ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R. China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province, China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof. Hatil Hashim El-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Prof. Swati Sen Mandi
Division of plant Biology, Bose Institute, India.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India.

Dr. Arash Kheradmand
Lorestan University, Iran.

Prof. Dr. Cemşit Karakurt
Pediatrics and Pediatric Cardiology, Inonu University Faculty of Medicine, Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center Cairo, Egypt.
ARTICLES

Pharmacological Activities of *Plectranthus scutellarioides* (L.) R.Br. Leaves Extract on Cyclooxygenase and Xanthine Oxidase Enzymes
Jutti Levita, Sri Adi Sumiwi, Tiara Indah Pratiwi, Ekky Ilham, Syafrudin Purnama Sidiq and Moelyono Moekiwardoyo

Ethnobotanical survey of medicinal plants used in the treatment of women related diseases in Akoko Region of Ondo-State, Nigeria
Olanipekun M.K., Arowosegbe S., Kayode J.O and Oluwole T.R.
Pharmacological Activities of *Plectranthus scutellarioides* (L.) R.Br. Leaves Extract on Cyclooxygenase and Xanthine Oxidase Enzymes

Jutti Levita1,3*, Sri Adi Sumiwi1, Tiara Indah Pratiwi1, Ekky Ilham1, Syafrudin Purnama Sidiq1 and Moelyono Moektiwardoyo2

1Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km.21, Jatinangor, West Java, Indonesia.

3Department of Pharmacy Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km.21, Jatinangor, West Java, Indonesia.

Received 20 March, 2016; Accepted 5 April, 2016

Plectranthus scutellarioides (L.) R.Br. (family Lamiaceae) has been widely used in West Java, Indonesia, to cure various diseases. People boiled the leaves of the plant in water and consumed the tea daily until the symptoms reduced. This work was conducted to study the pharmacological activity of *P. scutellarioides* (L.) R.Br. extract on cyclooxygenases (COXs) and xanthine oxidase (XO) enzymes. The plant was purchased from Manoko plantation in Lembang, West Java, Indonesia. The leaves were sundried, crushed, and soaked in ethanol for 3×24 h, prior to be used. The extraction was continued further using ethyl acetate and water. Inhibitory activity of the extract on COXs was performed by measuring the absorbance of reduced-tetramethyl-p-phenylenediamine (TMPD) at 590 nm, which correlates to the level of PGH$_2$ production, while its inhibitory on XO was measured at 290 nm. *P. scutellarioides* (L.) R.Br. leaves extracts (ethanolic, ethyl acetate, and water) showed inhibition on COX-1 and COX-2 enzymes (40.43% for COX-1 and 97.04% for COX-2), while on XO, the water extract showed the highest inhibition (IC$_{50}$ water extract = 6 μg/ml; IC$_{50}$ allopurinol = 0.15 μg/ml). This plant could be further proposed as XO and nonselective COX inhibitors.

Key words: Anti-inflammatory, cyclooxygenase (COX), gout, non-steroidal anti-inflammatory drugs (NSAIDs), prostaglandin, prostaglandin H$_2$ (PGH$_2$), xanthine oxidase (XO).

INTRODUCTION

The inflammatory response protects the body against infection and injury but it could become disregulated with deleterious consequences to the host. It is now evident that endogenous biochemical pathways activated during defense reactions can counter-regulate inflammation and promote resolution. Hence, resolution is an active rather
than a passive process, as once believed, which now promises novel approaches for the treatment of inflammation-associated diseases based on endogenous agonists of resolution (Serhan et al., 2007).

Plectranthus scutellarioides (L.) R.Br which belongs to Lamiaceae or Labiatae family, is a native plant of Southeast Asia, including Indonesia. This plant could also be cultivated in tropical and temperate regions around the world (Hanelt et al., 2001; Acevedo-Rodriguez and Strong, 2012). _P. scutellarioides_ (or _Coleus scutellarioides_) has been widely used in West Java, Indonesia, to cure various diseases (Roosita et al., 2008). People boiled the leaves of the plant in water and consumed the tea daily until the symptoms reduced.

Other species of the same family, known as _Plectranthus ambroinicus_ or Indian borage, exhibited antiplatelet aggregation ability, antibacterial activity, and antiproliferative effect against Caco-2, HCT-15, and MCF-7 cell lines (Bhatt et al., 2013).

Iranian researchers, Saghafi et al. (2013) reported that _Teucrium polium_ extract in different regions is a rich source of antioxidant and showed inhibitory effect on xanthine oxidase.

Some drugs, such as the widely used cyclooxygenase-2 (COX-2) inhibitors, have been proven to be toxic (Gilroy et al., 1999; Bannenberg et al., 2005; Serhan et al., 2007), whereas others possess pro-resolving actions, such as glucocorticoids (Rossi and Sawatzky, 2007), cyclin-dependent kinase inhibitors (Rossi et al., 2006), and aspirin (Serhan, 2007). Non-steroidal anti-inflammatory drugs (NSAIDs) work by inhibiting both COX isoforms, thus the conversion of arachidonic acid into prostaglandin is disturbed (Katzung, 2007). All NSAIDs in clinical use have been shown to inhibit COX, leading to a marked reduction in PG synthesis. The inhibition by aspirin is due to irreversible acetylation of the cyclooxygenase component of COX. In contrast, NSAIDs like indomethacin or ibuprofen inhibit COX reversibly by competing with the substrate, arachidonic acid, for the active site of the enzyme (Vane et al., 1990). Aspirin is the most commonly non-steroidal anti-inflammatory drug, which low doses could be used to prevent and treat cardiovascular diseases. Recent studies showed that there is increasing evidence that aspirin initiates biosynthesis of novel anti-inflammatory mediators by means of interactions between endothelial cells and leukocytes. These mediators are classified as aspirin-triggered 15-epi- lipoxins (Chiang et al., 2004).

Xanthine oxidase (XO) is a member of group of enzymes known as molybdenum iron-sulphur flavin hydroxylases (Symons et al., 1989). It catalyses the oxidation of hypoxanthine to xanthine and then to uric acid, the final reactions in the metabolism of purine bases (Zarepour et al., 2010). Xanthine oxidase inhibitors (XOI) are much useful, since they possess lesser side effects compared to uricosuric and anti-inflammatory agents. Allopurinol is the only clinically available XOI, which also suffers from many side effects such as hypersensitivity syndrome, Steven’s Johnson syndrome and renal toxicity. Thus, it is necessary to develop compounds with XOI activity with lesser side effects compared to allopurinol. Flavonoids and polyphenols have been reported to possess xanthine oxidase inhibitory activity. In addition, flavonoids also have anti-inflammatory and antitumor properties (Umamaheswari et al., 2013; Lio et al., 1985).

This work was aimed to study the pharmacological activity of _P. scutellarioides_ (L.) R.Br leaves extracts (ethanolic, ethyl acetate, and water) on cyclooxygenases (COXs) and xanthine oxidase (XO) enzymes.

MATERIALS AND METHODS

Plant

The fresh plant was purchased from Manoko plantation at Lembang, West Java, Indonesia, in November 2015. The specimen (No. 10111/11.C02.2/PL/2015) was determined at Laboratory of Identification and Determination, School of Life Sciences and Technology, Bandung Institute of Technology, Indonesia, and confirmed as _P. scutellarioides_ (L.) R.Br. (family Lamiaceae).

Preparation of extracts

The leaves were sundried in a glass-roofed room for 5 days, and then 1.2 kg of the dried leaves were crushed with 1 L of 70 % ethanol for 3×24 h at room temperature. The extraction was continued sequentially using ethyl acetate and water. The extracts were filtered through Whatman No. 41, the solvent was vacuum-evaporated at 40 to 60°C, followed by freeze-drying process, prior to be further used.

Phytochemical screening

Phytochemical screening was performed according to standard method using specific reagents to detect secondary metabolites (alkaloids, flavonoids, polyphenols/tannins, terpenoids, quinones, and saponins) in _P. scutellarioides_ (L.) R.Br. leaves extracts.

Thin layer chromatography (TLC) analysis

TLC was performed on silica GF₂₅₄ plate using a mixture of n-butanol, acetic acid, and water (4:1:3) was used as eluent for ethanol and water extracts, whereas a mixture of toluene, ethyl acetate, and acetic acid (7:2:1) was used for ethyl acetate extract. The spots were observed using AlCl₃ as spray reagent.

Spectrophotometry analysis

Spectrophotometry analysis was performed to the ethanol extract (with and without AlCl₃) at 220 to 450 nm. Quercetin was used as standard.

High performance liquid chromatography (HPLC)

Reversed-phase HPLC was performed on LC-10AT VP (Shimadzu),
Pharmacological assay

Inhibitory activity on COX enzymes

100 mg of freeze-dried extracts were dissolved in 50 ml of ethanol. The solution was diluted until three concentrations were obtained. This assay was performed using Colorimetric COX Inhibitor Screening Assay No.705010 (Cayman Chemical Company): 150 µl of assay buffer, 10 µl of heme and 7 µl of enzyme (either COX-1 or COX-2) were added into each inhibitor well, followed by the addition of 20 µl of the extracts. The plate was stirred and incubated for 5 min at 25°C. Then, 15 µl of colorimetric substrate solution was added to all wells, followed by 20 µl of arachidonic acid. The plate was stirred and incubated precisely for 2 min at 25°C. Finally, the absorbance was measured at 590 nm in 5 min interval. Acetosal was used as drug standard.

Inhibitory activity on XO enzyme

Freeze-dried extracts (50 mg) were dissolved in 25 ml of dimethyl sulfoxide (DMSO). The solution was diluted until various concentrations were obtained. This assay was performed using Xanthine Oxidase Inhibitor Screening Assay (Sigma Aldrich, USA): 1 ml of extract solution was added by 3 ml of phosphate buffer and 2 ml of xanthine substrate solution. The mixture was preincubated at 30°C for 10 min, and was added by 0.1 ml of xanthine oxidase enzyme solution. The mixture was homogenized and incubated at 30°C for 30 min. The reaction was stopped by using 1 ml of HCl 1 N and the absorbance of uric acid was measured at 290 nm. Allopurinol was used as standard. The percentage of inhibition was calculated by:

\[\text{Percentage of inhibition } = \left(\frac{(A-B) - (C-D)}{(A-B)} \right) \times 100 \]

where A is the activity of the enzyme without the compound, B is the control of A without the compound and enzyme, C and D are the activities of the compound with or without XO, respectively. The assay was done in triplicate and IC50 values were calculated from the percentage of inhibition (Sahgal et al., 2009).

RESULTS AND DISCUSSION

Preparation of extracts

Dried leaves extraction (1.2 kg) resulted in 234.61 g of ethanol extract (19.55%), whereas the ethyl acetate and the water extracts were 9.71 and 26.06 g, respectively.

Phytochemical screening

Qualitative analysis by phytochemical screening of *P. scutellarioides* (L.) R.Br. leaves extracts revealed the presence of polyphenols, flavonoids, saponins, and quinones (Table 1).

<table>
<thead>
<tr>
<th>Compound Type</th>
<th>Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyphenols</td>
<td>Yes</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Yes</td>
</tr>
<tr>
<td>Saponins</td>
<td>Yes</td>
</tr>
<tr>
<td>Quinones</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1 showed the results of phytochemical screening. Both the dried leaves and the extracts of *P. scutellarioides* (L.) R.Br. contain polyphenols, flavonoids, saponins, and quinones (indicated with positive mark in the table). No alkaloids and terpenes are observed in either the dried leaves or extracts. These results were compared with those of Bhatt et al. (2013) who had worked on *P. amboinicus* or Indian borage of the same family, Lamiaceae. They reported that this plant contained phenolics (49.91 mg GAE/g extract), flavonoids (26.6 mg RE/g extract), and condensed tannins (0.7 mg TAE/g extract) (Bhatt et al., 2013).

Thin layer chromatography (TLC) analysis

TLC analysis of the ethanol extract, ethyl acetate fraction, and water fraction, resulted 3, 6, and 6 spots, respectively (Rf value ranged between 0.29 and 0.91), which gave colour with AlCl₃ (Figure 1).

Spectrophotometry analysis

Spectrophotometry analysis result is as shown in Figure 2. Figure 2 shows that quercetin (red) has two bands which maxima are detected at 258 and 375 nm, whilst the extract indicated peaks at 260 and 335 nm. The UV lambda maxima of quercetin-3-O-rhamnoside and quercetin-uronic acid were 256 and 352 nm (Plazonić et al., 2009), which are closely similar with those of our extract.

According to Sisa (2010), all flavonoids have aromatic chromophores, as indicated by UV absorptions in the 250 nm region of their UV spectra. These compounds may undergo π,π* excitation and react from π,π* excited states. Certain flavonoids contain carbonyl chromophores and absorb light in the 300 nm region. They may undergo n,π* excitation to react from n,π* excited states. Carboxyl chromophores that are conjugated with the aromatic ring (e.g., acetophenones and chalcones) absorb UV light in the 350 nm region. The n,π* and π,π* excited states of these compounds are almost degenerate and the state from which their reactions originates is sometimes controversial. Polyphenolic chalcones may absorb light in the visible region as is evident by their colours (Sisa et al., 2010).

There is an occurrence of batochromic shift (a shift of the maxima to longer wavelength) of the first bands of both extract and quercetin. The shift confirmed the presence of flavonoids in *P. scutellarioides* (L.) R.Br. leaves extract.

High performance liquid chromatography (HPLC)

HPLC analysis result is as shown in Figure 3. Figure 3b
Table 1. Phytochemical Screening of *P. scutellarioides* (L.) R.Br. leaves extracts.

<table>
<thead>
<tr>
<th>Secondary metabolite</th>
<th>Dried leaves</th>
<th>Extract</th>
<th>Ethanol</th>
<th>Ethyl acetate</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polyphenols</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Quinones</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Terpenes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 1. TLCs of (a) ethanol extract; (b) ethyl acetate fraction; (c) water fraction of *P. scutellarioides* (L.) R.Br.

shows a dominant peak in *P. scutellarioides* (L.) R.Br. leaves extract, which eluted at 4.91 min (Rt of quercetin standard = 4.88 min as shown in Figure 3a).

Inhibitory activity on COX enzymes

The basic principle of this kit is the oxidation of TMPD by the peroxidase activity of the heme, to form a colored compound which absorbs at \(\lambda \) 590 nm.

Figures 4 and 5 show that all extracts possess inhibitory activity on both COX-1 and COX-2 enzymes, although it is weaker when compared with acetal. The inhibitory activity of *P. scutellarioides* (L.) R.Br. leaves extract on COX-2 is stronger than on COX-1 (40.43% for COX-1 and 97.04% for COX-2), thus this plant could be further proposed as a nonselective COX inhibitor.

We compared the results with those of other researchers. Ravikumar and colleagues concluded that aqueous and ethanolic extracts of leaves of the same genus, *Plectranthus amboinicus* (Lour.) Spreng, showed anti-inflammatory activity (Ravikumar et al., 2009; Devi and Periyanayagam, 2010).

Inhibitory activity on XO enzyme

Inhibitory activity of *P. scutellarioides* (L.) R.Br. leaves extract on XO enzyme is as shown in Figure 6. Figure 6 shows that all *P. scutellarioides* (L.) R.Br. leaves extracts, which contained flavonoids (Table 1), possess inhibitory activity on XO enzyme. According to Umamaheswari et al. (2009), inhibitory activity on XO enzyme might be attributed to the presence of benzopyran ring in the flavonoids. They concluded that flavonoids could be a promising remedy for the treatment of gout and related
inflammatory disorders (Umamaheswari et al., 2013). The water extract revealed the highest inhibition although it is weaker when compared with allopurinol (IC\textsubscript{50} water extract = 6 \(\mu\)g/ml; IC\textsubscript{50} allopurinol = 0.15 \(\mu\)g/ml), therefore this plant could be further proposed as XO inhibitor.

Conclusion

P. scutellarioides (L.) R.Br. leaves extracts (ethanolic, ethyl acetate, and water) show inhibition on COX-1 and COX-2 enzymes, while on XO, water extract showed the highest inhibition. This plant could be further proposed as both XO and COX inhibitors.
Figure 3. HPLC chromatograms of (a) quercetin standard and (b) ethanol extract.
Figure 4. Inhibitory activity of (a) ethanol extract; (b) ethyl acetate fraction; (c) water fraction; (d) acetosal on COX-1.

Figure 5. Inhibitory activity of (a) ethanol extract; (b) ethyl acetate fraction; (c) water fraction; (d) acetosal on COX-2.
Figure 6. Inhibitory activity of (a) ethanol extract; (b) ethyl acetate fraction; (c) water fraction; (d) allopurinol on XO.

Conflicts of interests
The authors have not declared any conflict interests.

ACKNOWLEDGEMENTS
This project was funded by Universitas Padjadjaran via Academic Leadership Grant 2015.

REFERENCES
Acevedo-Rodríguez P, Strong MT (2012). Catalogue of the seed plants of the West Indies. Smithsonian Contrib. Bot. 98:1192. Available at: https://repository.si.edu/handle/10088/17551
Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ,

Full Length Research Paper

Ethnobotanical survey of medicinal plants used in the treatment of women related diseases in Akoko Region of Ondo-State, Nigeria

Department of Plant Science, Ekiti State University, Ado-Ekiti, Ekiti-State, Nigeria.

Received 23 December, 2015; Accepted 11 March, 2016

An ethnobotanical survey was conducted to document medicinal plants commonly used for the treatment of women related diseases by the inhabitants of Akoko in Ondo-State, Nigeria. A total of 36 plants, belonging to 29 families were documented. The abundance status of the identified plants revealed that 24% of the plants were very abundant, 34% were abundant while 42% were scarce. Aframomum melegueta, Ageratum conyzoides, Alchornea laxiflora, Allium sativum, Aspilia africana, Ananas comosus, Carica papaya were the most frequently mentioned plants. Most of the respondents found the plants to be effective (78%), 12.5% believed the plants as being highly effective while 8.5% believed that the plants were not effective as being reported. The factor of citation of plants ranged between 60 to 95, the plants were holistic in action, rarely toxic and or harmful. The diseases mentioned were venereal diseases, breast cancer, diabetes, pre and postnatal complications, infertility, menstrual disorder, vaginal discharge and fibroids.

Key words: Medicinal plants, diseases, women, abundance, biomedicine, frequency of citation,

INTRODUCTION

Medicinal plants are now recognized worldwide, both by the rural population and urban elite as an important healthcare resource especially for women. Ezeigbo (1996) observed that most Nigerian women labored under stress because they are over whelmed by the responsibilities of their homes and the society in order to sustain their traditional roles in the family effectively. She noted that the peace and stability of homes depend largely on the managerial abilities of women folks. She stressed further that women especially the mothers plan, organize, direct and coordinate all the resources of the home. Apart from their numerical strength, women have great potentials necessary to evolve a new economic in order to accelerate social and political development and consequently transformed the society into a better one (Awe, 1990).

In Nigeria, women are subjected to social, cultural, physical and mental disorders that constituted health
hazards for them. A study revealed that 1 out of every 15 African women died from complications of pregnancy, breast cancer, fibroid, diabetes, pre and postnatal care (Abdoulaye et al., 2006). Plants, with their curative values possess the potentials to ameliorate the situation (Akinnibosun and Odiete, 2008; Olanipekun et al., 2013). Nigeria is endowed with diversity of plants and animals that are naturally used as foods, medicine and for clothing and shelter (Odugbemi and Akinsulire, 2006). Plants in particular, have been a major source of medicine for human kind. Although the traditional importance of plants as medicine has been ignored in the time past by many biomedical practitioners because the clarity of the chemical composition, dosages and toxicity level of plants used in ethnomedicine is not clearly defined (Lowel et al., 2001; Balick and Cox, 1996). However, recent initiatives revealed that many resistance developed by disease causing organisms against synthetic drugs are now been overcome through the use of medicinal plants; hence there seems to be a drastic shift of some people from orthodox drugs to herbal products in curing ailments.

The re-emergence of interest in the use of medicinal plants as a solution to health problems has been fuelled by the rising cost of synthetic drugs in the maintenance of personal health as well as the ineffectiveness of some of the synthetic drugs because of the resistance developed against them by some disease causing organisms (Zucker and Campbell, 1992; Sharma, 1997). The documentation and conservation of the available species used in the treatment of diseases is always a good step in good directions. The main objective of this study therefore, is to document plants used in treating women health challenges with a view of identifying how they are used and the level of abundance of the plants in Akoko Region, Ondo-State, Nigeria.

MATERIALS AND METHODS

Study area

The study was conducted in Akoko South Local Government Area (LGA) of Ondo State. The LGA is made up of four communities namely; Iwara Oka, Ayegunle Okak, Sumerin Oka and Oba Akoko; it is located within latitude 4.60°N and longitude 3.30°E. It is bounded in the East by Epinmi and Ipe., in the West by Akungba and Supare, in the North by Ise Iboropa and Ugbe Akoko, while in the South by Oba and Ikun towns. It covers an area of thirty square kilometers and the vegetation is derived from savanna with scattered forests all over the area. The climate of Oka land is equally determined by Southwest Monsoon Winds and North east wind. It has a mean annual rainfall of about 1,270 mm and annual temperature of over 21°C. Humidity is relatively high for about eight months of the year. The inhabitants are predominantly farmers, engaging in subsistence farming. The major agricultural products from the study area are cassava, palm oil and cola nut.

METHODS OF DATA COLLECTION

An open-ended semi-structured questionnaire was utilized in obtaining information on plants used in the treatment of diseases affecting women in the study area. Interviews were conducted with a fairly open framework that allowed for focused, conversational and two-way communication as suggested by Kayode et al. (2009). A total number of 80 respondents were interviewed. The respondents consisted of men and women particularly herb sellers, community leaders and traditional healers. Secondary Information was also gathered from key informants who included officials from the Ministry of Health, hospitals and other stakeholders. These officials also helped to validate the scientific names of the diseases.

The information collected on the plants was properly documented. Information gathered included diseases affecting women, the name of plants used to cure the diseases, parts of the plants used, methods of preparations and mode of administration. The vouchers specimens of the identified plants were collected and taken to the herbarium of the Department of Plant Science, Ekiti State University, Ado-Ekiti for identification and authentication. Also the abundance status of the plants species was determined using the time taken to physically come in contract with the samples of the plants by the respondents in the communities (Kayode et al., 2015). The samples that were sighted within 20 min walk from the centre of the community were regarded as very abundant, abundant when sighted within 30 to 60 min but scarce when it takes more than 60 min to be sighted.

The frequency of citation (Fc) of the species which specifies the fidelity level of awareness and the usage of the species among the respondents was determined according to Kayode et al. (2015) using the formula:

\[Fc = \frac{Nr \times 100}{N} \]

Where Nr =The number of respondents that mentioned the species.
N =The total number of respondents interviewed

RESULTS AND DISCUSSION

The results obtained revealed that a total of 36 plants species belonging to 29 families are used in the treatment of women diseases in the study area. The parts of the plant used included roots, stems, leaves and stem barks (Table 1). These plants were used in treating various diseases affecting women in the study area. The respondents were observed to possess immense knowledge on the medicinal values of the species. The use and effectiveness of the various parts of the plants is an indication that the bioactive ingredients that are responsible for their activeness are distributed in different parts of the plants. Olanipekun et al. (2013) reported the different bioactive ingredients such as alkaloids, saponins, tannins, cardiac glycoside as natural agents responsible for the effectiveness of some of the identified plants.

It was also observed that most of the plants (72%) were not cultivated; they were wild. Examples of the wild plant species were Aframomum melegueta, Ageratum conizooides, Alchornea laxiflora, Allium ascalonion, Aspilia africana etc. The remaining plant species (28%) were cultivated for various purposes other than medicinal. These included Ananas comosus, Carica papaya etc. The cultivation of plants ensures its availability and sustainability. Fruits of Ananas comosus and Carica papaya are good sources of essential micronutrients and
<table>
<thead>
<tr>
<th>S/n</th>
<th>Plant name/Propagation</th>
<th>Family name</th>
<th>Local name/Common name</th>
<th>Part used</th>
<th>Abundance status</th>
<th>Frequency of citation</th>
<th>Diseases treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aframomum melegueta K.Schum (wild)</td>
<td>Zingiberaceae</td>
<td>Atare; Alligator pepper</td>
<td>Fruits, seeds, Leaves</td>
<td>Scarce</td>
<td>85</td>
<td>Malaria, Toothache, Irregular menstrual flow, Wounds, infertility</td>
</tr>
<tr>
<td>2</td>
<td>Ageratum conyzoides L (wild)</td>
<td>Asteraceae</td>
<td>Imi esu; Goat weed</td>
<td>Flowers, Leaves and whole plant</td>
<td>Very abundant</td>
<td>70</td>
<td>Wounds, ulcers, management of threatened miscarriage.</td>
</tr>
<tr>
<td>3</td>
<td>Alchornea laxiflora (Benth) (wild)</td>
<td>Euphorbiaceae</td>
<td>Ijan ,pepe; Bead string ,three veined</td>
<td>Leaves</td>
<td>Very abundant</td>
<td>80</td>
<td>Veneral diseases, promotes fertility.</td>
</tr>
<tr>
<td>4</td>
<td>Allium ascalonicum L. Backer (wild)</td>
<td>Liliaceae</td>
<td>Alubosa elewe; Leafy onion, Shallot, Wild onion</td>
<td>Bulb, Leaves</td>
<td>Abundant</td>
<td>60</td>
<td>Infertility, Dysentery,</td>
</tr>
<tr>
<td>5</td>
<td>Allium sativum L (wild)</td>
<td>Liliaceae</td>
<td>Ayuu; Garlic</td>
<td>Bulb</td>
<td>Very abundant</td>
<td>95</td>
<td>Enhance sexual ability and treatment of hormonal imbalance</td>
</tr>
<tr>
<td>6</td>
<td>Ananas comosus (Linn) Meril (wild)</td>
<td>Bromeliaceae</td>
<td>Ope oyinbo; Pineapple</td>
<td>Fruits</td>
<td>Abundant</td>
<td>81</td>
<td>Typhoid fever, cough, Digestive problems</td>
</tr>
<tr>
<td>7</td>
<td>Annona senegalensis Pers. (wild)</td>
<td>Annonaceae</td>
<td>Abo; African custard apple</td>
<td>Root, Leaves</td>
<td>Scarce</td>
<td>80</td>
<td>Cancer, Dysentery, infertility</td>
</tr>
<tr>
<td>8</td>
<td>Aspilia africana (Pers.)C D.Adams (wild)</td>
<td>Asteraceae</td>
<td>Yunrinyun; Haemorrhage plant</td>
<td>Leaves, flowers</td>
<td>Abundant</td>
<td>88</td>
<td>Stomach disorder, Skin rashes Management of Threatening Miscarriage</td>
</tr>
<tr>
<td>9</td>
<td>Carica papaya Linn. (cultivated)</td>
<td>Caricaceae</td>
<td>Ibepe; Pawpaw</td>
<td>Seed sap, Leaves extract, Fruits</td>
<td>Very abundant</td>
<td>88</td>
<td>Diabetes, Malaria, Gonorrhea</td>
</tr>
<tr>
<td>10</td>
<td>Citrus lanatus (Thumb)Matsum and Nakai (Cultivated)</td>
<td>Rutaceae</td>
<td>Egusi bara; Water melon</td>
<td>Fruit, Pulp, Seeds</td>
<td>Abundant</td>
<td>81</td>
<td>Stomach disorder, Malaria,</td>
</tr>
<tr>
<td>11</td>
<td>Citrus aurantifolia L (Cultivated)</td>
<td>Rutaceae</td>
<td>Osan wewe; Lime fruit</td>
<td>Fruit, Leaves, Stem</td>
<td>Very abundant</td>
<td>95</td>
<td>Toothache, Ulcer, Fever, Gonorrhea</td>
</tr>
<tr>
<td>12</td>
<td>Cola acuminata L. (Cultivated)</td>
<td>Sterculiaceae</td>
<td>Obi abata; Cola</td>
<td>Fruits</td>
<td>Abundant</td>
<td>90</td>
<td>Fever, Breast cancer</td>
</tr>
<tr>
<td>13</td>
<td>Entandrophragma angolense D.C (wild)</td>
<td>Meliaceae</td>
<td>Ijebo ,Tiama</td>
<td>Bark</td>
<td>Scarce</td>
<td>88</td>
<td>Diabetes, Black tongue, Cough</td>
</tr>
<tr>
<td>14</td>
<td>Ficus exasperata Vahl (wild)</td>
<td>Moraceae</td>
<td>Ewe ipin; Sand paper</td>
<td>Leaves, Seed, Root bark</td>
<td>Abundant</td>
<td>90</td>
<td>Stomach disorder, Fibroids</td>
</tr>
<tr>
<td>15</td>
<td>Garcinia kola Heekel (wild)</td>
<td>Guttiferaeae</td>
<td>Orogbo; Bitter kola</td>
<td>Root, Bark, Stem bark, Root bark, Seeds</td>
<td>Abundant</td>
<td>88</td>
<td>Headache, Cancer, Dysemtery, Cough, Fever</td>
</tr>
<tr>
<td>16</td>
<td>Gossypium arboreum Linn.(wild)</td>
<td>Malvaceae</td>
<td>Owu; Cotton plant</td>
<td>Leaves, Seed</td>
<td>Abundant</td>
<td>90</td>
<td>Dysentery, Asthma, Ulcers, Menstrual disorder</td>
</tr>
<tr>
<td>17</td>
<td>Harungana madagascariensis (Linn,Oxpou) (wild)</td>
<td>Hypericaceae</td>
<td>Arnuje ,Dragon; Blood tree</td>
<td>Root, Bark</td>
<td>Abundant</td>
<td>81</td>
<td>Dysentery, Easy delivery</td>
</tr>
<tr>
<td>18</td>
<td>Hybanthus enneaspermus (wild)</td>
<td>Violaceae</td>
<td>Abiwere ; Hybanthus spafe flower</td>
<td>Leaves, Whole plant</td>
<td>Scarce</td>
<td>70</td>
<td>Easy delivery,</td>
</tr>
<tr>
<td>19</td>
<td>Jatropha curcas L. (wild)</td>
<td>Euphorbiaceae</td>
<td>Lapalapa funfun ,Physics nut</td>
<td>Leaves, Seed, Root</td>
<td>Very abundant</td>
<td>92</td>
<td>Fever, Menstrual disorders</td>
</tr>
<tr>
<td>20</td>
<td>Mezoneuron benthanianum (Baill)Herendard and Za (wild)</td>
<td>Caesalpiniaceae</td>
<td>Amuranju ,Senifiran</td>
<td>Leaves</td>
<td>Scarce</td>
<td>81</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>21</td>
<td>Momordica charantia Linn. (wild)</td>
<td>Cucurbitaceae</td>
<td>Ejinnir were; Bitter leaf</td>
<td>Leaves, Whole plant, Fruits,</td>
<td>Scarce</td>
<td>80</td>
<td>Diabetes, Piles</td>
</tr>
<tr>
<td>22</td>
<td>Parkia biglobosa (Jacq) R. Br (Cultivated)</td>
<td>Mimosaceae</td>
<td>Irugba; Locust beans</td>
<td>Fruits, Seed, Fruit pulp</td>
<td>Very abundant</td>
<td>80</td>
<td>Diabetes</td>
</tr>
<tr>
<td>23</td>
<td>Physalis angulata Linn (wild)</td>
<td>Solanaceae</td>
<td>Koropo; Wild cape</td>
<td>Leaves, Whole plant</td>
<td>Scarce</td>
<td>68</td>
<td>Fever, Malaria, Infertility</td>
</tr>
</tbody>
</table>
needed anti-oxidants for the good performance of the body and improve the immune system. Data on the abundance status of the plants (Table 1) showed that 24% of the plants were very abundant. They are readily available because it does not take up to 20 s to come across them when needed. Also, the plants are cultivated because there are other purposes other than medicine they are used for (Table 1). However, 35% of the plants were abundant, taking about 20 minutes journey before one could come across the plants. The population of these plants has started dwindled.

About 41% of the plants were scarce and difficult to discover. Some of them take up to two to five days or more journey before coming across them. This could be as a result of pressure on the natural forest. Natural forest that is the home of many plants is now been converted and used for other purposes such as building, industries and road construction. Therefore, it is important to embark on extensive conservation and massive cultivation of the rare species from extinction (Table 3). The primary importance of the identified plants ranges from ornamental, shade, grains as food, leaves as vegetables, erosion control etc. The use as medicine is the secondary purpose (Table 4). The respondents’ frequency of citation of the identified species ranged between 60 and 95 (Table 1). This tends to suggest that the level of awareness, importance and acceptability of the medicinal species was high among the respondents (Kayode et al., 2015).

Details of plants preparations and mode of administration for the treatment of the diseases peculiar to women in the study area are shown in Table 2. Roots and the leaves of the plants, such as Senna podocarpa, Senna alata, Allium ascalonium were used collectively for the treatment of vaginal discharge and to treat menstrual disorder conditions. The treatment for pre and post natal care is also included. Plants such as Annona senegalensis, Aframomum melegueta, Hybanthus enneaspermus, Piper guineense were reportedly used as plants used to easy difficult labor and infertility in women. Plants used for the treatment of breast cancer include Cola acuminata fruits. The traditional use of plants in treating ailments by the rural dwellers is a common practice that has been used and found effective even when the use of orthodox has failed. It was reported by Yakubu et al., (2007) in an Ethnobotanical survey where it was revealed several reasons for using medicinal plants in the management of diseases in Nigeria.

The incidence of various diseases affecting women in the study area has led to the use of orthodox medicine but unfortunately, the options are expensive, not easily available and with a lot of adverse effect. However, the respondents (78%)}
Table 2. The recipes and the traditional methods of preparing the medicinal plants for the treatment of various diseases affecting women in the study area.

<table>
<thead>
<tr>
<th>Name of plants</th>
<th>Methods of preparation/Mode of administration</th>
<th>Disease treated/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senna alata, Senna podocarpa, Allium ascalonium, Allium sativum</td>
<td>Hot water is poured on the recipes and kept in a closed container for twenty four hours. /100ml is taken orally every morning for 3 days.</td>
<td>Vaginal discharge, Enhance sexual ability and treatment of hormonal imbalance</td>
</tr>
<tr>
<td>Myopa quintasii Xylopia aethiopica</td>
<td>Leaves Extract prepared by boiling in water. /100 ml is taken orally for 3 days</td>
<td>Menstrual disorder</td>
</tr>
<tr>
<td>Aframomum melegueta, Ananas comosus, Carica papaya, Jatropha curcas, Physalis angulata</td>
<td>The rhizome is ground and soaked in alcoholic for 24 h. /100 ml taken 3 times daily before meal for 5 days.</td>
<td>Post natal care, Malaria, Irregular menstrual flow, infertility</td>
</tr>
<tr>
<td>Aframomum melegueta, Ageratum conyzoides, Alchornea laxiflora Ficus exasperata, Secamone afzelii, Talinum triangulare, Uvaria afzelii, Momordica charantia</td>
<td>Dried and burnt powdered plants. The usage starts from the second day of the menstrual</td>
<td>Infertility, Fibroid</td>
</tr>
<tr>
<td>Cola acuminata, Garcina cola,</td>
<td>The Ground recipes mixed with native soap/Bath the breast with the herbal mixtures with a new sponge for four days.</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Senna alata, Senna siberiana, Allium ascalonium, Piper guineese, Aspilia africana,</td>
<td>The plants are soaked in fermented corn water, Placed under hot sun and covered for 4 days. /250 ml is taken orally for 2days.</td>
<td>Painful menstruation, Vaginal discharge, Fibroid</td>
</tr>
<tr>
<td>Saccharum officinale, Xylopia aethiopica, Citrus aurantiifolia, Tetrapleura tetraptera</td>
<td>The recipes are boiled in Citrus aurantiifolia fruit juice/100 ml, 3times daily and part of it used to bath the breast</td>
<td>Breast pains, Inflammation of joints</td>
</tr>
<tr>
<td>Hybanthus enneaspermus, Mezoneuron benthhammianum, Piper guineese, Parkiabiglobosa,</td>
<td>Ground and mixed together with one cat fish and cook for the woman to sustain the pregnancy</td>
<td>Ante natal care, Diabetes, Cancer</td>
</tr>
<tr>
<td>Harunganaramadag ascariensis, Hybanthus enneaspermus, Vernonia amygdalina</td>
<td>Blend all the plant parts and mix a portion with Sheabutter for navel rubbing and other part with native soap for bathing to ensure safe delivery</td>
<td>Difficulty in delivery</td>
</tr>
</tbody>
</table>

perceived the plants as being effective, while 12.5% of the respondents observed the treatments as being highly effective and it cannot be compared to the use of orthodox medicine (Table 5). Similarly, Ariba et al. (2007) reported that 42.3% of the 79 Nigerian clinicians agreed that many patients preferred native medication to modern drugs. The study areas was urban-rural, the respondents have the traditional knowledge of preparing plants and need not skilled personnel for its preparation. The respondents have gathered experience through trial and error over several years. They observed plants as highly effective, holistic in action, rarely toxic or harmful.

Also, plants have few or no side effect, readily available, easier to obtain, cheaper (Tables 6 and 7) and cure permanently than orthodox medicine and could save the nation huge foreign exchange that can be converted for other uses which will help in further national development (Arowosegbe et al., 2015, Kayode et al; 2015; Lewis, 2003 and Olapade, 2002).

Conclusion

The results obtained revealed that the study area consisted of various plant species suitable as medicinal remedies for the treatment of various health challenges affecting women in the study area. The frequency of citation indicated that the use of these plants is reliable, effective and culturally acceptable. However, plants are not abundantly available as expected to sustain the needs of the users, hence conservation measures
Table 3. The recipes and the traditional methods of preparing the medicinal plants for various diseases affecting women in the study area.

<table>
<thead>
<tr>
<th>Name of plants</th>
<th>Methods of preparation/Mode of administration</th>
<th>Disease treated/ Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphea brevis, Senna alata, Senna podocarpa, Allium ascalonium,</td>
<td>Hot water is poured on the recipes and kept in a closed container for twenty four hours/100 ml is taken orally every morning for 3 days.</td>
<td>Vaginal discharge</td>
</tr>
<tr>
<td>Dalbergiella welwitschii,</td>
<td>Leaves extract plus potash is mixed and taken/100ml is taken orally for 3 days</td>
<td>Menstrual disorder</td>
</tr>
<tr>
<td>Aframomum melegueta</td>
<td>Ground and alcoholic soaked plants rhizome/100ml 3 times daily before meal form5days.</td>
<td>Post natal care</td>
</tr>
<tr>
<td>Mimosa pudica, pupilia lappacea, Aframomum melegueta</td>
<td>Dried and burnt powdered plants. The usage starts from the second day of the menstrual</td>
<td>Infertility</td>
</tr>
<tr>
<td>Cola acuminata, Garcina kola,</td>
<td>The Ground recipes mixed with native soap/Bath the breast with the herbal mixtures with a new sponge for four days.</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Senna siberiana, Allium ascalonium, Piper guineese</td>
<td>The plants are soaked in fermented corn water, Place under hot sun and cover it for 4 days/ 250 ml is taken orally for 2days.</td>
<td>Fibroid</td>
</tr>
<tr>
<td>Euphorbia convolvuloides, Saccharum officinale, Unripe Musa nana, Xylopia aethiopica seeds, Eleais guinensis, Citrus aurantifolia</td>
<td>The recipes are boiled in Citrus aurantifolia fruit juice/100 ml, 3times daily and part of it used to bathe the breast</td>
<td>Breast pains</td>
</tr>
<tr>
<td>Hybanthus enneaspermus, Piper guinense, Parkia biglobosa,</td>
<td>Ground and mixed together with one cat fish and cook for the woman to sustain the pregnancy</td>
<td>Ante natal care</td>
</tr>
<tr>
<td>Entandrophragma angolense, Vernonia amygdalina</td>
<td>Blend all the plant parts and mix a portion with Sheabutter for navel rubbing and other part with native soap for bathing to ensure safe delivery</td>
<td>Easy delivery</td>
</tr>
</tbody>
</table>

Table 4. The abundance status of the identified species in the study area.

<table>
<thead>
<tr>
<th>Abundance Status</th>
<th>Species</th>
<th>Proportion (%) of the species</th>
</tr>
</thead>
</table>

are inevitable. Domestication strategies, appropriate methods of exploitation and further studies to ensure a sustainable utilization and availability of the rare species are recommended. Also the scientific reliability of the identified plant is advocated for, to validate the uses of the plants for the cure of various diseases and conditions.
Table 5. Other uses of some of the cultivated medicinal plants in the study area.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Botanical name</th>
<th>Other uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ananas comosus</td>
<td>Fruits, Ornamental purpose</td>
</tr>
<tr>
<td>2</td>
<td>Basella alba</td>
<td>Vegetable leaf, shade</td>
</tr>
<tr>
<td>3</td>
<td>Carica papaya</td>
<td>Edible fruits</td>
</tr>
<tr>
<td>4</td>
<td>Citrillus lonatus</td>
<td>Edible Fruit, Shade</td>
</tr>
<tr>
<td>5</td>
<td>Citrus aurantiifolia</td>
<td>Fruit, Shade</td>
</tr>
<tr>
<td>6</td>
<td>Cocos nucifera</td>
<td>Shade</td>
</tr>
<tr>
<td>7</td>
<td>Cola acuminata</td>
<td>Fruit</td>
</tr>
<tr>
<td>8</td>
<td>Musa paradisia</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ocimum gratissimum</td>
<td>Leaves as vegetable</td>
</tr>
<tr>
<td>10</td>
<td>Parkia biglobosa</td>
<td>Seed</td>
</tr>
<tr>
<td>11</td>
<td>Piper guineese</td>
<td>Fruit</td>
</tr>
<tr>
<td>12</td>
<td>Saccharum officinale</td>
<td>Leaves as vegetable, Grains</td>
</tr>
<tr>
<td>13</td>
<td>Sorghum bicolor</td>
<td>Grains as food</td>
</tr>
<tr>
<td>14</td>
<td>Talinum triangulare</td>
<td>Leaves as vegetable</td>
</tr>
<tr>
<td>15</td>
<td>Vernonia amygdalina</td>
<td>Roots</td>
</tr>
<tr>
<td>16</td>
<td>Zea mays</td>
<td>Silk Styles, Grains as food</td>
</tr>
</tbody>
</table>

Table 6. Effectiveness of the use of identified species according to the respondents in the study area.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Frequency</th>
<th>Proportion (%) of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly effective</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>Effective</td>
<td>63</td>
<td>78</td>
</tr>
<tr>
<td>Poorly effective</td>
<td>5</td>
<td>6.25</td>
</tr>
<tr>
<td>Not effective</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 7. Cost of getting the identified plant species by the respondents in the study area.

<table>
<thead>
<tr>
<th>Access to source and cost</th>
<th>Frequency</th>
<th>Proportion (%) of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy and cheap</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>Difficult but cheap</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>Difficult and expensive</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

Conflict of Interests
The authors have not declared any conflict of interests.

REFERENCES

Olapade EO (2002). The herbs for good health: The 50th anniversary lecture of the University of Ibadan (Vol. 3). NARL Specialist Clinic.

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences