ABOUT JPAP

Journal of Physiology and Pathophysiology (JPAP) is published monthly (one volume per year) by Academic Journals.

Journal of Physiology and Pathophysiology (JPAP) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as effect of different sitting posture on pulmonary function, study of anti-plasmodial and toxicological effects of methanolic bark extract of Chrysophyllum albidum, serum testosterone and morphology of the testes in wistar rats following chronic garlic feeding etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JPAP are peer-reviewed.

Contact Us

Editorial Office:
jpap@academicjournals.org

Help Desk:
helpdesk@academicjournals.org

Website:
http://www.academicjournals.org/journal/JPAP

Submit manuscript online
http://ms.academicjournals.me/
Editor

Dr. Kazi Mirajul Hoque
Scientist and Ramalingaswami Fellow,
Molecular Pathophysiology Division,
National Institute of Cholera and Enteric Diseases,
P-33, CIT Road, Scheme-XM, Beliaghata,
Kolkata-700010,
INDIA...

Editorial Board Members

Dr. Yan-Qiu YU
Department of Pathophysiology
Sri Ramachandra Deemed University,
College of Basic Medical Sciences,
China Medical University
92.Beier street, Heping District,
Shenyang, 110001,
P. R. China.

Dr. Wanzala Wycliffe
P.O. Box 11177-Tom Mboya-00400,
Nairobi,
Kenya...

Venkateswara Rao Gogineni
Research Scientist
University of Illinois College of Medicine at Peoria
Department of Cancer Biology and Pharmacology
One Illini Drive
Peoria, IL 61605
USA

Editorial Team

Dr. Ajibola, Abdulwahid
Olubisi Onabanjo University, Ago-Iwoye,
Nigeria.

Dr. Mostafa Azimzadeh
Dep. of Life Science Engineering,
Faculty of New Sciences and Technologies,
University of Tehran, Tehran,
Iran..

Dr. Birendra Nath Mallick
School of Life Sciences, Jawaharlal Nehru University
New Delhi - 110 067,
India.

Dr. Ben-zhi CAI
Department of Pharmacology, Harbin medical university,
Harbin, 150081,
China.
Dr. Linda R. Chambliss
4440 North Dromedary Rd
Panjab University,
Phoenix, Arizona 85018, USA.

Dr. Kazi Mirajul Hoque
3501 St. Paul Street, APT# 819, Baltimore, MD-21218, USA.

Dr. Rajesh Chandra Sharma
301 Sai Mahal Co- Hsg. Society,
Sector -3, plot no. 40 New Panvel, Navi Mumbai, Maharashtra-410205, India.

Dr. Tao Lianyuan
RM 5209, QingNianGongYu, XinKai Road 80#, Dong Dan, Dong Cheng District, Beijing 100005, China.

Dr. De-Yu Chen,
Shantou University Medical College (SUMC),
22 Xinling Road, Shantou, Guangdong, P. R. China,
515041, China.

Dr. Ayman El-Meghawry El-Kenawy Ali,
22 El-Galaa St., El-Mansoura, Egypt.

Dr. Karunakaran Ganesh Kumar,
Department of Metabolism and Aging, The Scripps Research Institute,
130 Scripps Way, Jupiter, FL-33458, USA.

Dr. Farouk M. F. El-Sabban,
Department of Family Sciences, College for Women, Kuwait University, P. O. Box 5969, Safat 13060 State of Kuwait.

Dr. Majid Hassanpour-Ezatti,
Dept. of Biology, Science School, Shahed Univ. Tehran, Iran.

Dr. Hedef Dhafir El-Yassin,
College of Medicine, University of Baghdad,
Bab-Almuadum, Baghdad, Iraq.

Dr. Irawan Satriotomo,
Dept. Comparative Bioscience, University of Wisconsin
2015 linden Dr., Madison, WI 53706, USA.

Dr. Jingdong Li,
Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
Wuhan, Hubei Province, 430022, P.R.of China.
Age-related effects of lead poisoning on sex hormones in adult male Wistar rats
A. B. Daku, A. I. Salisu and A. B. El-ta’alu
Full Length Research Paper

Age-related effects of lead poisoning on sex hormones in adult male Wistar rats

A. B. Daku¹*, A. I. Salisu² and A. B. El-ta’alu²

¹Department of Human Physiology Faculty of Medicine, Federal University, Dutse, Nigeria.
²Department of Human Physiology Faculty of Basic Medical Sciences, Bayero University, Kano, Nigeria.

Received 9 December, 2015, Accepted 26 February, 2016

The World Health Organization (WHO) estimates that, about a quarter of the diseases facing mankind today occur due to prolonged exposure to environmental pollution, and that most of these environment-related diseases are however, not easily detected and may be acquired during childhood and manifested later in adulthood. The aim of this work was to determine the sub-chronic effects of lead poisoning on and some sex hormones, as well as age-related changes on Wistar Rats. Thirty (30) of 3-, 5-, and 7-months old age-groups male Wistar rats were selected; each age group was divided into experimental (lead fed) and control (distil water fed) groups. The levels of sex hormones (LH, FSH and Testestrone) were measured using ELISA method, while blood lead concentration was determined using the method of Atomic Absorption Spectrophotometer. There was a significant (P<0.05) increase between experimental and control groups in blood lead concentration and insignificant (P˃0.05) increase in LH in both experimental and control groups. Significant (P<0.05) decrease in body weight, testosterone levels, FSH was observed between experimental and control groups. The effect of lead (Pb) on testosterone levels was more pronounced in older animals. It was concluded that, ingestion of lead acetate has an age related effect on male sex hormones in older rats.

Key words: Sex hormones, lead, male, Wistar rats.

INTRODUCTION

Over the last three decades, there has been increasing global concern over public health impacts attributed to direct and indirect environmental pollution, in particular, the global burden of disease. The World Health Organization (WHO) estimates that, about a quarter of the diseases facing mankind today occur due to prolonged exposure to environmental pollution (WHO, 2000). Most of these environment-related diseases are however, not easily detected and may be acquired during childhood and manifested later in adulthood (CCNM (Calgary Centre for Naturopathic Medicine), 2014). Lead metal may be found in dirt, dust, house hold utensils, dishes, furniture, leaded petrol, paints, ceramics, food cans, make-ups, traditional remedies, batteries, soil and water in varying degrees of concentration; and lead poisoning usually occurs from repeated exposure to small amounts (Agency For Toxic Substances and Disease Registry (ATSDR), 1999) The three major sites
of lead intoxication are kidney, blood, and the nervous system (Bersenyi, 2003), it is also a significant immunotoxin (Koller, 1990). Leaded petrol, as one of the metal’s many sources in the environment, is a good indicator of reduction in exposure to lead (Landrigan et al., 2000).

There are many reports on lead toxicity and its deleterious effects in various species of animals as well studies on its pharmacokinetics and genotoxicity (Suradkar et al., 2009), but very few researchers try to correlate haematopoietic alterations of lead acetate in laboratory animals especially in rats. Sources of food and feed contamination are soil, industrial polluted air and agricultural sources such as lead-containing pesticides, phosphate fertilizers and food processes (Bersenyi, 2003). Lead has become a regulatory concern and subject of much interest because of its widespread distribution in the environment (Bersenyi, 2003), it is also a significant immunotoxicant (Koller, 1990). Lead acetate solution (250 mg/kg body weight per day) was used for intravenous injection of 0.5 cm³ of 0.4% solution of sodium thiopental (Greene, 2002) and afterwards decapitated. Blood samples were collected and separated into two: first sample collected portion was centrifuged to get plasma which was used for the estimation of plasma FSH, LH, and testosterone concentrations using ELISA tests; the second blood sample was used for spectrophotometric analysis of blood lead concentration in blood samples, using Atomic Absorption Spectrophotometer (BUCK Scientific; model: 210 VGP, USA).

Procedure

Thirty (30) male Wistar rats were selected of three age-groups, of 3-, 5-, and 7-months old; each age-group was divided into experimental and control groups respectively. The experimental (n=15) animals were given lead acetate solution at 250 mg/kg body weight per day (Ambali et al., 2011) for 22 days, while the control (n=15) were placed on distilled water only. Both experimental and control animals were acclimatized for 7 days prior to commencement of experiment; animals were housed in metallic cages and given free access to chow and water. After the last day of lead treatment, rats were lulled to sleep by intravenous injection of 0.5 cm³ of 0.4% solution of sodium thiopental (Green, 2002) and afterwards decapitated. Blood samples were collected and separated into two: first sample collected portion was centrifuged to get plasma which was used for the estimation of plasma FSH, LH, and testosterone concentrations using ELISA tests; the second blood sample was used for spectrophotometric analysis of blood lead concentration in blood samples, using Atomic Absorption Spectrophotometer (BUCK Scientific; model: 210 VGP, USA).

RESULTS

Data with similar letter are not significantly (P > 0.05)
Table 2. Blood lead levels of rats after experiment.

<table>
<thead>
<tr>
<th>Age of animals (months)</th>
<th>Lead levels (µg/dl)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Control</td>
</tr>
<tr>
<td>3 month old</td>
<td>46.00±6.00*a</td>
<td>14.56±7.65</td>
</tr>
<tr>
<td>5 month old</td>
<td>46.75±18.95*a</td>
<td>18.00±3.65</td>
</tr>
<tr>
<td>7 month old</td>
<td>50.75±12.65*a</td>
<td>17.60±4.50</td>
</tr>
</tbody>
</table>

Data with similar letter are not significantly (P > 0.05) different. *P < 0.05 compared to control animals.

Table 3. Levels of luteinizing hormone after experiment in rats.

<table>
<thead>
<tr>
<th>Age of animals (months)</th>
<th>LH Levels (mIU/ml)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Control</td>
</tr>
<tr>
<td>3 month old</td>
<td>5.000±4.66 a</td>
<td>3.400±2.03</td>
</tr>
<tr>
<td>5 month old</td>
<td>1.500±0.58 b</td>
<td>1.000±0.56</td>
</tr>
<tr>
<td>7 month old</td>
<td>1.000±0.18 b</td>
<td>1.750±0.96</td>
</tr>
</tbody>
</table>

Data with similar letter are not significantly (P > 0.05) different. *P <0.05 compared to control animals.

Table 4. Levels of follicle stimulating hormone after experiment in rats.

<table>
<thead>
<tr>
<th>Age of animals (months)</th>
<th>FSH Levels (mIU/ml)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Control</td>
</tr>
<tr>
<td>3 month old</td>
<td>0.333±0.58*a</td>
<td>3.800±2.76</td>
</tr>
<tr>
<td>5 month old</td>
<td>2.750±0.50 a</td>
<td>0.250±0.50</td>
</tr>
<tr>
<td>7 month old</td>
<td>0.0325±0.39 a</td>
<td>0.100±0.82</td>
</tr>
</tbody>
</table>

Data with similar letter are not significantly (P > 0.05) different. *P < 0.05 compared to control animals.

different *P < 0.05 compared to control animals. Table 1 represents values of weight (g) changes in animals after experiment in different age groups. Significant difference (p < 0.05) was recorded between experimental and control animals among all three age groups.

Significant changes in weights were recorded in all age groups: weight gain of 34.6g in normal control, while experimental had mean weight loss of 29.66g. Also significant (p ≤ 0.05) weights changes in 5-months old animals were also found with weight gain in normal controls (42.5 g). However, a loss in weight was recorded in experimental group (28.25 g).

Mean weight gain of 16.25 g was observed in normal control of 7-month old animals; though a loss was recorded in experimental animals (16.00 g). There was no significant (P > 0.05) difference in weight loss between the three age groups.

Table 2 represents values of Blood lead concentration in different animal age groups. Significant differences (P ≤ 0.05) were recorded in experimental compared to control groups.

While there was no significant (P > 0.05) difference in Blood Lead levels between all age groups among experimental animals.

Table 3 represents values for levels of luteinizing hormone in different animal age groups. There was no significant (P > 0.05) difference between experimental and control groups. A significant (P < 0.05) difference in LH level between 3-months old compared to 5- and 7-months old experimental animals was recorded with more level among 3-months old animals.

Table 4 shows levels of Follicle Stimulating Hormone in different animal age groups. There was significant (P < 0.05) reduction in experimental group compared to control animals in 3-months old animals. No significant (P > 0.05) difference in FSH levels between all age groups in experimental animals was observed.

Table 5 represents values of testosterone levels in
different animal age groups. Significant (P < 0.05) reduction in Testosterone Levels was recorded in experimental animals of 5- and 7-months old compared to control rats.

Also a significant (P < 0.05) decrease in testosterone levels between 3-months old compared to 7-months old experimental animals was recorded with more decrease among 7-months old animals.

DISCUSSION

This study supports other workers (Cezard and Haguenoer, 1992) who suggested that the weight loss may be attributed to loss of appetite and gastrointestinal disturbances; as well as to interruption in absorption and overall metabolism of feed nutrients (Marchlewicz et al., 2006). Even though there was no significant (P > 0.05) difference between the three age groups, lead effect on weight loss was observed to be more pronounced in the younger 3-months old rats compared to the older ones.

Lead effect on reduction of body weight has been reported by other workers (Szmyrezak et al., 1983; Aseth et al., 1995; Tejon et al., 2006; Jegede et al., 2013). Such loss of body weight might also be due to interruption of absorption and metabolism of essential feed nutrients by lead acetate (Marija et al., 2004).

Absorption of lead presumably took place in all lead-treated groups across all ages, as all control groups had plasma lead level not more than 18 µg/dl. This shows the absence of contamination of animals in these control groups. After absorption into the blood, 95% of lead is bound to erythrocytes due to their high affinity for the metal. These cells contain the majority of lead found in blood stream, and the remaining part stays in plasma to be carried to other tissues; lead acetate and lead nitrate administration have been shown to increase blood lead level in experimental animals (Sokol, 1987; Ferguson et al., 1998; Sharma et al., 2011; Monira, et al. 2012). Also there was no significant (P > 0.05) difference in blood lead levels between age groups among experimental animals, suggesting same manner of lead absorption between the age groups.

There is no significant difference in LH levels between the experimental and control rats. This is in accordance to Sokol (1987) and Fatima et al. (2011) that lead showed no significant effect on LH level, but contrary to findings of Camoratto (1990), Mukherjee and Mukhopadhyay (2009) and Taiwo et al. (2010), who reported that lead decreases LH concentration in experimental animals. While, an age-related difference among experimental animals was recorded with higher increase in LH among 3-months old animals.

Studies in rats have also demonstrated direct effect of lead on the testes and interference in the hypothalamic-pituitary axis (Saxena et al., 1989); disruption of the hypothalamic control of pituitary hormone secretion and in turn, spermatogenesis (Sokol, 1987); also gonadotoxic (Taiwo, et al. 2010).

Lead caused significant reduction in FSH level among 3-months old age group in this study. This is in conformity with Sokol (1987), but contrary to Raule and Morra (1952) and Petrusz (1979), who reported that lead increased FSH concentration. Increased concentration of FSH has also been reported following lead exposure in rats (Petrusz et al., 1979). Even though unchanged FSH concentrations in lead acetate treated mice were also reported (Pinon-Lataillade, et al. 1995), such differences in FSH secretion levels might relate to different lead levels and/or the duration of exposure among subjects (Mohnsen et al., 2011).

Lead poisoning caused age-related reduction of testosterone level in this study with decrease more pronounced among 7-months old animals. This significant (P ≤ 0.05) reduction in testosterone levels is also in conformity with reports of Cullen et al. (1983), Sokol (1987), Camoratto (1990), Mukherjee and Mukhopadhyay (2009), Fatima et al. (2011) and Taiwo et al. (2010), who reported similar effects. The study by Fatima et al. (2011) supports the hypothesis that lead exerts its toxic effects on the hypothalamic or supra-hypothalamic sites, leaving an intact pituitary-testicular axis intact. In this study, lead showed no significant effect on the LH levels, but significant decrease in testosterone. This suggests that lead exerts its effect more at the testicular level. This study also supports the finding of Sokol (1987), Wadi (1999) and Taiwo et al. (2010) who ascerted that lead targets the spermatogenesis and

<table>
<thead>
<tr>
<th>Age of Animals (months)</th>
<th>Testosterone levels (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
</tr>
<tr>
<td>3-month old</td>
<td>0.110±0.03a</td>
</tr>
<tr>
<td>5-month old</td>
<td>1.310±1.53ac</td>
</tr>
<tr>
<td>7-month old</td>
<td>0.523±0.26bc</td>
</tr>
</tbody>
</table>

Data with similar letter are not significantly (P > 0.05) different. *P < 0.05 compared to control animals.
spersms within the epididymis by producing reproductive toxicity rather than acting within the hypothalamic-pituitary-testicular (H-P-T) axis. They also suggested that the gonadotoxic effects of lead are on the intra-testicular sites with minimal effects on hormonal levels and no effect on extra testicular sites. Lead induced imbalances in the HPT hormonal axis, which causes pituitary cells to release inappropriate levels of LH and change the steroid negative feedback loop (Ronis et al. 1996), usually at the hypothalamus level (Grattan, et al. 1996).

Conclusion

Lead increases LH levels and significantly reduces FSH, testosterone levels in the experimental group and this effect on LH was more pronounced in younger age group, while the older age groups showed lower testosterone levels.

Conflict of interest

The authors have not declared any conflict of interest

REFERENCES

WHO (2000). Environmental pollution. [Internet Material]. Available at: http://www.who.int/topics/environmental_pollution/en/
Journal of Physiology and Pathophysiology

Related Journals Published by Academic Journals

- Journal of Physiotherapy and Occupational Therapy
- Journal of Parasitology and Vector Biology
- Clinical Reviews and Opinions
- Journal of Clinical Pathology and Forensic Medicine
- Journal of Infectious Diseases and Immunity
- International Journal of Nutrition and Metabolism
- Journal of Dentistry and Oral Hygiene