/mL against all tested microorganism. In methanol extract, the maximum antimicrobial activity was observed against *S. aureus*. There was significant difference (P < 0.5) between antimicrobial activity of water based and alcohol based extracts of the medicinal plant (Table 1).

The minimum inhibition concentration assay also showed water based extracts had weak antimicrobial activity than alcohol based extracts. In this assay, *T. abyssinica* A. Rich showed better antimicrobial activity against *S. aureus* and *C. albicans* when compared with *E. coli*. On the other hand, *E. faecalis* and *A. flavus* were inhibited at 100 mg/mL of water based extract of the medicinal plant. In methanol based extract, the least MIC (6.25mg/mL) was observed against *C. albicans* whereas the highest MIC of 25mg/mL was observed against *E. coli*. Generally, there was no significant difference (P > 0.05) in antimicrobial activity of ethanol based and methanol based extracts of *T. abyssinica* A. Rich against selected pathogenic bacterial and fungal species. The plant extracts also showed less antimicrobial activity against *E. coli* and *A. flavus* than other tested microorganisms (Table 2).

In bactericidal and fungicidal determination assay, the extracts of *T. abyssinica* A. Rich, exhibited varying degrees of antimicrobial activities against the tested organisms. The water based extracts exhibited bactericidal and
Table 1. Antimicrobial activity of *T. abyssinica* root extract obtained using three different extraction solvents with four different concentrations.

<table>
<thead>
<tr>
<th>Extraction solvents</th>
<th>Extract concentration (mg/ml)</th>
<th>Inhibition zone (mm)</th>
<th>Bacterial species</th>
<th>Fungal Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S. aureus</td>
<td>E. coli</td>
</tr>
<tr>
<td>Water</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>8.66 ± 0.57</td>
<td>-</td>
<td>8.33 ± 0.57</td>
</tr>
<tr>
<td>Ethanol</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>8.33 ± 0.57</td>
<td>-</td>
<td>8.00 ± 1.00</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>9.33 ± 0.57</td>
<td>9.33 ± 0.57</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>11.00 ± 1.00</td>
<td>8.33 ± 0.57</td>
<td>12.66 ± 0.57</td>
</tr>
<tr>
<td>Methanol</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>8.00 ± 0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>9.66 ± 1.15</td>
<td>-</td>
<td>9.00 ± 1.00</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>13.00 ± 1.00</td>
<td>8.66 ± 1.155</td>
<td>12.33 ± 0.57</td>
</tr>
<tr>
<td>Positive control</td>
<td></td>
<td></td>
<td>22.33 ± 0.57</td>
<td>20 ±0.00</td>
</tr>
<tr>
<td>Negative control</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(-) = No activity; Values are mean of inhibition zone (mm) ± S.D of three replicates.

Table 2. Average minimum inhibitory concentrations, minimum bactericidal and fungicidal concentrations of *T. abyssinica* in three different extraction solvents

<table>
<thead>
<tr>
<th>Assay methods</th>
<th>Extract solvent</th>
<th>MIC, MBC and MFC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bacterial species</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. aureus</td>
</tr>
<tr>
<td>MIC</td>
<td>Water</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>12.50</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>12.50</td>
</tr>
<tr>
<td>MBC/MFC</td>
<td>Water</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>12.50</td>
</tr>
</tbody>
</table>

(*) = No inhibitory or bactericidal/fungicidal activity at 100 mg/ml; MIC=minimum inhibition concentration; MBC=minimum bactericidal concentration; MFC=Minimum fungicidal concentration.

fungicidal effects at 100mg/mL against *S. aureus* and *C. albicans*, respectively. The strongest fungicidal activities were observed in alcohols extracts against *C. albicans*, *S. aureus* and *E. faecalis* while the weakest bactericidal effects were recorded against *E. coli* (Table 2).

DISCUSSION

Antimicrobial activity of *T. abyssinica* A. Rich varied with extraction solvent used. The successful determination of biologically active compounds from plant material is largely dependent on the type of solvent used in the extraction procedure (Muhsin and Hussein, 2014). Antimicrobial activity of water extract of *T. abyssinica* A. Rich obtained in the current study was relatively low as compared to positive controls and alcohol extracts. However, this extract showed antimicrobial activity on *S. aureus*, *E. faecalis* and *C. albicans* at high concentration. This indicates that water extract of this medicinal plant at higher concentration can be effective antimicrobial agent against these microorganisms.

Though traditional healers use primarily water but plant extracts from alcoholic solvents have been found to give
more consistent antimicrobial activity compared to water extract. Water soluble flavonoids have no antimicrobial significance and water soluble phenolics are only important as antimicrobial compound in water extract (Lapornik et al., 2005; Das et al., 2010). In contrast, ethanol and methanol extract of T. abyssinica A. Rich showed better antimicrobial activity against tested microorganisms that generally increased with the increase in the concentration of the extract. It means that they are more efficient in cell walls degradation which has non-polar character and cause polyphenols to be released from cells (Wang, 2010). In addition to this enzyme polyphenol oxidase are inactivated in methanol and ethanol extract (Karmegam et al., 2012). This may be the reason why the antimicrobial activities of selected medicinal plant showed lower in water extract in our study.

In general, this medicinal plant showed a low antimicrobial activity against E. coli and A. flavus through all the three extraction solvent used in the current study as compared to other microorganisms. Antimicrobial studies also showed as Gram-negative bacteria show a higher resistance to plant extracts than Gram-positive bacteria. This may be due to the variation in the cell wall structures of Gram-positive and Gram-negative bacteria. Gram-negative bacteria have an outer membrane that is composed of high density lipopolysaccharides that serves as a barrier to many environmental substances including antibiotics (Palombo and Semple, 2001; Robinson et al., 2009).

In Ethiopia, most of people have been using T. abyssinica A. Rich for toothbrush and on the other hand E. faecalis has been frequently found in root canal-treated teeth in prevalence values ranging from 30% to 90% of the cases (Kunin, 1993). Therefore, without having this information, people have been benefiting from this medicinal plant. Plant materials remain an important resource to combat serious diseases in the world (Vlietinck et al., 1995; Regassa, 2013). People living in rural areas from their personal experience also know that this medicinal plant is valuable source of natural products of health care. However, they may not understand the scientific facts behind this medicinal plants and their effective way of extraction (Mohammed and Berhanu, 2011; Regassa, 2013). There is no study done on antibacterial and antifungal cility of this medicinal plant so far but study showed that it has strong nematicidal activity (Stadler et al., 1995).

Conclusion

Even though the local people are using this medicinal plant in treatment of various types of infectious disease, the medicinal plant has little antimicrobial activity. Antibacterial and antifungal activity of T. abyssinica A. Rich varies in extraction solvent used. Water was the weakest extraction solvent whereas ethanol and methanol were good solvents to obtain antimicrobial phytochemical from this medicinal plant. Ethanol and methanol extracts showed better antimicrobial activity against S. aureus, E. faecalis and C. albicans while E. coli and A. flavus were the most resistant microorganisms to this medicinal plant.

ACKNOWLEDGEMENT

The authors would like to acknowledge Hawassa University Referral Hospital Laboratory, Department of Biology and Chemistry, Wondo Genet College of Forestry and Natural Resources of Hawassa University for their technical assistance while the experiment was carried out. And also Ethiopian Public Health Laboratory for giving us culture of test microorganisms.

Conflict of interests

The authors did not declare any conflict of interest.

Authors’ contributions

GA participated in the design of the study, coordinated and was involved in data collection, experimental work, and also analyzed the data, and drafted the paper. AG and ED participated in the analysis and revised subsequent drafts of the paper. All authors read and approved the final manuscript.

REFERENCES

African Journal of Microbiology Research

Full Length Research Paper

Aflatoxin B1 in commercial granolas

Marta Rejane Ribeiro dos SANTOS1*, Francisco das Chagas CARDOSO FILHO2, Rodrigo Maciel CALVET3, Raylender Ribeiro ANDRADE4, Rosana Martins Carneiro PIRES5, Maria Marlúcia Gomes PEREIRA6, Amilton Paulo Raposo COSTA6 and Maria Christina Sanches MURATORI6

1Programa de Pós-Graduação em Alimentos e Nutrição, Universidade Federal do Piauí, Teresina, Piauí, Brasil.
2Doutorando do Curso de Pós-Graduação em Ciência Animal, Universidade Federal do Piauí, Teresina, Piauí, Brasil.
3Departamento do Ensino Superior e Tecnológico, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Caxias, MA, Brasil.
4Faculdade Integral Diferencial- FACID Devry, Teresina, PI, Brasil.
5Departamento de Tecnologia de Alimentos, Instituto Federal do Piauí, Teresina, PI, Brasil.
6Departamento de Morfofisiologia Veterinaria, Universidade Federal do Piauí, Teresina, PI, Brasil.

Received 19 June, 2015; Accepted 1 September, 2015

The aim of this study was to measure aflatoxin B1 in granola sold in stores in the city of Teresina, Piauí. Sixty samples of granola sold in four supermarkets were used. The mycological evaluation was carried out immediately, and then the samples were stored at -4°C, for later analysis of aflatoxin B1. Thirty-one strains of Aspergillus flavus were isolated. Two strains demonstrated capacity for aflatoxin production with aflatoxin B1 concentration of 2.30 and 3.90 µg/g. Sixty percent of samples tested positive for aflatoxin. Granolas may have different levels of aflatoxin B1, a risk for the consumer. Therefore, there must be better control of the quality of raw materials used to make granola, because they may be the source of contamination by aflatoxins.

Key words: Aspergillus flavus, cereals, fungi, grains, mycotoxins.

INTRODUCTION

Granola is an increasingly popular tasty food with high energetic value, and nutritional and functional properties. It is rich in fiber and consists of a mixture of cereal grains, dried fruits, linseed, wheat, corn and rice flakes, and oily seeds such as peanuts and Brazil nuts. Diets high in fiber protect against obesity, cardiovascular disease, diabetes, dyslipidemia and some cancers (Neutzling et al., 2007). Granola is among the foods shown to help treat these diseases (Granada et al., 2003; Vecchia and Castilhos, 2007).

Despite the many benefits granola provides, its composition requires special attention because according to Gimeno (2000) and Dantigny et al. (2005), cereal products are an ideal substrate for fungi growth and mycotoxin production if humidity and storage temperature during processing are not controlled (Pereira et al., 2002;

*Corresponding author. E-mail: marta.estrela@ig.com.br.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
The effects of fungal growth in foodstuffs include decreased germination power, visible molding, discoloration, unpleasant odor, loss of dry matter, heating, chemical and nutritional changes, loss of quality and mycotoxin production (Lazzari, 1998; Junior and Zappa, 2009).

The genera Aspergillus, Penicillium and Fusarium are some of the mycotoxigenic fungi involved in the human and animal food chain, and produce the vast majority of mycotoxins (Sweeney and Dobson, 1998; Hermanns et al., 2006; Pitt and Hocking, 2009). Mycotoxins in food are a concern for public health because they can damage health and bring about economic losses when present in the animal food production chain (Pereyra et al., 2010).

Aflatoxins are produced mainly by strains of Aspergillus flavus, A. parasiticus and A. nomius. These species are found in soil, which is the main source of contamination. They are capable of growing on various types of cereals, especially those containing corn and peanuts (Rodriguez-Amaya and Sabino, 2002; Pitt and Hocking, 2009). Aflatoxin B1 is the most important and has carcinogenic potential in humans (IARC, 2006).

Vecchia and Castilhos-Fortes (2007) established the presence of mycotoxin producing fungi, especially Aspergillus, Fusarium and Penicillium, in granola marketed in Porto Alegre. The predominant genera was Aspergillus in three seasons of the year and their results show the need for greater control and supervision in order to eliminate toxin-producing microorganisms in granola.

Granada et al. (2003) evaluated the microbiology and composition of commercial granola and detected mold and yeast counts ranging from 12 x 104 and 33 x 106 CFU/g. The authors stated that the high score was due to the low pH found in the samples, a factor that must be controlled to avoid the proliferation of fungi and production of mycotoxins.

Given the above and considering that there are few studies on fungi and mycotoxins in granola, the objective of this study was to measure aflatoxin B1 in granola sold in stores in the city of Teresina, Piauí.

MATTERIALS AND METHODS

Sample collection

Samples were purchased in a supermarket chain where granola is regularly found in the city of Teresina, Piauí. Just one supermarket was randomly selected to collect the samples, because the same commercial brands were sold in all supermarkets. During data collection the integrity of packaging, labeling instructions, hygiene conditions and room temperature were verified.

Fifteen samples of four different brands (N=60) were collected. The packets were 250 or 300 g. The samples were characterized as "A", "B", "C" and "D". The quantification of fungi, analysis of the toxigenic capacity of the strains of A. flavus and detection of aflatoxins B1 were carried out at the Laboratory of Microbiological Control of Food of the Nucleus of Studies, Research and Processing (NUEPPA) at the Center for Agricultural Sciences, Federal University of Piauí.

Determination of mycobiota and identification of Aspergillus species

The fungi colonies were observed under microscope to identify the fungal genera. Colonies belonging to genera Aspergillus and Penicillium were isolated and identified using identification keys described by Klich (2002) and Pitt (2004), in four basic media: Czapek yeast extract agar (CYA); malt extract agar (MEA); Czapek yeast extract agar 20% sucrose (CY20S) and Glycerol Nitrate Agar (G25N).

A conidial suspension from each strain was prepared in 0.5 ml of medium consisting of 0.2% agar-agar and 0.05% Tween 80TM, distributed in Eppendorf microtubes previously sterilized at 121°C for 15 min. Afterwards, the isolated A. flavus strains were tested for production of aflatoxin B1, following the method recommended by Geiser et al. (1998) as follows: strains were cultivated on MEA slides at 28 °C for seven days.

After the incubation period, the mycelium was transferred to a microtube and 1000 μL of chloroform added. The mixture was stirred for 10 min in a microcentrifuge at 1400 rpm; the mycelium was removed and the chloroform extract was evaporated under N2 flow. The residue was re-dissolved in 200 μL of chloroform. The detection and quantitation of aflatoxin B1 of the extracts were carried out using high-performance liquid chromatography with a Prominenpose model Shimadzu gas chromatograph with fluorescence detector (RF-10AXL SUPER model) according to the methodology proposed by Truckess et al. (1994). An aliquot of 200 μL of sample extract was derivatized with 700 μL trifluoroacetic acid/acetic acid/water (20:10:70, v/v/v). Chromatographic separations were carried out on a reversed phase column (silica gel, 150 x 4.6 mm id., 5.0μm particle size, Varian, Inc., Palo Alto, USA). The mobile phase used was acetonitrile, methanol and water (17:17:66 v/v/v) at a flow rate of 1.5 mL min⁻¹. The fluorescence of aflatoxin derivatives was recorded at excitation and emission wave lengths of 360 and 460 nm, respectively. The standard curve was constructed at different standard levels of AFB1: 1.01, 2.02 and 4.04 ng/ml (Sigma Aldrich® Co., St. Louis, MO USA, purity> 99%). The toxin was quantified using the correlation between the heights of peaks of aflatoxin B1 in the sample extract and the standard curve (y = 0.0003x – 0.0077; R2 = 0.99). The detection limit of the analytical method was 0.4 ng/g, based on the signal-to-noise ratio (3:1) and the limit of quantification was set at 3 times the detection limit (1.4 ng/g).

Detecting Aflatoxin B1

Extraction of aflatoxins from samples was carried out using MycoSep 228 Multifunctional columns (MFC, Romer Labs® Inc., MO, USA), following the manufacturer’s instructions as follows: for granola aflatoxin extraction, 25 g each sample was added to 100 mL of acetonitrile: water (84:16, v/v) and homogenised in a domestic blender for 3 min. Afterwards, the mixture was filtered using Whatman #4 paper (Whatman, Inc., Clifton, New Jersey,
Table 1. Identification of fungal species in granola commercialized in Teresina, Piauí.

<table>
<thead>
<tr>
<th>Fungal species</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>A. niger agregados</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A. carbonarius</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A. japonicus</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A. flavus</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A. tamari</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A. terreus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>A. penicillioides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Penicillium</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>P. citrinum</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>P. simplicissimum</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. funiculosum</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. islandicum</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. variabile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total geral por marcas</td>
<td>48</td>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

n= number of individuals.

USA) and 8.0 mL from the filtrate were transferred to a 10 ml tube. The filtrate was purified with the use of Multifunction MycoSep 224 columns (MFC, Romer Labs®, Inc., MO, USA). After the purification, 4.0 ml of the purified extract were evaporated in a water bath at 70°C.

An aliquot (200 μL) was derivatized with 700 μl trifluoroacetic-water-acetic acid (20:10:70, v / v). Chromatographic separations were performed on a reverse phase column (Silica Gel, 150 x 4.6 mm id, 5 um particle size, Varian, Inc., Palo Alto, USA). Mobile phase used was acetonitrile: methanol: water (1: 1: 4 v / v / v); the injected volume was 20 μL, and the speed flow was 1.5 mL per minute. Detection of aflatoxins was by fluorescence using a wavelength of 360 nm excitation and 440 nm emission. Standard curves were constructed with different levels of aflatoxins. The limit detection of the method was 0.4 ng / mL.

The detection and quantification of aflatoxin B1 from the extracts were carried out using high-performance liquid chromatography with a Prominence model Shimadzu® gas chromatograph with fluorescence detector (RF-10AXL SUPER model) according to the methodology proposed by Truckssess et al. (1994).

Statistical analysis

The results of the counts were transformed to log10(x+1). Correlation analysis and ANOVAs were carried out using Sigma Stat statistical software (1994) with 5.0% significance.

RESULTS AND DISCUSSION

At the time of acquisition of the samples the temperature in the stores ranged from 26.2 to 29.5°C. The granola products were on clean shelves in an aired, well-lit and sanitized location according to ANVISA’s RDC 216/04 for dry goods (Brazil, 2004). The packages were clean and undamaged, and listed the lot number, expiration date, and weight between 250 and 300 g. The nutritional information met the labeling standards for food in the RDC Number 360/2003 of ANVISA (Brazil, 2003).

The granola brands sold in Teresina, had different formulations depending on the manufacturer, using between 4 to 13 different ingredients. However, all granolas used oats, raisins, wheat and its derivatives. According to Dantigny et al. (2005) these ingredients can encourage the growth of pre-existing fungi in various stages of processing, due to intrinsic nutritional factors and storage conditions that favor the increase in relative humidity.

Table 1 shows the isolated species of Aspergillus and Penicillium of the different granola brands marketed in Teresina, Piauí. Thirty-one A. flavus strains were isolated and 27 of them were isolated from brand "A". This species is considered the leading producer of aflatoxin (Pitt and Hocking, 2009). Two strains were shown to produce aflatoxin B1, as shown in Table 2. Brand "A" presented two strains of A. flavus, which have the potential to produce aflatoxin B1; they were classified as "Strain 21" and "Strain 26 " (Table 2). The concentration of aflatoxin B1 was 2.30 and 3.90 μg /g, respectively. Despite the low incidence of aflatoxin B1 in this sample (Table 4), there is a need for greater humidity control and better storage conditions, otherwise the environment is conducive for the development of potentially aflatoxin strains and subsequent production of their metabolites.
Table 2. Strains of *Aspergillus flavus* aflatoxin B1 producers isolated from granola commercialized in Teresina, PI.

<table>
<thead>
<tr>
<th>Brands</th>
<th>N</th>
<th>+</th>
<th>Aflatoxin B1 amount by strain in µg / g (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27</td>
<td>2</td>
<td>2.30</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>3.90</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>2.30</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>0</td>
<td>2.30</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

N = number of strains isolated from the granola samples; + = Producer strains of aflatoxin B1; µg/g = micrograms per gram.

Table 3. Positive samples for aflatoxin B1 in granola commercialized in Teresina, PI.

<table>
<thead>
<tr>
<th>Granola brands</th>
<th>Number of positive samples for aflatoxin B1</th>
<th>% Positive sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" (N=15)</td>
<td>12</td>
<td>80.0</td>
</tr>
<tr>
<td>"B" (N=15)</td>
<td>1</td>
<td>6.6</td>
</tr>
<tr>
<td>"C" (N=15)</td>
<td>8</td>
<td>53.3</td>
</tr>
<tr>
<td>"D" (N=15)</td>
<td>15</td>
<td>100.0</td>
</tr>
<tr>
<td>Sample analyzed</td>
<td>Total Positive</td>
<td>% positive</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>60.0</td>
</tr>
</tbody>
</table>

N = number of samples; % = percent.

Brand "D" presented contamination in 100% of the analyzed samples with concentrations ranging from 3.42 to 4.52 ng/g. Brand "B" only had one contaminated sample (Table 3).

According to the National Health Surveillance Agency (Brazil, 2010), which manages and monitors the National Program for Monitoring Food Sanitary Quality (PNMQSA), the presence of aflatoxin is one of the parameters used to assess product quality. Current legislation does not have a specific parameter for granolas. However, the maximum permitted level of aflatoxin B1, B2, G1 and G2 for food containing cereals and cereal products (except corn and derivatives including malted barley) is 5.0 µg/kg (Brazil, 2011). Thus, the results of this study are within such limits. The contamination is likely to have occurred due to the use of raw materials previously contaminated with aflatoxin B1.

There were differences between the brands with respect to the amount of aflatoxin B1 detected. Brand "D" had the highest contamination level with a mean concentration of 4.00 µg/kg (Table 4). Therefore, a good quality control of the ingredients is necessary, to prevent contamination risks and consumer health problems.

It is important to identify the fungal mycobiota and its mycotoxins in foods so that these studies can provide information inherent to product quality, with respect to the presence of fungi and their mycotoxins. Furthermore, preventive actions must take place during all food production stages, from harvesting, storage, processing, initial steps for controlling fungi and their metabolites, as mycotoxins can potentially be found in the samples. Additional practices are required to reduce the contamination of food, as well as procedures for the treatment of food which are needed to prevent health problems.

Granola products may have different levels of aflatoxin B1, and are a risk for the consumer. Better control of the quality of raw materials used is necessary because they may be sources of contamination by aflatoxins in granola.
Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

