ABOUT JPP

The Journal of Pharmacognosy and Phytotherapy (JPP) is published monthly (one volume per year) by Academic Journals.

The Journal of Pharmacognosy and Phytotherapy (JPP) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as ethnobotany, phytochemistry, ethnopharmacology, zoopharmacognosy, medical anthropology etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JPP are peer-reviewed.

Contact Us

Editorial Office: jpp@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JPP
Submit manuscript online http://ms.academicjournals.me/
Editors

Dr. (Mrs) Banasri Hazra
Research Scientist (U.G.C.)
Department of Pharmaceutical Technology
Jadavpur University
Calcutta - 700032
India

Dr. Yuanxiong Deng
Dept of Pharmaceutical Science
School of Medicine
Hunan Normal University
Tongzipo Road 371, Changsha 410013,
Hunan China

Prof. Maha Aboul Ela
Beirut Arab University, Faculty of Pharmacy, Beirut
Campus

Dr. S. RAJESWARA REDDY
Assistant Professor, Division of Animal Biotechnology
Department of Biotechnology, School of Herbal
Studies and Naturo Sciences,
Dravadian University, Kuppam – 517 425, A.P.
India

Dr. Mekhfi Hassane
University Mohammed the First, Faculty of Sciences,
Department of biology, Oujda, Morocco
Morocco

Dr. Ilkay Erdogan Orhan
Faculty of Pharmacy, Gazi University,
Ankara, Turkey
Turkey

Dr. Arun Kumar Tripathi
Central Institute of Medicinal and Aromatic Plants
P.O. CIMAP, LUCKNOW-226015,
India

Dr. Wesley Lyeverton Correia Ribeiro
Universidade Estadual do Ceará, Faculdade
de Veterinária/Laboratório de Doenças Parasitárias
Av. Paranjana, 1700
Itaperi - Fortaleza
60740-903, CE - Brazil

Dr. Maryam Sarwat
C/O A.M. Khan, House No. 195

Dr. Yong-Jiang Xu
Saw Swee Hock School of Public Health,
National University of Singapore, Singapore.

Prof. Dr. Adeolu Alex Adedapo
Department of Veterinary Physiology,
Biochemistry and Pharmacology
University of Ibadan, Nigeria

Dr. Joana S. Amaral
Campus de Sta Apolónia,
Ap. 1134, 5301-857 Bragança,
Portugal

Dr. Asad Ullah Khan
Interdisciplinary Biotechnology UNIT
Aligarh Muslim University,
India

Dr. Sunday Ene-ajo Atawodi
Biochemistry Department
Ahmadu Bello University
Zaria, Nigeria

Prof. Fukai Bao
Department of Microbiology and Immunology,
Kunming Medical College
China

Dr. Bhaskar C Behera
Agharkar Research Institute
Dept. of Science &Technology,
Plant Science Division
India

Prof. R. Balakrishna Bhat
Walter Sisulu University
Department of Botany
Mthatha, South Africa

Dr. Mohammad Nazrul Islam Bhuiyan
BCSIR Laboratories;
Chittagong cantonment;
Chittagong-4220;
Bangladesh
Dr. Baojun Bruce Xu
Beijing Normal University-Hong Kong Baptist University United International College Zhuhai, Guangdong Province, China

Dr. Hamad H. Issa
Department of Physical Sciences, School of natural Sciences, The University of Dodoma, Tanzania

Dr. Gagan Deep
Department of Pharmaceutical Sciences School of Pharmacy, University of Colorado Denver, Colorado, USA

Dr. Fengguo Xu
Dept of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Dr. Haitao Lv
Medicine and Endocrinology, Albert Einstein College of Meidicine, Yeshiva University, USA

Hassane MEKHFI
University Mohammed the First, Faculty of Sciences, Department of biology, Laboratory of Physiology and Ethnopharmacology, Morocco

Dr. Subhash C. Mandal
Division of Pharmacognosy Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, India.

Dr. Adibe Maxwell Ogochukwu
Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka Enugu state, Nigeria.

Dr. Odukoya, Olukemi Abiodun
Department of Pharmacognosy, Faculty of Pharmacy University of Lagos. Nigeria.

Dr. Qinxue Richard Ding
Medical Center at Stanford University, Palo Alto, USA

Dr. Sulejman Redžić
Faculty of Science of the University of Sarajevo 33-35 Zmaja od Bosne St., Sarajevo, Bosnia and Herzegovina

Dr. Michal Tomczyk
Medical University of Bialystok, Faculty of Pharmacy, Department of Pharmacognosy, Poland

Dr. Ugur Çakilcioğlu
Firat University, Faculty of Science and Arts, Department of Biology, Elazig Turkey

Prof. Samson Sibanda
National University of Science and Technology Cnr Gwanda Road/Cecil Avenue, Ascot, Bulawayo, Zimbabwe
Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc. should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b; Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $55 handling fee. Publication of an article in the Journal of Pharmacognosy and Phytotherapy (JPP) is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2016, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JPP, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
ARTICLE

Research Article

In vitro antibacterial and antifungal activities of *Chrysophyllum albidum* and *Diospyros monbuttensis* leaves

Olashehinde Grace Iyabo, Okolie Zeluch Vianne, Oniha Margaret Ikhiwili, Adekeye Bosede Temitope and Ajayi Adesola Adetutu
In vitro antibacterial and antifungal activities of *Chrysophyllum albidum* and *Diospyros monbuttensis* leaves

Olasehinde Grace Iyabo*, Okolie Zeluch Vianne, Oniha Margaret Ikhwili, Adekeye Bosede Temitope and Ajayi Adesola Adetutu

Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Received 6 October, 2015; Accepted 23 October, 2015

Despite progress in the development of antibacterial agents, there are still special needs to find new antibacterial agents due to the development of multidrug resistance by bacteria and fungi. This study was conducted to investigate and compare the *in vitro* antibacterial and antifungal activities of the methanolic and ethanolic extracts of the leaves of *Chrysophyllum albidum* and *Diospyros monbuttensis*. Methanolic and ethanolic extracts of *D. monbuttensis* and *C. albidum* leaves were prepared using cold extraction method. Antimicrobial sensitivity testing was carried out using agar-well diffusion method against the following test organisms: *Staphylococcus aureus*, *Streptococcus* sp., *Escherichia coli* (Enteropathogenic), *Klebsiella* sp., *Candida albicans* and *Aspergillus niger*. Minimum inhibitory concentration of the extracts of *D. monbuttensis* and *C. albidum* leaves was determined using broth dilution method. *S. aureus*, *Streptococcus* sp., *E. coli* and *Klebsiella* sp. were sensitive to ethanolic leaf extract of *C. albidum* at 25, 50 and 100 mg/ml respectively. *Streptococcus* sp., *E. coli* (Enteropathogenic), *Klebsiella* sp. And *C. albicans* were sensitive to *C. albidum* at 25 and 50 mg/ml. *A. niger* showed resistance to both extracts at the different concentrations used. The MIC of the methanol and ethanol leaf extracts of *D. monbuttensis* and *C. albidum* against the test microorganisms ranged between 3.125 and 100mg/ml. This is indicative that *D. monbuttensis* and *C. albidum* leaf extracts can be used in the treatment of infections.

Key words: *Diospyros monbuttensis*, *Chrysophyllum albidum*, extracts, antimicrobial, antifungal.

INTRODUCTION

Before the introduction of chemical medicine, man relied on the healing properties of medicinal plants (Ahvazi et al., 2012). Inspite of the diverse research from chemistry and biotechnology in producing synthetic drugs, plants are still the sole healing provider to mankind. The benefits derived from using medicine obtained from plants are that they are relatively safer than the synthetic alternative by offering profound therapeutic benefits and more affordable treatment (Idu et al., 2007; Akinnibosun and Itedjere, 2012; Nwankwo et al., 2015). Plants

*Corresponding author. E-mail: grace.olasehinde@covenantuniversity.edu.ng. Tel: 08055439005.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
produce many organic compounds which have value in the treatment of various diseases. Herbal remedies have played an important role in treatment of ailments from ancient to modern times. Although these subjects lost their importance in 20th century because of the modern synthetic treatments, there is a renewed interest today in medicinal plants usage as natural products for the generation of semi-synthetic derivatives (Efferth et al., 2007).

Antimicrobial properties of substances are desirable tools used in the control of undesirable microorganisms especially in the treatment of infectious diseases. The active components usually interfere with growth and metabolism of microorganisms in a negative manner (Aboaba et al., 2012). Bacterial infections are among the important infectious diseases. Medicinal plant extracts are promising as alternative or complementary control means because of their anti-microbial activity, non-phytotoxicity, systemicity as well as biodegradability (Talibi et al., 2012). Plants produce a great deal of secondary metabolites, many of them with antimicrobial and antifungal activity.

Chrysophyllum albidum G.don (Sapotaceae) commonly referred to as ‘white star apple’ or ‘mululu’ is a tropical forest tree found in diverse ecozones in Nigeria, Uganda, Niger republic, Cameroon and Cote d’ Ivoire (Bada, 1997). Tannins, flavonoids, terpenoids, proteins, carbohydrates and resins are the phytochemicals that have been reported in C. albidum (Akaneme, 2008). Eleagnine, tetrahydro- 2 - methylharman and skatole have been isolated from this plant and eleagnine was the main compound responsible for its antimicrobial activity (Idowu et al., 2003). The leaves are used as emollients and for the treatment of skin eruptions, diarrhoea and stomach ache which are as a result of infections and inflammatory reactions (Adisa, 2000). The high saponin content of C. albidum leaves and roots justifies the use of the extracts to control human cardiovascular disease and reduce blood cholesterol as documented by Aleotor (1993). C. albidumcan be used as anti-inflammatory, antispasmodic, antialgesic and diuretic due to its properties attributed to their high flavonoids, steroids, glycosides and saponins (Savithramma et al., 2011). The phenolic compounds in C. albidum may be responsible for the therapeutic, anti-septic, antifungal or bacterial properties of the plant; this is also responsible for the bacteriostatic and fungicstatic activity (Okwu and Iroabuchi, 2001; Okwu and Morah, 2007).

D. monbutensisis referred to as akokuochu in igbo and egungunekun or erikesi in yoruba (White, 1957). The leaves contain sterols, polyterpenes, polyphenols, flavonoids, alkaloids, saponins, leucoanthocyanins, tannins, quinones and coumarins. Anthocyanins, cardiotonics glycosides and steroids are present in very low quantity. According to Bouquet and Debray (1974), this plant is considered by the Baoulé and Agni ethnic groups from Ivory Coast as a good remedy for febrile aches, stomach pains, edema and leprosy. Various studies have demonstrated that the coumarins have a potential antioxidant. This antioxidant activity is due to their ability to trap the free radicals and to chelate metal ions (Tseng, 1991). It is assigned to the terpenoids and tannins some analgesics and anti-inflammatory activities. Apart from this, the tannins contribute to healing wounds (Okwu and Josiah, 2006). The constituents present in these plants play a significant role in identifying the crude drug.

Despite progress in development of antibacterial agents, there are still special needs to find new antibacterial agents due to development of multidrug resistant bacteria (Wise et al., 1998). According to World Health Organization (WHO), 80% of the World’s population is dependent on the traditional medicine (Kumar and Nagarajan, 2012). Medicinal plants are the “backbone” of traditional medicine, which means more than 3.3 billion people in the less developed countries utilize medicinal plants on a regular basis (Davidson-Hunt, 2000). Herbal plants are rich sources of safe and effective medicines and are used throughout the history of human beings either in the form of plant extracts or pure compounds against various infectious diseases (Parekh and Chanda, 2007). Among foremost health problems, infectious diseases account for 41% of the global disease burden. The main reasons of these infectious diseases are the natural development of bacterial resistance to various antibiotics. The development of multidrug-resistant (MDR) bacteria takes place because of the accumulation of different antibiotic resistance mechanisms inside the same strain (Chopra, 2000). Although, in past decades, the pharmacological companies have produced a number of new antibiotics, even then drug resistance has increased. This situation has prompted researchers towards herbal products, in search of development of better-quality drugs with improved antibacterial, antifungal, and antiviral activities. The outburst of drug resistant microbial strains necessitates the studies for synergistic effects of antibiotics in combination with plant’s derivatives to develop the antimicrobial cocktail with a wider spectrum of activity and reduction of adverse side effects of antimicrobial agents. Staphylococcus aureus resistance to the penicillin group of antibiotics is increasing associated with appearance of adverse side effects such as hypersensitivity and anaphylactic reactions (Odds, 2003).

This study was carried out to investigate and compare the in vitro antibacterial and antifungal activities of the methanolic and ethanolic extracts of C. albidum and D. monbutensis leaves.

MATERIALS AND METHODS

Collection and preparation of plant materials

Leaves of C. albidum and D. monbutensis were collected at Covenant University field, Ota, Ogun state, Nigeria. Authentication
Collection of clinical isolates

The clinical test isolates used in this study are Staphylococcus sp., Streptococcus sp., Escherichia coli (Pathogenic), Klebsiella sp., Candida albicans and Aspergillus niger. Pure cultures of bacterial, yeast and the filamentous fungal isolates were sourced from the Microbiology laboratory, Department of Biological Science, Covenant University, Ota, Ogun State, Nigeria.

Preparation of the ethanolic and methanolic extracts

Cold extraction was used in performing the extraction from the leaves. Extracts were produced using ethanol and methanol as solvents. Filtrate was concentrated using rotary evaporator and then weighed after the solvent had been removed.

Standardization of microbial Inocula

Bacterial and fungal isolates were sub-cultured onto freshly prepared Nutrient agar and Potato Dextrose agar plates and incubated for 24 h at 37°C and 3 to 5 days at room temperature respectively. A portion of the streaked bacterial colonies and a small inoculum from the lawn of fungal growth was transferred into McCartney bottles containing 1 ml of sterile distilled water. Vortexing was carried out and the turbidity was adjusted to match 0.5 Mc Farland standards (10⁶ cfu/ml and 10⁸ spores /ml).

Determination of antimicrobial activity

The agar-well diffusion assay as described by Vollekovia et al. (2001) was used to ascertain the inhibitory effects of the respective leaf extracts on the test isolates. The tests were carried out using a stock concentration of 100 mg/ml. Mueller-Hinton agar plates were seeded with 0.1 ml of standardized bacterial and fungal cultures. The microbial lawn was done using a sterile glass rod and the seeded plates were allowed to dry. A sterile cork borer was used to punch 2 equidistant holes in the middle of the labelled inoculated agar plates and filled with 0.2 ml of the same concentrations of the two leaf extracts. Following the diffusion of the extracts into the agar at room temperature, the bored agar plates were incubated at 37°C for 24 h for bacteria isolates while those with the filamentous fungal cultures were kept at room temperature for 3 to 5 days and observations made at the end of the incubation period. The antibacterial activity of the leaf extracts was assessed by an inhibition zone surrounding the well while the antifungal activity was measured after 3 to 5 days incubation at room temperature using a meter rule. The mean zones of inhibition was measured and expressed in millimeters. For the positive control, a standard antibiotic (Gentamycin) was used for comparison while for the negative control, DMSO was used.

Determination of minimum inhibitory concentration (MIC)

The MIC of the methanolic and ethanolic leaf extracts of D. monbuttensis and C. albicum were determined by the broth dilution method (Asowata et al., 2013). The plant extracts were prepared to the highest concentration of 100 mg/ml in 25% of DMSO and serial double dilutions were made to give concentrations ranging from 50 mg / ml to 3.125 mg/ ml(from earlier studies). 1 ml of Nutrient broth and 1 ml of each leaf extract were put into different test-tubes according to the varied concentrations. 0.2 ml of the standardized microbial cultures was inoculated into the labeled tubes containing the diluted extracts and the Nutrient broth. The tubes were incubated at 37°C for 24 h for bacteria and fungi. The least concentration of the extract which inhibited the growth of the inoculum was considered as the minimum inhibitory concentration.

RESULTS

Results showed that as the concentrations increased, there was a corresponding increase in the zones ofinhibitions. Tables 1 to 3 show the zones of inhibition of the organisms due to the antimicrobial activities of the methanol and ethanol extracts of D. monbuttensis, and the ethanolic extracts of C. albicum respectively. The zones of inhibition for all the test isolates using methanolic leaf extract of D. monbuttensis ranged from 8 mm for C. albicum to 11 mm for E. coli (pathogenic) while for the ethanolic leaf extract of D. monbuttensis, zone of inhibition ranged from 10 to 18 mm for all of the test isolates (Tables 1 and 2). In Table 3, the inhibition zone of ethanolic extract of C. albicum against the test isolates ranged from 10 to 22 mm with A. niger showing resistance at all concentrations.

Tables 4 and 5 show the mean values for the antimicrobial activity of methanolic leaf extract of D. monbuttensis.
Table 2. Antimicrobial activity of ethanolic leaf extract of *D. monbuttensis*.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Diameter of zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Staphylococcus spp.</td>
<td>14</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>16</td>
</tr>
<tr>
<td>E. coli (Pathogenic)</td>
<td>17</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>18</td>
</tr>
<tr>
<td>C. albicans</td>
<td>R</td>
</tr>
</tbody>
</table>

R, Resistant.

Table 3. Antimicrobial activity of ethanolic leaf extract of *Chrysophyllum albidum*.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Diameter of zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Staphylococcus spp.</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>13</td>
</tr>
<tr>
<td>E. coli (Pathogenic)</td>
<td>15</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>22</td>
</tr>
<tr>
<td>C. albicans</td>
<td>21</td>
</tr>
<tr>
<td>A. niger</td>
<td>R</td>
</tr>
</tbody>
</table>

R, Resistant.

Table 4. Mean values for the antimicrobial activity of methanolic leaf extract of *D. monbuttensis* and ethanolic leaf extract of *C. albidum*.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Diameter of zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. monbuttensis</td>
</tr>
<tr>
<td>Staphylococcus spp.</td>
<td>10</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>10</td>
</tr>
<tr>
<td>E. coli (Pathogenic)</td>
<td>10.5</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>R</td>
</tr>
<tr>
<td>C. albicans</td>
<td>9</td>
</tr>
<tr>
<td>A. niger</td>
<td>R</td>
</tr>
</tbody>
</table>

R, Resistant.

D. monbuttensis and ethanolic leaf extract of *C. albidum* ranging from 9 to 16.6 mm for the former and 11.6 to 15 mm for the latter extract with *A. niger* and *C. albicans* showing resistance in the mean values obtained.

The ethanolic leaf extract of *C. albidum* showed highest MIC values at 25 mg/ml against *Streptococcus, E. coli* and *C. albicans* while the ethanolic leaf extract of *D. monbuttensis* revealed its highest MIC at 25 mg/ml against *Staphylococcus* and *Streptococcus* (Tables 6 and 7). The highest MIC value shown by the methanolic leaf extract of *D. monbuttensis* was against *C. albicans* at 3.125 mg/ml while the other test isolates were resistant (Table 7).

DISCUSSION

Antimicrobial properties of substances are desirable tools in the control of undesirable microorganisms especially in the treatment of infectious diseases. The natural products isolated from plants used in traditional medicine, which have potent antiplasmodial activity *in vitro*, represent potential sources of new anti-malarial drugs (Olasehinde et al., 2014). The active components usually interfere with growth and metabolism of microorganisms in a negative manner (Aboaba et al., 2012). The aqueous and alcoholic extracts from the leaves of *D. monbuttensis*
were found to have strong antibacterial activity. The antimicrobial activities of the plant leaves extract was due to the presence of tannins. *D. monbuttensis* has shown strong antibacterial activity against a wide range of gram-positive and gram-negative bacteria (Anie et al., 2011). Bouquet and Debray reported similar results and showed the presence in the leaves of some quinones, tannins, sterols and saponins and an absence of flavonoids and alkaloids.

The antimicrobial activity of the methanol and ethanol leaf extracts of *D. monbuttensis*, and the ethanol leaf extract of *C. albidum* were reported in this study (Tables 1 to 3). The result of the antimicrobial screening which showed that the test isolates were susceptible to methanol and ethanol extracts of different plants. This indicates that some of the antimicrobial compounds in the investigated plants might be polar. The zones of inhibition of growth of the microorganism are a function of the relative antibacterial and antifungal activity of the extracts. The MIC of the methanol and ethanol leaf extracts of *D. monbuttensis* and *C. albidum* plants against the test microorganisms ranged from 3.125 to 100 mg/ml, while the MIC of the ethanol leaf extracts of *D. monbuttensis* plant against the test microorganisms ranged from 6.25 to 100 mg/ml. The effect of the plant extract on the MIC for the test microorganisms varied widely in the degree of their susceptibility (Elekwa et al., 2009). An antimicrobial activity of plant extracts with highly active antimicrobial agent gives a low MIC while a low activity against a microorganism has a high MIC.

The presence of plant secondary metabolites has been implicated for most plants therapeutic activities (Geyid et

Table 5. Mean values for the antimicrobial activity of ethanolic leaf extract of *D. monbuttensis*.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Diameter of zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus spp.</td>
<td>11.6</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>14.4</td>
</tr>
<tr>
<td>E. coli (Pathogenic)</td>
<td>12.8</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>15</td>
</tr>
<tr>
<td>C. albicans</td>
<td>R</td>
</tr>
</tbody>
</table>

R, Resistant.

Table 6. Minimum inhibitory concentration of methanolic extract of *D. monbuttensis* and ethanolic leaf extract of *C. albidum*.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Minimum inhibitory concentration (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. monbuttensis</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>R</td>
</tr>
<tr>
<td>E. coli (Pathogenic)</td>
<td>R</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>R</td>
</tr>
<tr>
<td>C. albicans</td>
<td>100</td>
</tr>
</tbody>
</table>

R, Resistant.

Table 7. Minimum inhibitory concentration of ethanolic leaf extract of *D. monbuttensis*.

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Diameter of zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus spp.</td>
<td>25</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>25</td>
</tr>
<tr>
<td>E. coli (Pathogenic)</td>
<td>100</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>50</td>
</tr>
<tr>
<td>C. albicans</td>
<td>R</td>
</tr>
</tbody>
</table>

R, Resistant.
al., 2005). Also, the plants containing these metabolites (alkaloids, flavonoids, tannin, saponins, etc) usually exhibits stronger antimicrobial properties than others (Hutchinson et al., 1963). The presence of these phytochemicals in the investigated plants may have contributed to their effect as remedy for various diseases. This suggests that the presence of potent antibacterial activity of the leaves extracts of the investigated plants against the bacteria might be due to naturally occurring bioactive phytochemicals present in the plant materials. The high degree of antimicrobial activity of some of the plants seems to confirm the folk therapy of infections and traditional therapeutic claims of these herbs.

Furthermore, as concentrations increased, there was a corresponding increase in the zones of inhibition. The zone of inhibition due to the antimicrobial activities of the methanolic and ethanolic extracts of D. monbuttensis, and the ethanolic extracts of C. albidum respectively are presented in Tables 1 to 3. The inhibitory zones elaborated by the test isolates exposed to C. albidum ranged from 10 mm Staphylococcus spp. to 22 mm for Klebsiella spp. (Table 3). Zones of inhibition exhibited by the exposed isolates to D. monbuttensis alcoholic extract ranged from 8 mm for C. albicans 10 mm for E. coli and from 10 mm for Staphylococcus spp. to 18 mm for Klebsiella spp (Table 1 and 2). The observed antimicrobial activity of the respective leaf extracts might also be dependent on both the concentration as well as nature of the extraction solvent used. Comparatively, the C. albidum leaf extract exhibited a greater antifungal activity against the fungal isolates than the D. monbuttensis leaf extract (Tables 1 to 3). The highest MIC values were displayed by the ethanolic leaf extract of C. albidum at 25 mg/ml against Streptococcus, E. coli and C. albicans and the ethanolic leaf extract of D. monbuttensis at 25 mg/ml against Staphylococcus and Streptococcus (Tables 6 and 7). C. albicans and E. coli exhibited the lowest MIC reading at 100 mg/ml against D. monbuttensis methanolic and ethanolic leaf extracts (Tables 6 and 7). Streptococcus, E. coli and Klebsiella showed resistance against D. monbuttensis methanolic leaf extract, while C. albicans showed resistance against D. monbuttensis ethanolic leaf extract (Tables 6 and 7).

Also, the results obtained from previous studies on C. albidum showed that, the inhibitory zones elaborated by the test isolates exposed to C. albidum ethanolic root extract ranged from 8 ± 0.06 mm for S. aureus to 18 ± 0.03 mm for E. coli. Also the inhibitory zones displayed by the test isolates exposed to C. albidum chloroform root extract ranged from 10.7 ± 0.05 mm for S. aureus to 26 ± 0.02 mm for E. coli, with A. niger showing resistance to both extracts. Also, the results from previous studies carried out on D. monbuttensis (Anie et al., 2011) showed that, the aqueous extract of root bark was active against gram positive organisms at 100 mg/ml and the petroleum and chloroform spirit extracts showed antifungal activities at 100 mg/ml. Comparatively, the ethanolic leaf extract of C. albidum from this present study was more effective than the ethanolic root extract against the test isolates used, but it was not more effective than the chloroform extract. For D. monbuttensis, the aqueous root bark extract from the previous study was less effective than the ethanolic leaf extract from this present study, against gram positive organisms, but more effective than the methanolic leaf extract. The methanolic leaf extract from this study had the same effect as the petroleum and chloroform spirit root bark extracts from the previous study against the fungal isolates (Anie et al., 2011). The petroleum and chloroform spirit root bark extracts of D. monbuttensis from the previous study had more effects on the fungal isolates than the ethanolic leaf extracts from this present study.

Conclusion

The ethanolic leaf extracts of C. albidum were comparatively more potent against the test isolates than the ethanolic and methanolic leaf extracts of D. monbuttensis, based on the MIC results. All the respective leaf extracts exhibited a greater antibacterial activity in comparison with the antifungal attributes. The presence of bioactive antimicrobial compounds in the examined alcoholic and chloroform extracts of the medicinal plants indicate the possibility of obtaining potentially valuable antimicrobial phytochemicals from these plants. The results obtained from this study support the use of these plant parts in the traditional treatment of diseases in Nigeria. The results of this finding could be very important to pharmaceutical industries in the development of new antimicrobial drugs in order to address unmet therapeutic needs. Such screening of various natural organic compounds and identification of active agents is the need of the hour for saving life and providing good health to humanity. There is need for further studies on the plant parts in order to isolate, identify, characterize and elucidate the structure of antimicrobial bioactive compounds.

Conflict of Interests

The authors have not declared any conflict of interest.

REFERENCES

Species with the Most Traditional Usage in Alamut Region. Iran J. Pharm. Res. 11(1):185-194.

Journal of Pharmacognosy and Phytotherapy

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Research in Pharmaceutical Biotechnology
- Medical Practice and Reviews
- Journal of Clinical Pathology and Forensic Medicine
- Journal of Medicinal Plant Research
- Journal of Drug Discovery and Development
- Journal of Clinical Virology Research