ABOUT AJB

The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals.

African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer-reviewed.

Contact Us

Editorial Office: ajb@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJB
Submit manuscript online http://ms.academicjournals.me/
Editor-in-Chief

George Nkem Ude, Ph.D
Plant Breeder & Molecular Biologist
Department of Natural Sciences
Crawford Building, Rm 003A
Bowie State University
14000 Jericho Park Road
Bowie, MD 20715, USA

Editor

N. John Tonukari, Ph.D
Department of Biochemistry
Delta State University
PMB 1
Abraka, Nigeria

Associate Editors

Prof. Dr. AE Aboulata
Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt
30 D, El-Karama St., Alj Maskan, P.O. Box 1567,
Ain Shams, Cairo,
Egypt

Dr. S.K Das
Department of Applied Chemistry and Biotechnology, University of Fukui,
Japan

Prof. Okoh, A. I.
Applied and Environmental Microbiology Research Group (AEMREG),
Department of Biochemistry and Microbiology,
University of Fort Hare.
P/Bag X1314 Alice 5700,
South Africa

Dr. Ismail TURKOGLU
Department of Biology Education,
Education Faculty, Firat University,
Elazığ, Turkey

Prof T.K.Raja, PhD FRSC (UK)
Department of Biotechnology
PSG COLLEGE OF TECHNOLOGY (Autonomous)
(Affiliated to Anna University)
Coimbatore-641004, Tamilnadu,
INDIA.

Dr. George Edward Mamati
Horticulture Department,
Jomo Kenyatta University of Agriculture and Technology,
P. O. Box 62000-00200,
Nairobi, Kenya.

Dr. Gitonga
Kenya Agricultural Research Institute,
National Horticultural Research Center,
P.O Box 220,
Thika, Kenya.
Editorial Board

Prof. Sagadevan G. Mundree
Department of Molecular and Cell Biology
University of Cape Town
Private Bag Rondebosch 7701
South Africa

Dr. Martin Fregene
Centro Internacional de Agricultura Tropical (CIAT)
Km 17 Cali-Palmira Recta
AA6713, Cali, Colombia

Prof. O. A. Ogunseitan
Laboratory for Molecular Ecology
Department of Environmental Analysis and Design
University of California, Irvine, CA 92697-7070. USA

Dr. Ibrahima Ndoye
UCAD, Faculte des Sciences et Techniques
Departement de Biologie Vegetale
BP 5005, Dakar, Senegal.
Laboratoire Commun de Microbiologie
IRD/ISRA/UCAD
BP 1386, Dakar

Dr. Bamidele A. Iwalokun
Biochemistry Department
Lagos State University
P.M.B. 1087. Apapa – Lagos, Nigeria

Dr. Jacob Hodeba Mignouna
Associate Professor, Biotechnology
Virginia State University
Agricultural Research Station Box 9061
Petersburg, VA 23806, USA

Dr. Bright Ogheneovo Agindotan
Plant, Soil and Entomological Sciences Dept
University of Idaho, Moscow
ID 83843, USA

Dr. A.P. Njukeng
Département de Biologie Végétale
Faculté des Sciences
B.P. 67 Dschang
Université de Dschang
Rep. du CAMEROUN

Dr. E. Olatunde Farombi
Drug Metabolism and Toxicology Unit
Department of Biochemistry
University of Ibadan, Ibadan, Nigeria

Dr. Stephen Bakiamoh
Michigan Biotechnology Institute International
3900 Collins Road
Lansing, MI 48909, USA

Dr. N. A. Amusa
Institute of Agricultural Research and Training
Obafemi Awolowo University
Moor Plantation, P.M.B 5029, Ibadan, Nigeria

Dr. Desouky Abd-El-Haleem
Environmental Biotechnology Department &
Bioprocess Development Department,
Genetic Engineering and Biotechnology Research
Institute (GEBRI),
Mubarak City for Scientific Research and Technology
Applications,
New Burg-Elarab City, Alexandria, Egypt.

Dr. Simeon Oloni Kotchoni
Department of Plant Molecular Biology
Institute of Botany, Kirschallee 1,
University of Bonn, D-53115 Germany.

Dr. Eriola Betiku
German Research Centre for Biotechnology,
Biochemical Engineering Division,
Mascheroder Weg 1, D-38124,
Braunschweig, Germany

Dr. Daniel Masiga
International Centre of Insect Physiology and Ecology,
Nairobi,
Kenya

Dr. Essam A. Zaki
Genetic Engineering and Biotechnology Research
Institute, GEBRI,
Research Area,
Borg El Arab, Post Code 21934, Alexandria
Egypt
Dr. Alfred Dixon
International Institute of Tropical Agriculture (IITA)
PMB 5320, Ibadan
Oyo State, Nigeria

Dr. Sankale Shompole
Dept. of Microbiology, Molecular Biology and Biochemistry,
University of Idaho, Moscow,
ID 83844, USA.

Dr. Mathew M. Abang
Germplasm Program
International Center for Agricultural Research in the Dry Areas
(ICARDA)
P.O. Box 5466, Aleppo, SYRIA.

Dr. Solomon Olawale Odumuyiwa
Pulmonary Research Group
Department of Medicine
550 Heritage Medical Research Centre
University of Alberta
Edmonton
Canada T6G 2S2

Prof. Anna-Maria Botha-Oberholster
Plant Molecular Genetics
Department of Genetics
Forestry and Agricultural Biotechnology Institute
Faculty of Agricultural and Natural Sciences
University of Pretoria
ZA-0002 Pretoria, South Africa

Dr. O. U. Ezeronye
Department of Biological Science
Michael Okpara University of Agriculture
Umudike, Abia State, Nigeria.

Dr. Joseph Hounhouigan
Maître de Conférence
Sciences et technologies des aliments
Faculté des Sciences Agronomiques
Université d’Abomey-Calavi
01 BP 526 Cotonou
République du Bénin

Prof. Christine Rey
Dept. of Molecular and Cell Biology,
University of the Witwatersand,
Private Bag 3, WITS 2050, Johannesburg, South Africa

Dr. Kamel Ahmed Abd-Elsalam
Molecular Markers Lab. (MML)
Plant Pathology Research Institute (PPathRI)
Agricultural Research Center, 9-Gamma St., Orman,
12619,
Giza, Egypt

Dr. Jackie Hughes
Research-for-Development
International Institute of Tropical Agriculture (IITA)
Ibadan, Nigeria

Dr. Robert L. Brown
Southern Regional Research Center,
U.S. Department of Agriculture,
Agricultural Research Service,
New Orleans, LA 70179.

Prof. Greg Blatch
Head of Biochemistry & Senior Wellcome Trust Fellow
Department of Biochemistry, Microbiology & Biotechnology
Rhodes University
Grahamstown 6140
South Africa

Dr. Beatrice Kilel
P.O. Box 1413
Manassas, VA 20108
USA

Dr. Deborah Rayfield
Physiology and Anatomy
Bowie State University
Department of Natural Sciences
Crawford Building, Room 003C
Bowie MD 20715, USA
Dr. Marlene Shehata
University of Ottawa Heart Institute
Genetics of Cardiovascular Diseases
40 Ruskin Street
K1Y-4W7, Ottawa, ON, CANADA

Dr. Hany Sayed Hafez
The American University in Cairo, Egypt

Dr. Clement O. Adebooye
Department of Plant Science
Obafemi Awolowo University, Ile-Ife
Nigeria

Dr. Ali Demir Sezer
Marmara Universities Eczacilik Fakültesi,
Tibbiye cad. No: 49, 34668, Haydarpasa, Istanbul, Turkey

Dr. Yee-Joo TAN
Department of Microbiology
Yong Loo Lin School of Medicine,
National University Health System (NUHS),
National University of Singapore
MD4, 5 Science Drive 2,
Singapore 117597
Singapore

Prof. Hidetaka Hori
Laboratories of Food and Life Science,
Graduate School of Science and Technology,
Niigata University.
Niigata 950-2181, Japan

Prof. Thomas R. DeGregori
University of Houston,
Texas 77204 5019, USA

Dr. Wolfgang Ernst Bernhard Jelkmann
Medical Faculty, University of Lübeck, Germany

Dr. Moktar Hamdi
Department of Biochemical Engineering,
Laboratory of Ecology and Microbial Technology
National Institute of Applied Sciences and Technology.
BP: 676. 1080, Tunisia

Dr. Salvador Ventura
Department de Bioquimica i Biologia Molecular
Institut de Biotecnologia i de Biomedicina
Universitat Autònoma de Barcelona
Bellaterra-08193
Spain

Dr. Claudio A. Hetz
Faculty of Medicine, University of Chile
Independencia 1027
Santiago, Chile

Prof. Felix Dapare Dakora
Research Development and Technology Promotion
Cape Peninsula University of Technology,
Room 2.8 Admin. Bldg. Keizersgracht, P.O. 652, Cape Town 8000,
South Africa
Dr. Geremew Bultosa
Department of Food Science and Post harvest Technology
Haramaya University
Personal Box 22, Haramaya University Campus
Dire Dawa, Ethiopia

Dr. José Eduardo Garcia
Londrina State University
Brazil

Prof. Nirbhay Kumar
Malaria Research Institute
Department of Molecular Microbiology and Immunology
Johns Hopkins Bloomberg School of Public Health
E5144, 615 N. Wolfe Street
Baltimore, MD 21205

Prof. M. A. Awal
Department of Anatomy and Histplogy,
Bangladesh Agricultural University, Mymensingh-2202, Bangladesh

Prof. Christian Zwieb
Department of Molecular Biology
University of Texas Health Science Center at Tyler
11937 US Highway 271
Tyler, Texas 75708-3154
USA

Prof. Danilo López-Hernández
Instituto de Zoología Tropical, Facultad de Ciencias, Universidad Central de Venezuela.
Institute of Research for the Development (IRD), Montpellier, France

Prof. Donald Arthur Cowan
Department of Biotechnology,
University of the Western Cape Bellville 7535 Cape Town, South Africa

Dr. Ekhaise Osaro Frederick
University Of Benin, Faculty of Life Science
Department of Microbiology
P. M. B. 1154, Benin City, Edo State, Nigeria.

Dr. Luísa Maria de Sousa Mesquita Pereira
IPATIMUP R. Dr. Roberto Frias, s/n 4200-465 Porto
Portugal

Dr. Min Lin
Animal Diseases Research Institute
Canadian Food Inspection Agency
Ottawa, Ontario, Canada K2H 8P9

Prof. Nobuyoshi Shimizu
Department of Molecular Biology, Center for Genomic Medicine
Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku
Tokyo 160-8582, Japan

Dr. Adewunmi Babatunde Idowu
Department of Biological Sciences
University of Agriculture Abia
Abia State, Nigeria

Dr. Yifan Dai
Associate Director of Research
Revivicor Inc.
100 Technology Drive, Suite 414
Pittsburgh, PA 15219
USA

Dr. Zhongming Zhao
Department of Psychiatry, PO Box 980126, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0126, USA

Prof. Giuseppe Novelli
Human Genetics, Department of Biopathology, Tor Vergata University, Rome, Italy

Dr. Moji Mohammadi
402-28 Upper Canada Drive
Toronto, ON, M2P 1R9 (416) 512-7795
Canada
Prof. Jean-Marc Sabatier
Directeur de Recherche Laboratoire ERT-62
Ingénierie des Peptides à Visée Thérapeutique,
Université de la Méditerranée-Ambrilia Biopharma Inc.,
Faculté de Médecine Nord, Bd Pierre Dramard, 13916,
Marseille cédex 20.
France

Dr. Fabian Hoti
PneumoCarr Project
Department of Vaccines
National Public Health Institute
Finland

Prof. Irina-Draga Caruntu
Department of Histology
Gr. T. Popa University of Medicine and Pharmacy
16, Universitatii Street, Iasi,
Romania

Dr. Dieudonné Nwaga
Soil Microbiology Laboratory,
Biotechnology Center. PO Box 812,
Plant Biology Department,
University of Yaoundé I, Yaoundé,
Cameroon

Dr. Gerardo Armando Aguado-Santacruz
Biotechnology CINVESTAV-Unidad Irapuato
Departamento Biotecnología
Km 9.6 Libramiento norte Carretera Irapuato-León
Irapuato,
Guanajuato 36500
Mexico

Dr. Abdolkaim H. Chehregani
Department of Biology
Faculty of Science
Bu-Ali Sina University
Hamedan,
Iran

Dr. Abir Adel Saad
Molecular oncology
Department of Biotechnology
Institute of graduate Studies and Research
Alexandria University,
Egypt

Dr. Azizul Baten
Department of Statistics
Shah Jalal University of Science and Technology
Sylhet-3114,
Bangladesh

Dr. Bayden R. Wood
Australian Synchrotron Program
Research Fellow and Monash Synchrotron
Research Fellow Centre for Biospectroscopy
School of Chemistry Monash University Wellington Rd.
Clayton,
3800 Victoria,
Australia

Dr. G. Reza Balali
Molecular Mycology and Plant Pathology
Department of Biology
University of Isfahan
Isfahan
Iran

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Prof. H. Sunny Sun
Institute of Molecular Medicine
National Cheng Kung University Medical College
1 University road Tainan 70101,
Taiwan

Prof. Ima Nirwana Soelaiman
Department of Pharmacology
Faculty of Medicine
Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur,
Malaysia

Prof. Tunde Ogunsanwo
Faculty of Science,
Olabisi Onabanjo University,
Ago-Iwoye.
Nigeria

Dr. Evans C. Egwim
Federal Polytechnic,
Bida Science Laboratory Technology Department,
PMB 55, Bida, Niger State,
Nigeria
Prof. George N. Goulielmos
Medical School,
University of Crete
Voutes, 715 00 Heraklion, Crete,
Greece

Dr. Uttam Krishna
Cadila Pharmaceuticals limited,
India 1389, Tarsad Road,
Dholka, Dist: Ahmedabad, Gujarat,
India

Prof. Mohamed Attia El-Tayeb Ibrahim
Botany Department, Faculty of Science at Qena,
South Valley University, Qena 83523,
Egypt

Dr. Nelson K. Ojio Olang'o
Department of Food Science & Technology,
JKUAT P. O. Box 62000, 00200, Nairobi,
Kenya

Dr. Pablo Marco Veras Peixoto
University of New York NYU College of Dentistry
345 E. 24th Street, New York, NY 10010
USA

Prof. T E Cloete
University of Pretoria Department of Microbiology and Plant Pathology,
University of Pretoria,
Pretoria,
South Africa

Prof. Djamel Saidi
Laboratoire de Physiologie de la Nutrition et de Sécurité
Alimentaire Département de Biologie,
Faculté des Sciences,
Université d’Oran, 31000 - Algérie
Algeria

Dr. Tomohide Uno
Department of Biofunctional chemistry,
Faculty of Agriculture Nada-ku,
Kobe., Hyogo, 657-8501,
Japan

Dr. Ulises Urzúa
Faculty of Medicine,
University of Chile Independencia 1027, Santiago,
Chile

Dr. Aritua Valentine
National Agricultural Biotechnology Center, Kawanda Agricultural Research Institute (KARI)
P.O. Box, 7065, Kampala,
Uganda

Prof. Yee-Joo Tan
Institute of Molecular and Cell Biology 61 Biopolis Drive,
Proteos, Singapore 138673
Singapore

Prof. Viroj Wiwanitkit
Department of Laboratory Medicine,
Faculty of Medicine, Chulalongkorn University,
Bangkok
Thailand

Dr. Thomas Silou
Universit of Brazzaville BP 389
Congo

Prof. Burtram Clinton Fielding
University of the Western Cape
Western Cape,
South Africa

Dr. Brnčić (Brncic) Mladen
Faculty of Food Technology and Biotechnology,
Pierottijeva 6,
10000 Zagreb,
Croatia.

Dr. Meltem Sesli
College of Tobacco Expertise,
Turkish Republic, Celal Bayar University 45210,
Akhisar, Manisa,
Turkey.

Dr. Idress Hamad Attitalla
Omar El-Mukhtar University,
Faculty of Science,
Botany Department,
El-Beida, Libya.

Dr. Linga R. Gutha
Washington State University at Prosser,
24106 N Bunn Road,
Prosser WA 99350-8694
Dr Helal Ragab Moussa
Bahnay, Al-bagour, Menoufia, Egypt.

Dr VIPUL GOHEL
DuPont Industrial Biosciences
Danisco (India) Pvt Ltd
5th Floor, Block 4B, DLF Corporate Park
DLF Phase III
Gurgaon 122 002
Haryana (INDIA)

Dr. Sang-Han Lee
Department of Food Science & Biotechnology, Kyungpook National University
Daegu 702-701, Korea.

Dr. Bhaskar Dutta
DaD Biotechnology High Performance Computing Software Applications Institute (BHSAI)
U.S. Army Medical Research and Materiel Command
2405 Whittier Drive
Frederick, MD 21702

Dr. Muhammad Akram
Faculty of Eastern Medicine and Surgery, Hamdard Al-Majeed College of Eastern Medicine, Hamdard University, Karachi.

Dr. M. Muruganandam
Department of Biotechnology
St. Michael College of Engineering & Technology, Kalayarkoil, India.

Dr. Gökhan Aydin
Suleyman Demirel University, Atabey Vocational School, Isparta-Türkiye,

Dr. Rajib Roychowdhury
Centre for Biotechnology (CBT), Visva Bharati, West-Bengal, India.

Dr Takuji Ohyama
Faculty of Agriculture, Niigata University

Dr Mehdi Vasfi Marandi
University of Tehran

Dr Fügen DURLU-ÖZKAYA
Gazi University, Tourism Faculty, Dept. of Gastronomy and Culinary Art

Dr. Reza Yari
Islamic Azad University, Boroujerd Branch

Dr Zahra Tahmasebi Fard
Roudehen branche, Islamic Azad University

Dr Albert Magri
Giro Technological Centre

Dr Ping ZHENG
Zhejiang University, Hangzhou, China

Dr. Kgomotso P. Sibeko
University of Pretoria

Dr Jian Wu
Harbin medical university, China

Dr Hsiu-Chi Cheng
National Cheng Kung University and Hospital.

Prof. Pavel Kalac
University of South Bohemia, Czech Republic

Dr Kürsat Korkmaz
Ordu University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition

Dr. Shuyang Yu
Department of Microbiology, University of Iowa
Address: 51 newton road, 3-730B BSB bldg. Iowa City, IA, 52246, USA
Dr. Mousavi Khaneghah
College of Applied Science and Technology-Applied Food Science, Tehran, Iran.

Dr. Qing Zhou
Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University Portland.

Dr Legesse Adane Bahiru
Department of Chemistry, Jimma University, Ethiopia.

Dr James John
School Of Life Sciences, Pondicherry University, Kalapet, Pondicherry
ARTICLES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant latex lipase as biocatalysts for biodiesel production</td>
<td>1487</td>
</tr>
<tr>
<td>Mouaïmine Mazou, Andriano Jospin Djossou, Fidèle Paul Tchobo, Pierre Villeneuve and Mohamed M. Soumanou</td>
<td></td>
</tr>
<tr>
<td>Micropropagation of Guadua angustifolia Kunth (Poaceae) using a temporary immersion system RITA®</td>
<td>1503</td>
</tr>
<tr>
<td>Luís Gonzaga Gutiérrez, Rodolfo López-Franco and Tito Morales-Pinzón</td>
<td></td>
</tr>
<tr>
<td>Characterization of α-amylase produced by the endophytic strain of Penicillium digitatum in solid state fermentation (SSF) and submerged fermentation (SMF)</td>
<td>1511</td>
</tr>
<tr>
<td>Sideney Becker Onofre, Dirceu Abatti, Douglas Refosco, Amarildo Antonio Tessaro, Jean Alisson Becker Onofre and Alessandra Buss Tessaro</td>
<td></td>
</tr>
<tr>
<td>Development of bio-hybrid material based on Salmonella Typhimurium and layered double hydroxides</td>
<td>1520</td>
</tr>
<tr>
<td>Slah Hidouri, Nadia Messaoudi, Mouadh Mihoub, Zouhair M. Baccar and Ahmed Landoulsi</td>
<td></td>
</tr>
</tbody>
</table>
Review

Plant latex lipase as biocatalysts for biodiesel production

Mouämine Mazou¹, Andriano Jospin Djossou¹, Fidèle Paul Tchobo¹, Pierre Villeneuve² and Mohamed M. Soumanou¹*

¹Unité de Recherche en Génie Enzymatique et Alimentaire, Laboratoire d’Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique d’Abomey-Calavi, Université d’Abomey-Calavi, 01 BP 2009, Cotonou, Bénin.
²CIRAD, UMR Ingénierie des Agro-polymères et Technologies Emergentes, Campus Supagro/INRA, Montpellier, France.

Received 2 September, 2015; Accepted 24 February, 2016

Industrial-scale processes currently developed make use of chemical catalysis processes that are highly efficient but require very complex product purification steps. Enzymatic catalysis through plant lipases as biocatalysts is an alternative which, in contrast to chemical catalysis processes, appeared simple to perform, and can be done at low investment cost. Although microbial lipases have been extensively studied, little research has been focused on the use of plant lipases namely plant latex lipases. The present article outlines the most advanced knowledge concerning plant latex characterization in order to show how plant latex can be a promising alternative to catalyze transesterification for biodiesel production. This paper provides an overview regarding the main aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and their industrial applications.

Key words: Plant latex, lipase, Transesterification, purification, biodiesel.

INTRODUCTION

Interest in the production of biodiesel a clean renewable fuel is increasing worldwide due to the excessive increase of petroleum prices and the importance of taking environmental concerns into consideration (Mounguengui et al., 2013; Sadeghinezhad et al., 2013). Bio-fuel or biodiesel is usually identified as ester based fuels produced from animal fats or from vegetable oils by using an effective transesterification method. Biodiesel carries 4.5 units of energy against each unit of fossil fuel (Pradhan et al., 2009). Besides this, biodiesel is safer, biodegradable and nontoxic in nature (McCarthy et al., 2011). The mixtures obtained after transesterification are composed of fatty acid alkyl monoesters (Robles-Medina et al., 2009; Meher et al., 2006) and to be classified as “biodiesel”, it must achieve minimum purity and fulfil the specifications of international standards (Graboski et al., 1998), the European standard EN14214 (FAME, 2003) and the American standard ASTM 6751-09 (ASTM,

*Corresponding author. E-mail: msoumanoufr@yahoo.fr.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
2009). Fatty acid alkyl monoesters may be methyl or ethyl esters respectively if the alcohol used is methanol or ethanol. Conventional biodiesel production methods involve the use of acid or base chemical catalysts via homogenous or heterogeneous processes (Marchetti et al., 2007; Brunswig et al., 2011). Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have investigated many research teams to develop new alternative catalysis processes to replace the homogenous catalysis processes generally used in industries (Akoh et al., 2007). In contrast, enzymes (lipases) allow the production of specific alkyl esters, easy recovery of the glycerol, and transesterification of TAG with high free fatty acid content (Soumanou et al., 2012).

Lipases have become more and more prominent on the enzyme biotechnology scenario due to their versatility for hydrolysis and synthesis, their catalytic reactions often being chemo-selective, regio-selective or enantio-selective. Lipases are used in many sectors such as the food, pharmaceutical, fine chemical, oil chemical, biodiesel and industrial detergent industries (Alonso et al., 2005). Lipases act, by definition, at the organic-aqueous interface, catalyzing the hydrolysis of estercarboxylate bonds and releasing fatty acids and organic alcohols (Pereira et al., 2003; Leal et al., 2002; Kamimura et al., 1999; Merçon et al., 1997). However, as Pottévin showed for the first time in 1906, in water-restricted environments, the reverse reaction (esterification) or even various transesterification reactions can occur (Castro et al., 2000).

Lipases can be of animal (pancreatic, hepatic and gastric), microbial (bacterial, fungal and yeast) or vegetable origin, with variations in their catalytic properties (Mukherjee and Hills, 1994). To date, microbial lipases are the most studied. In fact around 58% of the publications of the whole of lipases are devoted to microbial lipases, plant lipases are around 42% of publications and only 11% of the publications are devoted to latex lipases (Google Scholar, 2014). Nevertheless, despite the extensive range of microbial lipases, the use of these enzymes on an industrial scale is still restricted due to high production costs, favoring the search for other sources of these enzymes (Parques and Macedo, 2006).

The modification of fats and oils by transesterification, for instance, can be performed by both chemical and enzymatic catalysis. The industrial transesterification process is currently performed by chemical means, using high temperatures and alkaline metals (KOH, NaOH, HCl, H₃PO₄, H₂SO₄, etc) as the reaction catalyst (Ribeiro et al., 2009; de Araújo et al., 2013). In the enzymatic process, lipases can be used as biocatalysts to promote the exchange of triacylglycerols, showing greater efficiency and leaving no residues (Xu, 2000). For example immobilized Candida antarctica lipase has been used for ethyl esterification of docosahexanoic acid and later used to effect over 98.5% fatty acid methyl ester conversion (Fjerbaek et al., 2009). Latex lipases present certain advantages since they do not necessarily have to be purified in order to perform this and other processes (Cambon, 2008). However, several studies have indicated that such processes are very expensive due to the high cost of purification step (de Castro et al., 2004; Noor et al., 2003). Recently, latex lipases have been the focus of much attention as biocatalysts. In some cases, these enzymes present advantages over animal and microbial lipases due to some quite interesting features such as specificity, low cost, availability and ease of purification, representing a great alternative for potential commercial exploitation as industrial enzymes (Villeneuve, 2003).

Although microbial lipases have been extensively studied (Kilcawley et al., 2002; Mendes et al., 2012), little research has been focused on the use of plant lipases in biodiesel production. However, the major drawback for plant lipases implementation at large scale is the low content of enzyme in the post-germination seeds. However, Caricaceae or Euphorbiaceae overcome this disadvantage as their enzymes are available in large amounts stored in their latex (Paques and Macedo, 2006).

The aim of this review was to highlight the potential and current limitations to the use of plant latex lipases for low-cost enzymatic catalysis alkyl esters production and therefore for a possible application for biodiesel production.

LATEX SOURCES AND PLANT-BASED LATEX

Latex is an aqueous emulsion or a milky fluid (Mounguengui et al., 2013) found in the vacuole of specialized secretory cells known as “laticifers” (Fahn, 1982). Some family plants known as laticifers are Apocynaceae, Asclepiadaceae, Euphorbiaceae, Moraceae and Sapotaceae (Moulin et al., 1994; Palocci et al., 2003; Giordani et al., 1991; Villeneuve et al., 2005; Dhuique-Mayer et al., 2001, 2003). The laticifers plants show intense metabolic activity, with the latex containing lipids, rubbers, resins, and sugars, as well as several proteins and many different enzymes (that is, peroxidases, proteases, esterases, and phosphatases) (Fiorillo et al., 2007; El Moussaoui et al., 2001; Lynn and Clevelette-Radford, 1987). The laticifers plants also show secondary metabolic activity directed toward the production of defence-related molecules, which accumulate in appreciable amounts in the latex. Many toxic substances known to be stored in the latex (that is, alkaloids, sterols and terpenoids) have been shown to have a negative impact on insect feeding and phytophage fitness (El Moussaoui et al., 2001). The latex thus represents a chemical defence, and the physiological
role of its constituents, including lipolytic enzymes, could be related to defence mechanisms (El Moussaoui et al., 2001).

The water insoluble fraction of latex shows lipase activity. It is now known that lipases contained in latex from some plants have catalytic properties and numerous industrial applications (Paques and Macedo, 2006). For instance, papaya (Carica papaya) latex has already been described in the modification of fats and oils (Villeneuve, 2003; Foglia and Villeneuve, 1997a), in esterification and transesterification reactions (Caro et al., 2000), and more recently in the resolution of racemic mixtures (Cheng and Tsai, 2004). Studies carried out on C. papaya showed that its crude latex has a very strong activity on short-chain triacylglycerol (TAG) and sn3 stereoselectivity in hydrolysis reactions of chiral TAG substrates (Villeneuve et al., 1995). These observations led to industrial use of this latex in particular applications, such as the synthesis of low-calorie triacylglycerols (Foglia and Villeneuve, 1997a) or medium-chain TAG (Caro et al., 2004). These results have prompted interest in other latex plant extracts, in particular, the unripe fruit of the babaco plant (Vasconcellea X Heilbornii cv., ex Carica pentagona Heilbornii) (Kyndt et al., 2005), a member of the papaya family native to the subtropical mountains of Ecuador, which contains a latex similar to the one in C. papaya. In common with the latter, babaco has also been shown to exhibit biocatalytic activities in lipolysis and acyl transfer reactions (Dhuique-Mayer et al., 2001, 2003). Latex lipases from plants in the Euphorbiaceae (Moulin et al., 1994; Palocci et al., 2003; Giordani et al., 1991; Villeneuve et al., 2005), Asclepiadaceae (Giordani et al., 1991) or Caricaceae (Giordani et al., 1991; Dhuique-Mayer et al., 2001, 2003) families have also been described as useful biocatalysts for several synthesis applications in the food, pharmaceutical and detergent industries.

Chemical composition and molecular structure of plant-based latex

Most plants from families like Euphorbiaceae (Giordani et al., 1991; Moulin et al., 1994; Palocci et al., 2003; Villeneuve et al., 2005), Asclepiadaceae (Giordani et al., 1991), Brassicaceae (Hills et al., 1990), or Caricaceae (Giordani et al., 1991; Dhuique-Mayer et al., 2001, 2003) contain latex and have been described as useful biocatalysts for several applications. Here, a summary of chemical composition of some plant-based latex was performed.

Caricaceae

Within the Caricaceae family, C. papaya is a soft-stemmed and unbranched tree able to grow up to 20 m in height. As a native to the Central America, the papaya tree has successfully established in many ecological niches in tropical and subtropical climates (El Moussaoui et al., 2001). All aerial parts of the female and hermaphrodite plants, including unripe fruits, present laticifers (El Moussaoui et al., 2001) that create a dense network of articulated and anastomosing structures (Roth and Clausnitzer, 1972). Consequently, if incisions are made in those aerial parts, especially in the unripe fruits, an abrupt release of latex (the so-called C. papaya latex) is observed. This latex is a thixotropic fluid with a milky appearance, which contains around 15% of dry matter, 85% water, and a great variety of hydrolytic enzymes, mainly proteases (El Moussaoui et al., 2001; Azarkan et al., 2003; Campillo-Alvarado and Tovar-Miranda, 2013). Furthermore, different protein compositions have been reported depending on the age or sex of the tree, as well as on the time of day in which the tapping is carried out (Luis Madrigal et al., 1980; Caro et al., 2000). The mixture of different enzymes present in the latex is supposed to play a defensive role in the plant (El Moussaoui et al., 2001)

Babaco (C. pentagona Heilb.) is a tropical plant from a mountain climate, native to Ecuador, appreciated for its flavor. Babaco is a perennial shrub of the Caricaceae family. This natural hybrid grows between 1500 and 2500 m in Ecuador. Annual yields are between 60 and 80 fruits per plant. It is a large seedless fruit, yellow when ripe. Its special aroma is described as having overtones of pineapple, lemon and papaya. When the fruit is green, it exudes latex which has proteolytic characteristics similar to the papaya latex. The fruit is directly consumed when it is fully ripe. It is also possible to produce juice concentrate, jam or dehydrated fruit. The extraction of proteolytic enzymes of the latex from green babaco could be a new industrial application for this fruit. Babaco has economical potential thanks to its sensorial properties, and as a source of proteolytic enzymes.

Apocynaceae

In addition to Apocynaceae family, Plumeria rubra is also studied. It’s growing in tropical and sub-tropical regions of the world (Ye et al., 2009; Coppen and Cobb, 1983) and is grown for ornamental purposes (Perry and Metzger, 1980). Plants of genus Plumeria, had their origin from Central America. Different species are now found widely distributed in the warmer regions of the world (Krishnamurthi, 1969) and reputed for their medicinal properties, e.g., antifouling (Coppen et al., 1983), anticancer (Fujimoto and Made, 1988), algicidal (Coppen, 1983). The aqueous extract of P. rubra showed antimicrobial (Gupta et al., 2007) anti-inflammatory activities (Dubois and Rezzonico, 2007) and used for the treatment of respiratory ailments (Frei et al., 1998; Case et al., 2006). Plumericin, an iridoid isolated from P. rubra...
is used as antimicrobial agent (Little and Johnstone, 1951). The average composition of carbon, hydrogen and nitrogen (%) of P. rubra was respectively 44.89, 6.72 and 1.26%. Indeed, some studies have reported that a_w conditions the lipase structure and thus its enzymatic activity both in hydrolysis and in synthesis reactions (Cambon et al., 2006).

Moraceae

Ficus carica, (Moraceae family), is one of the earliest cultivated fruit trees and an important crop worldwide for both dry and fresh consumption. It is a native of the Mediterranean coast. In these countries, figs are an important constituent of the Mediterranean diet, which is considered to be one of the healthiest and is associated with longevity (Trichopoulou et al., 2006). Oliveira et al. (2009) compared F. carica leaves, pulps and peels. Data obtained indicate that chemical composition and bioactivity are dependent on the variety (Oliveira et al., 2009). 3-O-Caffeoylquinic acid and quercetin 3-O-glucoside were described for the first time, which adds to the knowledge of this species. Leaves may constitute an excellent dietary and economical source of bioactive compounds, namely, phenolic compounds.

F. carica latex is essentially constituted by saturated fatty acids (ca. 86.4% of total fatty acids), whilst dried and fresh fruits show predominantly polyunsaturated fatty acids (ca. 84 and 69% of total fatty acids, respectively) (Jeong and Lachance, 2001; Pande and Akoh, 2010). With respect to monounsaturated fatty acids, oleic acid is presented as the most abundant one in latex (Oliveira et al., 2010), which is in agreement with data found for F. carica fruit (Jeong and Lachance, 2001; Pande and Akoh, 2010). Concerning polyunsaturated fatty acids, linoleic acid was the only compound identified (ca. 9.9% of total fatty acids) (Oliveira et al., 2010), which was already described in dried and fresh fig fruits (Jeong and Lachance, 2001; Pande and Akoh, 2010). Regarding protein composition in latex fluid, it is known that lattices of F. carica contain multiple forms of proteolytic enzymes (Liener and Friedenson, 1970).

Euphorbiaceae

Euphorbia characias L. (Euphorbiaceae) is one of the oldest known medicinal plants of the Western tradition. It is described in most ancient treatises of Greek and Latin medicine (Baumann, 1993), and was held in great esteem up to the development of modern medicine, which made obsolete its use as a powerful cathartic and emetic. E. characias is nowadays best known as a garden plant (Appendino et al., 2000). It is one of the most widespread ornamental spurge, and several varieties have been developed, substantially expanding the habitat of this Mediterranean species (Turner, 1995).

Two geographical varieties are known, the subsp. characias found in the western Mediterranean region, and the subsp. wulfenii, which grows in the Balkans, Greece, and Turkey (Turner, 1995). Both subspecies were found active in the mouse ear erythema assay (Evans and Kinghorn 1977). This and the use of the plant as a fish poison (Turner, 1995) suggest the presence of phorbol-type diterpenes.

LATEX LIPASES

Lipases, also known as triacylglycerol ester hydrolases (EC 3.1.1.3), are one of the most versatile biocatalyst with a remarkable ability to achieve a wide range of bioconversion reactions using a variety of substrates. Moreover, lipases possess the unique property of working at a lipid/water interface mainly in organic media (Gupta et al., 2003). In most instances, commercial lipases are generally produced from animals or microorganisms (Kilcawley et al., 2002, Mendes et al., 2012). Nonetheless, most of plant lipases are relatively inexpensive due to their wide availability from natural sources. Plant lipases are mostly found in energy reserve tissues, for example, oilseeds. They act as biocatalysts which are attractive due to their high substrate specificity, low production cost and easy pharmacological acceptance due to their eukaryotic origin. Hence plant lipases represent better potential for commercial applications in organic synthesis, food, detergent and pharmacological industries (Seth et al., 2014). As a result, plant lipases are generally more accepted for food or medicinal applications. However, low expression, uneconomical fold purity and the plethora of difficulties related to their recombinant expression has been limiting their commercial applicability and posing challenges to many researchers (Seth et al., 2014). In addition, the major impediment for its implementation at large scale is the low content of enzyme in the post-germination seeds, bran portion of the grain and wheat germ. Noticeably, Caricaceae or Euphorbiaceae overcome this disadvantage as their enzymes are available in large amounts stored in their latex (Villeneuve, 2003; Paques and Macedo, 2006). In this context, the lipolytic complex of enzymes present in C. papaya which, otherwise stated, are referred to as CPL when they are found in the crude latex without pretreatment or pCPL when they are in a crude lipase preparation, hold several advantages over their microbial and animal counterparts such as: (i) good stability to a wide range of pH, temperature, organic solvents and to the presence of other catalysts such as lysozyme, amylase, pectin esterase, thioglucosidase, phosphatase acide, invertase, catalase, peroxidase, lipoxydase,... (Abdelkafi et al., 2011); (ii) relatively inexpensive, e.g. the price is approximately about one third that of crude...
ENZYMATIC (LIPASE) PROPERTIES OF SOME LATEX

The optimum parameters that influence the lipolytic activity of some latex are summaries at Table 1. The lipolytic activities of babaco (Vasconcellea x Heilbornii cv.) and Plumeria latex were first measured using sunflower oil as substrate at pH 8 and at temperatures varying from 30 to 70°C by Cambon et al. (2006). Maximum activity was observed at 50°C for babaco (260 IU/g). At 55 and 60°C, significant thermal deactivation was observed for babaco, with 49 and 56% losses of activity, respectively. Plumeria appeared to be less sensitive to thermal denaturation and was shown to express its maximum lipolytic activity at 55°C (1400 IU/g), (Table 1). The optimum pH for babaco latex was 7, whereas for Plumeria latex, two optimal pH values (4 and 7) were observed. With regard to esterification and acyl transfer reactions, the influence of thermodynamic water activity on reaction yields was determined and correlated with water sorption and desorption isotherms. When babaco latex is used as a biocatalyst, optimal synthesis reaction yields are obtained when the enzymatic extract is stabilized at a water activity (a_w) value of 0.38, which corresponds to a water content of 5.7%. This optimal level of hydration is located on the linear portion of the biocatalyst’s sorption isotherm, where the water molecules exhibit high-energy interactions with the protein network (Cambon et al., 2006). In synthesis reactions (esterification, alcoholysis, and interesterification) biocatalyzed by Plumeria latex, correlation between best reaction yields and water activity cannot be done. Indeed, the sorption isotherm plot has an atypical shape, indicating that water might be trapped in the latex matrix and, consequently, that the water content of the biocatalyst is highly dependent on the hydration history of the latex (Cambon et al., 2006).

Using tributyrin as substrate, a high level of lipase activity reaching 2,000±185 U/g of CPL was measured using a 10% w/v dispersion of CPL powder in deionized water (Table 1). The lipolytic activity of C. papaya latex on the short chain triglyceride tributyrin was described several years ago (Giordani et al., 1991). However, tributyrin is partly soluble in water and some esterases which are active on this substrate did not show any activity on a true lipase substrate such as olive oil. It was observed in a more recent study, however, that CPL could hydrolyze the long chain triglycerides present in test meals and could therefore be considered as a source of true lipase activity (Abdelkafi et al., 2009). It was confirmed here (Table 1) that CPL is active on olive oil (256±8 U/g) as well as on trioctanoin (983±29 U/g). CPL is much more active on short and medium chain TAGs than on long chain TAGs, as occurs with most lipases (Ngando et al., 2006). It is worth noting here that the specific activity of CPL on olive oil was similar to that detected in the dry mesocarp of oil palm fruit (250±14 U/g) (Ngando et al., 2006). CPL was also found to hydrolyze phosphatidylcholine with a specific activity of 65±3 U/g, but showed no activity on cholesterol oleate. Several TAG lipases have been found to show a dual TAG lipase/ phospholipase A1 activity (Simons et al., 1998; Thirstrup et al., 1994) but only if a pure CPL enzyme is obtained it will be possible to determine whether the phospholipase and lipase activities measured with crude CPL are due to the same enzyme.

A a_w affect the reaction rate, enantioselectivity and equilibrium of C. papaya lipolytic enzymes, as was reported in the resolution of different (R,S)-2-methylalkanoic acids; CPL showed a maximum initial rate for the (S)-enantiomers (VS) at low water activity (aw = 0.03), whereas the maximum E (enantioemic ratio, defined as the ratio of initial rates, VS/VR or VR/VS) was achieved by increasing aw to 0.33, further separating VR from VS, although with the penalty of triggering hydrolysis instead of esterification (Chang and Ho, 2011). One of the most advantageous characteristics of the lipolytic enzymes of C. papaya is their ability to work efficiently under a broad range of pH and temperature. The good thermostability of the enzymes is attributed to the lipase immobilization in the non-soluble matrix of the latex (Ng and Tsai, 2005). When olive oil was used as the substrate, CPL activity was found to be optimum at pH levels ranging between 9 and 9.5 (Abdelkafi et al., 2001), and the kinetics of fatty acid release were linear for at least 5 min when the pH value was equal to or below 9. At pH values above 9, the kinetics were linear for only 1 to 2 min. These data suggest that CPL is less stable at high pH levels. Optimum conditions for assaying CPL activity on olive oil were therefore set at pH 9. No significant activity could be detected at pH 6 or less (Table 1). The optimum pH range for CPL activity is similar to that determined in the case of other plant lipases from palm oil fruit (Ngando et al., 2006) and babaco (Cambon et al., 2008). When tributyrin and trioctanoin were used as substrates, the maximum activity of CPL was recorded at pH 8 and 9, respectively.

As can be expected, temperature plays a major role in the reaction kinetics; an increase could facilitate the diffusion coefficients of substrates migrating to enzyme-
Table 1. Optimum parameters that influence reaction kinetics of enzymatic properties of some latex and their specificity.

<table>
<thead>
<tr>
<th>Family</th>
<th>Plants</th>
<th>Optimum parameters</th>
<th>Optimum parameters</th>
<th>MA (^3) (IU/g)</th>
<th>Yield (^4) (%)</th>
<th>Alcohols substrates</th>
<th>Type of coordination-site location</th>
<th>Reaction medium</th>
<th>Specificity</th>
<th>Specific activity(^a) (IU/g)</th>
<th>Lipids substrates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caricaceae</td>
<td>C. pentagona (Babaco)</td>
<td>T(^1) (°C)</td>
<td>pH</td>
<td>aw</td>
<td>WC(^2) (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apocynacea</td>
<td>P. rubra</td>
<td>45 to 50</td>
<td>7</td>
<td>0.38 or < 0.5</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caricaceae</td>
<td>C. papaya</td>
<td>50</td>
<td>4 and 10</td>
<td>< 0.11</td>
<td>2</td>
<td></td>
<td>Methanol</td>
<td>Surface</td>
<td>Solvent-free</td>
<td>Sn-1,3</td>
<td>109 (^a)</td>
<td></td>
</tr>
<tr>
<td>Euphorbiae</td>
<td>E. characias</td>
<td>37 or 50</td>
<td>5 and 8</td>
<td>NA</td>
<td>NA</td>
<td>78</td>
<td>Methanol</td>
<td>NA</td>
<td>Mechanically stirred medium of water and oil</td>
<td>sn-3</td>
<td>1589±40</td>
<td>Triacetin</td>
</tr>
<tr>
<td>Euphorbiae</td>
<td>E. wulfenii</td>
<td>NA</td>
<td>5 and 8</td>
<td>NA</td>
<td>NA</td>
<td>80</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>209±1</td>
<td>Triacetin</td>
</tr>
</tbody>
</table>

\(^1\) temperatures; \(^2\) water content; \(^3\) Maximum activity; \(^4\) % of FFAs released after 1 h; NA: Not available; SA: Specific activity; \(^a\): Values are means ± SD (n=3); b = Assays with triacylglycerols were performed at 37°C in 2.5 mM Tris-HCl buffer, 150 mM NaCl and at pH 9; c = Assays with phospholipids were performed at 37°C in 7.5 mM CaCl\(_2\), 13.3 mM NaTDC and at pH 8; \(^d\): U/g; \(^e\): IU/mg of lipases.

active sites, thus enhancing the reaction rate (Varma et al., 2008). This was observed in the increment of the activity of several reactions carried out above room temperature (Tecelão et al., 2012; Lee and Foglia, 2000). A temperature screening of the lipolytic activity on olive oil showed its peak at 50°C, although above 37°C the residual activity of pCPL started to decrease after 1 or 2 min, suggesting that the activity improvement at high temperatures is accompanied by a loss in its stability (Abdelkafi et al., 2011). On the other hand, pCPL was found stable at pH’s from 4 to 10, preserving the 75% of its activity after 24 h of incubation at pH 10, whereas short inactivation times were observed out of this range.
STRUCTURE AND MECHANISM OF THE LIPOLYTIC ENZYMES OF PLANT LATEX LIPASES

Experimental studies have been carried out in order to analyze the activity of lipases to hydrolyze vegetable oils and phosphatides under different conditions (Hara et al., 1997; Mustranta et al., 1995). Marked differences were observed in lipase hydrolytic activity in terms of source, degree of purity, state (free or immobilized), substrate, and reaction medium (solvent-free or biphasic).

A recent screening on latexes of *C. papaya* made it possible to count non-proteic molecular species such as saturated and unsaturated fatty acids, tocopherols, the tocotrienols, alcohols triterpenic, sterols and the possible presence of polyisoprene chains covalently bonded to phospholipid molecules forming a polymeric matrix (Barouh et al., 2010). The proteins quoted above bound once, confers a colloidal stability on latex, which makes the purification of the lipolytic enzymes present in the latex hard to achieve with common separation techniques (Azarkan et al., 2003; Dhouib et al., 2011). According to the literature, only three proteins with lipolytic properties present in the latex of *C. papaya* have been characterized through the aid of the recent sequencing of the *C. papaya* genome (Ming et al., 2008; Campillo-Alvarado and Tovar-Miranda, 2013), although without being purified to homogeneity. Among them GDSL-motif carboxylester hydrolase (CpEst) whose activity was found responsible for the hydrolysis of tributyrin and vinyl esters tested during the analysis. Besides, CpEst did not show a considerable specific activity (SA) towards long chain and medium chain TAGs, in contrast to the whole latex activity, acting as an esterase rather than a true lipase, which strongly suggested that total lipolytic activity in the crude latex could not be attributed to one enzyme (Abdelkafi et al., 2009). Another protein extracted from *C. papaya* is CpLip1 that is also likely to code for the *C. papaya* protein. CpLip1 was identified as a member of the castor bean acid lipase structural family and showed SA towards both short and long TAGs (Dhouib et al., 2011). Results from the literature showed that both CpLip1 and CpEst share a catalytic triad which is similar to that of serine proteases (Pleiss et al., 1998; Brady et al., 1990) - a nucleophilic serine (Ser) residue activated by a hydrogen bond in relay with histidine (His) and aspartate (Asp) in addition to a relatively hydrophilic oxyanion hole that forms hydrogen bonds to the tetrahedral intermediate. However, the active site varies in the amino acids location in the protein (Dodson and Wlodawer, 1998). A major difference between the two enzymes lies on the sequence that forms a “lid” of surface loop that surrounds the catalytic Ser that needs to undergo a conformational change before accessing the whole active domain (Dhouib et al., 2011). On the other hand, the putative structure model of CpEst suggested that the catalytic triad is exposed at the surface of the molecule without a “lid” domain and a binding site for long chain fatty acids (Abdelkafi et al., 2009).

C. papaya lipase (CPL) represents an emerging and versatile biocatalyst (Domínguez de María et al., 2006). This fact is confirmed from the high number of applications described in recent years (Foglia and Villeneuve, 1997a; Mangos et al., 1999; Campillo-Alvarado and Tovar-Miranda, 2013). Its availability as a “natural immobilized” catalyst, combined with a competitive price, makes CPL a promising catalyst in the biotransformations field. In fact, a study of the selectivity of different fatty acid ethyl esters in the CPL-catalysed interesterification of tripalmitin has been reported (Gandhi and Mukherjee, 2000a, b). Interestingly, the use of fatty acid ethyl esters as acyl donors led to a higher CPL selectivity towards the medium-/long-chain derivatives, as well as sn-1 selection. These results seem to be at odds with the other works developed with free fatty acids. A reactant-dependent positional specificity of lipases has been suggested for the explanation (Gandhi and Mukherjee, 2000a, b). Finally, the enzymatic transesterification of tricaprylin with various lauric acid derivatives as acyl donors gave good yields in terms of transesterified triacylglycerols. Vinyl laurate as the best acyl donor (Villeneuve et al., 1997b) presumably resulted from the irreversibility of that reaction, derived from the formation of vinyl alcohol which rapidly tautomerises to acetaldehyde, thus shifting the enzymatic reaction toward the products formation (Weber et al., 1997). Currently, applications regarding fats and oils modification, esterification in organic media, and asymmetric resolution of several chiral acids, as well as non-natural α-amino acids, have been also reported (Mukherjee and Kiewitt, 1996; Borgdorff and Warwel, 1999; Gandhi and Mukherjee, 2000a; Villeneuve et al., 2005).

Like *C. papaya* lipase a study on the catalytic properties of frangipani (*P. rubra*) latex lipase revealed that this latter lipase has a high capacity to catalyze fatty
acid esterification in solvent-free medium in less than an hour, with over 90% yield (Cambon et al., 2006). Due to this capacity, this lipase could be used in a two-step biodiesel production process (hydrolysis and esterification) in association with a second lipase, such as that extracted from Jatropha curcas, that is highly active in TAG hydrolysis. Sousaa et al. (2010) recently showed that lipase from germinated J. curcas seeds could be used for TAG hydrolysis in a hydroesterification process, with 98% yields achieved after 2 h of reaction, without specificity with respect to the fat source used. Moreover, the catalytic activity of the lipase in crude babaco (C. pentagona) latex has been studied in transesterification and esterification reactions (Cambon et al., 2009; Dhuique-Mayer et al., 2003). Cambon et al. (2009) showed that babaco lipase has catalytic activity during alcoholysis of sunflower seed oil with highly excessive amounts of various primary alcohols in a solvent-free system. Despite its sensitivity to short-chain alcohols such as methanol, the stepwise addition method curbs the inhibitory effect of methanol and enables transesterification yields of around 70% at 30°C after 15 h (Shimada et al., 1999; Shimada et al., 2002).

Preliminary screening on Euphorbia species latex showed high lipolytic activity in E. wulfenii. For both E. characias and E. wulfenii latex it was found high lipolytic activity toward medium and long acyl chain triglycerides, but no hydrolytic activity on monoesters and phospholipids was detected (Palocci et al., 2003). Moreover, no synthetic activity was pointed out using as substrates natural and endogenous terpenols (Palocci et al., 2003). The presence of esterase activity in latex of two Euphorbia species (E. pulcherrima and E. lathyrus) was also described (Warnaar, 1987) suggesting that, in vivo, this activity could be involved in the hydrolysis reaction of triterpenol esters and the subsequent storage of free triterpenols inside the lipidic particles of latex. However, Palocci et al. (2003) demonstrated that such enzymes cannot be related to the terpenic metabolism. In fact the enzymes responsible for lipolytic activity in the latex of E. characias and wulfenii described in the work of Palocci et al. (2003) are not able to hydrolyse monoester or to synthesise terpenol esters starting from natural and endogenous terpenols. Moreover, in agreement with Warnaar’s hypothesis (Warnaar, 1987), the relative terpenol ratio was constant during the biological cycle and the esterified terpenol fraction was present in negligible quantities for both species studied. On this basis lipolytic activity recovered in latex seems to be due to “true lipases” (Huang Anthony, 1984) acting on triglycerides probably present in latex (Hasma and Subramanian, 1986).

PLANT LATEX LIPASES PURIFICATION

Lipases have been purified from various plant parts (Seth et al., 2014). Many plant parts such as leaves of Triticum L. species (Kharazian et al., 2009), whole plant parts of Ricinus communis (Shahwar et al., 2010), oat bran, etc., are rich in phenolic content. This makes the purification step laborious and the yield is also very low when seed, leaf or latex is used for direct extraction. Plant seeds also contain high amount of lipids which is another associated major problem in plant lipase purification as such lipids interfere in SDS–PAGE. The consequence is a smeared discontinuous gel. Therefore, delipidation step becomes compulsory for extracting plant lipase prior to any other purification steps. This adds to the production cost and time-consuming.

As reported by Seth et al. (2014) a few exception most of the purification involves chromatography techniques. It is also visible that the yield is very low. Ben-Hamida and Mazliak (1985) reported that some of the traditional procedures such as clarification, precipitation, ultrafiltration, differential and density gradient centrifugations results in a low final yield of purified plant lipase. Alternatively, ion exchange and gel filtration chromatography used for purification of plant lipases results in good yield. Moreover, Lazreg-Aref et al. (2012) are recently purified lipase to homogeneity from F. carica L. latex of the Zidi variety from Moraceae family using silica gel chromatography (Table 2).

BIODIESEL PRODUCTION

The frequent and future scarcity of fossil fuels, combined with concerns over the consequences of dependency on this type of energy source, in terms of changes in the Earth’s climate, has forced the world to find alternatives that are less harmful to the environment (de Araújo et al., 2013). Renewable energy sources, especially vegetable fuel, have appeared as an important alternative (Santana et al., 2010).

Biodiesel is made from renewable biological sources and it does not produce sulfur oxide and may reduce soot discharge by one third that of existing petroleum-based products (Ranganathan et al., 2008). Biodiesel in industrial applications may be produced by chemical-catalyzed or enzyme-catalyzed methods. The biodiesel produced by chemical catalyst has several drawbacks such as difficulty in removal of acid or base catalysts from product, high energy requirements, difficulties in the recovery of the catalyst and potential pollution to the environment (Winayanuwattikun et al., 2011; Tan et al., 2010). Enzyme-catalyzed biodiesel production has received more attention because of its advantages, such as low energy consumption, mild operating conditions, nontoxicity, and environment friendly processes, as compared with the chemical-catalyzed method (Dwiarti et al., 2010; Lee et al., 2011). However, the enzyme-catalyzed method is not favored for industrial use because the high cost and low stability of lipases limit its potential application (Chen and Wu, 2003; Soumanou and Bornscheuer, 2003).
Catalytic conversion techniques for transesterification

Alkalis used for transesterification of oil include NaOH, KOH, carbonates, and alkoxides such as sodium methoxide, sodium ethoxide, sodium propoxide, and sodium butoxide. Alkali-catalyzed transesterification proceeds approximately 400 times faster than that catalyzed by the same amount of an acidic catalyst (Formo, 1954; de Araújo et al., 2013), and is thus most often used commercially. Potassium hydroxide (KOH) and sodium hydroxide (NaOH) are high sensitive to the purity of the reaction being affected by the water and free fatty acids contents (Marchetti et al., 2007). The presence of water may cause the ester saponification under alkaline conditions. Thus, the glycerides and alcohol must be substantially anhydrous because water causes a partial reaction change to saponification, which produces soap (Wright et al., 1944). Moreover, the free fatty acids can also react with the alkaline catalyst producing soaps and water. The saponification does not only use up the catalyst, but also causes the formation of emulsions which impair the biodiesel separation, recuperation and purification. Therefore, dehydrated vegetable oil with free fatty acids content lower than 1%, anhydrous catalysts and anhydrous alcohol are essential for the commercial feasibility of alkaline catalyst systems (Enweremadu and Mbarawa, 2009). Ma et al. (1998) suggested that the free fatty acid content of the refined oil should be as low as possible, below 0.5%, and Feuge and Grose (1949) also stressed the importance of oils being dry and free of free fatty acids. Freedman et al. (1984) reported that ester yields were significantly reduced if the reactants did not meet these requirements; sodium hydroxide or sodium metoxide reacted with moisture and carbon dioxide in the air, diminishing their effectiveness.

Studies report that acid catalysts are insensitive to the acidity value and are better than alkaline catalysts for vegetable oils with acidity value higher than 1% (Freedman et al., 1984).

Acids used for transesterification include sulfuric, phosphoric, hydrochloric, and organic sulfonic acids. Although transesterification by acid catalysis is much slower than that by alkali catalysis (Freedman et al., 1984; Ma and Hanna 1999; Srivastava and Prasad, 2000), acid-catalyzed transesterification is more suitable for glycerides that have relatively high free fatty acid contents and more water (Freedman et al., 1984; Aksoy et al., 1988). Aksoy et al. (1988) reported that it was necessary to perform transesterification under an acidic condition when the oil component was a low grade material such as sulphur olive oil. In general, the ethyl esters of monounsaturated or short-chain fatty acids with 2% sulfuric acid should make good alternative fuels (Klopfenstein and Walker, 1983). The transesterification by acid catalysis starts by mixing the oil directly with acidified alcohol, in a way that separation and transesterification can occur in a single step, being alcohol the esterification solvent and reagent (Cervero et al., 2008).

Researches on biodiesel have focused on the use of solid acid catalysts known as heterogeneous catalysts. Sulfonic resins, such as Nafion NR50, sulfated zirconia and tungstated zirconia may catalyze transesterification reactions as effectively as sulfuric acid (de Araujo et al., 2013). Studies report that the solid acid catalyst ideal to the transesterification of used cooking oil is expected to have features such as interconnected system of large pores, moderate and high concentrations of strong acids sites and hydrophobic surface (Lotero et al., 2005).

The advantages of using solid acids catalysts are insensitivity to acidity value; esterification and

Table 2. Purification strategies for plant latex lipases.

<table>
<thead>
<tr>
<th>Family</th>
<th>Plant sources</th>
<th>Purification steps</th>
<th>Fold increase/ yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euphorbiaceae</td>
<td>E. characias</td>
<td>Acetone/H$_2$O and silica column</td>
<td>NA</td>
<td>Palocci et al., 2003; Padiglia et al., 1998</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>E. Wulfenii</td>
<td>Acetone/H$_2$O and silica column</td>
<td>NA</td>
<td>Palocci et al., 2003; Padiglia et al., 1998</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus carica L.</td>
<td>Silica gel chromatography</td>
<td>8.5-fold/68.5%</td>
<td>Lazreg-Aref et al., 2012</td>
</tr>
<tr>
<td>Caricaceae</td>
<td>Carica papaya</td>
<td>Extraction in aqueous two-phase system</td>
<td>NA</td>
<td>Nitsawang et al., 2006</td>
</tr>
<tr>
<td>Caricaceae</td>
<td>Babaco or Carica pentagona (Vasconcellea x Heilbornii Cv.)</td>
<td>Extraction in aqueous two-phase system</td>
<td>15-fold/ NA</td>
<td>Chen et al., 2005</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td>Plumeria rubra</td>
<td>Hexane/Steric exclusion chromatography</td>
<td>NA</td>
<td>Cambon, 2008</td>
</tr>
</tbody>
</table>

NA: Not available. Fold increase is the ratio of specific activity of the final purified product to the initial specific activity; and yield is the ratio of initial enzyme titer to the final titer obtained after the purification process.
transesterification may be carried out simultaneously; the catalyst is easy to be recovered; water washing biodiesel is unnecessary; generally high performance in esters; much lower catalyst requirements per tons of biodiesel produced than in other processes; and catalysts may be used for a longer period of time and are environmentally friendly. However, these systems operate under high temperature and pressure.

Although chemical transesterification using an alkali-catalysis process gives high conversion levels of triglycerides to their corresponding methyl esters in short reaction times, the reaction has several drawbacks: it is energy intensive, recovery of glycerol is difficult, the acidic or alkaline catalyst has to be removed from the product, alkaline wastewater requires treatment, and free fatty acids and water interfere with the reaction (Table 4).

Lipases are also able to effectively catalyze the transesterification of triglycerides in either aqeous or nonaqueous systems, and as shown in Table 4, enzymatic transesterification methods can overcome the problems mentioned above. In particular, it should be noted that the by-product, glycerol, can be easily recovered without any complex process, and also that free fatty acids contained in waste oils and fats can be completely converted to methyl esters. On the other hand, in general the production cost of a lipase catalyst is significantly greater than that of an alkaline one (Wu et al., 1999).

Moreover, the following advantages for the use of lipases can be mentioned (Marchetti et al., 2007).

i) Possibility of regeneration and reuse of immobilized waste, as it can be left in the reactor if reactivity is kept low.
ii) Higher enzyme thermal stability due to its inactive state.
iii) Easier separation from the product.

Some disadvantages include,

i) Loss of some initial activity due to the volume of oil molecule.
ii) Number of support enzymes is not uniform.
iii) Biocatalysts are more expensive than natural enzymes.

Non-catalytic conversion techniques for transesterification

To overcome delays in the initial reaction time caused by the low solubility of alcohol in the triglyceride phase the non-catalytic options are designed. A common approach consists in the use of a solvent soluble in methanol and oil. The result is a fast reaction, on the order of 5 to 10 min with no catalyst residues, in any phase. One of these cosolvents is the tetrahydrofuran, chosen, partially, due to its boiling point near that of methanol and the need of a very low operational temperature, around 301°C.

A second approach was developed by Saka and Kusdiana (Saka and Kusdiana, 2001) who made a fundamental study of biodiesel production in supercritical methanol. They demonstrated that preheating to a temperature of 350°C and treatment for 240 s in supercritical methanol was sufficient to convert rapeseed oil to methyl esters. Moreover, while the methyl esters produced were basically the same as those obtained in the conventional method with a basic catalyst, the methyl ester yield of the supercritical methanol method was higher. Kinetic analyses of the reactions in subcritical and supercritical methanol revealed that the rate of rapeseed oil conversion to methyl esters increased dramatically in the supercritical state. A reaction temperature of 350°C and a molar ratio of methanol to rapeseed oil of 42 to 1 were considered to be the best conditions (Kusdiana and Saka, 2001). Some advantages of its application are (Balat and Balat, 2008):

i) Glycerides and free fatty acids react with equivalent rates.
ii) The homogeneous phase eliminates diffusive problems.
iii) The process tolerates great percentages of water in the catalytic process of the feedstock requiring periodical removal of water or an intermediary phase to prevent catalyst deactivation.
iv) The catalyst removal phase is eliminated.
v) If a high methanol/oil ratio is used, the total oil conversion can be achieved in few minutes.

Despite all the above mentioned advantages, the supercritical methanol method has serious disadvantages, such as:

i) The process operates at extremely high pressures (25 to 40 MPa);
ii) The high temperatures (350 to 4001°C) result proportionally in high heating and cooling costs;
iii) High methanol: oil ratios (generally established at 42:1) involve high costs for the evaporation of the unreacted methanol.

POTENTIAL LATEX FOR BIODIESEL IN BENIN

Since last few years many laticifers plants have been identified all over the world and in Benin. These plants are distributed on all extent of the Benin territory. They often belong to the family of Apocynaceae, Asclepiadaceae, Euphorbiaceae or Moraceae (Table 3). Hence, focus needs to be shifted to lipases plants available in Benin and the details of such potential lipase plant are shown in Table 3. The listed species are used at various ends. They constitute a food, medicinal source as well that of wood for the populations (Table 3). The vegetable near total of the species of cover of Benin is used in traditional medicine by the local populations to fight against diseases (Agbahungba et al., 2001). Various
Table 3. Potential plant latex lipases in Benin.

<table>
<thead>
<tr>
<th>Family</th>
<th>Botanical name</th>
<th>Common name</th>
<th>Distribution</th>
<th>Latex color</th>
<th>Measured parameters</th>
<th>Use</th>
<th>Part used</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apocynaceae</td>
<td>Alstonia congensis</td>
<td>Afatin</td>
<td>Sémé – Dangbo</td>
<td>White</td>
<td>Extraction of proteins; Acute toxicity test; Subacute test; Search for polyphenols by the reaction to ferric chloride; Search for alkaloids ; Search for flavonoïdes by the reaction to the cyanidine; Search for tanins (tanins cathelic by the reagent of STIASNY; tanins gallic); Search for substances quinoïques free and combined by the reaction of BORNTRAEGER; Search for polyterpenes and stéroïdes by the reaction of Libermann-buchard; Search for polyterpenes and stéroïdes by the reaction of Libermann-buchard; Search for saponosides; Description of the macromolecules (Search for proteins by the method of LOWRY; Search for polyaccharides)</td>
<td>Treatment of diabetes, interior of plywood, lathed panel, packing-box factory, matches, light boats, moulding, piece of furniture running or elements, interior wood finishing, pencils</td>
<td>Bark, leaf</td>
<td>Ogbonnia et al., 2008; Fofana, 2004</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td>Holarrhena floribunda</td>
<td>latèn wiwi ou akoyiè ou lengbagbé.</td>
<td>Calavi – Bohicon</td>
<td>White</td>
<td>Toxicity study; Crude protein, fat, crude fiber and total ash contents in the dried leaves were determined using the methods described by Association of Official Analytical Chemists (AOAC, 1990). Carbohydrate (nitrogen free extract) was determined by difference; that is, the sum of the crude protein, fat, crude fibre and total ash deducted from 100. Phytochemical analysis (Mayer, Dragendorf, Wagner and picric reagents were used to test for Alkaloid. Frothing test for saponin, ferric chloride test for tanin while Salkowski test for cardiac glycosides) DPPH radical assay; Lipid peroxidation and thiobarbituric acid reactions; Hydroxyl radical scavenging assay; Nitric oxide radical inhibition activity; Determination of total antioxidant capacity; Determination of total phenol; Reducing power</td>
<td>Veterinary healers, antioxidant, anti-dysenteric, diuretic and febrifuge, intestinal parasitoses, the ascite and sterility</td>
<td>Bark, leaves and roots</td>
<td>Tamboura et al., 2005; Badmus et al., 2010; Medecine douce - Medecine africaine, 2014</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Rauvolfia vomitoria</td>
<td>liètín, klanktán tin.</td>
<td>Calavi – Bohicon</td>
<td>White</td>
<td>Acute oral toxicity test; Phytochemical test; Phytochemical screening</td>
<td>Anticonvulsant, insomnia, depression and madness.</td>
<td>Leaves and roots</td>
<td>Amole et al., 2009; Medecine douce - Medecine africaine, 2014</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Saba comorensis</td>
<td>Bassila</td>
<td>NA</td>
<td>NA</td>
<td>Food, traditional medicine, oedema generalized</td>
<td>Fruit and Leaves</td>
<td>Olivier et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Thevetia peruviana</td>
<td>Tantohu (Fon) ; Olomiojo (Yoruba et Nagot) ; Batonè (Bariba),</td>
<td>Calavi</td>
<td>White</td>
<td>NA</td>
<td>Medicinal plant, laxative, emetic, look after the intermittent fevers</td>
<td>Bark, Leaves</td>
<td>Arbonnier, 2002; Schmelter and Gurb-Fakim, 2006</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Anthosterna aubriyanum</td>
<td>NA</td>
<td>Sakétè</td>
<td>White</td>
<td>Diversity of the woody settlement of a dense forest in sub-wet zone; Cartography and floristic characterization of the marshy forest</td>
<td>Latex = poison; strong vermifuge activity counters the larvae of Haemonchus contortus in vitro; Latex; bark; stern</td>
<td>Leaves; bark; stern</td>
<td>Hecketsweiler, 1991; Nkeoua and Boundzanga, 1999; Adjakpa et al., 2011</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbia heterophylla</td>
<td>NA</td>
<td>Calavi</td>
<td>White</td>
<td>Chromatography (The crude methanolic and aqueous extracts were subjected to phytochemical screening); Anti-inflammatory activity</td>
<td>Medicinal use; treatment of constipation, bronchitis and asthma</td>
<td>Leaves; fruits; flowers</td>
<td>Falodun et al., 2004; Falodun et al., 2003; Falodun et al., 2006</td>
</tr>
</tbody>
</table>
Table 3. Contd.

<table>
<thead>
<tr>
<th>Milicia excelsa</th>
<th>Iroko/Lokotin</th>
<th>Calavi - Bohicon</th>
<th>White</th>
<th>NA</th>
<th>Exterior wood finishing: Parquet floor Shipbuilding (bordered and bridge); Cabinet work (piece of furniture of luxury); Interior wood finishing: Distinct plating; Skirting; Light frame</th>
<th>CIRAD, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapotaceae</td>
<td>Vitellania porodoxa</td>
<td>NA</td>
<td>Dan</td>
<td>White</td>
<td>NA</td>
<td>Food, medicinal and cosmetic</td>
</tr>
<tr>
<td>Manilkara multinervis</td>
<td>NA</td>
<td>Natitingou</td>
<td>White</td>
<td>NA</td>
<td>Piles in the construction of the houses on pile, Clothes industry of the frame of the houses and the attics</td>
<td>Wood</td>
</tr>
</tbody>
</table>

Table 4. Comparison between alkali-catalysis and lipase-catalysis methods for biodiesel fuel production (Fukuda et al., 2001; Mounguengui et al., 2013).

<table>
<thead>
<tr>
<th>Composition</th>
<th>Alkali-catalysis process</th>
<th>Lipase-catalysis process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction temperature</td>
<td>60-70°C</td>
<td>30-40°C</td>
</tr>
<tr>
<td>Free fatty acids in raw materials</td>
<td>Saponified products</td>
<td>Methyl esters</td>
</tr>
<tr>
<td>Water in raw materials</td>
<td>Interference with the reaction</td>
<td>No influence</td>
</tr>
<tr>
<td>Yield of methyl esters</td>
<td>Normal</td>
<td>Higher</td>
</tr>
<tr>
<td>Recovery of glycerol</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Purification of methyl esters</td>
<td>Repeated washing</td>
<td>None</td>
</tr>
<tr>
<td>Production cost of catalyst</td>
<td>Cheap</td>
<td>Relatively expensive</td>
</tr>
</tbody>
</table>

bodies of the plants are used for this purpose to know: sheets, fruits, flowers, barks and roots (Azonkponon, 2001). 92.86% of the species are used as wood energy. With the exception of the species taboos which vary according to the various ethnus groups, all the species of trees are used as and charcoal firewood. 39.29% are used as edible plants (Hounon, 1981; Sokpon and Lejoly, 1996), 35.21% like work wood, 17.87% as service wood (return in this category all wood which are used in the clothes industry of the frame of the houses and the attics) and 3.57% in local arts and crafts (Dossou et al., 2012).

Conclusion

Plants produce a diverse range of bioactive molecules, making them rich source of different types of bio-catalyst. It is the case of lipases which are now widely used in various industry sectors such as in detergency applications, fatty wastes treatments, pharmaceutical syntheses or oils and fats modifications.

The lipolytic enzymes of laticifers plants have demonstrated to be versatile biocatalysts with the ability to discriminate a wide number of substrates from various applications. In addition, this lipase aggregate holds important advantages over other microbial, animal and plant lipases being its sustainable availability from agro-waste, its "self-immobilized" nature which conferring the ability to work under a broad range of environments and its easy pretreatments being the most remarkable features. Notwithstanding the enormous potential of the lipases present in laticifers plants, the lack of experimentation carried out at the industrial scale prevents its implementation in various bioprocesses, such as the production of high value lipids with improved properties, the manufacture of medical articles and biodiesel engineering.

Till date, a very large majority of lipases that are used in these processes are obtained from microbial sources. Comparatively, the use of plant lipases is much less developed. However, plant enzymes can be also envisaged as biocatalysts for lipids bioconversion. Especially, high activities in hydrolysis and synthesis reactions have been found in some laticifer plants like C. papaya and E. characias. Concerning the former, favourable applications in the synthesis of low-calorie TAGs,
medium chain TAGs or for the production of conjugated linoleic acids enriched TAGs were reported. Among the *Caricaceae* family, it was shown recently that the unripe fruit of the babaco plant (*Vasconcellea x heilbornii*; ex. *C. pentagona*), native to the subtropical mountains of Equator, contains a latex similar to that in *C. papaya*. This latex also displays a strong lipolytic activity which was characterized in terms of biocatalytic activity and selectivity.

ACKNOWLEDGEMENTS

This publication was prepared with the assistance of PRONOVBIO. The African Union and the European Union were gratefully acknowledged.

Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

Full Length Research Paper

Micropropagation of *Guadua angustifolia* Kunth (Poaceae) using a temporary immersion system RITA®

Luís Gonzaga Gutiérrez¹*, Rodolfo López-Franco² and Tito Morales-Pinzón³

¹Grupo de Investigación en Biodiversidad y Biotecnología, Facultad de Ciencias Ambientales, Universidad Tecnológica de Pereira, Carrera 27 #10-02 Barrio Alamos, Pereira, Colombia.

²Programa de Biología, Laboratorio de Biotecnología, Centro de Estudios e Investigaciones en Biodiversidad y Biotecnología (CIBUQ), Universidad de Quindío, Carrera 15 Calle 12 Norte, Armenia, Colombia.

³Grupo de Investigación en Gestión Ambiental Territorial, Facultad de Ciencias Ambientales, Universidad Tecnológica de Pereira, Carrera 27 #10-02 Barrio Alamos, Pereira, Colombia.

Received 9 April, 2016; Accepted 27 June, 2016

The micropropagation of *Guadua angustifolia* Kunth, commonly known as giant bamboo, using semi-solid culture medium, is reported to have low multiplication rates. This study evaluated the multiplication index of *G. angustifolia* in a temporary immersion system (RITA®), comparing results with those obtained using a semi-solid culture medium. The treatments consisted of either three or four 2-min immersions per day and use of semi-solid culture medium, which consisted of MS supplemented with 3.0 mg L⁻¹ of the cytokinin benzylaminopurine (BAP). Equipment consisted of 20 vessels for automated RITA®, each containing 200 ml of culture medium. Immersions were performed for 2 min at two different frequency intervals (6 and 8 h). Large clumps of *G. angustifolia* with 1, 2 or 3 stems were inoculated depending on the treatment. Best results were obtained with four immersion cycles per day (every 6 h), with a multiplication index of 2.7 shoots per original explant (axillary buds) and greater rhizome growth. Overall, the temporary immersion system performed better than the semi-solid medium in terms of shoot multiplication rates and rhizome growth. Further studies should be conducted to develop an application for RITA® for use in the commercial production of *G. angustifolia*.

Key words: Giant bamboo, temporary immersion system RITA, rhizome.

INTRODUCTION

Guadua angustifolia, also known as giant bamboo, belongs to the Poaceae family, one of the four largest families of the plant kingdom, harboring from 600 to 700 genera and nearly 10,000 species (Soderstrom et al., 1988). In Colombia, most populations of *G. angustifolia* grow between 0 and 1800 m altitude, occupying diverse habitats of tropical moist forests (Bh-T) and premontane wet forests (Bmh-P), where they form small patches along rivers or streams (Londoño, 1990).

Because of its widespread distribution, versatility and
physical and mechanical characteristics, *G. angustifolia* has played an important environmental, cultural and economic role in Colombia. However, for these same reasons, it has also suffered indiscriminate exploitation. Enormous pressure has been exerted on natural populations of this species, reducing the areas planted and endangering not only the species but also other associated organisms (Cruz, 2009). Furthermore, *G. angustifolia* produces seeds with low germination capacity, which makes sexual reproduction difficult. The deterioration of stands of *G. angustifolia* during vegetative multiplication is further justification for exploring micropropagation approaches to develop efficient mass multiplication methods for this important species using explants (Cruz, 2009).

Propagation studies are appropriate in the case of *G. angustifolia* because *in vitro* multiplication techniques are an alternative for species conservation, providing abundant high-quality planting material. Manzur (1988) reported that *G. angustifolia* plants perform similarly in *in vitro* and *in situ* conditions. As a result, when microcuttings from lateral branches are cultured in enriched culture medium, their axillary buds activate the development of intercalary meristems with roots emerging from their basal nodes. The rhizome is immediately formed, which then becomes the fundamental structure in the micropropagation of *G. angustifolia*.

Only a few studies have been reported on the micropropagation of *G. angustifolia* (Manzur, 1988; Marulanda et al., 2005; Jiménez et al., 2006; Daquinta et al., 2007). Most studies conducted on micropropagation of bamboo have focused on Asian species (Muñoz et al., 1989; Saxena, 1990; Gielis and Oprins, 2000; Sood et al., 2002; García et al., 2007; Lin et al., 2007; Ogita et al., 2008; Venkatachalam et al., 2015; Gantait et al., 2016).

In Colombia, several studies have been conducted on the micropropagation of *G. angustifolia*, achieving partial success at different stages of solid culture medium. The first reports by Manzur (1988) showed low multiplication rates (less than 2 shoots/explant); however, Marulanda et al. (2005) subsequently reported a survival rate of 30% during the establishment phase and Acosta and Guzmán (1993) reported a better multiplication rate when 5.0 mg L\(^{-1}\) 6-benzylaminopurine (BAP) was added to the culture medium, supplemented with kinetin 1.0 mg L\(^{-1}\) and indoleacetic acid (IAA) 1.0 mg L\(^{-1}\).

Subsequently, Marulanda et al. (2005) and Jiménez et al. (2006) used BAP (2.5 to 5.0 mg L\(^{-1}\)) as growth regulator, reporting low multiplication rates. Large losses have also been recorded during the establishment phase of *G. angustifolia* because of bacteria-induced contamination (Cruz et al., 2007; Ramírez et al., 2009).

Depending on the consistency of the culture medium (liquid, semi-solid and solid) used in plant micropropagation, several systems have been developed to increase the multiplication index and reduce costs. Taking into account the liquid condition of the medium, a system was initially designed that consisted of a large, elevated culture chamber that could be drained and then refilled with fresh medium (Tisserat and Vandercook, 1985). Subsequently a semi-automated system was developed in which plants were cultured in a large container on a medium that contained no gelling agent, with automatic addition and removal of liquid medium at fixed intervals so the plant material entered into contact with the medium several times throughout the day (Aitken-Christie and Davies, 1988).

Simonton et al. (1991) developed a programmable apparatus, which intermittently applied culture medium to the plants according to a pre-defined schedule, serving as basis for the temporary immersion system (TIS) for plant propagation (Alvard et al., 1993). This system, whose commercial name is RITA for recipient for automated TIS, has been successfully used with many plant species, achieving significant increases in multiplication rates and allowing the semi-automation of processes (Lorenzo et al., 1998). Furthermore, the automation of one or more phases of micropropagation can help reduce not only handling costs but also costs related to laboratory space, while increasing production volume (Castro and González, 2000; Capote et al., 2009).

The frequency and time conditions required to achieve efficiency in TIS processes are determinants for system optimization (Etienne and Berthouly, 2002). Albarrán et al. (2002) confirmed that the massive regeneration of somatic embryos of coffee (*Coffeea arabica*) improved when exposure in terms of frequency and duration was optimized. Increases in daily frequency (1×1', 2×1', 6×1') stimulated embryo production without affecting embryo quality.

The TIS (Figure 1A and 1B) offers multiple advantages as compared with propagation using semi-solid culture media (Figure 1C) in terms of shoot multiplication in different plant species (González et al., 2005; Roels et al., 2006; Barberini et al., 2011). In the case of banana, increases have been achieved in high average multiplication rates, with improved plant quality (Albany et al., 2005; Berthouly and Etienne, 2005; Watt, 2012; Pérez et al., 2013). Only a few bamboo species such as *Dendrocalamus latiflorus* (Mongkolsook et al., 2005 cited by García-Ramírez et al., 2014), *Bambusa ventricosa* and *Draeena deremensis* (Chaille, 2011) and *Bambusa vulgaris* (García-Ramírez et al., 2014) have been propagated by TIS. This study aimed to optimize shoot production for micropropagation of *G. angustifolia* for commercial purposes.

MATERIALS AND METHODS

Plant material

The study was carried out at the Plant Biotechnology Laboratory of the Universidad Tecnológica de Pereira (UTP), where test plants...
Figure 1. Guadua angustifolia shoot multiplication in RITA® (A and B). Shoots of G. angustifolia in semi-solid medium (C). Plantlets of G. angustifolia obtained from semi-solid medium: non-segmented (presence of rhizome) (D) and segmented (absence of rhizome) (E) and ex-vitro acclimatization of plant produced (F). Scale bar, 5 cm.

had been previously established in vitro. The study compared the multiplication indexes of G. angustifolia plants submitted to TIS with the indexes reached when plants were cultured in semi-solid medium (SSM). Explants, measuring 5 to 10 cm, were inoculated according to the protocol proposed by Marulanda et al. (2005).

Culture conditions

The culture medium, containing MS salts and vitamins, was supplemented with 100 mg L⁻¹ myo-inositol and 30 g L⁻¹ sucrose. Gelrite® was used as gelling agent in the solid medium at 2.5 g L⁻¹.
and BAP was used as growth regulator at a concentration of 3 mg L⁻¹.

A total of 200 ml MS basal medium was added to each culture vessel containing liquid medium (TIS) (Figure 1A and 1B), whereas 50 ml were added to each vessel (200 ml) containing SSM. Vessels of both treatments were autoclaved at 121°C at 15 psi, using RITA® vessels developed by CIRAD (Teisson and Alvard, 1995) (Figure 1A and B), being left for 30 min in the case of TIS and 20 min in the case of SSM.

Five explants were inoculated per TIS vessel, whereas only one explant was inoculated per SSM vessel. All plants were placed in a growth chamber with an average temperature of 24±2°C and a 12-h artificial photoperiod (lux).

The multiplication index of *G. angustifolia* plants using the TIS, which consisted of three or four 2-min immersions per day (A = 3 cycles, segmented; B = 3 cycles, non-segmented; C = 4 cycles, segmented; D = 4 cycles, non-segmented), was evaluated and compared with the multiplication index of plants cultured in SSM (A = segmented; B = non-segmented). Large 5 to 10 cm clumps of segmented (absences of rhizomes) and non-segmented (presence of rhizomes) of *G. angustifolia* were used in the inoculation. The number of stems was used as basis to evaluate rhizome generation, shoot multiplication index, and increase in plant height over a 4-week period. Rhizome division was based on the following variables: large clumps, either segmented (Figure 1D) or non-segmented (Figure 1E), and number of stems (1, 2 and 3) per inoculation unit.

RESULTS AND DISCUSSION

Effect of culture system on rhizome size for segmented and non-segmented *G. angustifolia*

Analysis of variance indicated that highly significant differences exist in rhizome growth for large clumps of segmented and non-segmented *G. angustifolia*, depending on culture medium consistency (TIS or SSM). The Tukey test, designed to make pairwise comparisons among means, indicated that rhizome growth was greater, but non-significant (p>0.05) in plants cultured in the TIS with four 2-min immersions per day as compared with plants cultured in the TIS with three 2-min immersions per day or those cultured in SSM. For RITA®, average rhizome growth was greater in non-segmented large clumps than in segmented large clumps, presenting significant differences (p<0.05) when 3 immersion cycles was used (Figure 2).

Manzur (1989) confirmed that when the rhizome originates in *in vitro* conditions, the established *G. angustifolia* plant is capable of generating a large group of successive plants. Furthermore, Londoño (1991) considers bamboo rhizomes to be segmented axes,
characterized by having a diameter larger than that of the stem that it will produce. Mostly single rhizome buds appear on nodes from which new plant structures will emerge. Rhizome size was accordingly larger on bamboo plantlets cultured in the TIS with four 2-min immersions per day than when cultured on SSM (Figure 2).

Effect of culture system on shoot multiplication for segmented and non-segmented G. angustifolia

The analysis of variance indicated that there are highly significant differences ($p<0.0023$) in the number of shoots produced per explant depending on culture medium consistency. Significant differences also occurred between segmented and non-segmented explants. For the Tukey test, plantlets cultured in the TIS (Figure 3), with four 2-min immersion cycles, showed a higher, but non-significant ($p<0.05$) average number of shoots than plants cultured in the TIS with three 2-min immersion cycles and in SSM. Furthermore, non-segmented plants presented a higher number of shoots than segmented plants (Figure 3). These results agree with those of studies carried out in sugarcane (*Saccharum officinarum*) by Lorenzo et al. (1998) and in *Eucalyptus grandis* by Castro and González (2000), two species that presented a higher increase of biomass in the TIS than in solid and semi-solid culture media.

Effect of culture system on growth of segmented and non-segmented G. angustifolia

The analysis of variance revealed that the culture medium consistency (TIS or SSM) significantly affected growth of *G. angustifolia*. Highly significant differences in plant height were also observed when segmented and non-segmented plants were compared in RITA® (Figure 4). Plants cultured in SSM presented greater growth than those segmented and cultured in the TIS (four and three 2-min cycles per day). Overall, non-segmented plants presented higher average growth than segmented plants (Figure 4).

Plant elongation during the multiplication phase in the solid culture medium is similar to that reported by Marulanda et al. (2005) and Jiménez et al. (2006). Plant elongation in the TIS (four 2-min immersions per day) is similar to that obtained using the solid culture medium with non-segmented explants.

In contrast, Castro and González (2000) reported that plant size of *E. grandis* increased in the TIS as compared with plants cultured in solid medium. Lorenzo et al. (1998) also found that sugarcane plants grew taller when cultured in TIS (10.29 cm on average) as compared to solid media (6.22 cm on average).

Fifty seedlings cultured in solid media and 50 cultured in TIS were transferred to the nursery using the hardening protocol developed by Marulanda et al. (2005) (Figure 4).
Effect of culture system on shoot multiplication for segmented and non-segmented *G. angustifolia*

In this study, the average number of shoots produced by plants cultured in the TIS (four 2-min cycles per day) was higher than that of plants cultured in the SSM (Figure 5). The TIS (3 stems) with four 2-min immersions per day produced an average multiplication rate of 3.0 shoots per original explant for non-segmented plants (Figure 5). Marulanda et al. (2005) found an average multiplication rate of 2 shoots per original explant for *G. angustifolia* cultured on solid media, whereas Jiménez et al. (2006) reported an average of 2.5 new individuals (referred to as tillers) per each original plant established. When the averages of all three studies were compared, the higher multiplication efficiency in the TIS reached in this study is clearly demonstrated. In addition, the multiplication rate in solid culture medium yielded results similar to the aforementioned results, with an average multiplication rate of 2.7 shoots per explant.

Using micropropagation in the liquid system with species of the subfamily Bambusoideae, Das and Pal (2005) with *Bambusa balcooa* and Shirin and Rana (2007) with *Bambusa glaucescens* reported successful work in the *in vitro* multiplication phase. In addition, bamboo species such as *Dendrocalamus latiflorus* (Mongkolsook et al., 2005), *Bambusa ventricosa* and *Dracaena deremensis* (Chaille, 2011) and *Bambusa vulgaris* (Garcia-Ramirez, 2014) have been propagated by TIS, with results similar to those found for *G. angustifolia* in terms of rate of multiplication (3 to 5 shoots per explant).

There are similar reports for other species. According to Lorenzo et al. (1998), the *in vitro* multiplication of sugarcane shoots per plant reached higher levels (average of 8.13 shoots) in the TIS than when a solid culture medium was used (average of 3.96 shoots). Yan et al. (2010) also achieved better results with *Siraitia grosvenorii* when RITA® was used for plant regeneration than with solid culture media.

In this study, the number of shoots emerging from the rhizome was higher for both SSM and RITA when plants were cultured with three stems than when the culture was performed with two and one stems per plant. When cultured in the TIS (four cycles per day), *G. angustifolia*
plants with three stems produced the highest number of shoots (Figure 5). For Ravikumar et al. (1998), the number of shoots generated by bamboo plants differs depending on the species and the inoculated explants. Kane (2000) has also found that the type of explants used in micropropagation processes, whether nodal segments or shoots, stimulate the generation of axillary buds depending on each species.

Conclusion

Multiplying G. angustifolia using TIS highlights the importance of the presence of the rhizome (non-segmented explants) for optimal production of shoots. This study also presented good results with a frequency of three 2-min immersions per day, producing 2.7 shoots per original explant. Further studies should be conducted to develop an application for RITA® for use in the commercial production of G. angustifolia.

Conflict of interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors thank the Laboratorio de Biotecnología Vegetal of the Universidad Tecnológica de Pereira and its staff for their valuable collaboration in the development of the present research project.

Abbreviations

BAP, 6-Benzylaminopurine; 2,4-D, 2,4-dichlorophenoxyacetic acid; GA, gibberellic acid; IAA, indoleacetic acid; MS, Murashige and Skoog (1962); NAA, naphthalene acetic acid.

REFERENCES

Full Length Research Paper

Characterization of α-amylase produced by the endophytic strain of *Penicillium digitatum* in solid state fermentation (SSF) and submerged fermentation (SMF)

Sideney Becker Onofre¹,²*, Dirceu Abatti², Douglas Refosco², Amarildo Antonio Tessaro², Jean Alisson Becker Onofre² and Alessandra Buss Tessaro³

¹Center of Exact and Environmental Sciences - Postgraduate Program in Technology and Innovation Management - PPGTI - Regional Community University of Chapecó - UNOCHAPECÓ - Av. Senador Attilio Fontana, 591-E EFAPI - 89809-000 - Chapecó - Santa Catarina - Brazil.
²Paraná Southwest Education Union - UNISEP - Course in Environmental Engineering - Av. Presidente Kennedy, 2601 - Dois Vizinhos - Paraná - Brazil.

Received 25 March, 2016; Accepted 10 June, 2016

α-Amylases are enzymes responsible for breaking the α-1,4 bond in polysaccharides with three or more glucose units, occupying the second place in the most widely employed enzymes in industry in the world. The objective of this study was to compare the yields of α-amylase produced by the endophytic fungus, *Penicillium digitatum*, strain D1-FB, isolated from *Baccharis dracunculifolia* D.C. (Asteraceae), through the solid state fermentation (SSM) and submerged fermentation (SmF) processes, in addition to characterizing the produced enzyme. The two fermentations were conducted for 120 h, taking samples every 24 h to obtain the peaks of production. The enzymes were characterized according to their optimal pH and temperature for performance and stability regarding the incubation in the presence of ions, variations in pH and temperature. The maximum yield of the enzyme was observed with SSF, using rice bran as substrate after 72 h of fermentation, with 1,625 U/mL. The α-amylase had an optimal pH at 6.5 and optimal temperature at 37°C. All the ions resulted in a decrease in the activity of α-amylase in the concentration of 5 mM. The enzyme proved to be quite stable in a pH range of 6.0 to 7.5 and up to the temperature of 37°C, but it presented great drops in activity with temperatures above 45°C and in the presence of ions at the concentration of 5 mM.

Key words: *Penicillium digitatum*, α-amylase, starch, enzymes, endophytic.

INTRODUCTION

Starch is a polymer consisting of glucose molecules joined by α-1,4 and α-1,6 bonds. Two polysaccharides comprise the structure of starch: amylose and amylopectin (Figures 1A and B). The first (1A) is a linear molecule containing more than 6000 glucose units connected by glycosidic α-1,4 bonds, and the second (1B), very similar to glycogen (Myers et al., 2000), is highly branched, containing α-1,4 bonds between the of glucose monomers, and α-1,6 in the branching points at each 24-30 glucose residue (Brena et al., 1996).
Amylases are responsible for the hydrolysis of the starch molecule and are widely distributed in nature. Starch is found mainly in seeds of cereals, such as corn, barley, wheat and rice, and in tubers or roots, such as potatoes and manioc, with the size and shape of the grains being specific for the different cereals (Moraes, 2004).

According to Gupta et al. (2003), amylases are divided into two groups, the endo-amylases and exo-amylases. Endo-amylases catalyze hydrolyses within the starch molecule in various points of the chain simultaneously. This action causes the formation of dextrins and small polymers composed of glucose units of various lengths, breaking the glycosidic α-1,4 bonds present on the inside of the amylase or amyllopectin chains. α-Amylase is the most well-known endo-amylase. The exo-amylases known as amiloglicosidases or glicoamylases, hydrolyze glycosidic α-1,4 and α-1,6 bonds (Lorentz, 2005; Onofre et al., 2011, 2012).

Amylases are applied in the most varied industrial sectors that require the hydrolysis of starch, being mainly used in the food industry for the preparation of beers, jellies and to obtain free glucose for the most varied applications (Michelin, 2005).

In addition to the food industry, these enzymes can be used in the formulation of detergents and in the paper, pharmaceutical, fermentation and textiles industries (Oliveira et al., 2007). There are two processes for the production of microbial enzymes: solid state fermentation (FES) and submerged fermentation (SmF). SmF is traditionally used for the production of enzymes because it provides a better control of some important process parameters, such as pH and cell growth, in addition to facilitating the recovery of extracellular enzymes and the determination of biomass (Fernandes, 2006).

One of the main characteristics of solid-state fermentation is the use of substrates with low water activity, in which the conditions for growth are similar to the fungi’s natural habitat. This facilitates their growth on the solid substrate and the production of large quantities of enzymes (Paris et al., 2008; Rocha, 2010).

The vast majority of microorganisms used in the solid-state fermentation are filamentous fungi (Silva, 2002). The reduced amount of water in the substrate greatly restricts the number of micro-organisms that are capable of adapting to this process, but fungi prove to be quite tolerant to this environment (Pandey et al., 2005; Fernandes, 2006). The objective of this study was to compare the production of α-amylase produced by the endophytic fungus, Penicillium digitatum, strain D1-FB, isolated from Baccharis dracunculifolia D.C. (Asteraceae), through the solid state fermentation (SSF) and submerged fermentation (SmF) processes, in addition to characterizing the produced enzyme.

MATERIALS AND METHODS

Micro-organism studied

For the realization of this work, the endophytic fungus P. digitatum strain D1-FB was used, isolated from B. dracunculifolia D.C. (Asteraceae) maintained in the mycology collection of the Microbiology Laboratory of the Regional Community University of Chapecó – UNOCHAPECÓ – Chapecó – Santa Catarina - Brazil.

Fermentation process for the production of α-amylases

Preparation of the inoculum

After growing the fungus on PDA for seven days, the cells were suspended in a phosphate 100 mM buffer, pH 7.0, and subjected to stirring in order to obtain a homogeneous solution. The cell concentration was determined by counting in a Neubauer chamber (Germano, 2000).

*Corresponding author. E-mail: beckerside@unochapeco.edu.br.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Preparation of the fermentation media

Two different fermentation processes for the production of amylase were tested: SSF and SmF. The substrate of choice for SSF was rice bran. Each Erlenmeyer flask of 125 mL received 10 g of rice bran (Fa), with the production of the enzyme in pure bran (Fa) being compared with bran supplemented with 20% of manioc starch (Fm).

The moisture content of the media was guaranteed by a phosphate buffer 100 mM, pH 6.5, in the proportion of 65% for the medium containing pure bran, and of around 90% for the medium supplemented with manioc starch. In SmF, the medium was composed of 50 g.L\(^{-1}\) of manioc starch, 0.2 g.L\(^{-1}\) of MgSO\(_4\) and 0.2 g.L\(^{-1}\) of ZnSO\(_4\).H\(_2\)O, solubilized in a phosphate buffer 100 mM, pH 6.5. Two different sources of nitrogen were tested, one organic (urea) and the other inorganic (NaNO\(_3\)) at 2.5 g.L\(^{-1}\).

The fermentation was conducted in Erlenmeyer flasks of 125 mL containing the medium at 20% of its maximum capacity. 10\(^8\) spores were inoculated in all media. The flasks were incubated in a Shaker at 28°C and 150 rpm. Samples were taken every 24 h for four days for the evaluation of enzyme yields (Onofre et al., 2011; Onofre et al., 2012).

Recovery of the enzyme from the fermented media

For the recovery of the enzyme from the solid fermented medium, 5 mL of NaCl 1% solution was added for each gram of solid substrate and maintained under stirring for 1 h at 100 rpm. For the liquid medium, a solution of NaCl 1% was added until the volume reached 50 mL. After this process, the suspension was filtered to obtain the crude extract, and then centrifuged at 2000 rpm for 8 min, discarding the precipitate.

Enzymatic assay

The activity of α-amylase was determined by measuring the levels of reducing sugars in solution as a result of the action of the α-amylase on the starch. The activity was determined in samples in triplicate by quantifying the reducing sugars (glucose) with the Miller (1959) and Fernandes et al. (2007) method. A mixture containing 0.5 mL of enzymatic extract; 0.5 mL of a starch 0.5% solution in a Tris-HCl buffer 0.05M pH 8.5, and 0.2 mL of the same buffer was incubated at 90°C for 10 min. After this period, 1.0 mL of the Miller reagent (3, 5-dinitrosalicylic acid) was added to the reaction. The mixture was placed in boiling water for 10 min, then cooled in an ice bath for 5 min and 4.8 mL of distilled water was added. The developed color was measured with a SHIMADZU UV-mini 1240 spectrophotometer, using a wavelength of 540 nm. The same procedure was performed with the control, except that the Miller reagent (3, 5-dinitrosalicylic acid) was added together with the enzyme to the starch 0.5% solution, and this mixture was placed in boiling water as described above. The content of reducing sugars was determined through a glucose curve. One unit of enzyme activity (U) was defined as the amount of enzyme required to produce 1 μmol of reducing sugar per minute per mL from the soluble starch under the test conditions (Onofre et al., 2011; Onofre et al., 2012).

Characterization of the α-amylase

Optimal pH for enzymatic activity

For the assessment of the influence of pH on enzyme activity, the enzymatic assay was conducted according to item 2.3, while varying the addition of buffer solution: pH 5.0 - 6.0 (acetate buffer), 6.5 - 7.5 (phosphate buffer), 8.0 - 8.5 (Tris-HCl buffer) (Thys, 2004).

Optimal temperature for enzymatic activity

For the assessment of the influence of temperature on enzyme activity, the enzymatic assay was conducted according to item 2.3, while only varying the incubation temperature: 10, 20, 30, 37, 45 and 65°C (Silva, 2002).

Influence of ions on enzymatic activity

For the assessment of the influence of ions on enzyme activity the enzyme was incubated for 10 min at room temperature with the ions CaCl\(_2\), BaCl\(_2\), HgCl\(_2\), FeCl\(_3\) and MgCl\(_2\) at concentrations of 1 and 5 mM, performing the enzymatic assay after this procedure, as described by Giongo (2006).

Thermal stability of α-amylase

The thermal stability of the amylase was tested by incubating the enzyme for 30 min at the temperatures of: 10, 20, 30, 37, 45 and 65°C, performing the enzymatic assay after this procedure as described by Rasiah and Rehm (2009).

Stability of α-amylase at different pH values

The stability of α-amylase at different pH values was tested by incubating the enzyme for 30 min in the following buffer solutions (100 mM): pH 5.0 - 6.0 (acetate buffer), 6.5 - 7.5 (phosphate buffer), 8.0 - 8.5 (Tris-HCl buffer), performing the enzymatic assay after this procedure as described by Thys (2004).

RESULTS AND DISCUSSION

Through the analysis of the fermentation processes, one can observe that the endophytic strain of P. digitatum, isolated from B. dracunculifolia D.C. (Asteraceae) had better results in the solid medium when compared with fermentation in the liquid medium, yielding 1625 U/mL through solid state fermentation in the medium containing only rice bran, while in submerged fermentation these values did not exceed 712 U/mL in the medium containing inorganic nitrogen (Liq/Ino). By comparing the data obtained in this study with those found by Spier (2005) working with Penicillium sp., one can see that he obtained similar results as those of this study, since he observed a production of 1690 U/mL of fungal amylases in SSF, with yields surpassing double the activity achieved in SmF. This same behavior was observed by Hu et al. (2013), who found that the fungus Penicillium sp. in a semi-solid medium had better results than in submerged fermentation and in a medium supplemented with an inorganic fraction (NaNO\(_3\)) of nitrogen.

In Figure 2, the enzyme yield data (in total units) in the different media over the course of 120 h at 24 h intervals is presented.

SSF has been described as an excellent option for the growth of the filamentous fungi. In general, fungi have a
good ability to grow on solid substrates, which explains their good adaptation to SSF, and for this reason, they have been widely used in this process, mainly to obtain enzymes (Silva, 2002; Lei et al., 2014).

One of the main characteristics of SSF is the use of substrates with low water activity, in which the conditions for growth are similar to the natural habitat of fungi, which facilitates their growth on the solid substrate and the yield of large quantities of enzymes. The organic matter present in this material is used as a source of energy for growth, and the carbon is used for the synthesis of cellular biomass and of the products of the microbial metabolism (Mitchell and Lonsane, 1992; Hattori et al., 2013; Driss et al., 2014).

It should be noted, however, that the SSF technology should not be seen as a technique that replaces submerged fermentation. In fact, each technique has its own potential and particularities. However, there is a consensus about the need for ongoing research on the factors related to SSF in order to take advantage of the full potential of this technology (Pandey et al., 2001). According to Del Bianchi et al. (2001) and Pandey (2002), the control of certain variables is necessary to obtain products with constant and uniform characteristics. One can therefore state that the observation of these factors, and the correct handling in relation to each one of them, will certainly bring about better results in the solid state fermentation process. Environmental conditions, such as temperature, pH, water activity, oxygen level and the concentration of nutrients and products, significantly affect cell growth and product formation.

When the liquid fermentation media are compared, the fungus can be observed to have adapted better to the inorganic source of nitrogen, showing a maximum yield of 712 U/mL, while in the medium containing organic nitrogen the peak yield of total amylases was 438 U/mL. According to Gupta et al. (2003), organic nitrogen sources are preferred for the production of α-amylase by bacteria. On the other hand, various inorganic salts, such as ammonium sulfate, sodium nitrate and ammonium nitrate, have been reported in improved yields of α-amylase by fungi. Both the solid media had good enzyme yields: 1625 U/mL in the medium containing rice bran, and 932 U/mL in the medium containing rice bran supplemented with manioc starch.

One would expect that the medium supplemented by starch would have higher enzyme yields, since the presence of starch should induce the production of amylolytic enzymes, but this was not the behavior observed. This fact may have occurred due to the presence of starch, which gelatinized after heat treatment (sterilization), making the medium more compact. As such, this made aeration of the solid medium harder. Spier (2005) reported this same limitation with the use of starch in submerged cultivation, noting that enzyme activity decreased with the increase of the concentration of starch in the medium.

Characterization of the enzyme

Optimal pH for enzymatic activity

The α-amylase produced by SSF in the medium containing rice bran were used in the tests for characterization of the enzyme. Figures 3 and 4 show the activity of the enzyme as a function of pH and temperature, respectively. The enzyme showed optimal
pH at 6.5, while maintaining 96% of its activity at pH 7.0, characterizing it as a neutral α-amylase. This data is consistent with Figueira et al. (2000) and Oliveira et al. (2010) who produced amylases with the fungi *Fusarium moniliiforme* and *Aspergillus flavus*, obtaining optimal pH values close to 6.9, demonstrating the trend for the production of slightly neutral amylases by filamentous fungi. Spier (2005) on the other hand, obtained a higher yield of amylolytic enzymes with an initial pH equal to 4.0 when working with *Aspergillus niger*, which shows that each species of fungus may have a different behavior in specific pH.

According to Soccol (1992) and Onofre et al. (2011, 2012), the growth capacity of fungi is limited in extreme conditions of acidity and alkalinity. This characteristic is of extreme importance in fermentation processes since they show that under these conditions the vast majority of the bacteria responsible for the contamination of fermentation processes are inhibited. The optimal temperature was 37°C, with the enzyme being completely inactivated at the temperature of 65°C. Spier (2005) obtained similar results to those in this study for a fungal amylase,
reporting optimal pH at 6.0 and optimal temperature between 45-55°C. This behavior is also in agreement with Kundu et al. (1973) and Ueno et al. (1987) cited by Pandey et al. (2005), who reported that optimal yields of α-amylase were obtained at temperatures between 30 and 37°C.

Influence of Ions on enzymatic activity

Metal ions have a variety of functions in proteins. These ions may be directly involved in the catalytic process during the enzymatic reaction, or they may participate in electron transfer or redox reactions (Najafi et al., 2005). The stabilization of some enzymes can be induced, mainly, by such divalent ions as Ca$^{2+}$, Mn$^{2+}$, Zn$^{2+}$ and Mg$^{2+}$. If used in low concentrations, these ions can stabilize the tertiary structure of the protein, promoting the formation of cross-links that provide a greater stability to it (Tomazic, 1991). Figure 5 shows the behavior of α-amylase regarding the incubation with some ions. All the ions tested at concentrations of 1 and 5 mM were associated with a drop in activity of the enzyme of at least 14%, with the ions Hg$^{2+}$, at both concentrations, and Fe$^{3+}$, at the concentration of 5 mM, leading to the complete loss of enzyme activity. The change in activity per ion is a very particular characteristic of each enzyme. Some enzymes may require divalent ions for their activation or as a cofactor, commonly Ca$^{2+}$, Mg$^{2+}$, Zn$^{2+}$ and Mn$^{2+}$, increasing their activity. However, some ions may generate a drastic drop in activity, such as Hg$^{2+}$, Fe$^{3+}$, and may lead to total inhibition (Giongo, 2006). It should be noted that high concentrations of ions can have an inhibitory effect. Some studies also show that the stability of α-amylase is compromised in the presence of small quantities of these ions (Yang and Liu, 2004; Bernhardsdotter et al., 2005; Hashim et al., 2005).

Thermal stability of α-amylase and at different pH values

pH is one of the most important factors that affect fermentation processes, since it can change the chemicals of the culture medium, ionize polar molecules, affect enzymatic reactions and the post-translation processes of enzymes. The pH of the culture medium can influence microbial growth, and induce the expression of genes that result in changes in phenotypes, such as changes in morphology, physiology or the expression of enzymes. The limitation of growth has been associated with a reduction in the production and/or activity of extracellular enzymes (Madigan et al., 2004). Figures 6 and 7 shows the stability of the enzyme regarding the incubation at different pH values and temperatures, respectively.

In the more extreme pH values tested, α-amylase underwent a reduction in enzyme activity of at least 24%, with it being completely inhibited at pH 8.5. In the 6.0 - 7.5 pH range, the enzyme proved to be quite stable, maintaining at least 95% of its activity, with this being the recommended pH range for the application of the enzyme.

Thermal resistance is considered one of the most important criteria for the industrial application of the enzyme, given that most processes require the use of
high temperatures (Ray and Nanda, 1996). The use of
high temperatures for the activity of these enzymes,
however, depends on the stability limit of the protein,
since it will have a range within which its structure is
maintained. Outside of this range, denaturation would
occur, resulting in a loss of activity. An increase in the
use of the α-amylase enzyme in biotechnology has
occurred due to its extensive range of working conditions,
including high temperatures, extreme pH, and the
presence of surfactants and organic solvents (Tanaka
and Hoshino, 2002).

When the enzyme was incubated at temperatures of 10
to 37°C, it preserved its full activity. When a temperature
of 45°C was employed, the enzyme suffered a decline in
residual activity, although this has been its optimal
temperature of operation, indicating that the produced α-
amylase should be applied at temperatures below 45°C
to maintain its activity for a longer period of time.

Rasiah and Rehm (2009) obtained amylase which
proved quite stable at 85°C. Figueira et al. (2000)
produced amylases with the fungi Fusarium moniliforme
and A. flavus, obtaining thermal stability close to 20°C.
Fungal amylases are more sensitive to the elevation of
temperature, tending to suffer a drastic drop in activity at
temperatures above 50°C (Spier, 2005). This behavior
was observed and is represented in Figure 6.
Understanding the thermo-stability of enzymes will promote their addition to products that need to go through some form of heat treatment during their processing, while preventing inactivation or with the intentional inactivation of the enzyme when the expected result of its catalytic activity has been obtained.

Conclusion

With the results obtained, it is possible to conclude that the production of α-amylase through SSF was more efficient than the production of the enzyme through SmF, obtaining more than twice the activity found in SmF with SSF, with values of 1625 and 712 U/mL for SSF and SmF, respectively. At 120 h of solid state fermentation using rice bran as substrate, 1625 U/mL was obtained, demonstrating the excellent α-amylase secretion ability of the D1-FB strain of the endophytic fungus, *P. digitatum*, isolated from *B. dracunculifolia* D.C. (Asteraeaceae). The enzyme characterization tests revealed an optimal pH at 6.5 and an optimal temperature at 45°C. The α-amylase produced was stable in the neutral pH range, but it showed great drops in activity with temperatures above 45°C and in the presence of ions at a concentration of 5 mM. These results allow for the conclusion that the produced α-amylase may be a new enzyme alternative for application in industries that require the saccharification of starch.

Conflict of interests

The authors have not declared any conflicts of interests.

REFERENCES

Dissertação (Doutorado em Química) - Setor de Ciências Exatas - Universidade Federal do Paraná. Curitiba, Brasil.

Development of bio-hybrid material based on *Salmonella* Typhimurium and layered double hydroxides

Slah Hidouri¹,²*, Nadia Messaoudi², Mouadh Mihoub², Zouhair M. Baccar¹ and Ahmed Landoulsi²

¹Nano-bioingenery group, National Institute of Research in Physics and Chemistry Analysis (INRAP), 2020 Sidi Thabet, Tunisia.
²Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerta (FSB), Jarzouna 7021, Tunisia.

Received 23 May, 2015; Accepted 2 October, 2015

The immobilization of a whole microbial cell is an important process used in nanotechnology of biosensors and other related fields, especially the development of bio-hybrid materials based on live organisms and inorganic compounds. Here, we described an essay to develop a bio-hybrid material based on *Salmonella* Typhimurium cells and layered double hydroxides (LDH). The synthetic clays have a good capacity to be a host matrix for immobilization of live entity like bacteria. The incorporation of LDH in the nutritive broth shows the capacity of bacteria to grow under the inorganic conditions. The immobilization of bacteria onto the LDH Layer deposited on gold wafers was successfully done and the verification of the final material consistence was given by Fourier transform infrared spectroscopy (FTIR) analysis that shows the possibility of various covalent links that can be established between the polar functional group of the cell and the interlayer level in the LDH. The roughness of the surface was given by scanning electron microscope (SEM) imaging and shows the homogeneity of cell distribution on the LDH layer.

Key words: Layer double hydroxide, *Salmonella* Typhimurium, Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray diffraction (XRD), energy dispersive X-ray (EDX); scanning electron microscope (SEM).

INTRODUCTION

The immobilization of enzymes for catalytic reactions coupled with redox reactions has gained an immense importance during the last two decades in the world of biosensors. Development of biosensor requires the purification of biomolecules, which is a sensitive technique and requires several critical conditions, that is
why the investigation using these materials was left only in the research laboratories and does not rise in situ. Thus, the immobilization of living entities such as bacteria reduces the strokes of purification and the several conditions necessary for the bioactive layers. Bacteria can be used like bio-recognition component in biosensors to investigate the environmental toxicity caused by various media in the case of soil, sediment and water. The coupling of bacteria with device transducer can convert a cellular response into detectable signals and make it possible to exploit the sensitivity of the cell to toxins and pollutants (Hua et al., 2015). By immobilized technique, the cell can retain most of its functionality and a wide range of enzymes will be protected in the cell, which can be exploited in several applications like detection or use for the synthesis of some substances for other applications, which can then react with substrates outside the cell wall. Present as free forms, biomolecules such as enzymes, antibodies and receptors, presented in microorganisms as well as animal and plant cells or tissues have been used as biological sensing elements. Among these, microorganisms offer advantages of ability to detect a wide range of chemical substances (Banerjee et al., 2013).

Considerable attention has been given to native biomolecules in the microorganisms which conserve these biomolecules naturally and can easily modify them on large scale at the same time. It is better to keep the biomolecules solvated in their native medium which is the best method to preserve the sensitivity after the exploration of this propriety which will be seen as the ability of the whole cell to be immobilized and manipulated.

In our work, we studied the interaction between layered double hydroxides (LDHs) layer and bacterial cell. LDHs can offer various advantages such as the capability to be an interest host matrix for a guest bacteria cell and it makes it easy to study some external molecules and bacterial comportments in this new environment. LDHs can be represented by the general formula: $M^{2+}_{x-1}M^{3+}_x(OH)_{2x} A^{y-} \cdot yH_2O$ (Ayawei et al., 2015a), M^{2+} are divalent cations (Mg$^{2+}$, Zn$^{2+}$, Co$^{2+}$ and Ni$^{2+}$), M^{3+} are trivalent cations (Al$^{3+}$, Cr$^{3+}$ and Fe$^{3+}$) and A^{y-} is interlayer anions (Cl$, NO_3$, CO_3^{2-}, and SO_4^{2-}) balancing the charge on the layers (Rezvani et al., 2014). These layers have received a great attention due to their versatile properties which are result of their high ion exchange capacity (Balcom et al., 2015) they also have various applications such as catalysis, (Fan et al., 2014; Ayawei et al., 2015b) gene and molecular reservoir (Zhang et al., 2014) and thin films (Vlada et al., 2014).

The objective of this work was to describe the influence and interaction of low LDH on the viability of various solutions of different concentrations and the survival of Salmonella Typhimurium deposed on thin layer of LDH. This bio-hybrid material was checked on structural level that was confirmed by consistency of interfaces and stability of the bacteria under the LDH materials.

MATERIALS AND METHODS

Wafer device and pre-treatment

The substrate sample used in this work was 0.25×0.25 cm that contained a thin gold layer deposited by LPCVD (100 nm) on an Insulator/Semiconductor (IS) substrate; wafers were graciously offered by Dra Campas M., laboratory of Biosensor IRTA-Sant Carlos de la Rapita (Spain). The samples were leached with compressed nitrogen and then rinsed with MQ before being incubated for one and half hour in sulfotochonic acid solution, then rinsed with water and dried with nitrogen air.

Cell culture and preparation of samples

The microbiological experiments described in this paper were carried out with Salmonella enterica serovar Typhimurium strain SL1344 supplied by the professor Casadesus J. (Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville 41080, Spain). Bacteria were incubated in nutrient broth (NB) (Prondis, Spain) at 37°C overnight with shaking under aerobic conditions. An exponential bacterial culture was then centrifuged at 10,000 g for 15 min and washed twice in sterile phosphate-buffered saline (PBS) solution and suspended in the same buffer containing LDH (at a concentration of 5, 10 and 15×103 g mL$^{-1}$). In parallel, control samples were prepared in PBS. Treatments were carried out at 37°C without shaking. Samples were extracted at various times (0, 3 and 6 h), diluted as needed and spread on Nutrient-agar plates then incubated for one night at 37°C. Bacteria were then counted on every plate for three repetitions, the curves of viability and survival were drawn as log (N / N$_0$) according to time.

Preparation of LDHs

LDHs were prepared by co-precipitation method. As per the protocol developed by Vlada et al. (2014), 50 ml of aqueous of 0.8 M MgCl$_2$ and 0.4 M AlCl$_3$ or FeCl$_3$ solution was added dropwise to 200 mL of 0.4 M sodium carbonate solution. The pH of mixture was held constant at 9.6 for MgAl-LDH and 11 for MgFe-LDH by simultaneous addition of 1 M sodium hydroxide solution (Sampieri et al., 2011). The addition of the salt solution was completed in 4 h. The precipitate was matured for 24 h at room temperature, the final solution was filtered and then washed by deionized water. The LDHs was dried at 100°C for 24 h which was followed by crushing and characterization with XRD.

Characterization technique

Powder X-ray diffraction (XRD) analysis was performed on a Panalytical X’Pert Pro diffractometer using Co Kα (40 kV, 30 mA) radiation and continued scanning mode. The diffraction patterns were recorded in a 2 theta range from 7° to 80°, in steps of 0.16° and counting time of 2 s per step. Absorbing Infrared Fourier Transformed (IRTF) spectra in ATR mode were recorded using QUINOX 55 (Bruker) spectrophotometer in the range of 4000 – 550 cm$^{-1}$ with 2 cm$^{-1}$ resolution and averaging 64 scans. Imaging is loaded with scanning mode using an FEI-Quanta 200 Environmental Scanning Electron Microscope.
RESULTS AND DISCUSSION

XRD characterization

The crystallinity of synthesized LDHs was analyzed with x-ray diffraction as function of weight percent inorganic component. Figure 1a and b shows x-ray diffraction pattern of various synthesized LDHs. Diffraction of Mg$_2$Al(CO$_3$)$_{0.5}$(OH)$_6$ Rhomboedric R3/m have a broad peak (006) at about 2Θ = 25.92°, which is a characteristic
peak of hydrotalcites (Sampieri et al., 2011; Bankauskaite and Baltakys, 2011). Studies on XRD patterns of Mg₃Fe(OH)₁₀Cl(H₂O)₃ (Peng et al., 2014) hexagonal show all characteristic peaks of Irenty-HDLs and verifies that the crystallinity is symmetric (Dias et al., 2014).

To reveal the hkl-plans inventory of the two studied LDH, Table 1 shows many LDH characteristic peaks especially (003), (006) and (012) which are different only with the position. Many other peaks were absent and/or shifted; (018) and (010) appears respectively at 2θ equal to 55° and 72° in the case of MgAl and does not appear in the case of MgFe, such movement in these peaks is governed by the crystalline system Rhomboedric R3/m in the first and Hexagonal in the second. However, the newest peaks appears in the case of MgFe at 45 and 59° of 2θ position indexed to (118) and (110) respectively which can give the idea about the interlayer space and distance. To better explain the difference between the two LDH, elementary analysis have been done and the result are given in Table 2 which summarizes the crystalline parameter and confirms that the preparation of the LDH with co-precipitation synthesis method was successfully done according the study given by Hidouri et al. (2011), Abdelkader et al. (2011), Hidouri et al. (2011) and Abdelkader et al. (2011).

The value of the parameter a in case of MgAl was less than that of MgFe because the crystal radius of Al³⁺ was lower than that of Fe³⁺ (Chen et al., 2012; Lin et al., 2014). Because the type of M²⁺ is the same in the case of the two tested LDH, the parameter c value appears to be more dependent on the type of the intercalated anions CO₃ in the case of MgAl and Cl in the case of MgFe LDH.

The distinct reflections in the LDHs patterns given in Figure 1 and summarized in Table 1 indicate the formation of the typical lamellae structure and distinguish well the structure related to Al³⁺ and Fe³⁺ representing the M³⁺ of the LDH, and the intercalated ions. The details of crystalline phase given in Table 2 shows the value of the parameters of the related crystal and show the right obtained system which proved the success of the LDH synthesis using the co-precipitation method.

Capacity of bacteria to live in LDHs environment

The growth of bacteria was determined by estimation of the CFU of the suspensions at t = 0, 3 and 6 h. The analysis compared by the curves of viability of the bacterial suspensions witness and treated by synthetic clays show relative differences according to the LDH used (Figure 2). It is clear that the most important modifications got the bacterial suspensions brooded with MgAl, while the least important was recorded with MgFe.

The analysis of the curves of viability shows that the addition of the LDH practically has no considerable effect on the growth for a concentration equal to 1 and 5.10⁻³ g mL⁻¹ added in the flask. However, a remarkable difference is noted for the 15×10⁻³ g mL⁻¹ added in the culture; the effect becomes more noticeable for the LDH incorporate magnesium divalent metal (Figure 2a). The remarkable effect of the MgFe can take place for high concentration equal to 15×10⁻³ g mL⁻¹. The capacity of bacteria to survive in the PBS buffer doped with LDH seems more important when the concentration in LDH increases; the presence of LDHs in the medium do not have any inhibitive effect on growth of bacteria (Figure 2b), however, it appears that at this concentration the LDH has a stimulation effect in the case of 15×10⁻³ g mL⁻¹ of MgAl. In the next part, bacteria was used as a model to study the relationship of Salmonella cells deposited on thin film of LDH, the biomaterial have been deposited on gold wafers, several techniques were used to conclude on the presence of the life entity on the surface of the inorganic compound.

The absence of inhibition of the growth of bacteria in the case of MgAl-LDH is probably due to ionization of CO₃ compound of LDH in the salt solution (Yao et al., 2015; Halma et al., 2015) that makes accessible source of carbon and enables bacteria to survive in this case. This effect is not seen in the case of LDH with MgFe because the intercalated ion was the chloride, herein the plausible hypothesis to explain this difference between LDH based on MgFe and LDH based MgAl, that MgFe is more stable and bacteria cannot use any compound of the structure which also proves that the bactericidal effect of chloride inhibits bacteria growth in this case which is comparable with the growth in the PBS solution. The conclusion relates to the hypothesis the LDH suspension conserves Salmonella Typhimurium growth and it depends on the intercalated ion in the LDH.

Table 1. Comparative view based on indexed hkl plans.

<table>
<thead>
<tr>
<th>hkl plans</th>
<th>2θ (°) MgAl</th>
<th>2θ (°) MgFe</th>
</tr>
</thead>
<tbody>
<tr>
<td>(003)</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>(006)</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>(012)</td>
<td>42</td>
<td>34</td>
</tr>
<tr>
<td>(015)</td>
<td>47</td>
<td>38.5</td>
</tr>
<tr>
<td>(018)</td>
<td>55</td>
<td>-</td>
</tr>
<tr>
<td>(118)</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>(010)</td>
<td>72</td>
<td>-</td>
</tr>
<tr>
<td>(110)</td>
<td>-</td>
<td>59</td>
</tr>
<tr>
<td>(013)</td>
<td>75</td>
<td>61</td>
</tr>
</tbody>
</table>

Table 2. Crystalline parameters of synthesized LDHs.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>d(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg₂Al</td>
<td>3.0</td>
<td>-</td>
<td>22.8</td>
<td>7.6</td>
</tr>
<tr>
<td>Mg₃Fe</td>
<td>3.13</td>
<td>3.13</td>
<td>15.66</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 2a. Curves of viability test.

Figure 2b. Curves of viability test of bacteria in the PBS solution doped with various LDHs.
Bacterial finger on LDHs matrix

The main goal in the immobilization of bacteria is to prove that on interface level, bacteria can interact with the host matrix. FTIR analysis given in Figure 3a and b show the interface consistency in the FTIR spectrum of hybrid bacterial/LDHs/Au (surface), which were represented by the percent of transmittance and plotted as a function of wavenumber (cm⁻¹). In the case of bacteria/MgFe/Au (surface), spectra were given in Figure 3a. The spectrum exhibit various picks that demonstrate the possibility of bacterial cells to establish various types of links with MgFe-LDH, at 1564-1512 and 1485-1390 cm⁻¹ which are due to the presence of N-H links. The medium intensity bond observed at 1238 and 1235 cm⁻¹ assigned to (PO3)2 asymmetric stretching modes of the phosphodiester indicated that extra-membranous phospholipids can interact with LDH, also the amide III/CH2 vibration proves the role of membranous protein that react on their side, which is shown by Touisi and collaborators (2013), when the amide III/CH2 comes from the glycine backbone and protein side chain (Touisi et al., 2013). The picks situated at 1000-890 cm⁻¹ are due to the =C-H bond stretching vibration. The FTIR spectra of bio-hybrid material in the case of Mg2AlCO3 matrix exhibit various picks distinctly which are assigned to the presence of various hydroxide links. Figure 3b summarizes the essential peaks, the thiol links at 2600-2550 cm⁻¹ in both LDH with aluminum and iron which makes it possible to conclude on the role of the polar function of amino acid to participate to entrap bacteria onto LDH profound structure with her hydroxide layer.

The infrared investigation illustrate that the interactions between bacteria and HDLs was established with anions of compensators charge layer of HDLs and the free amine, hydroxide and phospholipids from bacteria. The finger of bacteria into HDL matrix was made by polar functions of membrane proteins which are in general glycoprotein. It is notable that amine groups and hydroxide of membrane proteins interacts during 12 h with the thin coat layer of HDL. The presence of carbon-carbon bonds show that amino acid carbon has also the ability to interact. The sharp bonds observed at 1656 and at 1564 cm⁻¹ are assigned to the C=O stretching vibration (amide I) and to the C-N stretching/N-H bending vibration (amide II) of the tissue proteins respectively (Baccar et al., 2011). The amide bond are primarily associated with the stretching action of the C=O group. This C=O bond may be due to peptide linkage and also depends on the protein’s overall secondary structure (Hussein-Al Ali et al., 2012). The various covalent links given by FTIR suggest that there is a dynamic relationship between the life entity and inert materials given here by bacteria cells and LDH.

SEM imaging of bacteria land within LDH layer

The cartography of the synthesized bio-hybrid material based on hosts LDHs and bacteria with SEM is shown in Figures 4 and 5. Scanning images were obtained from a diluted solution of bacteria. The SEM images show the presence of bacteria in LDH deposited matrix, which are homogeneously distributed throughout the layer of LDH, which is also confirmed for all samples.

A drop deposition of viable cells of bacteria on HDLs thin layer promote oriented comportment, so that a deposited cell continues to divide and each cell produces a colony, as shown by the SEM images; there are visible areas where the density of bacteria was at the highest level, and other field still intact. It is also important to note that the area of bacteria existence confirms the results provided by the viability test; bacteria is not completely inhibited by the presence of HDL in its environment, and Salmonella have the ability to use HDL as a source of energy that can be carbon and/or magnesium. EDX analysis (Figure 4d and Figure 5e) confirms the chemical composition of the bacteria/LDH/Au (surface) bio-hybrid material for all samples and it was obtained at high density area of the surface. The EDX investigation show the presence of all compounds potentially present in the composite synthesized with bacteria, LDH and gold wafer.

LDH-bacteria interactions show a double capacity of Salmonella and LDH to be able to react with them to make one micro-hybrid material, stable and rich with various covalent links. This interaction can play an essential role in biological events, including membrane depending phenomena. In this context, SEM imaging explains various comportments of Salmonella with LDHs and makes clear a potentially biodegradation of LDH within Salmonella.

Bacteria adhesion or interaction with LDH layer is a key initiating step in nanobiotechnology based on whole cell and makes it easy to understand the process required to activate all layers that participated in the synthesized micro-hybrid materials. The interaction between Salmonella cells and LDH matrix makes a good profile of immobilization of the cell on inorganic compound and readjust the figure of the immobilization by inclusion. Bacteria conserves its activity, as reported by Bi et al. (2014) for biomolecules in that LDHs are a good reservoir for biomolecule for its ability to conserve the major functionality when they are immobilized on LDHs (Bi et al., 2014). It should be noted that the LDH can also be a good reservoir for bacteria cell and it conserves its biological ability and participate in bacteria cells to develop a micro-biofilm protection under LDH.

Conclusions

It is important to mention that the insignificance of differences observed in the survival of bacteria within LDHs and witness samples is given by the tolerance of Salmonella cells according the two tested LDH phases, MgAl and MgFe. The presence of bacterial layer in the
Figure 3. Infrared spectra of hybrid Salmonella/LDHs-Au. (a) Salmonella/MgFe-Au; (b) salmonella/MgAl-Au.
Figure 4. SEM imaging of deposited *Salmonella T.* within MgFe Layer. A. MgFe layer Scanning Image. B. Localized area with high density of bacteria within LDH layer. c. Salmonella T. in direct contact with the solid substrate of Gold. d. EDX analysis with the hybrid composite in case of MgFe LDH.
integrated bio-hybrid material can offer an important advantage to biotechnology application that utilize periplasmic enzymes and more extended phospholipids and/or the extracellular polymeric substances that can catalyze reactions (Bruna et al., 2015); in this way, this bio-hybrid material can be useful for development of biosensors, the application desired in the beginning of this paper.

For the contact of bacteria cells with LDH, infrared analysis showed the presence of a wide range of possible covalent links established between LDH and viable cell of bacteria by the extra-cellular extensions like glycoproteins and phospholipids. The alteration takes place in proteins and phospholipids; it may be an adverse
effect on some important physiological processes, performing different biological events to maintain homeostasis of the cell. Therefore, the structural interactions can be considered as a good diagnostic tool carrying the effect of structural alteration caused by the covalent links on the functional processes of the bacteria. The work was done to study the feasibility of a bio-hybrid material obtained by deposition of viable *Salmonella* cells on gold wafer functionalized with LDHs and was tested at a structural side which show the good consistency and stability of the biomaterials that can be suitable for high technology applications, especially for development of biosensors and/or biopile based on immobilized live entities.

Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

Bankauskaite A, Baltakys K (2011). The Hydrothermal Synthesis of Hydrotalcite by Using Different Partially Soluble and Insoluble in
African Journal of Biotechnology

Related Journals Published by Academic Journals

- Biotechnology and Molecular Biology Reviews
- African Journal of Microbiology Research
- African Journal of Biochemistry Research
- African Journal of Environmental Science and Technology
- African Journal of Food Science
- African Journal of Plant Science
- Journal of Bioinformatics and Sequence Analysis
- International Journal of Biodiversity and Conservation