ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/JMPR

Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakicioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R.China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062,
India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province,
China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department,
Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine,
Gaziantep University,
Turkey.

Dr. Sadiq Azam
Department of Biotechnology,
Abdul Wali Khan University Mardan,
Pakistan.

Kongyun Wu
Department of Biology and Environment Engineering,
Guiyang College,
China.

Prof Swati Sen Mandi
Division of plant Biology,
Bose Institute
India.

Dr. Ujjwal Kumar De
Indian Vetreinary Research Institute,
Izatnagar, Bareilly, UP-243122
Veterinary Medicine,
India.

Dr. Arash Kheradmand
Lorestan University,
Iran.

Prof Dr Cemşit Karakurt
Pediatrics and Pediatric Cardiology
Inonu University Faculty of Medicine,
Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection,
Ladoke Akintola University of Technology,
Ogbomoso
Nigeria.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center
Cairo
Egypt.
Effect of extracts of traditional Chinese medicines on anti-tyrosinase and antioxidant activities
Ting-Fang Hsieh, Yaw-Nan Chang and Bing-Lan Liu

ARTICLE

Effect of extracts of traditional Chinese medicines on anti-tyrosinase and antioxidant activities
Ting-Fang Hsieh, Yaw-Nan Chang and Bing-Lan Liu

1131
Effect of extracts of traditional Chinese medicines on anti-tyrosinase and antioxidant activities

Ting-Fang Hsieh1*, Yaw-Nan Chang2 and Bing-Lan Liu3

1 Floriculture Research Center, Taiwan Agricultural Research Institute, Council of Agriculture, Yunlin 646, Taiwan.
2 Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan.
3 Department of Applied Chemistry, Chaoyang University of Technology, Wufeng, Taichung 413, Taiwan.

Received 19 September, 2015; Accepted 10 December, 2015

Fifty important cosmetic skin-whitening traditional Chinese medicines (TCMs) were investigated for their anti-tyrosinase and antioxidant (or DPPH-free-radical-scavenging) activities. The water and 70% ethanol extracts (WEs and 0.7EtEs, respectively) of TCMs were tested for tyrosinase inhibitory activities and DPPH-free-radical-scavenging activities. The 10 mg/ml WEs of 6 TCMs, Angelica dahurica, Anredera cordifilia Moq., Cinnamomum aromaticum, Glycyrrhiza glabra, Melia toosendan, and Prunus davidiana, presented over 50% inhibitory effect (referred to as the positive control of 0.5 mg/ml vitamin C) in tyrosinase activity, while Prunus davidiana showed the best anti-tyrosinase activity (94.0%). Only 3 TCMs of 0.7EtEs, Cinnamomum aromaticum, Quisqualis indica, Areca catechu, exhibited over 50% anti-tyrosinase activity. Among the TCMs screened, the 10mg/ml WE of Evodis rutaecarpa, Leonurus heterophyllus, Nardostachys chinensis, and Quisqualis indica, had strong DPPH-free-radical-scavenging effects or antioxidant activities (96.0, 90.5, 92.6 and 80.6%, respectively), while all the WEs of TCMs, except Uncaria sessilifructus Roxb, showed low antioxidant activities (65.6%). The anti-tyrosinase and antioxidant activities of these two TCM extracts may be due to direct linkage to the contents of their active compounds.

Key words: Traditional Chinese medicines, inhibition, anti-tyrosinase, antioxidant, free radical scavenging.

INTRODUCTION

The search for natural active compounds from natural herbal medicines or traditional Chinese medicines (TCMs) provides an interesting, largely unexplored area for development of new skin-care cosmetics (Kiken and Cohen, 2002; Kadekaro et al., 2003; Wang et al., 2006), such as natural whitening agents like melanin biosynthesis or tyrosinase inhibitors, which are able to modulate the metabolism of pigmentation for color of human skin and play a crucial protective role in skin whiteness, whereas antioxidants active in the oxidative stress of skin aging cells may support skin health. Melanin, which is biosynthesized by melanocyte cells in the basal layer of the epidermis (Hearing, 2005; Chen et al., 2015), may be overproduced with chronic sun exposure, melasma, or other hyperpigmentation diseases (Briganti et al., 2003). Therefore, whitening agents
reduce melanin overproduction like hyperpigmentation of darkened age spots, whereas pigmenting agents such as
melanins are designed to increase pigmentation for sun
protection. However, the inhibition of melanin biosynthesis has already been described by avoiding ultraviolet (UV) exposure, inhibiting melanocyte metabolism and proliferation (Seiberg et al., 2000; Chang, 2012), inhibiting tyrosinase activity, or removing melanin with corneal ablation (Wang et al., 2006).

Tyrosinase is known to be the key enzyme in the anabolism of melanin biosynthesis in melanocytes (Sturm et al., 2001; Parvez et al., 2007; Chang, 2012), catalyzing the initial two steps of this pathway, including hydroxylation of tyrosine (one of monophenolic compounds) to L-dopa (L-3,4-dihydroxyphenylalanine; one of o-diphenols) and oxidation of L-dopa to o-dopaquinone (one of o-quinones). These o-quinones are then transformed into melanin in a series of non-enzymatic reactions (Prota, 1988). Therefore, tyrosinase inhibitors are important constituents of cosmetics and skin-lightening agents (An et al., 2005), and tyrosinase becomes the key target enzyme for screening and discovery of new inhibitory compounds. This is why a constant search for tyrosinase inhibitors obtained by extraction from natural plants or TCMs is underway in the hope of preventing the occurrence of these melanin overproductions or hyperpigmentation disorders (No et al., 1999). The highly reactive intermediate produced by dopa oxidation, and the reactive oxygen species (ROS) and other free radicals induced by oxidative stress in skin cells or by UV radiation exposure have been presented to be inappropriately processed in enhancing melanin biosynthesis, damaging DNA, probably inducing proliferation of melanocytes (Yamakoshi et al., 2003; Yasui and Sakurai, 2003). The free radicals or ROS scavengers such as antioxidants may be known to reduce hyperpigmentation (Ma et al., 2001). Although the plant-derived antioxidants scavenge free-radicals, it is assumed that their nature and concentration vary among different kinds of plants. However, 1,1-diphenyl-2-picrylhydrazyl (DPPH) is a stable radical and the DPPH free radical-scavenging assay is a simple and widely popular method for screening free radical-scavenging ability of compounds or antioxidant activity of plant extracts. In this study, the biological evaluations of water and 70% ethanol extracts (WEs and 0.7EtEs, respectively) of 50 TCMs were investigated for the inhibition of tyrosinase activity and the antioxidation of DPPH-free-radical-scavenging activity. The comparison of the anti-tyrosinase and antioxidant activities of these two TCM extracts was also studied.

MATERIALS AND METHODS

Reagents and TCM materials

Tyrosine, L-dopa, mushroom tyrosinase (Prod. No. T7755), DPPH were purchased from Sigma (St. Louis, MO). Other chemicals were of the highest grade commercially available. TCMs were purchased from local medicinal markets in Taichung County, Taiwan.

Preparation of TCM extracts

Dried TCMs were pulverized in a grinder and 10 g of the pulverized TCM powders were extracted with 100 ml of distilled water (WEs) or 70% ethanol solution (0.7EtEs) at 28°C for 24 h. Extraction was carried out under shaking (100 rpm). The WEs was filtered with 0.22 μm membrane and the filtrate was stored at 4°C until use. The 0.7EtEs filtrate was completely dried at 50°C and then re-dissolved with distilled water. The samples of 0.7EtEs were obtained after filtration with 0.22 μm membrane.

Assay for tyrosinase inhibitory activity

Tyrosinase activity was determined by spectrophotometry (Masamoto et al., 1980; Bernard and Berthon, 2000) with slight modification. Briefly, 1.0 ml of the test sample (10 mg/ml extract) with or without WEs or 0.7EtEs, 1.0 ml of 20 mM phosphate buffer (pH 6.2) and 0.25 ml of 10 mM tyrosine were mixed at 37°C for 10 min. Subsequently, 25 ml of mushroom tyrosinase (200 U/ml) was added into the mixture. After incubation at 37°C for 25 min, the absorbance was measured at 475 nm (OD475) using a SHIMADZU UV-Visible spectrophotometer (Model UV-1201). The same procedure was applied with 0.5 mg/ml of vitamin C (as the positive controls for comparison with those of the WEs). To test the concentration required for 50% inhibition (IC50) values of TCMs on anti-tyrosinase activity, 1.0 ml of the test samples with different concentrations was performed as described above. For 0.7EtEs, the inhibition percentage of tyrosinase activity was calculated as follows:

Inhibition (%) = \[\frac{1 - (\text{OD}_{475 \text{ with test sample}})}{(\text{OD}_{475 \text{ without test sample}})}\] × 100

For WEs, the tyrosinase inhibitory activity was calculated with the following formula:

Inhibition (%) = [(% inhibition of test sample) / (% inhibition of vitamin C)] × 100

Assay for DPPH-free-radical-scavenging activity

The sample (either 50 μl of 10 mg/ml test sample or 50 μl of serial dilution concentrations of test samples mixed with 950 μl of 25 mM DPPH in methanol) test preparation underwent reaction in the dark at room temperature for 30 min. Fifty microliters of methanol was used as a positive control. The same procedure was applied with 0.2 mg/ml of vitamin C for comparison with those of the WEs. The decrease in absorbance at 517 nm (A517) induced by the samples was compared to that of the positive controls (Yamaguchi et al., 1998). The effect percentage of DPPH-free-radical-scavenging activity was calculated as follows:

Scavenging effect (%) = \[\frac{1 - (A_{517 \text{ of test sample}})}{(A_{517 \text{ of control}})}\] × 100%

Determining IC50 of TCM extracts

To calculate the concentration required for 50% inhibition (IC50) value of TCM extracts, the data of anti-tyrosinase or antioxidant activities (yi) obtained from a series of concentration (xi) of TCM extracts were put in the software of ICEstimator (ICEstimator Version 2.1, http://www.antimalarial-icestimator.net/index.htm) and
Figure 1. Effect of concentrations of Prunus davidiana water-extracts (WEs) on tyrosinase inhibitory activity.

a nonlinear regression \((y_i=a+bxi+cxi^2)\) was carried out to get the \(IC_{50}\) value. Herein, \(y_i\) is the inhibition activity in relative concentration of TCMs (Le Nagard et al., 2010).

Statistical analysis

Data were subjected to the analysis of variance (ANOVA) using the software package (SAS 8.1, Cary, NC, USA). In the case of significant treatment effects, a comparison of means was performed by means of the least significant difference (LSD) test at a significance level of 5% \((p = 0.05)\).

RESULTS

Tyrosinase inhibitory activity

The summarized results of mushroom tyrosinase inhibition of the 10 mg/ml extracts (WEs and 0.7EtEs) of 50 TCMs are shown in Table 1. Over 50% of anti-tyrosinase activity were observed in the WEs of 6 TCMs, Angelica dahurica, Anredera cordifolia Moq., Cinnamomum aromaticum, Glycyrrhiza glabra, Melia toosendan and Prunus davidiana (61.7, 68.7, 54.7, 70.4, 88.0 and 94.0%, respectively) referred to as that of vitamin C (0.5 mg/ml). Yet, only P. davidiana WEs exhibited the highest inhibition of tyrosinase with value over 90%. Figure 1 shows the dose-response curve for the inhibitory effect of tyrosinase activity of the P. davidiana WEs with different concentration (mg/ml). The tyrosinase inhibitory activity of P. davidiana WEs at a dilution concentration of 2 mg/ml was still about 84%. Linear dose-dependent behavior on tyrosinase activity inhibition (ranged from 51 to 84%) affected by P. davidiana WEs was found to be between the dilution concentration 0.3 and 2 mg/ml (Figure 1). The tyrosinase inhibitory effect was increased with increasing dilution concentration of P. davidiana WEs. The IC\(_{50}\) of P. davidiana on tyrosinase activity inhibition was 0.24 mg/ml. Among the 50 tested 0.7EtEs, only 3 TCM extracts, Areca catechu, C. aromaticum and Q. indica, presented good anti-tyrosinase activities with values at 50-70%, as shown in Table 1.

DPPH-free-radical-scavenging activity

The effect results of DPPH-free-radical-scavenging activity of the 50 TCM extracts were summarized in Table 2. The higher scavenging activity implies the higher DPPH-free-radical-scavenging ability or antioxidant activity. Of 50 TCM WEs, only Uncaria sessilifructus Roxb had a good antioxidant activity (65.6%). In contrast, 4 TCM 0.7EtEs, Evodis rutaecarpa, Leonurus heterophyllus, Nardostachys chinensis and Quisqualis indica, exhibited strong antioxidant activities (96.0, 90.5, 92.6 and 80.6%, respectively) (Table 2). Similar to the tyrosinase inhibitory activity of the P. davidiana WEs, these 0.7EtEs exhibited dose-response curves for scavenging effect or antioxidant activity as shown in Figure 2. The antioxidant activity was increased with
Table 1. Effect of water and 70% ethanol extracts of traditional Chinese medicines on tyrosinase inhibitory activity.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tyrosinase inhibitory activity (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water extracts (WEs)</td>
</tr>
<tr>
<td>Tribulus terrestris L.</td>
<td>9.9</td>
</tr>
<tr>
<td>Litharge (PbO)</td>
<td>7.8</td>
</tr>
<tr>
<td>Coix lacryma-iobi L.</td>
<td>9.7</td>
</tr>
<tr>
<td>Atractylodes macrocephala Koidz</td>
<td>7.7</td>
</tr>
<tr>
<td>Angelica dahurica Bentham et Hook.</td>
<td>61.7</td>
</tr>
<tr>
<td>Nelumbo nucifera Gaertn</td>
<td>20.5</td>
</tr>
<tr>
<td>Cyperus rotundus L.</td>
<td>20.4</td>
</tr>
<tr>
<td>Glycyrrhiza glabra L.</td>
<td>70.4</td>
</tr>
<tr>
<td>Ligusticum chuanxiong Hort.</td>
<td>14.0</td>
</tr>
<tr>
<td>Rheum officinale Baill</td>
<td>35.0</td>
</tr>
<tr>
<td>Lonicera japonica Thunb.</td>
<td>11.1</td>
</tr>
<tr>
<td>Nardostachs chinsensis Bat.</td>
<td>16.1</td>
</tr>
<tr>
<td>Prunus armeniaca L.</td>
<td>32.9</td>
</tr>
<tr>
<td>Paeonia anomala L.</td>
<td>7.8</td>
</tr>
<tr>
<td>Polygonum aviculare L.</td>
<td>24.6</td>
</tr>
<tr>
<td>Typhonium giganteum Engl.</td>
<td>8.8</td>
</tr>
<tr>
<td>Bombyx mori L.</td>
<td>9.1</td>
</tr>
<tr>
<td>Kaempferia galangal L.</td>
<td>18.9</td>
</tr>
<tr>
<td>Akebia trifoliata (Thunb.) Koidz.</td>
<td>-8.0</td>
</tr>
<tr>
<td>Forsythia suspense (Thunb.) Vahl</td>
<td>17.1</td>
</tr>
<tr>
<td>Trichosanthes kirilowii Maxim.</td>
<td>14.5</td>
</tr>
<tr>
<td>Vigna radiate (L.) Wilcz.</td>
<td>12.9</td>
</tr>
<tr>
<td>Angelica sinensis (Oliv.) Diels</td>
<td>20.7</td>
</tr>
<tr>
<td>Zingiber officinale Rosc.</td>
<td>26.0</td>
</tr>
<tr>
<td>Benincasa hispida (Thunb.) Cogn.</td>
<td>12.9</td>
</tr>
<tr>
<td>Elsholtzia splendens Nakai et F.Maek.</td>
<td>39.5</td>
</tr>
<tr>
<td>Rubus chingii Hu</td>
<td>0.9</td>
</tr>
<tr>
<td>Cinnamomum aromaticum Nees</td>
<td>54.7</td>
</tr>
<tr>
<td>Ipomoea biflora (L.) Persoon</td>
<td>19.4</td>
</tr>
<tr>
<td>Artemisia capillaries Thunb.</td>
<td>-18.8</td>
</tr>
<tr>
<td>Plantago asiatica L.</td>
<td>-0.9</td>
</tr>
<tr>
<td>Salvia miltiorrhiza Bunge</td>
<td>15.8</td>
</tr>
<tr>
<td>Quisqualis indica L.</td>
<td>7.9</td>
</tr>
<tr>
<td>Ageratum conyzoides L.</td>
<td>37.8</td>
</tr>
<tr>
<td>Poria cocos (Schw.) Wolf.</td>
<td>17.6</td>
</tr>
<tr>
<td>Prunus davidiana Franch</td>
<td>94.0</td>
</tr>
<tr>
<td>Scutellaria baicalensis Georgi</td>
<td>11.4</td>
</tr>
<tr>
<td>Ampelopsis japonica (Thunb.) Makino</td>
<td>6.2</td>
</tr>
<tr>
<td>Areca catechu L.</td>
<td>29.3</td>
</tr>
<tr>
<td>Saposhnikovia divaricata (Turcz.) Schischk.</td>
<td>-4.7</td>
</tr>
<tr>
<td>Talinum triangulare Willd.</td>
<td>16.8</td>
</tr>
<tr>
<td>Trichosanthes kirilowii Maxim.</td>
<td>44.8</td>
</tr>
<tr>
<td>Bletilla striate (Thunb.) Rchb. f.</td>
<td>27.2</td>
</tr>
<tr>
<td>Leonurus heterophyllus Sweet</td>
<td>13.8</td>
</tr>
<tr>
<td>Evodia rutaecarpa (Juss.) Benth.</td>
<td>18.8</td>
</tr>
<tr>
<td>Melia toosendan Sieb. et Zucc.</td>
<td>88.0</td>
</tr>
<tr>
<td>Anredera cordifilia Moq.</td>
<td>68.7</td>
</tr>
<tr>
<td>Homo sapiens L. (placenta of..)</td>
<td>40.0</td>
</tr>
<tr>
<td>Uncaria sessilifructus Roxb.</td>
<td>-70.2</td>
</tr>
<tr>
<td>Lycium chinenses Mill.</td>
<td>28.0</td>
</tr>
</tbody>
</table>
Hsieh et al.

Table 1. Cont’d

| Vitamin C (L-ascorbic acid) (0.5mg/mL) | 100.0 | ----- |
| LSD_{0.05} | 6.2 | 5.7 |

* Measurements were performed in triplicate.

Figure 2. Effect of concentrations of 70% ethanol extracts (0.7EtEs) of 4 TCMs, *Evodis rutaecarpa*, *Leonurus heterophyllus*, *Nardostachys chinensis*, and *Quisqualis indica*, on DPPH-free-radical-scavenging activity (antioxidant activity).

Increasing dilution concentration of these 4 0.7EtEs. The IC_{50} of 4 0.7TtEs, *E. rutaecarpa*, *L. heterophyllus*, *N. chinensis* and *Q. indica*, on antioxidant activity were 0.12, 0.41, 0.34, 0.79 mg/ml, respectively. The 7 other 0.7EtEs, *Angelica sinensis*, *Atractylodes macrocephala* Koidz, *C. aromaticum*, *Cyperus rotundus*, *G. glabra*, *Zingiber officinale*, *Plantago asiatica*, also present good antioxidant activities with values between 50 and 80% (Table 2).

DISCUSSION

In this study, WEs and 0.7EtEs of 50 TCMs were measured for the performance of anti-tyrosinase and antioxidant activities. The result indicated that 10 mg/ml aqueous extract of *P. davidiana* showed the best anti-tyrosinase activity (94.0%) similar to 0.5 mg/ml of vitamin C. Concentration required for 50% inhibition (IC_{50}) values of *P. davidiana* on anti-tyrosinase activity was 0.24 mg/ml. In terms of antioxidant activity, 0.7EtEs of *E. rutaecarpa* and *L. heterophyllus* were the best two TCMs, even though at 1.0 mg/mL concentration, they could still maintain more than 80% of the free radical scavenging ability. IC_{50} of two TCMs were 0.12 and 0.41 mg/ml, respectively.

In terms of Chinese herbal whitening, effect of *Bletilla striate*, *Ampelopsis japonica*, *A. dahurica*, *Atractylodes macrocephala* and *Typhonium giganteum* widely used in cosmetic products were considered. However, the present study found that the tyrosinase inhibition activities of these TCMs were lower than 50% whether in WEs or 0.7EtEs. This result is inconsistent with other studies (Chun et al., 2003; Ye et al., 2010). In addition, the tyrosinase inhibitory effect of *Ligusticum chuanxiong* has been reported in different polarization results. For example, Deng et al. (2007) reported the ethanol extract of *L. chuanxiong* has stronger inhibitory effect on
Table 2. Effect of water and 70% ethanol extracts of traditional Chinese medicines on DPPH-free-radical-scavenging activity (antioxidant activity).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Antioxidant activity (%)*</th>
<th>Water extracts (WEs)</th>
<th>70% ethanol extracts (0.7EtEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribulus terrestris L.</td>
<td>15.1</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Litharge (PbO)</td>
<td>14.3</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>Coix lacryma-iobi L.</td>
<td>23.2</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>Atractylodes macrocephala Koidz</td>
<td>0.5</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>Angelica dahurica Bentham et Hook.</td>
<td>23.8</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>Nelumbo nucifera Gaertn</td>
<td>20.6</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td>Cypcrus rotundus L.</td>
<td>25.5</td>
<td>56.8</td>
<td></td>
</tr>
<tr>
<td>Glycyrrhiza glabra L.</td>
<td>14.3</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td>Coix lacryma-iobi L.</td>
<td>2.94</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>Atractylodes macrocephala Koidz</td>
<td>23.2</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>Angelica dahurica Bentham et Hook.</td>
<td>0.5</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>Nelumbo nucifera Gaertn</td>
<td>23.8</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>Cyperus rotundus L.</td>
<td>20.6</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td>Glycyrrhiza glabra L.</td>
<td>25.5</td>
<td>56.8</td>
<td></td>
</tr>
<tr>
<td>Coix lacryma-iobi L.</td>
<td>2.94</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>Atractylodes macrocephala Koidz</td>
<td>23.2</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>Angelica dahurica Bentham et Hook.</td>
<td>0.5</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>Nelumbo nucifera Gaertn</td>
<td>23.8</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>Cyperus rotundus L.</td>
<td>20.6</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td>Glycyrrhiza glabra L.</td>
<td>25.5</td>
<td>56.8</td>
<td></td>
</tr>
<tr>
<td>Coix lacryma-iobi L.</td>
<td>2.94</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>Atractylodes macrocephala Koidz</td>
<td>23.2</td>
<td>63.5</td>
<td></td>
</tr>
<tr>
<td>Angelica dahurica Bentham et Hook.</td>
<td>0.5</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>Nelumbo nucifera Gaertn</td>
<td>23.8</td>
<td>13.6</td>
<td></td>
</tr>
</tbody>
</table>
tyrosinase activity (Deng et al., 2007), but Chen et al. (2008) reported that ethanol extract of *L. chuanxiong* enhances the activity of tyrosinase. In this study, tyrosinase inhibition rate of *L. chuanxiong* was much less than 50%. Wang et al. (2002) reported that the 50% ethanol extract of *Prunus persica* (L.) Batsch did not show a good tyrosinase inhibitory effect. In contrast, the WEs of *P. davidiana* showed the best anti-tyrosinase activity with the inhibition rate of 94% in the present study. Thus, the differences in tyrosinase inhibitory activity for TCM WEs and 0.7EtEs may be due to the various active components of different TCM sources and their polarities and other properties related to the extract methods and the solvent constituents (Ko et al., 2002; Wang et al., 2002).

To determine the antioxidant activity, 50 TCM extracts were screened for their DPPH-free-radical-scavenging activity. Of 11 TCM, 0.7EtEs showed good antioxidant activities with values more than 50%. Among them, *E. rutaecarpa*, *L. heterophyllus*, *N. chinensis* and *Q. indica*, exhibited strong antioxidant activities with values more than 80%. *E. rutaecarpa* is commonly used as an analgesic, antiemetic, anti-inflammatory and astringent drug in TCMs (Tang and Eisenbrand, 1992). The total alkaloids obtained from the fruits of *E. rutaecarpa* was found and the total antioxidant capacity and inhibitory lipid peroxidation are superior to synthetic antioxidant 2, 6-di-ter-butyl-4-methylphenol (BHT), but scavenging activity on DPPH radical is lower than that of BHT at the same condition (Tan et al., 2011). Wang et al. (2006) examined 25 TCMs that might be useful for antioxidant activity. Of 11 TCM, 0.7EtEs showed good antioxidant activity with the inhibition rate of 94% in the present study. The IC_{50} value of *N. chinensis* essential oil to scavenge DPPH radical was 637.47 μg/ml (Wang et al., 2010). Anu Kiruthika and Somaraj (2014) reported the methanolic crude extracts of *Q. indica* flower possess significant antioxidant activity which might be due to the presence of alkaloids, tannins, flavonoids and saponin. However, all the WEs of TCMs, except *U. sessiliflorus* showed a poor antioxidant activity as compared to all the 0.7EtEs. This finding maybe due to the fact that 70% ethanol solution is an active solvent constitute for extraction of these good or strong TCM antioxidants. The result suggested that these 4 TCM 0.7EtEs may contain constituents with strong prononating abilities (Sawai and Moon, 2000). In addition, to the authors’ knowledge, there is no report regarding the antioxidant activity of *U. sessiliflorus* extracts.

Conclusion

In the present study, there is no doubt that the extract methods and the solvent constituents play important roles in extraction of natural active compounds of 50 selected TCMs, described for anti-tyrosinase activity and antioxidant activity. The *P. davidiana* WEs and the *E. rutaecarpa* 0.7EtEs were investigated for potential effectiveness as skin-whitening agents and in maintaining healthy skin, respectively. In the future, the isolation and structural elucidation of the active bio-guided isolated compounds of these 2 TCMs will likely have considerable value as cosmetics additives and be useful for cosmetic applications and products.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

This research was partly supported by grants awarded to Dr. T.-F. Hsieh from the Ministry of Science and Technology, Taiwan. The authors thank Ms. W. H. Chung and L. Y. Lee for technical assistance.

REFERENCES

Chen WC, Tseng TS, Hsiao NW, Lin YL, Wen ZH, Tsai CC, Tsai KC (2015). Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and...
Chun HJ, Lee JH, Choi EY, Baek SH (2003). Inhibitory effects of
ethanol extract of Atractylodes Rhizoma on melanogenesis in
Deng QX, Gong SZ, Jie XY (2007). Study on tyrosinase inhibitory
activity of Ligusticum chuanxiong extract. Zhong Yao Cai 30(4):469-
471.
Significance of the melanocortin 1 receptor in regulating human
Am. J. Contact Dermat. 13:148-152.
Ko HC, Chen KT, Chou CJ, Chen CF (2002). Determination of
dehydroevodiamine, evodiamine, rutaecarpine and synephrine in
13(3):151-158.
in vitro resistance to antimalarial drugs through nonlinear regression.
Ma W, Wlaschek M, Tantcheva-Poor I, Schneider LA, Naderi L, Razi-
ageing and photoageing of the fibroblasts and the dermal connective
No JK, Soung DY, Kim YJ, Shim KH, Yun JS, Rhee SH, Yokozawa T,
Chung HY (1999). Inhibition of tyrosinase by green tea components.
Life Sci. 65:241-246.
tyrosinase inhibitors: mechanism and applications in skin health,
Sawai T, Moon JH (2000). NMR analytical approach to clarify the
molecular mechanisms of the antioxidative and radical-scavenging
activities of antioxidants in tea using 1,1-diphenyl-2-picrylhydrazyl.
Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M,
Eisinger M, Shapiro SS (2000). Inhibition of melanosomes transfer
Sturm RA, Teasdale RD, Box NF (2001). Human pigmentation genes:
identification, structure and consequences of polymorphic variation.
Activities of Total Alkaloids from the Fruits of Evodia rutaecarpa
Tang W, Eisenbrand G (eds.), Chinese Drugs of Plant Origin,
Yang F (2010). Chemical analysis and biological activity of the
essential oils of two valerianaceous species from China: Nardostachys
chinensis and Valeriana officinalis. Molecules 15:6411-
6422.
Wang KH, Lin RD, Hsu FL, Huang YH, Chang HC, Huang CY, Lee MH
(2006). Cosmetic applications of selected traditional Chinese herbal
for evaluation of the free radical-scavenging activity of foods by using
1204.
Yamakoshi J, Otsuka F, Sano A, Tokutake S, Saito M, Kikuchi M,
Kubota Y (2003). Lightening effect on ultraviolet-induced
pigmentation of guinea pig skin by oral administration of a
proanthocyanidin-rich extract from grape seeds. Pigment Cell Res.
16:629-638.
Yasui H, Sakurai H (2003). Age-dependent generation of reactive
oxygen species in the skin of live hairless rats exposed to UVA light.
ZL (2010). Screening of Chinese herbal medicines for antityrosinase
activity in a cell free system and B16 cells. J. Ethnopharmacol.
Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences