ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R.China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province, China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department,
Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine,
Gaziantep University,
Turkey.

Dr. Arash Kheradmand
Lorestan University,
Iran.

Dr. Sadiq Azam
Department of Biotechnology,
Abdul Wali Khan University Mardan,
Pakistan.

Dr. Arash Khe
radmand
Lorestan University,
Iran.

Prof Dr Cemşit Karakurt
Pediatrics and Pediatric Cardiology
Inonu University Faculty of Medicine,
Turkey.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine,
Gaziantep University,
Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection,
Ladoke Akintola University of Technology,
Ogbomoso
Nigeria.

Prof Swati Sen Mandi
Division of plant Biology,
Bose Institute
India.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center
Cairo
Egypt.

Kongyun Wu
Department of Biology and Environment Engineering,
Guiyang College,
China.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute,
Izatnagar, Bareilly, UP-243122
Veterinary Medicine,
India.
ARTICLES

Anti-candida biofilm properties of Cameroonian plant extracts
Zeuko’o M. Elisabeth, Virginio C. Lopez, Sara M. Soto and Fekam B. Fabrice 603

Antimicrobial activities and preliminary phytochemical tests of crude extracts of important ethnopharmacological plants from Brazilian Cerrado
Caroline N. Maia, Cláudia M. da Silva, Ronaldo R. Júnior, Dario A. Oliveira, Perácio R. B. Ferreira, Carla Soares Godinho, Elio G. Fernandes and Henrique M. Valério 612

Anti-HIV-1 activity in human primary cells and Anti-HIV-1 RT inhibitory activity of extracts from the red seaweed Acanthophora spicifera
Caio Cesar Richter Nogueira, Izabel Christina Nunes de Palmer Paixão, Claudio Cesar Cirne-Santos, Paulo Roberto Soares Stephens, Roberto Campos Villaça, Helena de Souza Pereira and Valéria Laneuville Teixeira 621
Full Length Research Paper

Anti-candida biofilm properties of Cameroonian plant extracts

Zeuko’o M. Elisabeth¹, Virginio C. Lopez², Sara M. Soto²* and Fekam B. Fabrice¹

¹Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé 1, P. O. Box 812, Yaoundé, Cameroon.
²Barcelona Institute for Global Health (ISGlobal) - Hospital Clínic - Universitat de Barcelona, Spain.

Received 1 June, 2016; Accepted 23 August, 2016

Candida infections can be superficial, invasive or disseminating. The virulence of Candida species has been attributed to several factors, including the promotion of hyphae and biofilm formation, adherence to host tissues, and response to environmental changes and morphogenesis. Resistance to many clinically used antifungal agents has led to the need to identify new compounds and drugs for therapeutic use. Therefore, the objective of this study was to evaluate the anti-candida and anti-biofilm activities of some Cameroonian plant extracts against Candida albicans and Candida glabrata. The biofilm biomass of C. albicans and C. glabrata was quantified using the violet crystal protocol. A microbroth dilution method was used to determine the minimum inhibitory concentrations (MICs), and a biofilm enumeration assay was employed to determine the minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) of the extracts. The absorbance value of the biofilm biomass of C. albicans was 0.14±0.01 and that of C. glabrata was 0.51±0.06. Eugenia uniflora and Terminalia mantaly aqueous leaf extracts showed MICs of 0.3125 and 0.625 mg/mL for C. glabrata, while the MICs for C. albicans were 10 and 0.625 mg/mL, respectively. The MBIC and MBEC of C. glabrata of E. uniflora aqueous leaf extracts were 0.125 and 0.5 mg/mL, respectively, and 0.45 and >1.8 mg/mL, respectively for T. mantaly. The results of this study demonstrated the in vitro anti-biofilm potential of T. mantaly and E. uniflora aqueous leaf extracts against Candida biofilm. Nonetheless, further analyses of a larger number of Candida isolates and plant extracts are needed to validate these findings.

Key words: Anti-candida, anti-biofilm, Eugenia uniflora, Terminalia mantaly.

INTRODUCTION

Candida species are the most common fungal pathogens in humans and the causative agents of superficial and systemic candidiasis, giving rise to severe morbidity in millions of individuals worldwide (Ruhnke, 2014; Silveira-
Gomes et al., 2011; Pfaller and Diekema, 2007). The incidence of infections is increasing among compromised patient groups such as cancer patients on chemotherapy, patients receiving broad-spectrum antibiotic treatment, and HIV-infected individuals (Neeta and Uttamkumar, 2011; Ye et al., 2004). Vaginal candidiasis is quite common in women and approximately 75% present this infection once in their lifetime. C. albicans is the most prevalent fungal pathogen in humans. Mucosal infections of Candida albicans are often benign, but systemic infections are usually fatal (Ahmadey and Mohamed, 2014; Foxman et al., 2013). Although C. albicans is the most frequent cause of infection, non-albicans species infections are on the rise (Mohandas and Ballal, 2011). Thus, Candida glabrata was reported to be the second most common agent of vaginal candidiasis; however, the increasing incidence of cases of vaginal candidiasis caused by non- C. albicans species has not yet been well established (Ahmadey and Mohamed, 2014; Esmaeilzadeh et al., 2009). In the Littoral Region of Cameroon (Nylon District Hospital), the prevalence of oral and vaginal candidiasis in 2012 was 52.6 and 29.7%, respectively (Njunda et al., 2012). The prevalence of oral candidiasis among HIV patients in the study population of the Mutengene Baptist Hospital in the South West Region in 2013 was 66.7% (Njunda et al., 2013). It has been reported that the mortality rate of invasive infections is 40% (Klevay et al., 2009; Pfaller and Diekema, 2007; Bertagnolio et al., 2004) and C. albicans is estimated to be responsible for 50-60% of the cases of invasive candidiasis (Perlroth et al., 2007; Pfaller and Diekema, 2007).

One of the factors contributing to the virulence of Candida is the formation of surface attached microbial communities known as biofilms (Seneviratne et al., 2008). Biofilm formation helps the microorganisms evade host defenses, exist as a persistent source of infection and develop resistance against antifungal agents. The resistance of biofilm forming Candida spp. to antifungal agents represents a major challenge especially in the design of therapeutic and prophylactic strategies (Golia et al., 2011). Aside from increasing the resistance to the available antifungal compounds, the toxicity of some of these compounds is high (Shreaz et al., 2011; Georgopapadakou and Walsh, 1994). Some major antifungals are limited to a few chemical classes such as Amphotericin B, a polyene fungicidal agent that has been implicated in hepatotoxicity and nephrotoxicity, coupled with decreasing efficacy (Pan et al., 2009; Dismukes, 2000; Arthington-Skaggs et al., 2000). Hence, the need for inexpensive, effective and less toxic antifungals is imperative.

Medicinal plants have been the major health care measure of resource-poor populations worldwide (Duraipandian and Ignacimuthu, 2011; Tharkar et al., 2010). According to the WHO, 80% of the world’s population uses natural remedies and traditional medicines (WHO, 2001, 2003). This is particularly common in Africa, as well as in most low-income countries, where a high proportion of the population still resorts to traditional medicine for primary health care. Cameroon has a rich biodiversity, with ~8,620 plant species (Mbathou, 2004; Earth Trends, 2003), some of which are commonly used in the treatment of several microbial infections (Kuete and Efferth, 2010). Some plant extracts have demonstrated positive response during pharmacological investigations (Suresh et al., 2010; Patel and Coogan, 2008).

Therefore, the main objective of the present study was to evaluate the anti-candida biofilm properties of several plant extracts by determining the minimum inhibitory concentrations (MIC), minimum biofilm inhibition and minimum biofilm eradication concentrations (MBEC).

MATERIALS AND METHODS

Plant material and extraction

Leaves, twigs, stem bark and stems of different plants were collected at Mount Kalla in Yaoundé (Central region) and Dschang (West region) Cameroon on the 11th of September 2011 and 2014, and voucher specimens were deposited at the National Herbarium of Cameroon, Yaoundé. The plant parts were individually dried at room temperature and then ground to fine powder. Five hundred grams (500 g) of each sample were macerated with regular stirring in 2 L of 95% ethanol or distilled water for 72 h. The filtrate was evaporated using a rotary evaporator (Rotavapor BÜCHI 011). The plant residues were dried and macerated in distilled water for 72 h and the filtrate dried at room temperature (25-28°C) using a fan. The extraction yields were calculated as percentage relative to the starting plant material.

Biofilm quantification

The biofilm forming ability was assessed by quantification of total biomass by violet crystal (VC) staining. Thus, after washing, biofilms were fixed with 200 μl of methanol 99%, which was removed after 15 min. The microtire plates were allowed to dry at room temperature, and 200 μl of VC (1% v/v) were added to each well and incubated for 5 min. The wells were then gently washed with sterile, ultra-pure water and 200 μl of acetic acid (33% v/v) were added to release and dissolve the stain. The absorbance of the solution obtained was read in triplicate in a microtire plate reader (Bio-Tek Synergy HT, Izasa, Lisbon, Portugal) at 590 nm. The experiment was repeated three times (Silva et al., 2009).

Screening of plants extracts for MICs

Two clinical Candida isolates (C. albicans and C. glabrata) were collected from patients with vaginal candidiasis in the Hospital Clinic of Barcelona. The inoculum of each yeast isolate and strain was prepared from a 2-day-old culture on Sabouraud Dextrose Agar (SDA) at 37°C. The suspension was adjusted to 1 x 10^3 cells/mL using yeast nitrogen base (YNB) medium from 0.5 McFarland standards. The broth micro-dilution method was used to assess yeast susceptibility to extracts using YNB medium supplemented...
with 5% glucose.

Briefly, each extract (200 mg/mL in 5% DMSO) was serially diluted in YNB supplemented with 5% glucose in 96-well plates. Eighty microlitres of inoculum standardized at 1 x 10⁵ colony forming units (CFU)/mL was added to each well to achieve a final volume of 230 µL. The final concentrations tested ranged between 0.039 and 40 mg/mL for the crude extracts. The positive control consisted of microorganisms growing without extract. After 48 h of incubation at 37°C, the MIC was determined as the lowest concentration of the crude extract in the broth medium that inhibited visible growth of the microorganisms tested. All tests were performed in duplicate. Wells without inoculum or extract were included in each plate to control background sterility and growth. The extracts with the greatest activity were chosen to continue the experimental part of the work.

Determination of the MBIC and MBEC using the Calgary protocol

The isolates were cultured overnight in SDA medium. After preparation of 0.5 McFarland in broth medium, 200 µL were added to each well of a flat-bottom 96-well microtitre plate (MBEC™ Biofilm Inoculator Innovotech product panel P and G panel lot: 14040004).

For the MBIC, flat-bottom microtitre plates containing two-fold dilutions of plant extract in 150 µL of YNB per well (antibiotic challenge plate) were used. The plant extracts included Eugenia uniflora aqueous leaf extract (1-0.125 mg/mL) and Terminalia mantaly aqueous leaf extracts (1.8-0.225 mg/mL) in C. glabrata, and (3.6-0.45 mg/mL) in C. albicans. Eighty microlitres of a subculture adjusted to 1 x 10⁵ CFU/mL was added to all the wells, except for those of the negative control, covered with the pegs lid in the biofilm growth plate, and incubated for 18-20 h at 37°C.

For the MBEC, Candida biofilms were formed by immersing the pegs of the cover lid into this biofilm growth plate, followed by incubation at 37°C for 20 h-24 h without shaking. The peg lids were rinsed three times in sterile water, placed onto new flat-bottom microtitre plates containing two-fold dilutions of plant extract in 150 µL of YNB per well (antibiotic challenge plate), and incubated for 18-20 hours at 37°C. The plant extracts included E. uniflora aqueous leaf extract (1-0.125 mg/mL) and T. mantaly aqueous leaf extracts (1.8-0.225 mg/mL) in C. glabrata, and (3.6-0.45mg/mL) in C. albicans.

After antibiotic incubation, the peg lids were washed three times with sterile water and placed into extract-free YNB fresh medium in a new flat-bottom microtitre plate (biofilm recovery plate). To transfer the biofilms from the pegs to the wells, each plate was sonicated at room temperature for 20 min (using a Bransonic 220; Branson Co., Shelton, Conn.). The peg lid was discarded and replaced by a standard lid. The sonicated culture media of each well of the microtitre plate was spread on YNB agar plates and incubated at 37°C for 24 h. Adequate biofilm growth for the positive control wells was defined as the number of colonies obtained after 24 h of incubation. The positive control contained microorganisms and culture medium, and the negative control included only medium. The results were expressed as the number of CFU counted in each extract concentration and per strain.

Phytochemical screening of E. uniflora and T. mantaly aqueous leaf extracts

Phytochemical analysis was done to identify the different components responsible for the activities observed according to the protocols described by Igwe (2004), Trease and Evans (1996) and Sofowora (1982).

RESULTS AND DISCUSSION

Plant extracts

The plant extracts used in the experiments were obtained as defined in the materials and methods section. Table 1 describes the plant collection site and date, and the extraction solvent used.

Biofilm quantification

The average value of C. albicans and C. glabrata biofilm was 0.14±0.01 and 0.51±0.06, respectively, and 0.13±0.02 for the negative control. Therefore, C. albicans was not considered in the biofilm inhibition studies.

Determination of the MIC

The aqueous leaf extracts of E. uniflora and T. mantaly showed the best MIC in C. glabrata with values ranging from 0.3-0.5 to 0.625-1 mg/mL, respectively. However, only the aqueous leaf extract of T. mantaly revealed the best activity in C. albicans, showing a MIC of 0.625 to 1.8 mg/mL. These extracts were selected for the determination of the MBIC and MBEC of the strains (Table 2).

Effect of E. uniflora and T. mantaly aqueous leaf extracts on biofilm inhibition and eradication in C. glabrata

Figure 1 shows the inhibition of biofilm formation of both extracts. T. mantaly aqueous leaf extract inhibited biofilm formation of C. glabrata at a concentration of 0.45 mg/mL, while E. uniflora aqueous leaf extract presented inhibition at a concentration of 0.125 mg/mL.

In C. glabrata, the MBEC of the E. uniflora aqueous leaf extracts ranged from 0.5-1 mg/mL. However, the eradication activity of the aqueous T. mantaly leaf extract was detected at concentrations >1.8 mg/mL (Figure 2).

Phytochemical studies

The different components presented in both extracts were flavonoids, saponins, tannins, glucosides, phenol, steroids, triterpenes and anthraquinones, among others. However, contrary to what was expected, anthocyanin was absent (Table 3).

DISCUSSION

Candida species are important opportunistic fungal
Table 1. Plant collection site and date, and extraction solvent.

<table>
<thead>
<tr>
<th>Plant number</th>
<th>Plant name and identification number</th>
<th>Plant parts</th>
<th>Date and place of collection</th>
<th>Extraction solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eremomastax speciosa No. HNC/136984</td>
<td>Leaves</td>
<td>2 August 2014 Dschang (West Region-Cameroon)</td>
<td>ES aqueous leaf</td>
</tr>
<tr>
<td>2</td>
<td>Hisbiscus noldeae No 9977SRFCAM</td>
<td>Leaves</td>
<td>2 August 2014 Dschang (West Region-Cameroon)</td>
<td>HN aqueous leaf</td>
</tr>
<tr>
<td>3</td>
<td>Piper umbellatum No 10391SRFCAM</td>
<td>Leaves, Seeds</td>
<td>2 August 2014 Dschang (West Region-Cameroon)</td>
<td>PU aqueous leaf; PU aqueous seeds</td>
</tr>
<tr>
<td>4</td>
<td>Polyalthia longifolia No</td>
<td>Twigs</td>
<td>14 July 2014 Mont kalla (Centre Region-Cameroon)</td>
<td>PL aqueous twigs</td>
</tr>
<tr>
<td>5</td>
<td>Uvariondendron calophyllum 28734/SFR/CAM</td>
<td>Leaves, stem, stem bark and twigs</td>
<td>11 September 2011 Mont kalla (Centre Region-Cameroon)</td>
<td>UCI aqueous, UCst aqueous, UCtr aqueous, UCtw aqueous, UCst H2O</td>
</tr>
<tr>
<td>6</td>
<td>Vernonia amadalyna No 35809HNC</td>
<td>Leaves</td>
<td>7 September 2014 Dschang (West Region-Cameroon)</td>
<td>Bitter leaf aqueous</td>
</tr>
<tr>
<td>7</td>
<td>Eugenia uniflora No 34063HNC</td>
<td>Leaves</td>
<td>7 September 2014 Yaoundé (Centre Region-Cameroon)</td>
<td>F aqueous leaf</td>
</tr>
<tr>
<td>8</td>
<td>Psidium Guava No 2884/SRFK/</td>
<td>Leaves</td>
<td>7 September 2014 Yaoundé (Centre Region-Cameroon)</td>
<td>Guava aqueous leaf</td>
</tr>
<tr>
<td>9</td>
<td>Dacyrodes edulis No 64929/HNC</td>
<td>Leaves</td>
<td>7 September 2014 Yaoundé (Centre Region-Cameroon)</td>
<td>Plum aqueous leaf</td>
</tr>
<tr>
<td>10</td>
<td>Mangifera indica No 57347HNC</td>
<td>Leaves</td>
<td>7 September 2014 Yaoundé (Centre Region-Cameroon)</td>
<td>Mango aqueous leaf</td>
</tr>
<tr>
<td>11</td>
<td>Eryngium foetidium No 1744/SRF/CAM</td>
<td>Leaves</td>
<td>7 September 2014 Yaoundé (Centre Region-Cameroon)</td>
<td>P aqueous leaf</td>
</tr>
<tr>
<td>12</td>
<td>Terminalia mantaly 64212/HNC</td>
<td>leaves and stem bark</td>
<td>7 September 2014 Yaoundé (Centre Region-Cameroon)</td>
<td>TeMsb aqueous, TMl aqueous</td>
</tr>
<tr>
<td>13</td>
<td>Terminalia catappa 51244/HNC</td>
<td>Leaves</td>
<td>7 September 2014 Yaoundé (Centre Region-Cameroon)</td>
<td>TCI aqueous</td>
</tr>
</tbody>
</table>

Pathogens due to the increasing occurrence of infections by these fungi, especially in patients with cancer, diabetes and HIV (Hamza et al., 2006). However, the antifungal agents used in the treatment of Candida infections and in biofilms can select drug-resistant microbes (Agarwal et al., 2008). The ability of these microorganisms to form biofilm together with the acquisition of new antimicrobial resistance, has led to new problems in treating infections caused by this pathogen. Thus, the WHO has recommended the evaluation of the effectiveness of plants against resistant...
pathogens (Eisenberg et al., 1993). In this regard, new agents affecting the growth of biofilm-associated *C. albicans* and *C. glabrata* are greatly needed (Alviano et al., 2005). The present study was, therefore, carried out in order to evaluate the anti-biofilm activity of some Cameroonian plant extracts. Moreover, the exploration of additional natural resources for new antifungal agents with anti-biofilm activity could possibly reveal new antifungal agents with different modes of action or which affect different sites in *Candida* cells. This study summarizes the activity of the different extracts against *C. albicans* and *C. glabrata* in both the planktonic and biofilm state. This study’s results show that the MIC of all the extracts ranged from 0.3 to >40 mg/mL, with the aqueous leaf extracts of *E. uniflora* and *T. mantaly* showing the best activity. Few studies have evaluated the antimicrobial activity of these extracts. The ethanoic extract of *E. uniflora* has antimicrobial activity against *Staphylococcus epidermidis* and *Staphylococcus aureus*, with MICs of 52 and 250 µg/mL, respectively (Bernardo et al., 2015). However, no assays using *Candida* species have been carried out. Other species within the genera Eugenia, such as *Eugenia dysenterica*, have shown antimicrobial activity against several *Candida* species with MICs ranging between 125 and 500 µg/mL (Correia et al., 2016). These values are similar to those found in the present study using *E. uniflora*.

Plants are used in local communities worldwide for the treatment of various diseases. *E. uniflora* has been used in the traditional medicine of some African countries to treat various ailments such as wounds, skin diseases, dysentery and fever. In Brazil, *E. uniflora* leaf infusion is used as an antipyretic, astringent and also for treating several stomach problems. In Surinam, the *E. uniflora* leaf decoction is drank as a cold remedy and as an antipyretic in combination with lemongrass (Auricchio and Bacchi, 2003; Wagner et al., 1999; Morton, 1987; Stone, 1970). Likewise, *T. mantaly* leaf is taken as a decoction...
Table 2. Minimal inhibitory concentrations (MICs) (mg/ml) of the plant extracts studied.

<table>
<thead>
<tr>
<th>Plant extracts</th>
<th>C. albicans MIC (mg/ml)</th>
<th>C. glabrata MIC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guava aqueous leaf</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>Plum aqueous leaf</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>HN aqueous leaf</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>F aqueous leaf</td>
<td>10</td>
<td>0.3125</td>
</tr>
<tr>
<td>Bitter aqueous leaf</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>PL aqueous twigs</td>
<td>40</td>
<td>>40</td>
</tr>
<tr>
<td>ES aqueous leaf</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>UCI aqueous</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>UCst aqueous</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>UCtr aqueous</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>PU aqueous leaf</td>
<td>>40</td>
<td>5</td>
</tr>
<tr>
<td>P aqueous leaf</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PU aqueous seeds</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Mango aqueous leaf</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>UCtw aqueous</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>TCI aqueous</td>
<td>>40</td>
<td>40</td>
</tr>
<tr>
<td>TeMsb aqueous</td>
<td>>40</td>
<td>0.3125</td>
</tr>
<tr>
<td>UCst H2O</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Guava leaf EtOH</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>ES leaf EtOH</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>Bitter leaf EtOH</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>UCst EtOH</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>F leaf EtOH</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>HN Leaf EtOH</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>TM leaf EtOH</td>
<td>>40</td>
<td>5</td>
</tr>
<tr>
<td>PU leaf EtOH</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>UCtw EtOH</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>TMI aqueous</td>
<td>0.625</td>
<td>0.625</td>
</tr>
</tbody>
</table>

ES aqueous leaf: Eremomastax speciosa aqueous leaf extract; ES leaf EtOH: Eremomastax speciosa ethanolic leaf extract; HN leaf aqueous: Hisbiscus noldeae aqueous leaf extract; PU aqueous leaf: Piper umbellatum aqueous leaf extract; PU aqueous seeds: Piper umbellatum ethanolic leaf extract; PL leaf EtOH: Piper longifolia aqueous twigs extract; UCst aqueous: Uvariondendron calophyllum aqueous leaf extract; UCst H2O: Uvariondendron calophyllum aqueous stem extract; UCtr aqueous: Uvariondendron calophyllum aqueous trunk extract; UCst EtOH: Uvariondendron calophyllum ethanolic stem extract; UCtw EtOH: Uvariondendron calophyllum ethanolic twigs extract; Bitter leaf aqueous: Vernonia amadalya aqueous leaf extract; Bitter leaf EtOH: Vernonia amadalya ethanolic leaf extract; F leaf aqueous: Eugenia uniflora aqueous leaf extract; F leaf EtOH: Eugenia uniflora ethanolic leaf extract; Guava leaf aqueous: Psidium Guava aqueous leaf extract; Guava leaf EtOH: Psidium Guava ethanolic leaf extract; Plum leaf aqueous: Dacryodes edulis aqueous leaf extract; Mango aqueous leaf: Mangifera indica aqueous leaf extract; P aqueous leaf: Eryngium foetidium aqueous leaf extract; TMI aqueous: Terminalia mantaly aqueous leaf extract; TeMsb aqueous: Terminalia mantaly ethanolic leaf extract; TCI aqueous: Terminalia catappa aqueous leaf extract.

and infusion in the treatment of many ailments such as gastroenteritis, arterial hypertension, diabetes, dental affections and cutaneous and genital infections (Coulibaly, 2006). The MBICs and MBECs of these extracts were also determined. The results obtained showed that T. mantaly aqueous leaf extract inhibited biofilm formation of C. glabrata at a concentration of 0.45 mg/mL and was able to eradicate this biofilm at a concentration >1.8 mg/mL. On the other hand, E. uniflora aqueous leaf extract
Figure 2. Biofilm eradication concentration of *E. uniflora* and *T. mantaly* aqueous leaf extract in *C. glabrata*.

Table 3. Phytochemical screening of aqueous leaf extracts of *T. mantaly* and *E. uniflora*.

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Alkaloids</th>
<th>Flavonoids</th>
<th>Saponins</th>
<th>Tannins</th>
<th>Glucosides</th>
<th>Phenols</th>
<th>Steroids</th>
<th>Triterpenes</th>
<th>Anthocyanines</th>
<th>Anthraquinones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminalia mantaly aqueous leaf</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eugenia uniflora aqueous leaf</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ Present, - absent.

inhibited biofilm formation of *C. glabrata* at a concentration of 0.125 mg/mL and eradicated mature biofilm at a concentration of 0.5 mg/mL. To the authors' knowledge, there is no previous study on the anti-biofilm activity of these plants. These activities could be due to the presence of tannins, steroids, triterpenes, flavonoid
glucosides, saponins and anthraquinones in the E. uniflora extracts as has been suggested previously (Fiúza et al., 2008; Lorenzi and Matos, 2002). The presence of these components could act individually or in combination to produce the effects observed at the respective concentrations. Indeed, each of these constituents has a specific mode of action on the microbial strain. Thus, for example, tannins can act as antiseptic and antimicrobial agents and have antithrombogenic, antidiarrhoeic and wound-healing properties (Simões et al., 2004). On the other hand, terpenoids have been reported to have the ability to interfere with biofilm formation without disrupting cellular growth (Hertiani et al., 2010; Skindersoe et al., 2008).

Conclusion

The results of this study show that the studied extracts have antimicrobial activity and inhibit biofilm formation at the concentrations tested, suggesting that the bioactive compounds of these extracts are responsible for these activities. However, further studies are needed to verify which protein is inhibited and what chemical compounds in the extract are responsible for the activity observed. These compounds could be good candidates for the development of new anti-candida antibiotics, and tests with these compounds against other pathogenic microorganisms would also be of interest.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors are grateful to the Coimbra Group Scholarship for Young African Researchers and the Barcelona Institute of Global Health of the University of Barcelona. This manuscript was funded by the European Union’s Horizon 2020 Research and Innovation Programme under the NOMORFILM project (grant agreement No. 634588).

REFERENCES

Igwe D (2004). Phytochemical Analysis of Tetrapleura tetraptera(Aidan tree), a Master’s Degree Project Submitted to the Department of Biochemistry / Biotechnology, Ebonyi State University, Abakaliki, Unpublished.

Screening of native plants with therapeutical effects constitutes a valuable way to enhance biological attributes of medicinal herbs and discover new drugs. Therefore, ethanol and methanol extracts from ten plants collected from Brazilian Cerrado were tested to inhibitory effects against *Escherichia coli* (ATCC 25922), *Staphylococcus aureus* (ATCC 25923) and *Pseudomonas aeruginosa* (ATCC 27853) through disc diffusion. The crude extracts that showed antibacterial activities from *Anacardium humile*, *Psidium guineense* and *Myracrodruon urundeuva*, were tested on the standard strain *S*. *aureus*. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined and the interactions between the plant extracts and the main groups of secondary compounds present were investigated. The MICs of *P*. *guineense*, *M*. *urundeuva* and *A*. *humile* were all 4.1 μg/L for *S*. *aureus*. *P*. *guineense* and *A*. *humile* extracts tested against *P*. *aeruginosa* were 8.2 μg/L, whereas the extract from *M*. *urundeuva* had a MIC of 4.1 μg/L for the same strain. In addition, the observed MBCs were equivalent to the corresponding MICs. There were synergistic interactions in combinations of these plant extracts and tannins and flavonoids were identified in phytochemical analyses. These metabolites may be related to the biological activities that were found, indicating possible candidates for the development of strategies for treatment of infections caused by bacteria tested.

Key words: Crude plant extracts, biological activity, disc diffusion, traditionally use, popular medicine, Cerrado biome.

INTRODUCTION

The use of plants with therapeutic properties is an ancient practice and plants has been used as an important source of bioactive compounds (Pinto et al., 2002; Ncube et al., 2012; Khan et al., 2013; Li et al., 2016). Eating
herbs and leaves to relieve and to cure diseases was the earliest methodologies involving natural products (Viegas et al., 2006). It was through observation and experimentation that primitive peoples discovered the therapeutic properties of plants and disseminated this information from generation to generation (Turolla and Nascimento, 2006). The World Health Organization estimates that 80% of the world population uses medicinal plants as main resource in primary health care and they have been encouraging this practice (WHO, 2002). Medicinal plants and herbal medicines have an important role in therapy, as 25% of prescribed drugs worldwide are of natural origin, plants represent an important source of new biologically active compounds (Canton and Onofre, 2010). Selecting plant species for research and development based on allegations of a given therapeutic effect in humans may be a valuable shortcut to the discovery of pharmaceutical drugs (Schenkel et al., 2004; Viegas et al., 2006). The use of natural products as raw materials for the synthesis of bioactive substances has been widely reported (Schenkel et al., 2004; Viegas et al., 2006; Dias et al., 2012; Cragg and Newman, 2013).

During the last decades, the development of effective pharmaceutical drugs against bacterial infections has revolutionized medical treatment, resulting in a drastic reduction in mortality caused by microbial diseases (Dias et al., 2012; Cragg and Newman, 2013). However, the widespread use of antibiotics has caused bacteria to develop defenses, culminating in the emergence of resistance and imposing serious limitations on the options to treat infections, which represents a threat to public health (Silveira et al., 2006; Valgas et al., 2007). Because the use of plant extracts may constitute a viable alternative therapy to antibiotics (Nascimento et al., 2000), searching for new pharmaceutical drugs or prototypes from plant species has been suggested as a technological measure to solve the problem of multi-resistant bacteria (Silva et al., 2010).

In this context, this study aimed to test crude extracts of ten plants collected from the Brazilian Cerrado (Table 1) against the bacterial strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and 15 clinical strains of S. aureus isolated from patients at the Hospital Universitário Clemente de Faria (University Hospital) and from clinical laboratories at Montes Claros, State of Minas Gerais, Brazil. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentration (MBCs) of the extracts were determined by microdilution method. The interactions between the extracts of these plants using the disc diffusion methodology and the existence of the main secondary metabolite groups present in the crude extract with antibacterial activity were investigated.

MATERIALS AND METHODS

Ethnobotanical information

The plant material was collected between August and September 2006 at cities of Jaíba (15°20'16"S and 43°40'26"W), Glacuílandia (16°51'00"S and 43°41'49"W) and Claro dos Poços (17°04'48"S and 44°12'32"W) (States of Minas Gerais, Brazil). The botanical material was treated using identification and herborization techniques and was placed in the Montes Claros Herbarium of the Universidade Estadual de Montes Claros, city of Montes Claros, state of Minas Gerais, Brazil.

Screening test (Plant collection)

Leaves from the 10 different species (Table 1) were separated, oven-dried at 50°C, pulverized with a Willey type grinder and crushed on 1:5 ratio (200 g pulverized material per 1000 ml solvent) and two different solvents were used: ethanol and methanol for seven days at room temperature. After filtration, the filtrate was evaporated in a forced-air oven at 50°C for 24 h, and the residue was reconstituted in dimethyl sulfoxide (DMSO) at a concentration of 300 mg/ml (Celloto et al., 2003). Bacterial inhibition tests were performed to E. coli (ATCC 25922), S. aureus (ATCC 25923) and P. aeruginosa (ATCC 27853) by disc diffusion protocol (NCCLS, 2003) using 6 mm diameter blank discs sterile containing 10 µl of the plant extracts. DMSO and 30 µg cefoxitin discs were used as negative and positive controls, respectively. The extracts that showed an inhibition zone were considered active and selected to next step.

Extraction of crude metabolite

Leaves from species with positive antibacterial activities from screening test were dried in oven at 50°C, pulverized in a Willey type mill and ground in ethyl alcohol PA at a 1:5 ratio (200 g pulverized material per 1000 ml solvent) at room temperature for 48 h with occasional stirring. To determine this milling time, a pilot study was conducted for milling times between 48 and 72 h and seven days. There was no difference in the diameter of the inhibition zone formed, so we chose the shorter time (48 h) to perform the tests. After filtration with cotton, the filtrate was evaporated in a rotary evaporator at 70°C, 135 rpm and a negative pressure of -50 Kpa, and the residue was reconstituted in DMSO at a concentration of 300 µg/ml (Celloto et al., 2003). The extract obtained was subjected to filtration with a 0.22 µm Millex filter. The extracts were maintained at room temperature on dark condition.

Antibacterial activity: Disc diffusion

Bacterial inhibition tests were performed using S. aureus ATCC 25923 Müller-Hinton agar was used for bacterial growth incubated for 24 h in a growth chamber set at 35°C. Bacterial suspensions were prepared from fresh cultures with 0.98% NaCl saline solution with a turbidity of 0.5 McFarland Scale (1.5x10^4 cells/ml) (NCCLS, 2003). The suspensions were used to inoculate on Müller-Hinton agar plates using a sterile swab. Antibacterial activity was verified.

*Corresponding author. E-mail: hmvaler@gmail.com.

Author[s] agree that this article remain permanently open access under the terms of the [Creative Commons Attribution License 4.0 International License](https://creativecommons.org/licenses/by/4.0/)
Table 1. Plant species studied, name and common uses.

<table>
<thead>
<tr>
<th>Botanical species</th>
<th>Family</th>
<th>Common name</th>
<th>Common uses</th>
<th>Voucher: Unimontes number</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronium fraxinifolium</td>
<td>Anacardiaceae</td>
<td>Gonçalo-alves</td>
<td>Anti-rheumatic and in contusions</td>
<td>449</td>
<td>Lorenzi and Matos (2002)</td>
</tr>
<tr>
<td>Boehmeria arborescens</td>
<td>Asteraceae</td>
<td>Assa-peixe</td>
<td>Fever-reducing, in bronchitis, pneumonia, the flu and cough</td>
<td>454</td>
<td>Rodrigues and Carvalho (2001)</td>
</tr>
<tr>
<td>Brosimum gaudichaudi</td>
<td>Moraceae</td>
<td>Mama-cadela</td>
<td>Blood cleanser, in bronchitis, the flu, colds, skin spots and vitiligo, Anti-rheumatic, in chronic intoxications, poor blood circulation</td>
<td>455</td>
<td>Rodrigues and Carvalho (2001)</td>
</tr>
<tr>
<td>Luehea divaricata</td>
<td>Malvaceae</td>
<td>Açôita-cavalo</td>
<td>Anti-inflamatory, healing agent, antiseptic for ulcers, in skin disorders, urinary tract problems and respiratory tract problems</td>
<td>450</td>
<td>Rodrigues and Carvalho (2001)</td>
</tr>
<tr>
<td>Myracrodruon urundeuva</td>
<td>Anacardiaceae</td>
<td>Aroeira, aroeira-preta, aroeira-do-campo, aroeira-verdadeira, urundeuva</td>
<td>Anti-inflammatory, healing agent, antiseptic for ulcers, in skin disorders, urinary tract problems and respiratory tract problems</td>
<td>448</td>
<td>Nunes et al. (2006); Fenner et al. (2006); Lorenzi and Matos (2002)</td>
</tr>
<tr>
<td>Psidium guineense</td>
<td>Myrtaceae</td>
<td>Brazilian guava</td>
<td>Anti-diarrheal, diuretic</td>
<td>456</td>
<td>Rodrigues and Carvalho (2001); Morton (1987)</td>
</tr>
<tr>
<td>Solanum lycocarpum</td>
<td>Solanaceae</td>
<td>Wolf apple</td>
<td>Emollient, anti-rheumatic, tonic for the flu, colds and asthma, anti-spamodic, anti-epileptic, in abdominal and renal cramps and urinary tract disorders</td>
<td>452</td>
<td>Rodrigues and Carvalho (2001); Lorenzi and Matos (2002)</td>
</tr>
</tbody>
</table>

by disc diffusion (NCCLS, 2003b) protocol using 10 μl of these 10 extracts dissolved in DMSO with concentration of 300 mg/ml added on 6 mm diameter blank sterile discs. Negative and positive controls were conducted with DMSO and 30 μg of chloramphenicol added on blank disk, respectively. The plates were incubated in growth chamber at 35°C for 24 h. After incubation, the inhibition zone formed around the colonies was measured (Table 2). The effect of the response dose of the prior effective extracts and its inhibitory activities against the same strains were determined according to disc diffusion, using increasing concentrations (5, 10, 15, 20, 25, 30, 35, 40 and 50%) of

...
Table 2. Inhibition zones¹ by disc diffusion of extracts from plants extracted with different solvents against ATCC bacterial strains*.

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Ethanol extract</th>
<th>Methanol extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus</td>
<td>E. coli</td>
</tr>
<tr>
<td>Myracrodruon urundeuva</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Eugenia dysenterica</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solanum lycocarpum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solanum paniculatum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Astronium fraxinifolium</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brosimum gaudichaudii</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Luehea divaricata</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Boehmeria arborescens</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anacardium humile</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Psidium guineense</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Cefoxitin (30 µg)²</td>
<td>24</td>
<td>22</td>
</tr>
</tbody>
</table>

*Tests performed in triplicates. ¹Diameters in mm. ²Positive control antibiotic.

Table 3. Inhibition zones¹ of extracts plants and the positive control by NCCLS (2003b) disc diffusion protocol* against S. aureus ATCC 25923.

<table>
<thead>
<tr>
<th>Extract concentration (µg/L)</th>
<th>Zone of inhibition measurement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. guineense</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0.333</td>
</tr>
<tr>
<td>90</td>
<td>1.375</td>
</tr>
<tr>
<td>120</td>
<td>5.104</td>
</tr>
<tr>
<td>150</td>
<td>6.813</td>
</tr>
<tr>
<td>180</td>
<td>9</td>
</tr>
<tr>
<td>210</td>
<td>9.604</td>
</tr>
<tr>
<td>240</td>
<td>10.521</td>
</tr>
<tr>
<td>270</td>
<td>11.083</td>
</tr>
<tr>
<td>300</td>
<td>12.875</td>
</tr>
<tr>
<td>Chloramphenicol (30 µg)²</td>
<td>20.854</td>
</tr>
</tbody>
</table>

*Tests performed in triplicates.

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

To determine the MICs) of the crude extracts, microdilution test was used following the standard protocol M7-A6 (NCCLS 2003a). Concentrations of extracts ranging from 1024 to 0.5 mg/ml were tested. Dilutions were performed with 96-well plates, which were added 0.1 ml of bacterial suspensions from fresh cultures in 0.98% NaCl saline solution with a turbidity of 0.5 McFarland Scale (1.5×10⁸ cells/ml), and incubated at 35°C for 24 h at 0.2 ml final volume. The resazurin was used as indicator of microbial growth and MIC was defined as the lowest concentration which there was no microbial growth, indicated by blue resazurin. The dilutions that did not show growth were then streaked to evaluate the MBC. MBCs were determined in triplicate using the same CLSI recommended for MIC instructions. BHI was used for MBC bacterial quantification of all extract samples during 24 h at 35°C.

Interactions between plant extracts

Synergistic interactions (agonism or antagonism between plant extracts) against standard strain S. aureus ATCC 25923 were evaluated following procedures from several reports (Ahmad and Aqil, 2007; Aqil et al., 2005; Zhao et al., 2001). The extracts were combined two by two varying concentrations and each combination was tested adding on 6 mm diameter blank discs following a disc diffusion assay protocol. Control tests were conducted with discs soaked in DMSO or 30 µg chloramphenicol and all plates were incubated at 35°C for 24 h. After incubation, the inhibition zones formed around colonies were measured. Three replicates were performed for each test.

Phytochemical analyses

The characterization of the main groups of plant substances with antibacterial activity was performed with dry and pulverized leaves using qualitative chemical reactions that resulted in the development of colors and/or precipitates characteristic for each compound.

the extracts diluted in DMSO that were done in three replicates for each test (Table 3).
Statistical analyses

The data were analyzed by the statistical system R 2.5 (R Development Core Team, 2008) via generalized linear models (Crawley, 2007). For the analysis of extract inhibitory activities, the presence or absence of activity was used as response variable. In this case, a model with binomial error distribution and logit link was used. To examine the responses of tested strains to the pure extracts and to the positive control, a normal error distribution model was used. Interactions between the plant extracts were analyzed taking into consideration inhibition zone diameters, in which the presence of agonism, antagonism or lack of interaction follows a quadratic trend.

RESULTS

Antibacterial activities of the metabolites crude from plants

According to the results of the antibacterial test, extracts from *Piper guineense* and *Myracrodruon urundeuva* plants resulted in growth inhibition of *S. aureus* and *P. aeruginosa* with the two solvents used (ethanol and methanol) with no apparent difference between them. The *Anacardium humile* extract, although less effective, showed inhibition against the same bacterial strains. None of the plants evaluated showed antibacterial activity against *E. coli*. The negative control did not show antibacterial activity against any bacteria tested (Table 2).

The results of the agar diffusion antibacterial test were expressed by measuring the diameters of the inhibition zones of the tested plant extracts and the positive control. There was an increase in the inhibitory responses of the extracts as their concentrations increased (Table 3). The negative control did not show antimicrobial activity against the microorganisms tested, and the positive control showed inhibition as expected. Figure 1 shows the relationship between the presence/absence of antibacterial activity and the different concentrations of plant extracts. The *M. urundeuva* extract began its antibacterial action at a lower concentration (30 µg/L), followed by the *A. humile* and *P. guineense* extracts in disc diffusion assays.

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

All results for MIC and MBC are shown in Table 4. The MICs for the *P. guineense*, *M. urundeuva* and *A. humile* extracts were all 4.1 µg/L for *S. aureus*. For the *P. guineense* and *A. humile* extracts tested against *P. aeruginosa*, the MICs were both 8.2 µg/L, and for the *M. urundeuva* extract, it was 4.1 µg/L. As shown from the MICs and MBCs, the extracts had effective antibacterial activities compared to the control; the samples obtained had MBCs up to 16 times lower than the initial values of the crude extracts tested. According to the classification proposed by Aligiannis et al. (2001), MIC values ≤ 100 mg/ml are considered strongly inhibitory when testing fractionated plant material. In this specific case, MICs of ≤ 10 mg/ml for crude, unpurified extracts were considered promising.

Interactions between plant extracts

The results of the assessment of the interactions between plant extracts are illustrated in Figure 2. All combinations resulted in synergistic interactions, which the results of the combined action were greater than the sums of the effects of each isolated compound. According the analysis of variance of the plant extracts as a function of the bacterial strain of *S. aureus* tested (Table 5), there was no significant difference between them, demonstrating a similar behavior to the extracts tested. In the analysis of deviance for the interaction between the plants extracts studied, all interactions were significant.

Phytochemical analyses

All extracts were positive for the presence of tannins and flavonoids and negative for alkaloids. The detection of tannins with ferric chloride indicated the presence of...
Table 5. Analysis of Deviance from results by disc diffusion protocol between the extracts plants, S. aureus ATCC 25923 and the combination of extracts*.

<table>
<thead>
<tr>
<th>Plant extract</th>
<th>GL</th>
<th>Residual GL</th>
<th>Deviance</th>
<th>Residual deviance</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. guineense</td>
<td>15</td>
<td>512</td>
<td>288</td>
<td>14422</td>
<td>0.8063</td>
</tr>
<tr>
<td>M. urundeuva</td>
<td>15</td>
<td>512</td>
<td>340.4</td>
<td>15522.4</td>
<td>0.735</td>
</tr>
<tr>
<td>A. humile</td>
<td>15</td>
<td>512</td>
<td>237</td>
<td>13409</td>
<td>0.8732</td>
</tr>
<tr>
<td>Chloramphenicol (30 µg)¹</td>
<td>15</td>
<td>512</td>
<td>1568.8</td>
<td>5667.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>P. guineense + M. urundeuva</td>
<td>1</td>
<td>563</td>
<td>420.6</td>
<td>7406.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>P. guineense + A. humile</td>
<td>1</td>
<td>563</td>
<td>466.5</td>
<td>6112.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>M. urundeuva + A. humile</td>
<td>1</td>
<td>563</td>
<td>317.4</td>
<td>6010.7</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*Tests performed in triplicates. ¹Positive control.

Figure 1. Relationship between bacterial activity and plants extract concentration, where A, B and C represent *Psidium guineense*, *Myracrodruon urundeuva* and *Anacardium humile*, respectively by disc diffusion protocol against *S. aureus* ATCC 25923.

Hydrolyzable tannins in *M. urundeuva* and condensed tannins in *A. humile*. These results were confirmed by the reactions with lead acetate and glacial acetic acid. The detection of flavonoids with Shinoda reagent indicated the presence of flavonoids in *A. humile* and flavones in *M. urundeuva*. These results were confirmed by the reactions with ferric chloride. No foaming saponins, polysaccharides, organic acids, anthraquinones or reducing sugars were detected in the plant species evaluated.
Figure 2. Interactions between plant extracts (A: *Psidium guineense*, B: *Myrcrodruon urundeuva* and C: *Anacardium humile*) by disc diffusion protocol against standard strain *S. aureus* ATCC 25923. Tests performed in triplicates.
DISCUSSION

To elucidate the pharmacological activities of chemical components present in plant species is the objective of several studies. A preliminary phytochemical analysis can identify the relevant metabolite groups that may be related to the identified biological activities, thus guiding the research to obtain an effective and safe herbal medicine, in addition to identifying possible toxic active ingredients (Cragg and Newman, 2013). Previous phytochemical researches with the plant species in this study confirm the results found in the phytochemical analysis like antibacterial activity (Al-Mariri and Mazen, 2014; Rodrigues et al., 2014; Tankeo et al., 2016). Ferreira (2005) while studying the anti-ulcerogenic activity of A. humile, detected the presence of tannins and flavonoids. Correia et al. (2006) reported that substances with antibacterial and antifungal activities were present in species from the Anacardiaceae family. Lignins and tannins were isolated from M. urundeuva by Morais et al. (1999) and Queiroz et al. (2002). Vergas et al. (2007) and Rodrigues et al. (2014) reported the presence of tannins in leaves from plants of the genus Psidium.

The results obtained in this study corroborate with use of plants as antimicrobials in popular therapy. Pathogenic bacteria such as S. aureus and P. aeruginosa frequently shows resistance to the antibiotics used against them (Oliveira et al., 2007), however, they were inhibited by the three ethanol and methanol extracts tested. The M. urundeuva crude extract showed the largest inhibition zone against the microorganisms tested, and its inhibition started at a lower concentration (30 µg/L), followed by the A. humile and P. guineense extracts (60 µg/L). The antibacterial activity detected in these crude extracts may be related to the identified compounds (tannins and flavonoids). Studies performed with extracts from Psidium species showed antibacterial activities against Gram-positive and Gram-negative bacteria as well as antifungal action (Oliveira et al., 2007; Nair and Chanda, 2007; Carvalho et al., 2008; Rodrigues et al., 2014). González et al. (2005) attributed the antibacterial activity observed in P. guineense extracts to secondary metabolites such as tannins and flavonoids. Soares et al. (2006) reported the antibacterial activity of M. urundeuva Allemao (Aroeira) against S. aureus. Antibacterial activities were also reported in studies with plants of the genus Anacardium (Melo et al., 2006). A better understanding of the antimicrobial activities of plants aids in the selection of new substances for this purpose (Gonçalves et al., 2005; Dias et al., 2012; Cragg and Newman, 2013). Given that bacteria are resistant to multiple antimicrobials compounds become a problem in the treatment of infections, being clear that there is a need to find new substances with these properties to be used in the treatment against these pathogenic micro-organisms.

The antibacterial potentials of substances produced naturally in several plant species must be explored, and the relevant components or active fractions must be identified (Rios and Recio, 2005; Zago et al., 2009; Dias et al., 2012; Cragg and Newman, 2013). Research with medicinal plants involves investigating traditional and popular medicine (ethnobotany); isolating, purifying and characterizing active ingredients (organic chemistry and phytochemistry); investigating pharmacological extracts and isolating chemical compounds (pharmacology); chemically transforming active ingredients (synthetic organic chemistry); studying the relationships between structure, activity and the mechanisms of action of the active ingredients (medicinal and pharmacological chemistry); and finally, formulating herbal medicines. Integrating these areas into the study of medicinal plants leads to a promising and effective path for the discovery of new medications.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors thank the Fund for Studies and Projects (FINEP) and the Foundation for Research Support of Minas Gerais (FAPEMIG) for financing the research, and for awarding grants for the encouragement of research and technological development and undergraduate research grants.

REFERENCES

González AMN, González MBR, P Ferreira AV (2005).

Full Length Research Paper

Anti-HIV-1 activity in human primary cells and Anti-HIV-1 RT inhibitory activity of extracts from the red seaweed Acanthophora spicifera

Caio Cesar Richter Nogueira1,2, Izabel Christina Nunes de Palmer Paixão2, Claudio Cesar Cirne-Santos3, Paulo Roberto Soares Stephens4, Roberto Campos Villaça1, Helena de Souza Pereira2 and Valéria Laneuville Teixeira1*

1Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, P. O. Box 100.644, 24001-970, Niterói, RJ, Brazil.
2Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
3Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, FIOCRUZ, 21.040-900, Rio de Janeiro, RJ, Brazil.
4Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, FIOCRUZ, 21.040-900, Rio de Janeiro, RJ, Brazil.

Received 22 July, 2016; Accepted 6 September, 2016

First generation drugs such as zidovudine have been extensively used in clinical practice, resulting in the development of HIV resistance to these nucleoside analogs. Several studies have demonstrated the effective anti-HIV activity of natural products derived from seaweeds, suggesting promising sources of substances for the development of novel antiviral drugs. In this paper, the antiviral effect of extracts from the red seaweed Acanthophora spicifera on HIV-1 replication was evaluated in vitro. Peripheral blood mononuclear cells obtained using the Ficoll-Hypaque gradient were used for cytotoxicity and antiviral activity testing. The dichloromethane extracts, ethyl acetate, acetone, and methanol were found to have CC50 values of 31±7.4, 45±11, 38±3.5, and 179±25 μg/mL, respectively. With the control, the extract prepared in ethyl acetate inhibited approximately 60% of the viral load, which is the best result among the extracts. This same extract showed an IC50 value of 33.17±4.84 μg/mL for the reverse transcriptase. The EtOAc extract from A. spicifera showed to be an efficient HIV antiviral due to its phenolic compounds, as evaluated by nuclear magnetic resonance.

Key words: Marine natural products, red seaweed, Acanthophora spicifera, HIV-1, Antiviral activity, Anti-HIV-1 RT.

INTRODUCTION

Since the discovery of the human immunodeficiency virus, many drugs have been developed in an attempt to inhibit its replication. However, HIV is resistant to treatment with known drugs (Kuritzkes, 2007; Hirsch et
al., 2008; Manhanzva et al., 2015). This is due to the high mutation rate of HIV and does not have an effective mechanism for error correction during replication. One of the strategies adopted was the combination of two or more drugs known as Highly Active Antiretroviral Therapy (HAART) (Marrazzo et al., 2014). Such treatment may reduce viral load to undetectable levels in the blood and provide long-lasting clinical benefit. However, some patients do not respond to this treatment, making the search for new molecules with anti-HIV activity an urgent need. Seaweeds are a source of many bioactive compounds. Several extracts, fractions, and natural products isolated from seaweeds have demonstrated effective anti-HIV activity (Vo and Kim, 2010), making it an interesting base from which to develop new medicines. Of the seaweeds, red seaweeds produce natural products such as acetogenins (Gutiérrez-Cepeda et al., 2011), sesquiterpenes (Chen et al., 2016), monoterpenes (Silva et al., 2015), bromophenols (Popplewell and Northcote, 2009), and sulfate polysaccharides (Coura, 2012) that can be used for anti-HIV drug development. Acanthophora spicifera (Rhodophyta) is an excellent model for studies of biological activity in Brazil because it has natural banks on the coast of Rio de Janeiro, is easily identified (Perrone et al., 2006), has an experimental field cultivation described in the literature (Kaliaperumal et al., 1986), and is a part of the food chain to other species, indicating a low toxicity (Cruz-Rivera and Villareal, 2005).

Furthermore, fractions rich in sulfated polysaccharides from the red seaweed Acanthophora are an effective antiviral against HSV-1 and HSV-2 strains (Duarte et al., 2005). Therefore, the objective of this study was to evaluate the antiviral effect of extracts from A. spicifera regarding HIV-1 replication in human primary cells and their ability to inhibit the enzyme reverse transcriptase.

MATERIALS AND METHODS

Preparation of seaweed extracts

Specimens of the red seaweed A. spicifera (M.Vahl) Bergesen (Rhodomelaceae, Ceramiales, Rhodophyta) were collected in May of 2013 by snorkeling to a depth of 0.5-1 m at Orla Bardot (22° 05’03” S; 41° 53’01” W) in the city of Armação de Búzios, Rio de Janeiro, Brazil. The algal material was washed with local seawater and separated from sediments, epiphytes, and other associated organisms. The air-dried algal material (204 g) was submitted to an exhaustive and sequential extraction using the following solvents in increasing polarity: dichloromethane (CH2Cl2 - 5X 1L), ethyl acetate (EtOAc - 5X 1L), acetone (Me2CO - 4X 1L), and methanol (MeOH - 3X 1L) at room temperature for one week.

Cell and virus

Peripheral blood mononuclear cells (PBMCs) from healthy human donors (confidential information) were obtained through density centrifugation over Ficoll-Hypaque (Sigma) as described by Yeap et al. (2007). Cells were re-suspended in a RPMI 1640 medium supplemented with 10% fetal bovine serum and stimulated with 5 μg/mL-1 of phytohemagglutinin (PHA, Sigma) for three days and further maintained in culture medium containing 5 U/mL-1 of recombinant human interleukin-2 (Sigma). The viral strain HIV Ba-L (R5-tropic) Virus type 1 was donated by the National Institutes of Health (NIH, USA) and kept in storage at -80°C.

Cytotoxicity assay

The cytotoxicity of extracts from the red seaweed Acanthophora spicifera was assessed by monitoring the conversion of MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (Sigma-Aldrich) to formazan as previously described (Mosmann 1983) with some modification. Peripheral blood mononuclear cells were maintained in 96-well plates containing 2x105 cells per well and treated with increasing concentrations of the extracts (6.75, 12.5, 25, and 50 μg/mL in DMSO) for one week at 37°C under a 5% CO2 humidified atmosphere in triplicate. The DMSO concentration in the final volume of the well was less than 0.5%. After seven days of incubation, the supernatant was collected, and the MTT (20 μL of 5 mg/mL-1 in medium) was added to each well. Plates were incubated for two hours at 37°C with a 5% CO2 atmosphere. The 96 well plates were then centrifuged at 100 X g for ten minutes, the supernatant was discarded, and 100 μL of DMSO was added to each well. Finally, the optical density was measured at 545 nm on a microplate reader. The result was expressed as the 50% loss of viable cells concentration (CC50). The compound concentration required to reduce the optical density of MTT in relation to not treated cells was calculated using linear regression.

Anti-HIV-1 activity in human primary cells

PBMCs were maintained in 96-well plates containing 2x105 cells per well and stimulated with IL-2. PBMCs were infected with 5 ng/mL-1 of the HIV-1 Ba-L strain and incubated for two hours at 37°C under a 5% CO2 humidified atmosphere. Then, the 96 well plate was centrifuged at 100 X g for ten minutes, its supernatant was removed, new medium containing 50 μg/mL-1 of extracts diluted in DMSO was added, and it was incubated at 37°C with a 5% CO2 atmosphere for seven days. After incubation, the supernatant was collected, and the production of the p24 antigen was evaluated using the immunassay ELISA (Zeptometrix). The absorbance was measured in a spectrophotometer at 450 nm. Each value is expressed as mean±SEM in triplicate experiments. The average value of absorbance was used to determine the concentration of p24 in the samples treated by comparison to a standard curve (Trinchero et al., 2009).

Anti-HIV-1 RT inhibitory activity

E. coli strain BL21 (DE3) was used as a recipient for DNA transformations. Overnight, the E. coli cells transformed with the plasmid containing R966 and R951 HIV-1 genes were cultured in Luria-Bertani (LB) containing ampicillin (100 μg/ mL-1) under shaking at 220 rpm at 37°C. These overnight cultures were used as the inoculum for one liter of LB medium containing 100 μg/mL of ampicillin. Cells were grown for six hours at 37°C with vigorous shaking and then induced with isopropyl-b-D-thiogalactopyranoside (IPTG) (1 mM) for two hours. Cells were harvested by centrifugation (5000 x g, 15 min), and bacterial lysates were prepared using a lysis buffer (50 mM Tris-HCl (pH 7.9 at 4°C), 60 mM NaCl, 1 mM EDTA, and lysozyme/DNAse I treatment. Clarified lysates were used for the isolation of the p51/p66 heterodimeric RT. The active RT heterodimer was purified using the MagneHis™ Protein Purification System according to the manufacturer’s instructions.
reaction mixture containing a poly(A) ribonucleotide template/oligo d(T)16 primer and dTTP was added to the wells of a microtiter plate and mixed with 5 μL of increasing concentrations of the EtOAc extract. Finally, 1 μL of the enzyme (15–80 ng/mL) in reaction buffer was added and incubated at 37°C for one hour. 2 μL of 200 mM EDTA was added to stop the reaction. Fluorescence intensity was measured using a microplate reader (Spectramax-M4 Molecular Devices) (ex. 480 nm, em. 520 nm) after the addition of 173 μL of fluorescent PicoGreen® reagent, which selectively binds to dsDNA or DNA-RNA heteroduplexes over single-stranded nucleic acids or free nucleotides. Efavirenz was used as a positive control. The IC50 values were determined using Prism5 (GraphPad Software). All assays were performed in triplicate.

RESULTS AND DISCUSSION

The CC50 values of the extracts are reported in Table 1. The methanol and ethyl acetate extracts showed lower cytotoxicity in comparison with the extracts prepared in dichloromethane and acetone.

The percentages of p24 in the supernatants of each extract can be seen in Figure 1. When the culture supernatant infected with the Ba-L strain of HIV-1 was treated with 50 μg/mL of the extract obtained by organic solvent ethyl acetate, it was possible to observe approximately 60% reduction in the p24 levels. Treatment of infected cells with ethyl acetate extract resulted in a reduction of p24 level compared to infected untreated cells. Therefore, the extract obtained with solvent ethyl acetate was used to evaluate the ability to inhibit the activity of reverse transcriptase enzyme, an important step of HIV replication cycle.

The inhibitory activity of the EtOAc extract against HIV-1 RT is shown in Table 2. The chemical profile of ethyl acetate extract from A. spicifera was analyzed with NMR. The ethyl acetate extract showed signs in the chemical shift region from 7 ppm, which is characteristic of aromatic compounds (doublet in 7.53 ppm, triplet in 7.36 ppm and doublet in 7.13 ppm).

Cytotoxicity is critical in drug development (Putnam et al., 2002). Natural seaweed products have demonstrated low levels of cytotoxicity (Karadeniz et al., 2014) – even lower than commercial drugs such as AZT (Barbosa et al., 2004). The toxicity of A. spicifera extracts has already been studied in mice (Naqvi et al., 1980) and Vero cell line (Duarte et al., 2004). However, the present article reports for the first time the cytotoxicity of extracts from A. spicifera in human cells.

When the infected culture was treated with 50 μg/mL of the extract prepared in ethyl acetate, there was approximately 60% decrease in p24 levels. A similar

Table 1. The cytotoxicity of dichloromethane (CH2Cl2), ethyl acetate (AcOEt), acetone (Me2CO) and methanol (MeOH) extracts obtained in increasing polarity from red seaweed Acanthophora spicifera.

<table>
<thead>
<tr>
<th>Extract</th>
<th>CC50 (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane</td>
<td>31±7.4</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>45±11</td>
</tr>
<tr>
<td>Acetone</td>
<td>38±3.5</td>
</tr>
<tr>
<td>Methanol</td>
<td>179±25</td>
</tr>
</tbody>
</table>

Data are expressed as mean±S.E. of three independent experiments. The CC50 of each extract was calculated using regression line.

Table 2. Inhibitory Effects of ethyl acetate extract from Red Seaweed Acanthophora spicifera and Efavirenz on HIV-1 Reverse Transcriptase. Data are expressed as mean±S.E. of three independent experiments. The IC50 of each extract was calculated using regression line.

<table>
<thead>
<tr>
<th>Sample</th>
<th>IC50</th>
<th>Maximum inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl acetate extract</td>
<td>33.17±4.84 µg/mL</td>
<td>- 79±2.1%</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>0.006 µM</td>
<td>97±3.6%</td>
</tr>
</tbody>
</table>

The ability to inhibit the enzyme HIV-1 reverse transcriptase was evaluated using a fluorescence RT assay kit (EnzChek® Molecular Probes) according to the manufacturer’s protocol. Briefly, 20 μL of
study was conducted used partitions of CH₂Cl₂/MeOH, hexane, CH₂Cl₂, and CH₂Cl₂/EtOAc with brown seaweed Dictyota menstrualis. This group showed an inhibition in p24 levels of approximately 40% when tested at a concentration of 50 μg/mL (Pereira et al., 2004). Compared to the data found in this article, treatment using AcOEt extract from A. spicifera showed more efficient results.

The partition in ethyl acetate from brown seaweed Ecklonia cava had anti-HIV-1 activity, and this activity was confirmed by the presence of phenolic compounds. Other phenolic compounds such as flavonoids also showed effective anti-HIV activity (Casano et al., 2010; Wang et al., 2014). We evaluated the presence of phenolic compounds in the extracts obtained in increasing polarity from red seaweed A. spicifera by ¹H-NMR. Only the extract obtained with ethyl acetate showed phenolic compounds. These data corroborate the results obtained by Zeng et al. (2001), which showed the isolation of two phenolic compounds from the extract of A. spicifera obtained in ethyl acetate. Therefore, we believe that the anti-HIV effect of the EtOAc extract of red seaweed A. spicifera is due to the presence of phenolic compounds.

In a Korean study, 26 extracts from red seaweeds were tested to evaluate the inhibition of reverse transcriptase (Ahn et al., 2002). Most of the extracts were not able to inhibit more than 65% of the enzyme activity when tested at a concentration of 200 μM. These data indicate that our results were interesting, since the AcOEt extract was able to inhibit 80% of enzyme activity at a lower concentration. Ahn et al. (2004) demonstrated that the inhibitory effect of brown seaweed E. cava was causally by the presence of phenolic compounds. In conclusion, the AcOEt extract from red seaweed A. spicifera presents an efficient activity against HIV-1 virus. Finally, in accordance with the observed data, the inhibitory activity of the ethyl acetate extract in HIV reverse transcriptase-1 may be due to presence of aromatic compounds.

Conflict of Interests

The authors have not declared any conflict of interest.

ACKNOWLEDGMENTS

The authors are grateful to CNPq (Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq) for financial support – Grant number 443930/2014-7) and for Productivity Fellowship to ICNPP (Grant number 303368/2013-6) and VLT (Grant number 304070/2014-9). ICNPP (E-26/103.024/2011) and VLT (E-26/103.176/2011) also thank the FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for the Cientista do Nosso Fellowship and for financial support (Grant number E-26/110.205/2013). CCRN thanks CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the PHD Fellowship.

REFERENCES

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences