ABOUT IJGMB

The International Journal of Genetics and Molecular Biology (IJGMB) (ISSN 2006-9863) is published Monthly (one volume per year) by Academic Journals.

International Journal of Genetics and Molecular Biology (IJGMB) provides rapid publication (monthly) of articles in all areas of the subject such as DNA and RNA, Influence of risk factors on onset of hyperlipidemia in people with cerebrovascular insult, Study of proteinase activity of Lactobacillus plantarum etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in IJGMB are peer-reviewed.

Contact Us

Editorial Office: ijgmb@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/IJGMB
Submit manuscript online http://ms.academicjournals.me/.
Editor

Prof. Kasem Zaki Ahmed
Department of Genetics,
Faculty of Agriculture,
Minia University, El-Minia,
Egypt, ET – 61517

Prof. Evgeny N. N. Imyanitov
Petrov Institute of Oncology,
Pesochny-2, 197758, St.-Petersburg,
Russia

Dr. A. Muthusamy
Department of Biotechnology
Manipal Life Sciences Centre
Manipal University
Planetarium Complex
Manipal – 576 104
Karnataka,
India

Editorial Board

Dr. Ibrahim Ilker Ozyigit
Marmara University, Sciences and Arts Faculty,
Department of Biology, 34722, Goztepe,
Istanbul,
Turkey

Dr. (Mrs.) Meena Misra
Institute of Frontier Sciences & Biotechnology,
Baramunda,
Bhubaneswar-751004,
India

Associate Editors

Dr. Chang-Gu Hyun
Jeju Biodiversity Research Institute (JIBRI) &
Jeju Hi-Tech Industry Development Institute (HiDI),
South Korea

Santosh A. Khedkar
Computational Medicinal Chemist
45 Aldrich St. Apartment-1
Somerville MA 02145,
USA

Dr. Yehia Zakaria Gad
Department of Medical Molecular Genetics, Division
of Human Genetics and Genome Research, National
Research Center, El-Beheeth (ex-Tahrir) st., Dokki,
Giza, 12311
Egypt
Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the AJFS to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author's name should be mentioned, followed by 'et al'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the International Journal of Genetics and Molecular Biology is not contingent upon the author’s ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2016, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the IJGMB, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication.

While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
Association of the extracellular superoxide dismutase Ala40Thr polymorphism with type 2 diabetes mellitus and its complications in Lebanese population
Nahed Saad, Mohamed E. Moustafa, and Hala A. Chamieh,
Association of the extracellular superoxide dismutase Ala40Thr polymorphism with type 2 diabetes mellitus and its complications in Lebanese population

Nahed Saad¹, Mohamed E. Moustafa¹,² and Hala A. Chamieh³,⁴*

¹Department of Biological and Environmental Science, Faculty of Science, Beirut Arab University, Lebanon.
²Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
³Department of Biology, Faculty of Science, Lebanese University, Lebanon.
⁴Azm Center for Research in Biotechnology and its Applications, Laboratoire des Biotechnologies Appliquées, Ecole Doctorale Sciences et Technologie, Mitein Street, Tripoli, Lebanon.

Received 13 May, 2015; Accepted 22 December, 2015

Free radical-induced damage plays a significant role in the development of type 2 diabetes and its complications. Extracellular superoxide dismutase (EC-SOD) or SOD3 is one of the important scavenger enzymes that protects against oxidative damage and the formation of free radicals. EC-SOD is a copper- and zinc-containing secretory enzyme located in tissues and primarily in the extracellular matrix. EC-SOD has been proposed to protect against pancreatic beta-cell damage, insulin resistance and vascular function in diabetic patients. The association between EC-SOD gene polymorphism and Type 2 diabetes mellitus is not completely understood. The aim of the study is to investigate the EC-SOD gene polymorphism in the exon 3 region and the susceptibility to type 2 diabetes mellitus and its complications among Lebanese patients. For this purpose, a genotype analysis involving 60 Type 2 Diabetes patients and 46 control subjects was carried out using PCR-based direct DNA sequencing. Results showed that the frequency of the Ala40Thr polymorphism of EC-SOD gene was significantly higher in type 2 diabetic patients compared to control group. Evaluation of clinical parameters of diabetic patients with their relative genotypes showed that patients with the Thr allele have higher HbA1c levels and fasting blood glucose compared to their Ala genotypes indicating a poor diabetes control in these patients. When diabetic complications including retinopathy, nephropathy and cardiovascular complications were correlated with Ala40Val polymorphism, a significant association was detected for complications and particularly for cardiovascular diseases in diabetic patients.

Key words: Type 2 diabetes mellitus, oxidative stress, extracellular superoxide dismutase, genetic biomarker.

INTRODUCTION

Oxidative stress characterized by elevated concentration of reactive oxygen species (ROS) contribute to tissue damage and is associated with the development of various diseases including cancer, hypertension, diabetes, atherosclerosis, inflammation, and premature aging (Rahal et al., 2014). Organisms have developed a variety of antioxidant defenses with specialized antioxidant enzymes that include the superoxide dismutases (SODs) (Zelko et al., 2002). SODs are the first important line of antioxidant defense systems by
eliminating damaging ROS from the cellular environment (Fukai and Usagio-Fukai, 2011). Extracellular superoxide dismutase or EC-SOD is the predominant SOD in extracellular matrix, it is anchored to the extracellular matrix (ECM) and cell surfaces through an interaction with heparan sulfate proteoglycan and collagen (Fattman et al., 2003). EC-SOD is a homotetrameric copper- and zinc-containing glycoprotein found in pancreas, skeletal muscle and particularly abundant in blood vessels. The human EC-SOD gene is located on chromosome 4p16.3-q21 and consists of three exons. EC-SOD protects various tissues from oxidative stress by catalysis of dismutation of two superoxide radicals to hydrogen peroxide and oxygen (Folz and Crapo, 1994). In addition, EC-SOD plays an important role in preserving nitric oxide (NO) function from superoxide anion in extracellular space (Dong et al., 2014; Jung et al., 2003).

A number of diseases, including vascular-related diseases atherosclerosis, hypertension, diabetes, lung diseases, and inflammation have been associated to EC-SOD (Chistyakov et al., 2001; Fattman et al., 2003; Naganuma et al., 2008). EC-SOD gene is suggested to play a role in the development of type 2 diabetes and/or its complications. EC-SOD plasma concentrations were impaired in Japanese type 2 diabetic patients (Adachi et al., 2004; Yamada et al., 1997). Knockout mice EC-SOD suffer from a delayed recovery of hypoglycemia (Sentman et al., 1999). The implication of EC-SOD polymorphism with type 2 diabetes mellitus is not fully understood. It has been shown that a missense mutation (C to G) that results in arginine 213 glycine substitution in the heparin binding region is not associated with type 2 diabetes (Tamai et al., 2006; Ukkola et al., 2001). Another single study limited to Japanese population proposed that a missense mutation (A to G) that results in alanine 40 to threonine can increase the risk to type 2 diabetes (Tamai et al., 2006). From our knowledge, no previous studies have focused on the association of EC-SOD polymorphism with susceptibility to type 2 diabetes in other populations than the Japanese population. The present study aims to examine the genetic polymorphism in the exon 3 of EC-SOD gene among Lebanese population, and to study its association with the susceptibility to type 2 diabetes mellitus and its complications.

MATERIALS AND METHODS

Study settings and design

This study employed a case-control design. Sixty unrelated Lebanese patients from different regions of Lebanon who meet ADA’s criteria for a diagnosis of diabetes were recruited from Al Rai and Egyptian Military Hospital for one year prior to this study. An informed consent was obtained before collection of their blood samples according to the ethical board regulations. Diabetic patients included 27 males and 33 females, their ages ranged between 37 and 80 years, with a mean age of 59.63. All patients were following a blood glucose control drug regimen. Demographic and clinical characteristics for patients are shown in Table 1. The mean duration of diabetes was 11.3 ± 7.8 years. Assessment of clinical manifestations of diabetic complications was based on patient’s medical records. Retinopathy was the most common complication among diabetic patients (15 cases) while nephropathy was the least common complication among diabetic patients enrolled in this study (5 cases). The mean blood glucose level was 177.2 ± 1.18 mg/dl and the main HbA1c was 7.86 ± 1.18%. As non-diabetic control, forty six randomly selected unrelated healthy individuals were chosen using the following criteria: age ranges between 35 and 70 years, no history of genetic diseases or family history of diabetes mellitus, HbA1c < 5.6%, fasting blood glucose < 100 mg/dl, absence of comorbidities (hypertension, hyperlipoproteinemia). This group consisted of 19 males and 33 females, with mean age of 60.03.

DNA extraction

Flexigene DNA kit (Qiagen GmBH D-40724) were used to extract total genomic DNA.

Detection of the EC-SOD polymorphism

The analysis of the EC-SOD genotypes was performed by polymerase chain reaction (PCR) followed by DNA sequencing. The following primers were used: Forward primer: 5'-CGTGAACAAAGCTCATCGTGC-3', reverse primer 5'-ACCTCAGCAAAAGCGCAAGGT-3'. DNA samples were amplified by PCR using 100 to 200 ng genomic DNA as an initial template. A 905 bp PCR product-covering exon 3 in the EC-SOD gene was amplified (Figure 1). The PCR assay was carried out using a REDTag ReadyMix PCR reaction mix containing MgCl2. The PCR reaction mix final volume was 40 µl and included 0.3 µM of each

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T2DM patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (male/female)</td>
<td>27/33</td>
</tr>
<tr>
<td>Age (years)/ Mean age</td>
<td>37-80/ 59.63 ± 10.83</td>
</tr>
<tr>
<td>Nephropathy cases</td>
<td>3</td>
</tr>
<tr>
<td>Retinopathy cases</td>
<td>15</td>
</tr>
<tr>
<td>Cardio-vascular complications</td>
<td>8</td>
</tr>
<tr>
<td>Duration of DM (years)</td>
<td>11.3±7.8</td>
</tr>
<tr>
<td>Blood glucose level (mg/dl)</td>
<td>177.2±44.92</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.86±1.18</td>
</tr>
</tbody>
</table>

Data are expressed as means ± S.E.

Table 1. Demographic and laboratory characteristics of T2DM patients recruited for the study.
Figure 1. PCR amplification of the exon 3 of EC-SOD gene. A fragment consisting of 905 bp was amplified in the exon 3 of the EC-SOD gene. The PCR products were checked on 1% agarose gel stained with ethidium bromide and were sent for sequencing to detect genetic polymorphism in the exon 3 region. From left to right: Lane 1: 100 bp Molecular weight marker. Lanes 2 to 4: PCR amplification using genomic DNA as a template from three different subjects.

primer. The PCR program consisted of an initial denaturation for 5 min at 94°C, followed by 38 cycles of denaturation at 94°C, annealing at 58°C for 90 s, and extension at 72°C for 60 s, with a final extension at 72°C for 10 min. The PCR products for each sample were examined using 1% agarose gel electrophoresis. DNA sequencing was carried out by capillary electrophoresis in the Unit of Medical Genetics Facility, Saint Joseph University (USJ)-Lebanon. The PCR products were sequenced using the BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) under standard conditions according to the manufacturer instructions.

Statistical analysis

Data was analyzed using the statistical package SPSS (version 19). All values are represented as mean ± standard deviation (SD). The differences in genotype and allele frequencies between the cases and controls were tested using the chi square test. Differences in variables between normal and diabetic groups were performed by independent student’s t-test. One-way analysis of variance (ANOVA) test was used to compare the effect of the gene polymorphism on continuous variables. The odds ratio (OR), 95% confidence interval (CI), and the corresponding p-value were calculated to describe the strength of the association. Associations were considered to be statistically significant if the Fisher’s exact p-value was less than 0.05 and if the 95% CI excluded the value 1.0.

RESULTS

The Thr allele is significantly associated with the risk of type 2 diabetes mellitus (T2DM)

In order to investigate the association of EC-SOD genetic polymorphism with type 2 diabetes mellitus, 60 patients and 46 unrelated healthy subjects were recruited from different regions of Lebanon. Screening polymorphisms in exon 3 of the EC-SOD gene was conducted by PCR amplification of a 905 bp covering the region followed by Sanger DNA sequencing (Figure 1). Two SNPs were investigated in this region: rs8192291 (a C to T silent mutation where Leucine remains unchanged) and rs2536512 (A to G missense mutation resulting in Alanine 40 threonine substitution). These SNPs were analyzed for their distribution and association with the risk to T2DM among Lebanese population. Results showed that Leu53Leu missense mutation was uncommon among Lebanese population; for instance homozygote Leu genotypes (TT) were not detected, low frequency was observed for the T allele compared to the C allele (0.261 and 0.869, respectively) (Table 2). No significant association was found with type 2 diabetes (OR = 1.04 (0.4457 to 2.4432); p-value = 0.724). As for the alanine 40 threonine substitution, all the three genotypes were detected at different frequencies among Lebanese population (Table 2). The frequency of the Thr allele increased in T2DM patients (0.392 in control groups and 0.467 in diabetic patients). The Ala40Thr SNP was found to be significantly associated with T2DM at a p-value = 0.02 and OR = 1.3 (0.6895 to 2.5364) (Table 2).

Ala40Thr genotypes are associated with increased fasting blood glucose level and HbA1c

The clinical characteristics associated with Ala40Thr genotypes were examined in T2DM patients. Mean blood glucose levels and mean HbA1c levels were compared between the different EC-SOD Ala40Thr genotypes of
Table 2. Genotypic Frequency of EC-SOD Single Nucleotide Polymorphisms (SNPs) in control group and Type 2 Diabetes Mellitus patients (T2DM). Chi-square test was used to determine significance at p<0.05. Risk was calculated for a homozygous Thr carrier.

<table>
<thead>
<tr>
<th>SNPs</th>
<th>Parameter</th>
<th>Control (n=46)</th>
<th>T2DM (n=60)</th>
<th>p-value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs8192291</td>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC (Leu)</td>
<td>34 (73.9%)</td>
<td>45 (75%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT (Leu/Leu)</td>
<td>12 (26.08%)</td>
<td>15 (25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT (Leu)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allele</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f(C)</td>
<td>0.869</td>
<td>0.857</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f(T)</td>
<td>0.261</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2536512</td>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GG (Ala)</td>
<td>21 (58.3%)</td>
<td>15 (41.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AG (Ala/Thr)</td>
<td>14 (29.2%)</td>
<td>34 (70.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA (Thr)</td>
<td>11 (50.0%)</td>
<td>11 (50.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allele</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f(G)</td>
<td>0.608</td>
<td>0.533</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f(A)</td>
<td>0.392</td>
<td>0.467</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Correlation between the mean values of fasting BGL and HbA1c with EC-SOD genotypes of T2DM patients. Data are expressed as mean ± SD. ANOVA was used to determine significance at p<0.05.

<table>
<thead>
<tr>
<th>T2DM patients</th>
<th>Genotype</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA (Ala) (n=15)</td>
<td>AG (Ala/Thr) (n=34)</td>
</tr>
<tr>
<td>Mean HbA1c (%)</td>
<td>7.05±0.82</td>
<td>7.99±1.33</td>
</tr>
<tr>
<td>Mean BGL (mg/dl)</td>
<td>144.60±29.40</td>
<td>181.09±43.11</td>
</tr>
</tbody>
</table>

T2DM patients. Interestingly, fasting blood glucose levels and HbA1c levels were significantly higher in heterozygous Ala/Thr genotypes and in Thr homozygotes genotypes when compared to Ala homozygotes (p < 0.001 and p = 0.003, respectively) (Table 3). Indeed, the presence of a G allele increased significantly fasting blood glucose levels from 144.60 ± 29.40 mg/dl for the Ala homozygote (AA) to 181.09 ± 43.11 and 209.64 ± 41.97 mg/dl for the Thr heterozygote (AG) and Thr homozygotes (GG), respectively. Similar to that, a significant increase in HbA1c levels was observed for the Thr carriers (7.05 ± 0.82 for Ala homozygotes (AA) compared to 7.99 ± 1.33 and 8.55 ± 1.28 for Thr heterozygotes (AG) and homozygotes (GG), respectively) (Table 3).

Thr allele is significantly associated with the development of diabetic complications

Ala 40 Thr Genotype was further examined for a possible relation with diabetic complications. These complications included retinopathy, nephropathy and cardio-vascular complications. T2DM Patients were divided into two groups: with or without complications; frequency of all three genotypes was then compared for the two groups (Table 4). Chi-square test showed that there existed a significant difference between Ala homozygotes; Ala/Thr heterozygous and Thr homozygotes in the development of diabetic complications (p < 0.05). Indeed, 63.6% of the Thr homozygotes T2DM patients showed diabetic complications compared to 13.3% for the Ala homozygotes and 50% for the Ala/Thr heterozygotes. Interestingly, among T2DM patients, all the Thr carriers showed cardiovascular complications (CVD) and diabetic retinopathy (DP) to a significant level (p = 0.0009 and p = 0.002 significantly). No differences in genotype frequencies were associated with diabetic nephropathy (40% for Thr homozygotes, 46.7% for the Ala/Thr and 13.3% for the Ala Homozygotes) (Table 5).

DISCUSSION

The present case-control study explored the association between EC-SOD genetic polymorphisms and
susceptibility to Type 2 diabetes mellitus in the Lebanese population. This association was the subject of limited studies to Japanese population (Naganuma et al., 2008; Tamai et al., 2006). It was shown that allele frequencies differ greatly among ethnic groups and that data from several studies showed ethnic variations in the interpretation of disease risk associated with genetic polymorphisms. Two genetic polymorphisms Leu53Leu and Ala40Thr were investigated. The frequency for Leu53Leu was largely similar to frequencies of population reported in literature and SNPs database at the National Center of Biotechnological Information (dbSNPs) (Lebanese population: C allele 0.869, T allele 0.261, all populations: C allele 0.848 T allele 0.152). As for the Ala40 Thr genotypes, allele frequencies of the Lebanese population was similar to that published for European population rather than the rest of the populations (Lebanese: A allele is 0.392, G allele 0.608; European A allele: 0.383, G allele: 0.617). These frequencies differed in fact from the one published for the Japanese study (A allele 0.241 G allele: 0.759) which was similar to sub-Saharan African population (A allele 0.3 G allele: 0.7 (Tamai et al., 2006).

The present study showed a significant association between EC-SOD Ala40Thr and type 2 diabetes mellitus among Lebanese population as the one seen for the Japanese population. However, by contrast to the Japanese study, the present study showed a significant association between EC-SOD Ala40Thr polymorphism and the exacerbation of clinical biochemical parameters particularly for the fasting blood glucose and HbA1c levels. It is not yet clear how this polymorphism impairs blood glucose response. The Ala substitution to Thr is at the N-terminal of the protein and most probably affects the oligomerization state of the EC-SOD protein leading to its accumulation in the extracellular region and the exacerbation of diabetes and its complications (Carlsson et al., 1996; Stenlund et al., 1997). The present study investigated the frequency of Ala40Thr polymorphism and the development of diabetic complications. Our results showed a higher frequency of Ala40Thr genotype in the development of diabetic complications to a significant level for cardiovascular diseases and diabetic nephropathy but not diabetic retinopathy when Thr/Thr genotypes were compared with Ala/Ala or Ala/Thr genotypes in type 2 diabetic patients. This is in agreement with previous results that showed that EC-SOD is an important marker for diabetic vascular complications and nephropathy in Japanese population (Naganuma et al., 2008; Tamai et al., 2006; Tan et al., 2015).

Conclusion

Individuals with the Ala40Thr EC-SOD genotype are at
increased risk in developing type 2 diabetes and mainly for cardiovascular complications. Ala40Thr genotyping is a possible marker for type 2 diabetes prediction, and for monitoring disease progression. Further studies in larger population samples are recommended to explain and confirm these findings.

Ethics statement

This study was approved by the Ethics in Research Committee at the University and was conducted according to the Ethical Principles for Medical Research Involving Human Subjects of the World Medical Association Declaration of Helsinki. Written informed consent forms were obtained from all participants.

Conflict of Interests

The authors have not declared any conflict of interest

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to Professor Rajaa Fakhoury for the help she provided for the completion of this work.

REFERENCES

