ABOUT JCREO

The Journal of Medical Laboratory and Diagnosis (JMLD) is published monthly (one volume per year) by Academic Journals.

The Journal of Cancer Research and Experimental Oncology (JCREO) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as mammography, chemotherapy, cancer prevention, advances in monoclonal antibody therapy etc.

Contact

Editorial Office: jcreo@academicjournals.org
Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JCREO
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Lalit Kumar,
All India Institute of Medical Sciences (AIIMS),
Department of Medical Oncology,
Ansari Nagar, New Delhi,
India.

Prof. Rodica-Mariana I.O.N.,
ICECHIM, Bucharest,
Romania.

Dr. Tommy Richard Sun-Wing Tong,
Department of Pathology,
Montefiore Medical Center of Albert Einstein,
College of Medicine,
USA.

Dr. Gelu Osian,
University of Medicine and Pharmacy "Iuliu Hatieganu",
Department of Surgery,
Romania.

Dr. Asmaa Gaber Abdou,
Department of Pathology,
Faculty of Medicine,
Menofiya University,
Egypt.

Dr. Hamid Jafarzadeh,
Mashhad Faculty of Dentistry,
Iran.

Dr. Imtiaz Wani,
S.M.H.S Hospital,
India.

Dr. Laxminarayana Bairy K.,
Kasturba Medical College Manipal-576104,
India.

Dr. Luca Lo Nigro,
Center of Pediatric Hematology Oncology,
University of Catania,
Catania,
Italy.

Dr. Mojgan Karimi Zarchi,
Shahid Sadoughi University of Medical Science,
Iran.

Dr. Lalit Kumar,
Institute Rotary Cancer Hospital (IRCH),
All India Institute of Medical Sciences,
Ansari Nagar, New Delhi 110029,
India.

Dr. Pritha Ghosh,
Indian Institute of Chemical Biology,
India.

Dr. Sanjay Mishra,
Department of Biotechnology,
College of Engineering and Technology,
(Affiliated to U.P. Technical University, Lucknow),
IFTM Campus, Delhi Road, Moradabad 244 001,
Uttar Pradesh,
India.

Prof. Viroj Wiwanitkit,
Wiwanitkit House, Bangkhae,
Bangkok Thailand 10160,
Thailand.

Dr. Komolafe Akinwumi Oluwole,
Ladoke Akintola University of Technology
Teaching Hospital,
Osogbo,
Osun state,
Nigeria.

Dr. Debmalya Barh,
Institute of Integrative Omics and Applied
Biotechnology (IIOAB),
India.

Dr. George Ntaios,
AHEPA Hospital,
Aristotle University of Thessaloniki,
Greece.

Prof. Heidi Abrahamse,
Laser Research Centre,
Faculty of Health Sciences,
University of Johannesburg,
South Africa.
Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JPP to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al.’ In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b; Tristan, 1993, 1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Cancer Research and Experimental Oncology (JCREO) is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2016, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JCREO, whether or not advised of the possibility of damage, and on any theory of liability. This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
Health related quality of life among breast cancer patients with unilateral arm lymphedema at cancer diseases hospital in Lusaka, Zambia

Victoria Mwiinga-Kalusopa, Catherine Ngoma and Kennedy Lishimpi
Full length Research

Health related quality of life among breast cancer patients with unilateral arm lymphedema at cancer diseases hospital in Lusaka, Zambia

Victoria Mwiinga-Kalusopa1,2*, Catherine Ngoma1 and Kennedy Lishimpi2

1Department of Nursing Sciences, School of Medicine, University of Zambia. 2Cancer Diseases Hospital, Lusaka, Zambia.

Received 9 March, 2016; Accepted 15 July, 2016

This study aims to determine health-related quality of life (HRQOL) of breast cancer patients with unilateral arm lymphedema one year after completion of treatment at Cancer Diseases Hospital. The study design comprises of a cross sectional study, where we assessed the HRQOL controlling for patient demographics, cancer stages and treatment types. Short form of 36 interview schedule was used to assess HRQol and to determine relationships among HRQoL components. The physical and functional well-being was significantly associated with lymphedema. Patients with moderate lymphedema were 10 times more likely to have physical impairment and 3 times more likely to have mild functionality impairment compared to patients with mild lymphedema. While patients with severe lymphedema were 25 times more likely to have mild functionality impairment compared to patients with mild lymphedema. The study showed that the physical and functional well-being were significantly affected by the presence of lymphedema after breast cancer treatment, lymphedema has an impact on long-term health related quality of life in survivors of breast cancer and its effects should not be underestimated.

Key words: Health related quality of life, breast cancer, patients, arm lymphedema.

INTRODUCTION

Due to advances in detection and treatment, increasing numbers of women are diagnosed with and surviving breast cancer each year in Zambia (Cancer Diseases Hospital, 2012). Breast cancer is the second most common cancer affecting women and accounts for 9% of all histologically proven cancers and accounts for 8% mortality rate among patients admitted at Cancer Diseases Hospital in Zambia (Cancer Diseases Hospital, 2012). Health related quality of life (HRQoL) is reported to be compromised in patients with chronic illness such as breast cancer, and alterations on HRQol have been seen in breast cancer patients with lymphedema in...
developed countries. Hence ensuring good HRQoL following breast treatment has become a focal point of cancer research and clinical interest.

HRQoL refers to the individual’s sense of well-being and ability to perform daily tasks, potentially affected by an illness and its treatment. It is a key concept in cancer care, encompassing several domains of health, including physical, psychological, social, and functional well-being directly affected by changes in health (Pearman, 2003). Physical well-being includes symptoms of pain, bleeding, fatigue and shortness of breath, while psychological well-being includes symptoms of depression, loss of fertility, problems related to sexual intercourse and anxiety. Social well-being includes engagement in activities or involvement with others. Functional well-being relates to whether a patient for example is able to manage a household, use the telephone or dress independently. Lymphedema or "big arm" is an increase in volume of the upper limb due to accumulation of water, protein and fats following damage to the lymphatic system caused by axillary lymph node clearance (Lawenda et al., 2009). Affected patients can experience swelling, pain, arm tightness, heaviness of the arm, and recurrent skin infections (Lawenda et al., 2009; Matawan and Mak, 2008). Breast Cancer-related lymphedema due to impaired lymphatic drainage from the arm secondary to axillary surgery and/or radiotherapy is one of the common side effects occurring in 12 to 54% of cases (Clark et al., 2005; Fu and Rosedale, 2009; Hayes et al., 2012).

As an incurable and progressive condition characterized by chronic swelling of the limb it can cause significant physical, functional, psychological, and social morbidity and may severely impact HRQoL, thus downgrading HRQoL (Keeley et al., 2010). Breast Cancer patients may find lymphedema more distressing than mastectomy, because hiding the physiological manifestations and loss of function of lymphedema is harder. Overall, these factors lead to decreased HRQoL for breast cancer patients (Pyszel, 2006). Breast Cancer patients do not die of lymphedema, but their HRQoL is severely impaired (Maree, 2011).

METHODOLOGY

The study was conducted at the Cancer Diseases Hospital (CDH) a modern specialized tertiary hospital offering radiation therapy, chemotherapy and hormonal cancer treatments. The hospital serves as a national referral centre for all cancers nationwide, the catchment population comprises all 107 districts and 10 provinces of Zambia. In addition to the Zambian population, the hospital also caters for patients from neighbouring countries.

A cross-sectional study design was used and 125 breast cancer patients who were willing to participate in the study were conveniently selected. The study population consisted of all breast cancer patients who had been visiting CDH breast review clinics from April, 2006 to December, 2013, were 18 years of age and above, had mastectomy and axillary dissection, completed Radiation therapy, had unilateral breast cancer with stage I, II, and III disease. Breast cancer patients who had Lymphedema in both upper limbs, had evidence of recurrent breast cancer in Axilla and stage 4 diseases were excluded. Based on 9% prevalence of breast cancer cases at CDH, 125 participants were enrolled in the study in order to identify true prevalence with precision of +/- 5% and 95% confidence interval. The purpose, risks and benefits of the study were explained to the participants to enable them make informed consent to participate in the study. The quality of life Short Form 36 (SF-36) item scale interview schedule was used to collect data from the study participants.

The tool had 4 sections Demographic data, arm circumference measurements, disease stage and type of treated received AND HRQoL questionnaire. The tool was chosen for this study because it met the HRQoL components of the study which were the physical, psychological, functional and social well-being among breast cancer patients post treatment (Ware and Kosinski, 2004). Arm circumferences of all breast cancer patients were measured to determine the prevalence of lymphedema, and then HRQoL was measured among those with lymphedema. This method is more practical in clinical settings (Fu and Rosedale, 2009). Circumferential measurement points were at 10 cm above elbow crease, 7 cm below elbow crease, wrist, and mid-palm level using a non-stretch measuring tape. The contra lateral arm circumference at corresponding levels was used as a reference to determine lymphedema. Lymphedema was defined as an increase in arm circumference at any level by 2 cm or more compared to the contra lateral side. The severity of lymphedema was divided into 3 degrees (a difference in circumference up to 2 cm indicates mild lymphedema, a difference of 2 to 5 cm shows moderate lymphedema, and a difference of more than 5 cm will be considered severe lymphedema. Age, sex, educational status, marital status, employment status, and religion were obtained from the participant as well as the participants’ files. The demographic data was required because it has been shown to influence HRQoL outcomes post breast cancer treatment.

Data was analyzed using STATA version 10. The prevalence of arm Lymphedema was estimated using Stata 10.0 command proportion with options specifying the sub-groups. The relationships between the different categories of HRQoL were investigated with Pearson’s Chi Squared test for association and further by fitting logistic regression models. The effect that Arm Lymphedema has on the physical, psychological, functional and social wellbeing were assessed with logistic regression analysis controlling for hypothesised confounders. Only the independent variables that were determined to be significantly associated with the outcome variables after bivariate Chi-square testing were included into the logistic regression model. From the chi-squared association analysis, only the physical impairment, mild and moderate functionality impairment were statistically associated with lymphedema. We hypothesised that age, sex, education status, and certain HRQoL indicators could confound the relationship between Lymphedema severity and outcome HRQoL variables.

Three logistic regression model were fitted, one for each of the outcomes to investigate the effect of lymphedema on HRQoL including all the possible confounding variables. Likelihood ratio tests were performed to determine the impact of each independent variable on the model.

RESULTS

Out of the 125 clients who participated in the study, 75 clients had mild lymphedema, 35 clients had moderate a mild form of arm lymphedema (100%). Very few participants had stage III breast cancer (mild 51.72,
lymphedema and 15 had severe lymphedema (Table 1). 13 clients had stage I disease, 54 had stage II disease while 58 had stage III disease (Table 2). Table 2 shows the distribution of lymphedema stages among the 125 participants and the prevalence of lymphedema in percentage. Out of the 125 participants recruited in the study, 75 (60%) of the participants developed mild lymphedema, 35 (28%) of them had moderate lymphedema and 15 (12%) of them had severe lymphedema. All participants received surgery, radiation therapy, chemotherapy and hormonal therapy (Table 3).

Three cancer stages were considered in this study. Table 3 indicates that 13 participants (10.4%) had stage I breast cancer, 54 (43.2%) had stage II breast cancer and 58 (46.4) had stage III disease. Therefore, stage III breast cancer was the commonest among the participants. All the participants with stage I disease were presented with a mild form of lymphedema (Figure 1). Figure 1 shows the prevalence of arm lymphedema stages across the three stages of breast cancer in percentages (stage I, II, III). All patients with stage I disease had moderate 34.49 and severe stage of lymphedema 13.79). From the chi-squared association analysis, physical well-being, mild and moderate functionality well-being were statistically associated with lymphedema (Table 4).

From the chi-squared association analysis, Physical well-being (p-value <0.001), mild (p-value 0.001) and moderate (p-value 0.015) functionality well-being were statistically associated with lymphedema as indicated by the significant p-values. Participant’s age (p-value <0.001), marital status (p-value <0.001) and patients education (p-value <0.001) were determined to be those that were associated either with the outcome or independent variable of interest. After controlling for confounders, it was determined that participants with moderate lymphedema were 10.17 times more likely to have physical impairment compared to patients with mild lymphedema (Table 5) After controlling for confounders, it was determined that participants with moderate lymphedema were 10.17 (95% CI 2.25 to 45.97) times more likely to have physical impairment compared to patients with mild lymphedema, p-value was significant at 0.003. Those with psychological impairment were 14.41 (95% CI 3.95 to 52.51) times more likely to have physical impairment than those not impaired, significant P-Value was 0.001. After considering the effect of confounders, it was determined that those with moderate lymphedema were 3 times more likely to have mild functionality impairment compared to patients with mild lymphedema (Table 6).

After considering the effect of confounders, it was determined that those with moderate lymphedema were 2.60 (95% CI 0.82 to 8.23) times more likely to have mild functionality impairment compared to patients with mild lymphedema as indicated by P-Value 0.105. Those with severe lymphedema were 25.11(95% CI 3.93 to 160.65) times more likely to have impaired mild functionality compared to patients with mild lymphedema as indicated by significant P-Value 0.001. After accounting for confounders, it was determined that those with moderate lymphedema were 3 times more likely to have moderate functionality impairment than those with mild lymphedema (Table 7) After accounting for confounders, it was determined that those with moderate lymphedema were 3.30 (95% CI 1.36 to 8.02) times more likely to have moderate functionality than those with mild lymphedema as its significant P-value was 0.008. Those with severe lymphedema were 5.99(95% CI 1.64 to 21.79) likely to develop impaired moderate functionality than those with mild lymphedema as indicated by a significant Z test P-value was at 0.007.

| Table 1. Categories of arm lymphedema among the respondents (n=125). |
|-----------------|---------|---------|
| Category | Frequency | Percentage |
| Mild | 75 | 60.0 |
| Moderate | 35 | 28.0 |
| Severe | 15 | 12.0 |
| Total | 125 | 100 |

| Table 2. Lymphedema across cancer stages (n=125). |
|-----------------|---------|---------|
| Stage of cancer | Frequency | Percentage |
| Stage I | 13 | 10.4 |
| Stage II | 54 | 43.2 |
| Stage III | 58 | 46.4 |
| Total | 125 | 100 |

| Table 3. Breast cancer treatment received (n=125). |
|-----------------|---------|---------|
| Treatment type | State | Frequency | Percentage |
| Surgery | No | 0 | 0 |
| | Yes | 125 | 100 |
| Radiation therapy | No | 0 | 0 |
| | Yes | 125 | 100 |
| Chemotherapy | No | 0 | 0 |
| | Yes | 125 | 100 |
| Hormones | No | 0 | 0 |
| | Yes | 125 | 100 |
| Total | Yes | 125 | 100 |
The prevalence of lymphedema in the current study is in the range of a study conducted by Hayes et al. (2012, 2008) in Australia which showed a range of 10 to 80%. The median for this study was 28% for the three stages of lymphedema. This result is in line with a study conducted by Clark et al. (2005) in the United Kingdom which reported the median prevalence range of lymphedema to be 11 to 36%. In addition, Armer and Stewart (2005) in a study conducted in United States of America reported similar findings.

A bivariate analysis with Pearson’s Chi-Squared test for association with p-value <0.05 between the hypothesized outcomes of interest among breast cancer patients with arm lymphedema was explored (Table 4). From the chi-squared association analysis, only the physical component (p-value <0.001), mild functional well-being components (p-value 0.001) and moderate functional well-being component (p-value 0.015) were statistically associated with lymphedema. In this study, age, gender, education and marital status were found to have a positive association with lymphedema, however, logistic regression fitting showed that lymphedema had a significant independent effect on the physical and functional well-being only. This could mean that presence of lymphedema one year following breast cancer treatment is associated with physical, mild and moderate functional impairment among breast cancer patients.

The results of this study collaborate with the results by So-Hyun et al. (2012) in a study conducted in China among Chinese women with breast cancer related lymphedema which showed that lymphedema is associated with inferior component of health related quality of life. Mak et al. (2009), in a study conducted in Korea reported that lymphedema was associated with an inferior quality of life and a higher level of arm-symptom associated distress. In addition, Beaulac et al. (2002) in a study conducted in the United States of America reported similar findings.

In this study, the psychological well-being (p-value 0.375) and social well-being (p-value 0.096) aspects were not affected by presence of lymphedema. These results are similar to a study conducted by Mak et al. (2009) in Korea which showed that the period of one year was sufficient time to adapt psychologically and socially to the disease and treatment in breast cancer patients regardless of the existence of lymphedema. The other reason is that most of the participants in this social and family life changed little due to the disease. This reason is in collaboration with So-Hyun et al. (2012) in a study conducted in China that reported similar results. It could therefore be suggested that breast cancer patients in our setting who complete breast cancer treatment and develop lymphedema should expect negative effects on their physical and functionality well-being.
Table 4. Bivariate analysis with observed association between covariates, Pearson’s chi-squared p values <0.05 between the hypothesized outcomes of interest among breast cancer patients with arm lymphedema at cancer diseases hospital in Lusaka, Zambia (n=125).

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Physical wellbeing</th>
<th>Social wellbeing</th>
<th>Psychological wellbeing</th>
<th>Mild functionality</th>
<th>Moderate functionality</th>
<th>Vigorous functionality</th>
<th>Sexually functional</th>
<th>Lymphedema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical wellbeing</td>
<td>-</td>
<td>21.09 <0.001*</td>
<td>34.30 <0.001*</td>
<td>5.61; 0.018*</td>
<td>3.74; 0.053</td>
<td>6.02; 0.014*</td>
<td>19.67 <0.001*</td>
<td>30.67 <0.001*</td>
</tr>
<tr>
<td>Social wellbeing</td>
<td>-</td>
<td>6.84; 0.009*</td>
<td>0.02; 0.892</td>
<td>3.81; 0.051</td>
<td>0.002; 0.970</td>
<td>0.7816; 0.377</td>
<td>4.71; 0.096</td>
<td></td>
</tr>
<tr>
<td>Psychological wellbeing</td>
<td>-</td>
<td>-</td>
<td>12.63 <0.001*</td>
<td>2.32; 0.128</td>
<td>3.47; 0.063</td>
<td>2.25; 0.133</td>
<td>1.96; 0.375</td>
<td></td>
</tr>
<tr>
<td>Mild functionality</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50.75; <0.001*</td>
<td>14.02 <0.001*</td>
<td>0.22; 0.643</td>
<td>14.69; 0.001*</td>
<td></td>
</tr>
<tr>
<td>Moderate functionality</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14.51 <0.001*</td>
<td>4.08; 0.044*</td>
<td>8.45; 0.015*</td>
<td></td>
</tr>
<tr>
<td>Vigorous functionality</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.54; 0.463</td>
<td>3.39; 0.183</td>
<td></td>
</tr>
<tr>
<td>Sexually functional</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.54; 0.170</td>
<td></td>
</tr>
<tr>
<td>Patient’s sex</td>
<td>1.55; 0.214</td>
<td>2.85; 0.091</td>
<td>2.00; 0.157</td>
<td>2.85; 0.091</td>
<td>2.13; 0.144</td>
<td>0.32; 0.572</td>
<td>0.67; 0.413</td>
<td></td>
</tr>
<tr>
<td>Patient’s age</td>
<td>3.64; 0.162</td>
<td>1.11; 0.574</td>
<td>1.61; 0.447</td>
<td>5.08; 0.079</td>
<td>0.01; 0.996</td>
<td>5.24; 0.073</td>
<td>10.82; 0.004*</td>
<td></td>
</tr>
<tr>
<td>Patient’s marital status</td>
<td>0.29; 0.588</td>
<td>3.98; 0.046*</td>
<td>3.93; 0.047*</td>
<td>0.07; 0.785</td>
<td>1.22; 0.270</td>
<td>0.01; 0.948</td>
<td>0.25; 0.617</td>
<td></td>
</tr>
<tr>
<td>Patient’s education</td>
<td>1.48; 0.476</td>
<td>1.30; 0.522</td>
<td>7.96; 0.019*</td>
<td>14.39; 0.001*</td>
<td>3.86; 0.145</td>
<td>2.04; 0.361</td>
<td>0.88; 0.642</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Logistic regression model 1 output describing physical impairment (n=125).

<table>
<thead>
<tr>
<th>Logistic regression model statistics</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>125</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Likelihood ratio Chi² statistic</td>
<td>73.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chi² p value</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent/independent variables</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>Z test P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Physical Impairment</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Moderate lymphedema vs. Mild</td>
<td>10.17</td>
<td>2.25</td>
<td>45.97</td>
</tr>
<tr>
<td>Psychological impairment vs. Not impaired</td>
<td>14.41</td>
<td>3.95</td>
<td>52.51</td>
</tr>
</tbody>
</table>

A logistic regression was performed to determine the effects of lymphedema on the physical, mild and moderate functionality well-being. The likelihood ratio tests were performed to determine the impact of each independent variable on the models. Using the odds ratio (OR), the results indicated a significant association between lymphedema and the physical, mild functionality and moderate functionality of breast cancer patients. It was determined that patients with moderate lymphedema were 10 times more likely to have physical impairment compared to patients with mild lymphedema.

Conclusion

From the mild functionality impairment, it was
Table 6. Logistic regression model 2 outputs describing mild functionality impairment (n=125).

<table>
<thead>
<tr>
<th>Logistic regression model statistics</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>125</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Likelihood ratio Chi² statistic</td>
<td>42.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chi² p value</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dependent/independent variables</td>
<td>Odds Ratio</td>
<td>95% CI</td>
<td>Z test</td>
<td>P Value</td>
</tr>
</tbody>
</table>

Model 2: Impairment Mild functionality

<table>
<thead>
<tr>
<th>Dependent/Independent variables</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>Z test</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate Lymphedema vs. Mild</td>
<td>2.60</td>
<td>0.82</td>
<td>8.23</td>
<td>0.105</td>
</tr>
<tr>
<td>Severe Lymphedema vs. Mild</td>
<td>25.11</td>
<td>3.93</td>
<td>160.65</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 7. Logistic regression model 3 output describing moderate functionality impairment (n=125).

<table>
<thead>
<tr>
<th>Logistic regression model statistics</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>125</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Likelihood ratio Chi² statistic</td>
<td>16.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chi² p value</td>
<td>0.003</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dependent/independent variables</td>
<td>Odds Ratio</td>
<td>95% CI</td>
<td>Z test</td>
<td>P Value</td>
</tr>
</tbody>
</table>

Model 3: Impaired moderate functionality

<table>
<thead>
<tr>
<th>Dependent/Independent variables</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>Z test</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate Lymphedema vs. Mild</td>
<td>3.30</td>
<td>1.36</td>
<td>8.02</td>
<td>0.008</td>
</tr>
<tr>
<td>Severe Lymphedema vs. Mild</td>
<td>5.99</td>
<td>1.64</td>
<td>21.79</td>
<td>0.007</td>
</tr>
</tbody>
</table>

determined that patients with moderate lymphedema were 3 times more likely to have mild functionality impairment compared to patients with mild lymphedema. While patients with severe lymphedema were 25 times more likely to have mild functionality impairment compared to patients with mild lymphedema. The likelihood tests performed on moderate functionality impairment determined that patients with moderate lymphedema were 3 times more likely to have moderate functionality impairment compared to patients with mild lymphedema. While patients with severe lymphedema were 6 times more likely to have moderate functionality impairment compared to patients with mild lymphedema. The study suggest that preventing, diagnosing and treating lymphedema when it is mild is important because those with mild lymphedema make up the cohort that gives rise to preventable severe debilitating lymphedema.

The regression model results from the study could help nurses and clinicians in practice to know the physical and functional impairment that breast cancer patients with moderate and mild lymphedema encounter as they asses and manage these patients.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors would like to thank the participants for the role they played in providing valuable data for the successful completion of the study. They would like to thank the Ministry of Health for sponsoring the Masters of Science in nursing programme at the University of Zambia. Many thanks go to the University of Zambia and in particular the Department of Nursing Sciences for providing the necessary learning materials and facilities.

REFERENCES

Journal of Cancer Research and Experimental Oncology

Related Journals Published by Academic Journals

- International Journal of Medicine and Medical Sciences
- Journal of Medicinal Plant Research
- Journal of Dentistry and Oral Hygiene
- African Journal of Pharmacy and Pharmacology
- Journal of Clinical Medicine and Research
- Clinical Reviews and Opinions
- Medical Practice and Reviews