ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R. China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062,
India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province,
China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Prof Swati Sen Mandi
Division of plant Biology, Bose Institute, India.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India.

Dr. Arash Kheradmand
Lorestan University, Iran.

Prof Dr Cemşit Karakurt
Pediatrics and Pediatric Cardiology Inonu University Faculty of Medicine, Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center Cairo, Egypt.
Biological activity of extracts from *Capparis decidua* L. twigs
Ayat A. A. Abdalrahman, Sayadat El Tigani and Sakina Yagi
Full Length Research Paper

Biological activity of extracts from *Capparis decidua* L. twigs

Ayat A. A. Abdalrahman, Sayadat El Tigani and Sakina Yagi*

Botany Department, Faculty of Science, University of Khartoum, P. O. Box 321, Khartoum, Sudan.

Received 3 November, 2015; Accepted 29 December, 2015

Capparis decidua L. (family Capparaceae) is widely used in Sudan for curing variety of ailments. The objective of this study was to evaluate the antimicrobial, antiigidial, antimalarial, antioxidant activities and cytotoxicity of plant extracts from the twigs of *C. decidua*. Extracts were evaluated for their effectiveness against four bacterial strains including both Gram-positive (*Bacillus subtilis* and *Staphylococcus aureus*) and Gram-negative (*Escherichia coli* and *Pseudomonas aeruginosa*) bacteria as well as fungal species (*Candida albicans* and *Aspergillus niger*) using disc diffusion method. Antibacterial effects of twig extracts showed different degrees of inhibition profiles against tested bacteria. The ethyl acetate extract showed the highest activity against *S. aureus* (21 mm), *B. subtilis* (20 mm) and *P. pneumoniae* (18 mm) while the n-butanol extract displayed best inhibition against *P. pneumoniae* (18 mm) and *E. coli* (16 mm). All extracts showed high antifungal activity against *A. niger* and *C. albicans* with inhibition zone ranged from 17 to 22 mm. Antimalarial activity assay showed that all extracts were less potent than chloroquine drug against *P. falciparum*. Antiigidial activity was determined against *Giardia lamblia* where the chloroform and ethyl acetate extracts possessed potent antiigidial activity after 24 h at concentration 500 μg/ml with respectively 91 and 89% mortality comparable to that exhibited by metronidazole drug (89%). The antioxidant potential of extracts was determined on the basis of their scavenging activity of the stable 1, 1-diphenyl-2-picryl hydrazyl (DPPH) free radical and ferric-reducing antioxidant power (FRAP). The petroleum ether and n-butanol extracts showed moderate DPPH scavenging activity, while the ethyl acetate and chloroform extracts showed low activity. All extracts were inactive in the FRAP assay. All extracts were nontoxic against brine shrimps and vero cell lines suggesting that they were safe for traditional use.

Key words: *Capparis decidua*, antimicrobial activity, antiigidial activity, antimalarial activity, antioxidant activity, cytotoxicity.

INTRODUCTION

Populations in developing countries may only have access to local traditional medicines as their critical source of primary healthcare (Cordell, 2011). Plant-based traditional medicine represents primary or perhaps only form of accessible primary health care in many parts of rural Africa (Mahomoodally, 2013). Infectious diseases...
have remained a major cause of death and disability worldwide and account for one-third of all deaths in the world. The World Health Organisation (WHO) estimates that nearly 50,000 people die each day throughout the world from infectious diseases (Chanda and Rakholiya, 2011).

Capparis decidua L. belongs to family Capparaceae, yet an important medicinal plant of Sudan. The tree is typical of deserts and semi-deserts of northern and central Sudan, especially on sandy soils and in low rainfall savanna on clays spreading to the borders of Republic of Southern Sudan, sometimes mixed with *Acacia seyal* or *Balanites aegyptiaca* (El-Amin, 1990). The plant and its parts are widely used by traditional healers and tribal people in Sudan for curing variety of ailments. Paste of young leaves and branches are applied as plaster on boils and swelling, and as anti-inflammatory, astringent, stomachic, laxative, antidote for skin diseases (AL-Yahya 1986; Atiqr et al., 2004). Decoction of fresh twigs is taken against jaundice and the fumigation of the stems is used as anti-rheumatic. The stems are also used as a poultice for swelling and joint pains and against head-ache (El-Ghazali et al., 1994, 1997). The roots are used to relieve fever, rheumatism and jaundice (ELKamali and Elkhalfia, 1999). Pharmacological studies of plant for the exploration of biological activities play important part in science of traditional medicine.

