ABOUT IJPS

The International Journal of Physical Sciences (IJPS) is published weekly (one volume per year) by Academic Journals.

International Journal of Physical Sciences (IJPS) is an open access journal that publishes high-quality solicited and unsolicited articles, in English, in all Physics and chemistry including artificial intelligence, neural processing, nuclear and particle physics, geophysics, physics in medicine and biology, plasma physics, semiconductor science and technology, wireless and optical communications, materials science, energy and fuels, environmental science and technology, combinatorial chemistry, natural products, molecular therapeutics, geochemistry, cement and concrete research, metallurgy, crystallography and computer-aided materials design. All articles published in IJPS are peer-reviewed.

Contact Us

Editorial Office: ijps@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/IJPS
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Sanjay Misra
Department of Computer Engineering, School of Information and Communication Technology
Federal University of Technology, Minna, Nigeria.

Prof. Songjun Li
School of Materials Science and Engineering,
Jiangsu University,
Zhenjiang, China

Dr. G. Suresh Kumar
Senior Scientist and Head Biophysical Chemistry Division Indian Institute of Chemical Biology (IICB)(CSIR, Govt. of India),
Kolkata 700 032, INDIA.

Dr. ‘Remi Adewumi Oluyinka
Senior Lecturer,
School of Computer Science
Westville Campus
University of KwaZulu-Natal
Private Bag X54001
Durban 4000
South Africa.

Prof. Hyo Choi
Graduate School
Gangneung-Wonju National University
Gangneung,
Gangwondo 210-702, Korea

Prof. Kui Yu Zhang
Laboratoire de Microscopies et d’Etude de Nanostructures (LMEN)
Département de Physique, Université de Reims,
B.P. 1039. 51687, Reims cedex, France.

Prof. R. Vittal
Research Professor,
Department of Chemistry and Molecular Engineering
Korea University, Seoul 136-701, Korea.

Prof Mohamed Bououdina
Director of the Nanotechnology Centre
University of Bahrain
PO Box 32038, Kingdom of Bahrain

Prof. Geoffrey Mitchell
School of Mathematics,
Meteorology and Physics Centre for Advanced Microscopy
University of Reading Whiteknights,
Reading RG6 6AF
United Kingdom.

Prof. Xiao-Li Yang
School of Civil Engineering,
Central South University,
Hunan 410075, China

Dr. Sushil Kumar
Geophysics Group,
Wadia Institute of Himalayan Geology,
P.B. No. 74 Dehra Dun - 248001(UC)
India.

Prof. Suleyman KORKUT
Duzce University
Faculty of Forestry
Department of Forest Industrial Engineering
Beciyorukler Campus 81620
Duzce-Turkey

Prof. Nazmul Islam
Department of Basic Sciences & Humanities/Chemistry,
Techno Global-Balurghat, Mangalpur, Near District Jail P.O. Beltalapark, P.S. Balurghat, Dist.: South Dinajpur,
Pin: 733103, India.

Prof. Dr. Ismail Musirin
Centre for Electrical Power Engineering Studies (CEPES), Faculty of Electrical Engineering, Universiti Teknologi Mara,
40450 Shah Alam,
Selangor, Malaysia

Prof. Mohamed A. Amr
Nuclear Physic Department, Atomic Energy Authority Cairo 13759,
Egypt.

Dr. Armin Shams
Artificial Intelligence Group,
Computer Science Department,
The University of Manchester.
<table>
<thead>
<tr>
<th>ARTICLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric study of calcium doped barium titanate Ba1-xCaxTiO3 ceramics</td>
<td>71</td>
</tr>
<tr>
<td>Lhoussain Kadira, Abdelilah Elmesbahi and Salaheddine Sayouri</td>
<td></td>
</tr>
<tr>
<td>A new solitary wave solution of the perturbed nonlinear Schrodinger equation using a Riccati-Bernoulli Sub-ODE method</td>
<td>80</td>
</tr>
<tr>
<td>Maha S. M. Shehata</td>
<td></td>
</tr>
</tbody>
</table>
Dielectric study of calcium doped barium titanate Ba$_{1-x}$Ca$_x$TiO$_3$ ceramics

Lhoussain Kadira1*, Abdelilah Elmesbahi2 and Salaheddine Sayouri3

1Regional Center of Trades Education and Training, Fès, Morocco.
2Faculty of Science and Technology - Tangier, Morocco.
3Theoretical and Applied Physics Laboratory, Faculty of Science Dhar - Mahraz, Fès, Morocco.

Received 27 September, 2015; Accepted 14 March, 2016

Calcium doping effect on the ferroelectric properties of Ba$_{1-x}$Ca$_x$TiO$_3$: BCTx (x = 0.01, 0.05, 0.1) ceramic material prepared via the sol-gel process was studied. X-ray diffraction (XRD) showed that the powders of calcined BCTx at 900°C crystallize in a pure phase of perovskite type without secondary phases. Microstructural morphology was analyzed by Scanning Electronic Microscopy (SEM). Dielectric measurements were carried out by an analyzer of impedance in an active temperature range from ambient to 400°C for various frequencies (0.1 kHz – 1 MHz). The modeling of the permittivity shows a thermal behavior controlled by the traditional Curie-Weiss law and the transition remains of first order for all the concentrations studied similar to that of the BaTiO$_3$ sample.

Key words: BCT, Sol-Gel, Ferroelectric, SEM, Curie point.

INTRODUCTION

Because of its excellent ferroelectric properties, to which is added the very good stability of its chemical and mechanical perovskite structure, barium titanate BaTiO$_3$ remains the preferred material for many applications such as: dielectric capacitors (Hung et al., 2003), ceramics with Positive Temperature Coefficient of Resistance: PTCR (Hreniak et al., 2006).

BaTiO$_3$ is known for its transition or Curie temperature, T_C of 120°C (Haertling, 1999) which delimits the two dielectric states: ferroelectric state for $T<T_C$ in which the material crystallizes in the quadratic system and paraelectric state for $T>T_C$ where the structure becomes cubic system.

Several doping elements can be added to BaTiO$_3$ for adapting some particular properties to specific applications: Sr$^{2+}$ would decrease its transition temperature T_C, Pb$^{2+}$ would increase T_C and Co$^{2+}$ would attenuate the losses for intense electric fields without affecting its piezoelectric constant (Haertling, 1999). Barium calcium titanate crystals show promising applications in advanced laser systems, optical interconnects and electronic or optical storage devices (Veenhuis et al., 2000).

Considerable efforts have been devoted to elucidate the effect of Ca doping on the dielectric properties of BaTiO$_3$ in the solid solution of Ba$_{1-x}$Ca$_x$TiO$_3$ (BCT). In fact, calcium acts as a reduction inhibitor in BaTiO$_3$ and reduces the possibility of formation of the unwanted...

*Corresponding author. E-mail:lhoussain-kadira@gmx.fr.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
hexagonal phase (Victor et al., 2003). However some properties still remain source of many controversies such its effect on the variation in the BaTiO₃ temperature transition and on the change of the nature of the ferro-to-paraelectric transition: brutal transition or diffuse phase transition (DPT). Indeed, Berlincourt and Kulesar (1952) deferred that Ca doping of BaTiO₃ out of calcium leads to a negligible change of the Curie transition Tc. Later Mitsui and Westphal (1961) showed that the permittivity of BaTiO₃ modified with Ca²⁺ presents diffuse character of peak transition. Zhuang et al. (1987) found that the addition of an even small quantity in the Ti⁴⁺octahedral site led to a DPT transition and Tc dropped significantly. Subsequently, and contrary to Zhuang et al. (1987), Tiwari et al. (1989) reported that the Ba²⁺substitution by Ca²⁺ in the tetrahedral site of BaTiO₃ causes a significant increase in Tc and induces a diffuse type transition. Very recently Varatharajan et al. (2000) observed an increase in the transition temperature, Tc according to Ca²⁺ which depends on the site of occupation and possibly on the preparation method. Having adopted the recent sol-gel method as preparation procedure owing to its many advantages: very low crystallization temperature, stoichiometry, purity and smoothness of the grains and moderate cost (Xing et al., 2004; Zhu et al., 2006), we aimed, through this work, to study the behavior of the transition temperature as a function of Ca doping in the solid solution Ba₀.₉ₓCaₓTiO₃ (BCTx x = 0.00, 0.01, 0.05 and 0.10). In the present work for x=0.00, 0.01, 0.05 and 0.10, we have used BT, BCT0.01, BCT0.05, BCT0.1 notations. X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and Impedance-Spectroscopy Analysis (ISA) measurements are used for physical-chemical characterization.

EXPERIMENTAL PROCEDURE

The preparation route can be summarized as follows and it is similar to that described in Kadira et al. (2003). The titanium sol was prepared, starting from titanium alkoxide (titanium tetraisopropoxypxide Ti[OCH(CH₃)]₄, 97% min Assay Johnson Mathey GmbH) peptized with the lactic acid (CH₃CH(OH)COOH, ACS, 85.0-90.0% (Assay)). Ba²⁺ and Ca²⁺ solutions were prepared respectively by dissolution of barium acetate dihydrate (Ba(CH₃COO)₂.2H₂O, ACS reagent, 99%, 243671 SIGMA-ALDRICH) and CaCO₃ (Assay 100.1%, Fisher Scientific International Company) in an acetic acid (ACS reagent, ≥99.7%, SIGMA-ALDRICH) solution (1M). Then the various solutions are mixed with stoichiometric quantities according to the chemical formulation Ba₁₋ₓCaₓTiO₃ (x = 0.00, 0.01, 0.05 and 0.1). Drying with the drying oven leads to transparent xerogels which after crushing give raw powders of BCT. These powders were calcined at 900°C (4 h) for the formation of the crystalline phase. XRD Analysis is carried out on a XPERT-PRO diffractometer with a CuKα radiation (λ=1.54056 Å) and was controlled by a PC. A continuous sweeping was adopted with a step of 0.017° and 1.905 s time per step. The angular range of selected measurement was of 10 to 75°. All the various pastilles were sintered at 1300°C for 4 h in air. Scanning Electronic Microscopy Analysis was carried out on a JEOL JSM5500 apparatus. Metallization was carried out with carbon by cathodic evaporation by means of a metal sprayer of the type SPI carbon Coater and dielectric measurements were collected by an LCZ3330 impedance analyzer controlled in temperature and computer assisted in both the heating and cooling phases.

RESULTS AND DISCUSSION

Figure 1 shows XRD diagrams of BCTx samples calcined at 900°C (4 h). All preparations crystallized in the pure perovskite phase without presence of secondary phases. Figure 2 represents the microstructure of BCT0.1 sintered at 1300°C (4 h). It shows that the material has less porosity and that the distribution of the grains is rather uniform with an average diameter of 5 μm approximately. The perovskite phase of BCT ceramic remains very thermally stable after the sintering process, as indicated by the XRD diffractogram performed on a pulverized BCT0.1 pellet (Figure 3).

The chemical analysis of the iso-valent modified BT sample (BCT0.1 sample sintered at 1300°C (4h)) synthesized by Sol-Gel route was achieved by energy dispersive X-ray spectroscopy (EDX), using an EDX spectrometer attached to the same SEM unit. Figure 4 shows the EDX results of BCT0.1 sample. Table 1 corresponding to Figure 4, confirms the stoichiometry of BCT0.1 sample. EDX results are in good agreement with those calculated from the chemical formula.

Figure 5a and b present the thermal variation of the permittivity, εᵣ and of the dielectric losses, tanδ of BCT0.1 material, respectively for various frequencies. When the temperature increases from the ambient one, εᵣ first increases in the ferroelectric state, passes through a maximum at 136.25°C then decreases (paraelectric state) up to 250°C and increases again. The Curie point shows a dispersive behavior according to the frequency. The dielectric losses remain lower than 0.1% in the vicinity of the transition. The temperature region higher than 250°C is marked by an important dispersion of εᵣ associated considerable dielectric losses which are of the order 2.3%. This indicates that the increase in the permittivity in this region is due to the mobility of space charges (ionic conductivity). The thermal hysteresis of this sample is about 23°C as illustrated in Figure 6. It indicates that the transition is of the first order.

Table 2 gives the values of the temperature of transition, Tc and the maximum of the permittivity, εᵣmax for the various calcium concentrations. It illustrated also Curie-Weiss temperature (T₀) and Curie-Weiss constant (C) values versus calcium concentration. The effect of calcium on Tc is illustrated in Figure 7. Tc increases in a significant way between 0 and 5% of Ca²⁺, then it undergoes a very light reduction beyond.

Probably, there exists a critical concentration between 5 and 10% for which Tc presents a maximum. In fact Mitsui and Westphal (1961) have found that this critical concentration is around 8%. For the concentrations studied in this work, BCT0.01 sample presents the lower
Figure 1. XRD patterns of BCT samples calcined at 900°C.

Figure 2. SEM micrograph of sintered BCT0.1 sample.
Figure 3. XRD pattern of BCT0.1 sintered at 1300°C (4 h).

Figure 4. EDX of BCT0.1 sample sintered at 1300°C (4 h).

Table 1. EDX of BCT0.1 sample sintered at 1300°C (4 h).

<table>
<thead>
<tr>
<th>Element</th>
<th>% Theo.</th>
<th>% Exper.</th>
<th>Differ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBa</td>
<td>55.18</td>
<td>50.98</td>
<td>4.200</td>
</tr>
<tr>
<td>MCa</td>
<td>1.79</td>
<td>1.96</td>
<td>0.170</td>
</tr>
<tr>
<td>MTi</td>
<td>21.60</td>
<td>25.48</td>
<td>3.880</td>
</tr>
<tr>
<td>MO</td>
<td>21.43</td>
<td>21.58</td>
<td>0.150</td>
</tr>
</tbody>
</table>
Figure 5a. Thermal variation of ε_r of BCT0.1 for various frequencies.

Figure 5b. Thermal variation of $\tan \delta$ measurements of BCT0.1 for various frequencies.
Figure 6. Thermal hysteresis for BCT0.1 sample (4 h).

Figure 7. T_c and ε_{max} versus calcium concentration.

Table 2. Dielectric results obtained for BCT samples.

<table>
<thead>
<tr>
<th>Ca$^{2+}$ (%)</th>
<th>ε_{max}</th>
<th>T_c</th>
<th>T_0</th>
<th>C</th>
<th>T_c-T_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2508.77</td>
<td>130.00</td>
<td>91.76</td>
<td>10.08 10^{-4}</td>
<td>38.24</td>
</tr>
<tr>
<td>1</td>
<td>3229.79</td>
<td>131.26</td>
<td>107.46</td>
<td>8.46 10^{-4}</td>
<td>23.80</td>
</tr>
<tr>
<td>5</td>
<td>2889.43</td>
<td>136.41</td>
<td>107.32</td>
<td>7.11 10^{-4}</td>
<td>29.09</td>
</tr>
<tr>
<td>10</td>
<td>2764.55</td>
<td>136.25</td>
<td>115.69</td>
<td>6.41 10^{-4}</td>
<td>20.56</td>
</tr>
</tbody>
</table>
maximum permittivity $\varepsilon_{\text{rmax}}$ value as shown in Figure 7.

Ca$^{2+}$ doping in perovskite A site was conducted in several literature works: wet chemical route by Jayanthi and Kutty (2004), solid route by Mitsui and Westphal (1961), Jeffrey et al. (1971) and Victor et al. (2003), modified Solid State Reaction and Microwave Sintering Routes by Kumar (2011) and sol-gel method in this study. However, sintering conditions are so different. In Figure 8, we compare the results of these works to that of the present study; T_c variation as a function of x we found is in perfect agreement with the literature.

To highlight the influence of Ca$^{2+}$ on the diffuse behavior of the transition, we indicated in Figure 9 the evolution of $\varepsilon_r/\varepsilon_{\text{rmax}}$ according to $T-T_c$ for the various concentrations of BCT. According to this figure, one notice that BaTiO$_3$ modified at 5% on calcium presents
the most diffuse phase transition. The spreading out of the Curie peak decreases for doping with 0.01 out of Ca⁺²⁺, then an increase for the fraction of 0.05 undergoes. The sample relating to 10 at % of Ca⁺²⁺ appreciably presents the same degree of spreading out as that of the sample doped at 1%.

The modeling of the thermal paraelectric behavior of the various samples is given in Figure 10. The behavior of the various concentrations was described by the standard Curie-Weiss law: \(\frac{1}{\epsilon_r} = C/T - T_0 \), where \(T_0 \) and \(C \) are respectively the temperature and the constant of Curie-Weiss respectively. The temperature \(T_0 \) remains, in all cases, lower than \(T_C \) (Figure 11), which indicates that the nature of the transition is of the first order. The value of constant \(C \) decreases as \(\text{Ca}^{2+} \) doping increases (Figure 11) showing, thus, that the transition evolves gradually from the displacive type to the order-disorder one.

Conclusion

We have given in this work the study of the influence of calcium doping on the dielectric properties of BaTiO₃. The samples were prepared by the recent sol-gel route. The structural characterization of the various concentrations of BCT by XRD reveals a complete crystallization in the pure perovskite structure. The dielectric study of BCTx compounds doped up to \(x=10 \) at % of calcium shows that the later gave rises to an increase of the transition temperature for \(x < 0.07 \). Concerning the diffuse character of the transition, it was found that the concentration of BCTx=0.05 shows the most diffuse transition. The thermal paraelectric behavior of the various samples was shown to follow the traditional Curie-Weiss law and the transition remains of first order for all the concentrations.
Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

A new solitary wave solution of the perturbed nonlinear Schrodinger equation using a Riccati-Bernoulli Sub-ODE method

Maha S. M. Shehata

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt.

Received 29 November, 2015; Accepted 14 March, 2016

The Riccati-Bernoulli Sub-ODE method is used for the first time to investigate exact wave solution of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity which describes the propagation of optical solitons in nonlinear optical fibers that exhibits a Kerr law nonlinearity. An infinite sequence of exact solutions can be obtained according to Backlund transformation. The proposed method also can be used for many other nonlinear evolution equations.

Key words: Riccati-Bernoulli Sub-ODE method, Backlund transformation of the Riccati-Bernoulli equation, the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity, traveling wave solution, solitary wave solution.

INTRODUCTION

The nonlinear partial differential equations (NLPDEs) play an important role to investigate many problems in mathematical physics (Ablowitz and Segur, 1981) (applied mathematics, plasma, biology etc). Recently, obtaining the exact traveling wave solution of NLPDEs making addition to interpretation these physical phenomena. There exist many methods to obtain the exact solutions of these problems such as, tanh - sech method (Malfliet, 1992; Malfliet and Hereman, 1996; Wazwaz, 2004), extended tanh – method (EL-Wakil and Abdou, 2007; Fan, 2000; Wazwaz, 2007), sine - cosine method (Wazwaz, 2005; 2004; Yan, 1996), homogeneous balance method (Fan and Zhang 1998; Wang, 1996), Jacobi elliptic function method (Dai and Zhang, 2006; Fan and Zhang, 2002; Liu et al., 2001; Zhao et al., 2006), F-expansion method (Abdou, 2007; Ren and Zhang, 2006; Zhang et al., 2006), exp-function method (He and Wu, 2006; Aminikhah et al., 2009), trigonometric function series method (Zhang, 2008), expansion method (Wang et al., 2008a, b; Zhang et al., 2008; Mostafa, 2016), the modified simple equation method (Jawad et al., 2010; Emad et al., 2014; Mostafa, 2015; Khan et al., 2013; Khan and Ali, 2013; Jawad et al., 2010) and so on. The above methods depend on the balancing rule (the nonlinear term with higher order derivative term) of the dual ordinary differential equations to the original NLPDEs which fails for some NLPDEs. The exact traveling wave solutions contain some parameters, if we give these parameters definite values we obtain the solitary wave solution.

This study shall propose a new method which does not depend on the balancing rule, namely the Riccati-Bernoulli
Sub-ODE method (Emad and Mostafa, 2015) to seek traveling wave solutions of nonlinear evolution equations and according to a Backlund transformation we can generate infinite sequence of solutions of NLPDEs.

DESCRIPTION OF THE RICCATI-BERNOULLI SUB-ODE METHOD

Consider the following nonlinear evolution equation:

\[P(u, u_t, u_x, u_{tt}, u_{xx}, \ldots) = 0, \]

(1)

Where \(P \) is in general a polynomial function of its arguments, the subscripts denote the partial derivatives. The Riccati-Bernoulli Sub-ODE method consists of three steps.

Step 1. Combining the independent variables \(x \) and \(t \) into one variable:

\[\xi = k(x + Vt), \]

(2)

With

\[u(x, t) = u(\xi). \]

(3)

Where the localized wave solution \(u(\xi) \) travels with speed \(V \), by using Equations (2) and (3), one can transform Equation (1) to an ODE.

\[P(u, u', u'', u''', \ldots) = 0, \]

(4)

where \(u' \) denotes \(\frac{du}{d\xi} \)

Step 2. Suppose that the solution of Equation 4 is the solution of the Riccati-Bernoulli equation

\[u' = au^{2-m} + bu + cu^m, \]

(5)

Where \(a, b, c, \) and \(m \) are constants to be determined later.

From Equation 5 and by directly calculating, we get:

\[u'' = ab(2-m)(u(\xi))^{2-m} + a^2(2-m)(u(\xi))^{3-2m} + bc\gamma^m (u(\xi))^{2m-1} \]

\[+ bc(m+1)(u(\xi))^m + (2ac + b^2)u, \]

(6)

\[u'' = ab(2-m)(2-m)u^{2-m} + a^2(2-m)(3-2m)u^{3-2m} + m(2m-1)u^{2m-2} + \]

\[+ bc(m+1)u^{m-1} + 2ac + b^2u, \]

(7)

Remark: When \(ac \neq 0 \) and \(m = 0 \), Equation 5 is a Riccati equation. When \(a \neq 0, c = 0, \) and \(m \neq 1 \), Equation 5 is a Bernoulli equation. Obviously, the Riccati equation and Bernoulli equation are special cases of Equations 5. Because Equation 5 is firstly proposed, we call Equation 5 the Riccati-Bernoulli equation in order to avoid introducing new terminology. Equation 5 has solutions as follows:

Case 1. When \(m = 1 \), the solution of Equation 5 is

\[u(\xi) = Ce^{(a+b+c)\xi}, \]

(8)

Case 2. When \(m \neq 1, b = 0 \) and \(c = 0 \), the solution of Equation 5 is:

\[u(\xi) = (a(m-1)(\xi + C))^{\frac{1}{(1-m)}}, \]

(9)

Case 3. When \(m \neq 1, b \neq 0 \) and \(c = 0 \), the solution of Equation 5 is

\[u(\xi) = \left(-\frac{a}{b} + Ce^{b(m-1)\xi}\right)^{\frac{1}{(1-m)}}, \]

(10)

\[u(\xi) = \left(-\frac{b}{2a} + \frac{\sqrt{b^2-4ac\tanh(1/2(1-m)\sqrt{b^2-4ac}(\xi+C))}}{2a}\right)^{\frac{1}{(1-m)}}, \]

(11)

Case 4. When \(m \neq 1, a \neq 0 \) and \(b^2-4ac < 0 \), the solution of Equation 5 is

\[u(\xi) = \left(-\frac{b}{2a} + \frac{\sqrt{4ac-b^2\tan(1/2(1-m)\sqrt{4ac-b^2}(\xi+C))}}{2a}\right)^{\frac{1}{(1-m)}}, \]

(12)

and

\[u(\xi) = \left(-\frac{b}{2a} + \frac{\sqrt{4ac-b^2\cot(1/2(1-m)\sqrt{4ac-b^2}(\xi+C))}}{2a}\right)^{\frac{1}{(1-m)}}, \]

(13)

Case 5. When \(m \neq 1, a \neq 0 \) and \(b^2-4ac > 0 \), the solution of Equation 5 is:

\[u(\xi) = \left(-\frac{b}{2a} + \frac{\sqrt{b^2-4ac\coth(1/2(1-m)\sqrt{b^2-4ac}(\xi+C))}}{2a}\right)^{\frac{1}{(1-m)}}, \]

(14)

and

Case 6. When \(m \neq 1, a \neq 0 \) and \(b^2-4ac = 0 \) the solution of Equation 5 is:

\[u(\xi) = \left(\frac{1}{a(m-1)(\xi+C)} - \frac{b}{2a}\right)^{\frac{1}{(1-m)}}, \]

(15)

Where \(C \) is an arbitrary constant.

Step 3. Substituting the derivatives of \(u \) into Equation 4 yields an algebraic equation of \(u \). Noticing the symmetry
of the right-hand item of Equation 5 and setting the highest power exponents of \(u \) to equivalence in Equation 4, \(m \) can be determined. Comparing the coefficients of \(u \) yields a set of algebraic equations for \(a, b, c, \) and \(V \). Solving the set of algebraic equations and substituting \(m, a, b, c, V, \) and \(\zeta = k(x + Vt) \) into Equations 8 to 15, we can get traveling wave solutions of Equation 1.

Bäcklund Transformation of the Riccati-Bernoulli Equation

When \(u_{n-1}(\zeta) \) and \(u_n(\zeta) \) are solutions of Equations (5), then

\[
\frac{u_n}{u_{n-1}} = \frac{a u_{n}^{2-m} + b u_n + cu_n^m}{a u_{n-1}^{2-m} + b u_{n-1} + cu_{n-1}^m}
\]

(16)

\[
\frac{u_{n-1}}{u_n} = \frac{a u_{n-1}^{2-m} + b u_{n-1} + cu_{n-1}^m}{a u_n^{2-m} + b u_n + cu_n^m}
\]

(17)

Since,

\[
\frac{u_n}{u_{n-1}(\zeta)} = \frac{\frac{d u_n}{d \zeta}}{\frac{d u_{n-1}(\zeta)}{d \zeta}} = \frac{d u_n}{d u_{n-1}(\zeta)} = \frac{a u_{n-1}^{2-m} + b u_{n-1} + cu_{n-1}^m}{a u_n^{2-m} + b u_n + cu_n^m}
\]

(18)

Now, from Equations 16 and 18, we obtain:

\[
a u_{n-1}^{2-m} + b u_{n-1} + cu_{n-1}^m = \frac{d u_n}{du_{n-1}(\zeta)} \left[a u_n^{2-m} + b u_n + cu_n^m \right]
\]

(19)

That is,

\[
\frac{d u_n}{a u_n^{2-m} + b u_n + cu_n^m} = \frac{d u_{n-1}(\zeta)}{a u_{n-1}^{2-m} + b u_{n-1} + cu_{n-1}^m}
\]

(20)

Integrating above equation once with respect to \(\zeta \), we get:

\[
u_n(\zeta) = \left(\frac{-c A_1 + a A_2 (u_{n-1}(\zeta))^{1-m}}{b A_2 + a A_1 (u_{n-1}(\zeta))^{1-m}} \right)^{1/m}
\]

(21)

Where \(A_1 \) and \(A_2 \) are arbitrary constants.

According to Equations 21, we can get infinite sequence of solutions of Equation 5 and hence we can get infinite sequence of solutions of Equation 1.

Application

This equation is well-known (Zhang et al., 2010; Moosaei et al., 2011; Eslami et al., 2013, 2014; Mirzazadeh et al., 2014; Biswas and Konar, 2007) and has the form:

\[
i u_t + u_{xx} + \alpha |u|^2 u + i (\gamma_1 u_{xxx} + \gamma_2 |u|^2 u_x + \gamma_3 (|u|^2)_x) u = 0
\]

(22)

Where \(\alpha, \gamma_1, \gamma_2 \) and \(\gamma_3 \) are constants such that \(\gamma_1 \) is the third order dispersion, \(\gamma_2 \) is the nonlinear dispersion, while \(\gamma_3 \) is also a version of nonlinear dispersion (Biswas and Konar, 2007) and (Biswas, 2003). Equation 22 describes the propagation of optical solitons in nonlinear optical fibers that exhibits a Kerr law nonlinearity. Equation 22 has been discussed in Moosaei et al. (2011) using the first integral method and in (Zhang et al., 2010) using the modified mapping method and its extended. Let us now solve Equation 22 using Riccati-Bernoulli Sub-ODE method. To this end we seek its traveling wave solution of the form (Zhang et al., 2010; Moosaei et al., 2011):

\[
u(x,t) = \phi(\zeta) \exp[i (k x - \Omega t)], \quad \zeta = k(x - 2\alpha t).
\]

(23)

Where \(k, \Omega \) and \(\alpha \) are constants, while \(i = \sqrt{-1} \). Substituting Equation 23 into Equation 22 and equating the real and imaginary parts to zero, we have:

\[
k^2 (1 - 3\gamma_1 \alpha) u_x'' + \alpha (1 - \gamma_2) u' + (\gamma_1 \alpha^2 - \beta) u = 0.
\]

(24)

With reference to Zhang et al. (2010), this equation can be rewritten as follows:

\[
A u_x'' + B u + \omega u^3 = 0,
\]

(25)

Where \(A = k^2 (1 - 3\gamma_1 \alpha), \quad B = \alpha (1 - \gamma_2) \) and \(\omega = (\gamma_1 \alpha^2 - \beta) \). Substituting \(u' \) into Equation 25 we get:

\[
ab A (3-m)(u(x))^{1-m} + A a^2 (2-m)(u(x))^{3-2m} + Amc^2 (u(x))^{2m-1} + Ab c (m+1)(u(x))^m + A (2ac + b^2) u + Bu + \omega u^3 = 0.
\]

(26)

Setting \(m = 0 \) Equation 26 becomes:

\[
3A a u^2 + 2A a u^3 + Ab c + A (2ac + b^2) u + Bu + \omega u^3 = 0.
\]

(27)

Setting the coefficient of \(u^i, i = 3, 2, 1, 0 \) to zero, we get:

\[
2A a^2 + \omega = 0,
\]

(28)

\[
3A ab = 0,
\]

(29)

\[
2A ac + b^2 A + B = 0,
\]

(30)

\[
Ab c = 0.
\]

(31)

Solving Equations (28) to (31), we get:

\[
b = 0,
\]

(32)

\[
a = \frac{-B}{2Ac}.
\]

(33)
Case A: When $\alpha > 0$, substituting Equations 32 and 33 into Equations 11 and 12, we obtain the solitary wave solutions:

\[
 u(x,t) = -\sqrt{-\frac{2A}{B}} \tan \left(k (x - 2\alpha t) + C \right),
\]

\[
 u(x,t) = -\sqrt{-\frac{2A}{B}} \cot \left(k (x - 2\alpha t) + C \right),
\]

where C, A and B are arbitrary real constants.

Case B. When $\alpha < 0$, substituting Equations 34 and 35 into Equations 13 and 14, we obtain the solitary wave solutions:

\[
 u(x,t) = -\sqrt{-\frac{2A}{B}} \coth \left(k (x - 2\alpha t) + C \right).
\]

If these solutions are substituted into Equation 21, infinite sequence of solutions can be obtained. According to the above results, its physical meaning is compatible with the corresponding physics described by the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity of optical fiber, which in fact, describes it as a soliton wave with one peak such as observed in sound wave (Figure 1).

CONCLUSIONS

In this article, a new technique was introduced to obtain the exact and solitary wave solutions of the perturbed nonlinear Schrodinger equation with Kerr law of
nonlinearity which agree with all nonlinear evolutions equations used in mathematical physics and does not depend on the balancing rule which fails for some nonlinear evolution equations. In addition to an infinite sequence of exact and solitary wave solutions can be generated according to a Backlund transformation of the Riccati-Bernoulli equation. It has been shown that the Riccati-Bernoulli Sub- ODE method is a powerful tool for all nonlinear evolution equations. Otherwise, the general solutions of the ODEs have been well known for the exact solutions for the method.

Conflict of Interests

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The author did not have any conflicting interests in this research.

REFERENCES

International Journal of Physical Sciences

Related Journals Published by Academic Journals

- Journal of Internet and Information Systems
- Journal of Geology and Mining Research
- Journal of Oceanography and Marine Science
- Journal of Environmental Chemistry and Ecotoxicology
- Journal of Petroleum Technology and Alternative Fuels