The objective of this study was to evaluate the antimicrobial, antigiardial, antimalarial, antioxidant activities and cytotoxicity of plant extracts (petroleum ether, chloroform, ethyl acetate and butanol) from the twigs of *C. decidua*.

MATERIALS AND METHODS

Plant material

Twigs of *C. decidua* were collected from Goz Abu kelab, White Nile State, Sudan in July, 2012. Voucher specimen No. ACD12 was deposited in the Herbarium of Botany Department, Faculty of Science, University of Khartoum.

Preparation of crude extracts

Twigs of the plant were air dried in shade and ground to powder using a pestle and mortar. 100 g of powder was extracted sequentially with petroleum ether, chloroform, ethyl acetate and butanol at room temperature for 48 h. Extracts were first filtered through Whatman No. 4 filter paper. After filtration, the extracts were vacuum concentrated.

Phytochemical analysis

Qualitative preliminary phytochemical analysis was performed initially with different chemical reagents to detect the nature of phytoconstituents and their presence in twigs. The presence of sterols/terpenes, flavonoids, tannins, alkaloids, lignins, saponins and coumarins were evaluated by standard qualitative methods of Trease and Evans (2002).

Antimicrobial activity

Test strains and culture media

Standard strains of microorganism were used in this study and were obtained from Medicinal and Aromatic Institute of Research, National Research Center, Khartoum. The bacterial species used were the Gram-negative bacteria; *Escherichia coli* (ATCC 25922) and *Pseudomonas aeruginosa* (ATCC 27853) and the Gram-positive bacteria; *Bacillus subtilis* (NCTC 8236) and *Staphylococcus aureus* (ATCC 25923). Fungal species were *Candida albicans* (ATCC 7596) and *Aspergillus niger* (ATCC 9763). Bacteria were grown in Mueller Hinton Agar and fungi were grown in Sabouraud Dextrose Agar. The concentration of bacterial suspensions were adjusted to 10⁸ cells/mL, and that of fungal suspensions to 10⁷ cells/mL.

Antibacterial assay

Antibacterial activity of extracts was evaluated by the disc diffusion method (Kil et al., 2009). Extracts solutions (100 mg/ml) were prepared by diluting with 5% dimethyl sulfoxide (DMSO). The test microorganisms were seeded into respective medium by spread plate method. After solidification, filter paper discs with a diameter of 6.0 mm were impregnated with 10 μl of crude extracts followed by drying off. DMSO was used as a negative control, while gentamicin (10 μg/disc) was used as a positive control. Antibacterial discs were dispensed onto the surface of the inoculated agar plates and Petri plates were incubated for 24 h at 37°C. Diameters of clear zone of inhibition produced around the discs were measured and recorded.

Antifungal assay

Antifungal activity was also evaluated by the disc diffusion method (Mothana and Lindequeist, 2005). Paper discs were impregnated with 10 μl of extracts at 100 mg/ml followed by drying off. DMSO was used as a negative control, while nystatin (10 μg/disc) was used as a positive control. Antifungal discs were dispensed onto the surface of the inoculated agar plates, after which the plates were incubated at 27°C for 48 h. After the colonies grew, the zones of inhibition around the discs were measured and recorded.

Antigiardial activity

Giardia lamblia were taken from patients of Ibrahim Malik Hospital (Khartoum). All positive samples were examined by wet mount preparation and were transported to the laboratory in nutrient broth medium. Trophozoites of *G. lamblia* were maintained in RPMI 1640 medium containing 5% bovine serum at 37±1°C and were employed in the log phase of growth.

In vitro susceptibility assay

In vitro susceptibility assay was done according to the method of Cedillo-Rivera et al. (2002). Five milligram from each extract was dissolved in 50 μl of DMSO at Eppendorf tube containing 950 µl distilled water in order to reach concentration of 5 mg/ml. The concentrates were stored at -20°C for further analysis. Assay was performed on 96-well microtiter plate. Serial dilutions of each extract were obtained by diluting successively 20 µl of extract solution with 20 µl complete RPMI medium solution to achieve the required concentrations. Then, 80 µl of culture medium which was complemented with parasite was added to each well containing 20
µl of sample. The final volume in the wells was 100 µl. Metronidazole was used as positive control in concentration 312.5 µg/ml, whereas untreated cells were used as a negative control (culture medium plus trophozoites). For counting, samples were mixed with Trypan blue in equal volume. The final number of parasites was determined with haemocytometer three times for counting after 0, 24, 48 and 72 h. The mortality % of parasite for each extracts activity was carried out according to the following formula:

\[
\text{Mortality of parasite (\%) = } \frac{\text{Control negative - sample}}{\text{Control negative}} \times 100
\]

Only 100% inhibition of the parasite was considered, when there was no motile parasite observed.

Antimalarial activity

Plasmodium falciparum K1 parasite strain was obtained from Khartoum Hospital (Khartoum). Samples were maintained at 5% hematocrit (human type O-positive red blood cells) in complete RPMI 1640 medium (RPMI 1640 medium supplemented with 25 mM HEPES, 370 µM hypoxanthine, 40 µg/ml gentamycin, 0.25 µg/ml Fungizone and 0.5% (wt/vol) AlbuMax II) in 60 mm Petri dish according to the modified candle jar method (Trager and Jensen, 1978). The culture was routinely monitored through Giemsa staining of the thin smears. Standard drug (chloroquine) and extracts at different concentrations (range from 1 to 1000 µg/ml) were prepared in distilled water (chloroquine) DMSO (test extracts) and then diluted to achieve the required concentrations. The synchronized culture with parasitaemia of 1.5 and 3% haematocrit were incubated in 96-well microtitre plate predisposed with multiple concentrations of extracts for 48 h at 37°C in candle jar. Blood smears from each well were fixed in methanol, stained with Giemsa's stain and the numbers of infected RBCs per 5000 cells were counted. The antimalarial activity of the test extract was expressed as 50% inhibitory concentration (IC\(_{50}\)) determined from dose-response curve by non-linear regression analysis (curve-fit) using Graph Pad Prism (version 4) software. Crude extracts with IC\(_{50}\) values > 50 ug/ml were considered to be inactive (Kraft et al., 2003).

Antioxidant activity

DPH radical scavenging activity

Antioxidant activity of the extracts was estimated using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) method (Yamaguchi et al., 1998). Test samples were dissolved separately in 5% DMSO to get test solution of 1 mg/ml. Assay was performed in 96-well, microtiter plates. 140 µl of 0.6 x 10\(^{-5}\)mol/l DPPH were added to each well containing 70 µl of sample. The mixture was shaken gently and left to stand for 30 min in dark at room temperature. The absorbance was measured spectrophotometrically at 517 nm using a microtiter plate reader (Synergy HT Biotek\(^\text{®}\), logiciel GEN5). Ascorbic acid was used as a reference antioxidant compound. The ability to scavenge DPPH radical was calculated by the following equation:

\[
\text{I} % = \left(\frac{A_{\text{blank}} - A_{\text{sample}}}{A_{\text{blank}}} \right) \times 100,
\]

Where \(A_{\text{blank}}\) is the absorbance of the control reaction (containing all reagents except the test sample), and \(A_{\text{sample}}\) is the absorbance of the extracts/reference.

Ferric-reducing antioxidant power assay

Ferric-reducing antioxidant power assay (FRAP) of the samples was tested using the assay of Oyaizu (1986). Different concentrations of the extracts were mixed with 2500 µl of phosphate buffer (pH 6.6) and 2500 µl of potassium ferricyanide. Later, the mixture was incubated at 50°C for 2 min and then, trichloroacetic acid (10%) was added. After the mixture was shaken vigorously, this solution was mixed with distilled water and ferric chloride (0.1%). After 30 min of incubation, absorbance was read at 700 nm. Increased absorbance of the reaction meant increased reducing power and compared to that of chlorogenic acid as the reference.

Cytotoxicity

Brine shrimp lethality test

Artemiasalina (shrimp eggs) was placed in natural sea water, and eggs hatched within 48 h, providing a large number of larvae (nauplii). The tested sample (20 mg) was dissolved in 2 ml of solvent. From this solution 5, 50 and 500 µl were transferred to vials forming concentrations of 10, 100 and 1000 µg/ml respectively. The solvent was allowed to evaporate overnight. Volume was made to 5 ml with seawater. Ten larvae were placed in each vial using a Pasteur pipette. Vials were incubated at 25 to 27°C for 24 h under illumination. Etoposide was used as positive control and number of survived larvae was counted. Data was analyzed by Finney Probit Analysis computer program to determine LC\(_{50}\) values with 95% confidence intervals (McLaughlin, 1998).

Microculture tetrazolium (MTT) assay

The experiment was performed according to method described by Berridge et al. (2005). Vero cells (normal, African green monkey kidney) were cultured in a 96 -well plate for overnight CO\(_2\) environment at 37°C. Supernatant was removed, and 50 µl of serially diluted extracts (range from 0.01 to 100 µg/ml) and 150 µl complete medium DMEM supplemented with 5% (v/v) fetal bovine serum, penicillin (100 units/ml), and streptomycin (100 µl/ml) were added to each well. After incubation, the culture medium was aspirated carefully and 50 µl of 3-(4, 5-dimethylthiazol) -2, 5- diphenyle-tetrazolium bromide (MTT) solution (2 mg/ml PBS) was added to each well and further incubated for 4 h. MTT solution was aspirated, and 100 µl of DMSO was added to dissolve the blue insoluble MTT formazan produced by mitochondrial dehydrogenase. The plate was agitated at room temperature for 15 min then read at 540 nm by using micro-plate readers. The optical density was measured at 540 nm and the percentage of viable cells was calculated as relative ratio of optical densities.

Statistical analysis

All experiments were performed in triplicates and data were presented as means ± S.D. Statistical analysis for all the assays results were done using Microsoft Excel program.

RESULTS AND DISCUSSION

Phytochemical screening

Preliminary phytochemical analysis of twig extracts of *C. deciduas* revealed presence of sterols/terpenes, flavonoids, tannins, alkaloids, lignin, saponins and
Table 1. Antimicrobial activity of twigs extracts of C. decidua.

<table>
<thead>
<tr>
<th>Micro organisms</th>
<th>Mean diameter of growth inhibition zone of different extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Petroleum ether</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>15±0.33</td>
</tr>
<tr>
<td>S. aureus</td>
<td>16±0.70</td>
</tr>
<tr>
<td>E. coli</td>
<td>15±0.70</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>14±0.70</td>
</tr>
<tr>
<td>C. albicans</td>
<td>18±0.75</td>
</tr>
<tr>
<td>A. niger</td>
<td>22±0.02</td>
</tr>
</tbody>
</table>

*gentamicin (10 µg/disc) was used as a positive control for bacteria, and nystatin (10 µg/disc) as a positive control for fungi. Values are presented in mean ± SD (n =3).

coumarins. Several chemical researches have been previously carried out on C. decidua. Sterols (Rathee et al., 2010a, 2010b), flavones (Saxena and Goutam, 2008), oxygenated heterocyclic constituents (Gupta and Ali 1997), alkaloids (Ahmad et al., 1985) and isothiocyanate glucosides (Juneja et al., 1970) have been reported in different parts of this plant.

Antimicrobial activity

The antibacterial activity of the petroleum ether, chloroform, ethyl acetate and n-butanol extracts from twigs of C. decidua was determined against the Gram positive B. subtilis and S. aureus and the Gram negative E. coli and P. aeruginosa and two fungi; A. niger and C. albicans using the disc diffusion method. Results are presented in Table 1.

Different extracts showed variable activity against the tested bacteria. Generally, the ethyl acetate and n-butanol extracts respectively showed higher antibacterial activity than the petroleum ether and chloroform extracts. The ethyl acetate extract showed the highest activity against S. aureus (21 mm), B. subtilis (20 mm) and P. pneumonia (18 mm) while the n-butanol extract displayed best inhibition against P. pneumonia (18 mm) and E. coli(16 mm). Interestingly, the ethyl acetate, n-butanol (18 mm) and chloroform (17 mm) extracts demonstrated antibacterial activity against P. aeruginosa comparable to that obtained for gentamicin at 10 µg/disc (18 mm). These results supported the findings of Eldeen and Van Staden (2007) who reported the antibacterial activity of dichloromethane, ethyl acetate and ethanolic extracts of C. decidua twigs against B. subtilis, S. aureus, E. coli and P. pneumoniae and those of Nour and El-Imam (2013) on the methanol extract of stems.

All extracts exhibited high antifungal activity against A. niger and C. albicans with inhibition zone ranging from 17 to 22 mm. Results of antifungal activity against C. albicans in this study were higher than those obtained by Nour and El-Imam (2013) who reported that the methanol extract was active while other tested extracts (chloroform and water) showed weak activity and they also found that all extracts were ineffective against A. niger. These differences in results might be attributed to different extraction solvents which influence the biological activity (Sinero et al., 2008).

Antigiardial activity

The activity of different twig extracts of C. decidua against G. lamblia was investigated using three different concentrations and results are presented in Figure 1. All extracts possessed antigiardial activity and their activity was variable according to concentration of extract and exposure time. The petroleum ether extract was effective against G. lamblia and showed highest activity after 72 h where it gave 84% mortality for the highest concentration (500 μg/ml) compared with positive control, metronidazole drug, which gave 92% mortality. The antigiardial activity of the chloroform and ethyl acetate extracts was concentration dependent and the percentage mortality (91 and 89% respectively), after 24 h and at concentration 500 μg/ml, was comparable to that exhibited by the positive control (89%). The highest antigiardial activity of the n- butanol extract after 48 and 72 h gave mortality of 79%, at concentration 500 µg/ml. Thus, it was clear that, at concentration 500 μg/ml, the chloroform and ethyl acetate extracts possessed potent antigiardial activity after 24 h while, all extracts were highly effective after 72 h. Plants from Sudan were shown to possess antigiardial activity belonging mainly to the family Cucurbitaceae. Elhadi et al. (2013) found that seeds of Cucurbita maxima had potent antigiardial activity while Hassan et al. (2011) demonstrated that crude extracts as well as Cucurbitacin E and Cucurbitacin L 2-O-β-glucoside isolated from C. lanatus var. citroides possessed also strong antigiardial activity. To the best of our knowledge this is the report on the antigiardial activity of C. decidua.

Antimalarial activity

The antimalarial activity of petroleum ether, chloroform,
Figure 1. Antigiardial activity of twigs extracts of *C. decidua* against *G. lambelia*. Values are presented in mean ± SD (n =3).

Table 2. Antimalarial activity of twigs extracts of *C. deciduas* against *Plasmodium falciparum*.

<table>
<thead>
<tr>
<th>Extract</th>
<th>IC<sub>50</sub> (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum ether</td>
<td>233.11±6.5</td>
</tr>
<tr>
<td>Chloroform</td>
<td>7599.46±9.7</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>68.50±10.5</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>136.4±9.9</td>
</tr>
<tr>
<td>Control (Chloroquine)</td>
<td>0.008±0.1</td>
</tr>
</tbody>
</table>

Values are presented in mean ± SD (n =3).

Table 3. Antioxidant activity of twigs extracts of *C. deciduas*.

<table>
<thead>
<tr>
<th>Extract</th>
<th>DPPH (%)</th>
<th>Iron chelating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum ether</td>
<td>48±0.02</td>
<td>Inactive</td>
</tr>
<tr>
<td>Chloroform</td>
<td>23±0.05</td>
<td>Inactive</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>35±0.06</td>
<td>Inactive</td>
</tr>
<tr>
<td>Butanol</td>
<td>43±0.10</td>
<td>Inactive</td>
</tr>
<tr>
<td>Control*</td>
<td>92±0.04</td>
<td>96±0.04</td>
</tr>
</tbody>
</table>

*Ascorbic acid was used as a positive control for DPPH assay and chlorogenic acid for iron chelating assay. Values are presented in mean ± SD (n =3).

Table 3. Antioxidant activity of twigs extracts of *C. deciduas*.

Table 4. Cytotoxicity of twigs extracts of *C. deciduas*.

Table 4. Cytotoxicity of twigs extracts of *C. deciduas*.

Table 4. Cytotoxicity of twigs extracts of *C. deciduas*.

Table 4. Cytotoxicity of twigs extracts of *C. deciduas*.

Antioxidant activity

The *in vitro* antioxidant activity of the petroleum ether, chloroform, ethyl acetate and n-butanol extracts from twigs of *C. decidua* was evaluated using DPPH and FRAP assays. Results are shown in Table 3. The petroleum ether and n-butanol extracts showed moderate DPPH scavenging activity while those of ethyl acetate and chloroform revealed weak DPPH scavenging activity. All extracts were inactive in the FRAP assay. Previous study on *C. decidua* revealed that leaves, flowers and fruits have potent antioxidant activity, reducing different types of radicals as well as ferric reducing antioxidant power (Zia-Ul-Haq et al., 2011).

Cytotoxicity

Cytotoxicity of petroleum ether, chloroform, ethyl acetate and butanol extracts of twigs of *C. decidua* were evaluated by brine shrimp lethality test and against vero cell lines using MTT assay (Table 4). All extracts displayed moderate toxicity to brine shrimps with LD₅₀ value ranged from 262 and 228 μg/ml. Moreover,
The cytotoxicity of extracts against vero cell lines revealed IC50 value ranged from 421 to 22585 μg/ml indicating that all extracts were virtually non-toxic (IC50=90 ppm) (Khalighi-Sigaroodi et al., 2012).

Conclusion

The results obtained support some of the traditional uses of *C. deciduas* and may offer potential leads to new active natural products. Further phytochemical research is needed to identify the active principles.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Prof. Maha Kordofani (Botany Department, Faculty of Science, University of Khartoum) for the identification of the plants.

REFERENCES

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences