ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytotherapy etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/JMPR

Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R.China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062,
India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province,
China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Prof Swati Sen Mandi
Division of plant Biology, Bose Institute, India.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India.

Dr. Arash Kheradmand
Lorestan University, Iran.

Prof Dr Cemşit Karakurt
Pediatrics and Pediatric Cardiology Inonu University Faculty of Medicine, Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Dr.Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center Cairo, Egypt.
ARTICLES

Antifungal activities of crude extracts of some Nigerian chewing sticks 626
T. S. Ewekeye, O. A. Oke and A. G. Emoh

Antimicrobial effect of chalepensin against Streptococcus mutans Cerrado 631
Ricardo Gomez-Flores, Marcela Alejandra Gloria-Garza, Myriam Angélica de la Garza-Ramos, Ramiro Quintanilla-Licea and Patricia Tamez-Guerra

Antitumor activity of Pachycereus marginatus (DC.) Britton & Rose extracts against murine lymphoma L5178Y-R and skin melanoma B16F10 cells 635
Humberto Carlos Hernández-Martínez, Ricardo Gomez-Flores, Patricia Tamez-Guerra, Ramiro Quintanilla-Licea, Mario Ángel Samaniego Escamilla, Enriqueta Monreal-Cuevas, Reyes Tamez-Guerra and Cristina Rodriguez-Padilla
Full Length Research Paper

Antifungal activities of crude extracts of some Nigerian chewing sticks

T. S. Ewekeye*, O. A. Oke and A. G. Emoh

Department of Botany, Faculty of Science, Lagos State University, P. M. B. 0001, Ojo. Lagos State, Nigeria.

Received 5 August, 2016; Accepted 19 September, 2016

Preliminary screening of both methanol and aqueous extracts of the stem and root of Distemonanthus benthamianus, Treculia africana, Garcinia kola and Anogessus leiocarpus was carried out to test for antifungal activity. This was investigated using disc diffusion technique by measuring the zone of inhibition of the fungi after infusion with the plant extract. This produced definite antifungal activity against the dermatophytes used which were Trichophyton mentagrophytes, Candida albicans and Aspergillus fumigatus. Distemonanthus benthamianus and Anogessus leiocarpus extracts exhibited antifungal activity at 0.97mg/ml concentration against Candida albicans and Aspergillus fumigatus. There was significant difference (P<0.05) in fungicidal activity in the methanolic and aqueous extracts. However, between the methanolic and aqueous extracts, there is no significant difference.

Key words: Antifungal, dermatophytes, crude extract, fungicidal activity.

INTRODUCTION

The use of chewing sticks is very popular in Africa, indeed in Nigeria; it is a common practice to see people in local communities using pieces of wood to clean their mouth early in the morning (Adekunle and Odukoya, 2006). This practice has been from time immemorial. It was stated that chewing sticks were once used by the Babylonians and later by the Egyptians, Greeks and Romans. The same report claimed that "toothbrushes" were also common in pre-Islamic Arabia, and that the use of the chewing stick fell out of favor with the advent of Europeans about 300 years ago, yet it is still popular in many parts of Africa, Asia, and the Middle East (William, 2003; Osho and Adelani 2012).

Despite the widespread use of toothbrushes and toothpaste, natural methods of tooth cleaning, using chewing sticks selected and prepared from the twigs, stems, or roots from a variety of plant species have been practiced for many years in Asia, Africa, the Middle East and the Americans (Wu et al., 2001). Darout et al. (2002) reported that selected clinical status have shown that chewing sticks, when properly used, can be as efficient as toothbrushes in removing dental plaque due to the combined effect of mechanical cleaning and enhanced salivation. It has also been suggested that antimicrobial substances that naturally protect plants against various invading microorganisms or other parasites may leach
out into the oral cavity, and that these compounds may protect the mouth against carcinogenic anidontopathic bacteria.

Today, chewing sticks are still used in many developing countries because of religion and/or tradition; and because of their availability, low cost and simplicity. The World Health Organization (WHO, 1987) also encourages their use. The year 2000 consensus report on oral hygiene states that chewing sticks may have a role to play in the promotion or oral hygiene, and that evaluation of their effectiveness warrants further research (Axelsson et al., 2002).

In the local communities around the southern part of Nigeria, the use of chewing sticks is very popular, for the cleaning of mouth as part of oral hygiene and also for medicinal purposes especially the use of these plants against oral cavity infections. Some plants used for such purpose include Distemonanthus benthamianus, Treculia africana, Garcinia kola and Anogeissus leiocarpus.

D. benthamianus is in the family Leguminosae, locally known as "Ayan" (Yoruba) in South Western Nigeria. The twig is used locally or medicinally to stop mouth odour, in cabinetry and decorative veneers (Christine 2003). *T. africana* belongs to the family Moraceae, traditionally called "Ifon" by the Yorubas in Western part of Nigeria where the plant is widely cultivated (Ajayi et al., 2013). *G. kola*, a multi-purpose fruit tree, produces fruit, seeds, roots and stem which are extensively used in Nigeria, Ghana and other West Africa countries for dental care (Emmanuel and Roy, 2001). *G. kola* is a member of the family Sterculiaceae, known locally by Yoruba as "Orogbo" and commonly found in the middle belt areas of Nigeria. *A. leiocarpus*, locally called "Ayan" in Yoruba belongs to the family Combretaceae.

The oral cavity is possible reservoir for microorganisms, both communal and acquired (Hilal and Nizar, 2012). The mouth consists of multiple habitats offering ecological niches to a variety of organisms. Bacteria have been given a notable attention. Fungi have very scanty report despite the documented reports of their association with tooth root infection. Prominent among these reports include Cannon et al. (1995), Waltimo et al. (1997) and Baumgartner et al. (2000).

Common trend that runs through the reports is the fact that *Candida albicans* is associated with root canal infection and a constant inhabitant of oral cavity. Another oral infection, thrush is a fungal infection caused by *C. albicans* which forms a white film that irritates the gum and coats the tongue and corners of the mouth and leaves a bleeding surface. Although fungi related infections may not be as common as bacterial infections, they are more difficult to treat especially in patients whose immunity has been compromised. This is one of the reasons the exploration and development of natural products with potent antifungal activity is important (Brooks and Etim, 2004).

The aim of this research was to investigate the antifungal activities of crude extract of *D. benthamianus*, *G. kola*, *T. africana*, and *A. leiocarpus* which are commonly used as chewing sticks.

MATERIALS AND METHODS

Source of materials

The stem or root part used as chewing stick were purchased from the local markets and were authenticated at the Department of Pharmacognosy, College of Medicine, Lagos University Teaching Hospital (LUTH) Idi-Araba, Lagos. Information collected from traditional healers and local hawkers from Oyo, Osun, Ogun Ondo and Lagos States of Nigeria included parts of plants used and the preparation and dosage. Local names were also collected. The use of questionnaires and interviews were employed. Aspergillus fumigatus, *C. albicans*, and *Trichophyton mentagrophytes* with accession numbers (014, 003, 016) respectively were all collected from the Department of Medical Microbiology, Lagos University Teaching Hospital (LUTH) Idi-Araba, Lagos. The fungi were stored in Sabouraud Dextrose Agar (SDA) slants at 4°C prior to use, the fungi are clinical samples.

Preparation of discs

Whatman filter paper number one was punched into 200 pieces, 0.6 cm diameter circular discs. This was done using a perforator, the discs were then sterilized. Method of Okigbo et al. (2015) as modified was employed.

Extract preparation

The stem or root of the different plants used as chewing sticks were rinsed under running tap water after which they were dried and chopped into tiny bits. They were then pounded into powdery form with local pistil and mortar. Two hundred (200) grams of the ground plant sample where split into 100 grams for each plant and soaked separately in 70% methanol. For aqueous extract, the plant samples were soaked in water for 5 days (120 h) at room temperature to allow full extraction of all active ingredients (Akande and Ajao, 2011; Osho and Adelani, 2012). The plant materials were placed in a sterilized clinical tube. The fluid were filtered using Whatman filter paper number one (Whatman International Limited, England), after the fifth day.

The extracts were concentrated through evaporation to dryness, under pressure at 50°C using an improvised rotary evaporator (Banksole et al., 2012). The concentrated extract was later kept in the refrigerator for further use.

Culture media

Sabouraud Dextrose Agar (SDA) was used for the culturing of fungi. It was prepared according to the manufacturer’s instruction.

Screening for antifungal activity

Liquid inoculum of test fungi was prepared. This was obtained by pouring sterile distilled water into actively growing fungal plates. The fungal inoculum in suspension was carefully dropped onto the already prepared agar plates using sterilized hockey sticks. The pre-sterilized discs were soaked separately in 100 ml of sterile distilled water as control and in both the aqueous and methanol.
Table 1. Information obtained from local hawkers

<table>
<thead>
<tr>
<th>Sample plant</th>
<th>Locality collected</th>
<th>Part of plant</th>
<th>Preparation</th>
<th>Dosage (Tea cup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distemonanthus benthmianus</td>
<td>Tejuosho Market</td>
<td>Stem</td>
<td>Wash under running water and chew both the bark and the wood itself</td>
<td>Two times daily (morning and night)</td>
</tr>
<tr>
<td>Treculia africana</td>
<td>Ketu Market</td>
<td>Stem</td>
<td>Wash before usage</td>
<td>Two times daily until no more pain</td>
</tr>
<tr>
<td>Garcinia kola</td>
<td>Ojo market</td>
<td>Root</td>
<td>Rinse thoroughly before chewing</td>
<td>Two times daily</td>
</tr>
<tr>
<td>Anogessus leiocarpus</td>
<td>Ketu Market</td>
<td>Root</td>
<td>Rinse thoroughly before chewing</td>
<td>Two times daily (morning and night)</td>
</tr>
</tbody>
</table>

Table 2. Antifungal activity of methanol extract (zone of inhibition mean ± s.d. (mm)).

<table>
<thead>
<tr>
<th>Extract</th>
<th>Organism used</th>
<th>Concentration (mg/ml)</th>
<th>0.97</th>
<th>0.49</th>
<th>0.24</th>
<th>0.12</th>
<th>0.06</th>
<th>0.03</th>
<th>0.015</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Africana</td>
<td>T. mentagrophyte</td>
<td></td>
<td>12.00±0.01a</td>
<td>10.00±0.60a</td>
<td>8.00±0.50a</td>
<td>7.00±0.10a</td>
<td>5.25±0.05a</td>
<td>2.00±0.50a</td>
<td>0.01±0.01a</td>
</tr>
<tr>
<td>A. fumigates</td>
<td>C. albicans</td>
<td></td>
<td>10.00±0.01b</td>
<td>9.25±0.20b</td>
<td>7.00±0.40b</td>
<td>5.25±0.10b</td>
<td>4.00±0.20b</td>
<td>2.00±0.20b</td>
<td>0.01±0.01b</td>
</tr>
<tr>
<td>G. kola</td>
<td>A. fumigates</td>
<td></td>
<td>10.50±0.50b</td>
<td>8.00±0.70b</td>
<td>6.25±0.05b</td>
<td>4.00±0.10b</td>
<td>3.00±0.10b</td>
<td>0.01±0.01b</td>
<td>0.01±0.01b</td>
</tr>
<tr>
<td>A. leiocarpus</td>
<td>T. mentagrophyte</td>
<td></td>
<td>11.25±0.10a</td>
<td>8.00±0.10a</td>
<td>6.25±0.05a</td>
<td>5.25±0.15a</td>
<td>0.02±0.03a</td>
<td>0.02±0.01a</td>
<td>0.01±0.01a</td>
</tr>
<tr>
<td>G. kola</td>
<td>C. albicans</td>
<td></td>
<td>9.25±0.10b</td>
<td>7.00±0.20b</td>
<td>6.25±0.10b</td>
<td>4.00±0.10b</td>
<td>2.00±0.20b</td>
<td>0.03±0.02b</td>
<td>0.01±0.01b</td>
</tr>
<tr>
<td>A. fumigates</td>
<td>A. fumigates</td>
<td></td>
<td>9.25±0.10b</td>
<td>7.00±0.20b</td>
<td>5.25±0.15b</td>
<td>5.25±0.15b</td>
<td>3.00±0.10b</td>
<td>2.00±0.20b</td>
<td>0.01±0.01b</td>
</tr>
<tr>
<td>D. benthmianus</td>
<td>T. mentagrophyte</td>
<td></td>
<td>10.00±0.10b</td>
<td>6.25±0.05b</td>
<td>5.25±0.05b</td>
<td>4.00±0.10b</td>
<td>1.00±0.10a</td>
<td>0.03±0.01a</td>
<td>0.01±0.01a</td>
</tr>
<tr>
<td>C. albicans</td>
<td>C. albicans</td>
<td></td>
<td>11.25±0.10b</td>
<td>9.25±0.20b</td>
<td>6.25±0.05b</td>
<td>3.00±0.20b</td>
<td>2.00±0.20b</td>
<td>0.02±0.01b</td>
<td>0.01±0.01b</td>
</tr>
<tr>
<td>A. fumigates</td>
<td>A. fumigates</td>
<td></td>
<td>10.00±0.10b</td>
<td>7.00±0.10b</td>
<td>5.25±0.05b</td>
<td>4.00±0.10b</td>
<td>2.00±0.20b</td>
<td>2.00±0.20b</td>
<td>0.01±0.01b</td>
</tr>
<tr>
<td>Control</td>
<td>T. mentagrophyte</td>
<td></td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Control</td>
<td>C. albicans</td>
<td></td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Control</td>
<td>A. fumigatus</td>
<td></td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
</tr>
</tbody>
</table>

Means with the same superscript alphabets and in the same column are not significantly different (p>0.05).

extracts of all the four chewing sticks under study. The discs were soaked for 24 h, after which they were removed using sterile forceps. For each extract, 4 discs were placed separately in the marked Petri-dishes. Seven plates were used for each fungus. Observation was taken at every 24 h to monitor any zone of inhibition on the plates, and measurements were taken as zone of inhibition showed.

Statistical analysis

Data were expressed as mean ± standard deviation. Data were subjected to one-way analysis of variance (ANOVA) (SPSS for Windows version 17.0) and where there is significant variation, Fisher’s Least Significant Difference (LSD) was applied at α = 0.05.

RESULTS AND DISCUSSION

The information collected from traditional healers and local hawkers shows that the parts of the plants used as chewing sticks includes the stem and the root (Table 1). The fungicidal activity of the plant extracts on the test organisms is shown in (Tables 2 and 3). Both the methanol and aqueous extracts of each of the chewing sticks inhibited the growth of all the fungi. This is in line with previous studies by Bankole et al. (2012) and Osho and Adelani (2012) where both aqueous and ethanolic extracts exhibited growth inhibition against all tested organisms.

Only the extract of G. kola had the zone of inhibition less than 10 mm for all the fungi tested at 0.97 mg/ml on both methanol and aqueous extracts and a Minimum Inhibitory Concentration (MIC) of 0.06 mg/ml on methanol and 0.12 mg/ml in aqueous extracts for G. kola against T. mentagrophytes.

Among the plant extracts, D. benthmianus and A. leiocarpus had the highest antifungal activity against C. albicans on aqueous extract with mean range of 13.0±0.10 mm at 0.97 mg/ml, with a minimum inhibitory
Table 3. Antifungal activity of aqueous extract (zone of inhibition mean ± s. d. (mm)).

<table>
<thead>
<tr>
<th>Extract</th>
<th>Organism used</th>
<th>Concentration (mg/ml)</th>
<th>0.97</th>
<th>0.49</th>
<th>0.24</th>
<th>0.12</th>
<th>0.06</th>
<th>0.03</th>
<th>0.015</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. africana</td>
<td>T. mentagrophyte</td>
<td>11.25±0.10<sup>a</sup></td>
<td>9.25±0.20<sup>a</sup></td>
<td>8.00±0.10<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.02±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. albicans</td>
<td>10.00±0.10<sup>b</sup></td>
<td>9.25±0.20<sup>b</sup></td>
<td>7.00±0.10<sup>b</sup></td>
<td>5.25±0.15<sup>b</sup></td>
<td>4.00±0.10<sup>b</sup></td>
<td>2.00±0.20<sup>b</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. fumigatus</td>
<td>10.00±0.10<sup>b</sup></td>
<td>8.00±0.10<sup>b</sup></td>
<td>6.25±0.05<sup>c</sup></td>
<td>4.00±0.10<sup>c</sup></td>
<td>3.00±0.20<sup>c</sup></td>
<td>0.03±0.02<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>G. kolá</td>
<td>T. mentagrophyte</td>
<td>11.15±0.10<sup>a</sup></td>
<td>8.00±0.10<sup>a</sup></td>
<td>8.00±0.20<sup>a</sup></td>
<td>4.00±0.10<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. albicans</td>
<td>9.25±0.20<sup>b</sup></td>
<td>7.00±0.10<sup>b</sup></td>
<td>6.25±0.05<sup>c</sup></td>
<td>4.00±0.10<sup>c</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. fumigatus</td>
<td>9.25±0.20<sup>b</sup></td>
<td>9.25±0.20<sup>c</sup></td>
<td>8.00±0.20<sup>c</sup></td>
<td>4.00±0.10<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>A. leiocarpus</td>
<td>T. mentagrophyte</td>
<td>10.00±0.10<sup>b</sup></td>
<td>7.00±0.10<sup>b</sup></td>
<td>6.25±0.05<sup>c</sup></td>
<td>4.00±0.10<sup>c</sup></td>
<td>2.00±0.20<sup>b</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. albicans</td>
<td>13.00±0.10<sup>b</sup></td>
<td>10.00±0.10<sup>b</sup></td>
<td>7.00±0.10<sup>b</sup></td>
<td>4.00±0.10<sup>b</sup></td>
<td>2.00±0.20<sup>b</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. fumigatus</td>
<td>11.25±0.10<sup>c</sup></td>
<td>8.00±0.10<sup>c</sup></td>
<td>6.25±0.05<sup>c</sup></td>
<td>4.00±0.10<sup>c</sup></td>
<td>2.00±0.20<sup>b</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>D. benthamianus</td>
<td>T. mentagrophyte</td>
<td>10.00±0.10<sup>a</sup></td>
<td>8.00±0.10<sup>a</sup></td>
<td>6.25±0.05<sup>a</sup></td>
<td>3.00±0.20<sup>a</sup></td>
<td>2.00±0.20<sup>a</sup></td>
<td>2.00±0.20<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. albicans</td>
<td>13.00±0.10<sup>b</sup></td>
<td>10.00±0.10<sup>b</sup></td>
<td>8.00±0.10<sup>b</sup></td>
<td>6.25±0.05<sup>b</sup></td>
<td>4.00±0.10<sup>b</sup></td>
<td>2.00±0.20<sup>a</sup></td>
<td>0.01±0.01<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. fumigatus</td>
<td>11.25±0.10<sup>c</sup></td>
<td>9.25±0.20<sup>c</sup></td>
<td>7.00±0.10<sup>c</sup></td>
<td>5.25±0.15<sup>c</sup></td>
<td>3.00±0.10<sup>c</sup></td>
<td>2.00±0.20<sup>a</sup></td>
<td>1.00±0.10<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>T. mentagrophyte</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. albicans</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. fumigatus</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td>0.00±0.00</td>
<td></td>
</tr>
</tbody>
</table>

Means with the same superscript alphabets and in the same column are not significantly different (p>0.05).

The concentration of 0.03 mg/ml in A. leiochaerus and no MIC in D. benthamianus. In the methanol extract, the highest antifungal activity was observed with D. benthamianus and T. africana against C. albicans and T. mentagrophytes respectively, at 0.97 mg/ml for both samples. For both methanol and aqueous extract, observation shows that the aqueous extract of D. benthamianus and A. leiochaerus were the most effective of all four chewing sticks investigated for potential treatment of fungal infections in the oral cavity. Ogundiya et al. (2006) also reported that A. leiocarpus showed a higher antimicrobial activity among two other chewing sticks used in that research. The control which was sterile distilled water gave no zone of inhibition against any of the dermatophytes used.

The result presented here showed the presence of antifungal substances in the methanol and aqueous extracts of the chewing sticks used, D. benthamianus and A. leiocarpus possessed the highest antifungal activity on the test fungi, while G. kolá showed the least antifungal activity, which properly might be attributed to its low activity. A similar observation was made by Ogundiya et al. (2006) where the extracts of the three chewing sticks used in the study had no activity on C. albicans. Ikenebomeh and Methitiri (1988) also reported that extract of Casia alata at various dilutions did not inhibit the growth of C. albicans, indicating that it might be resistant to some antymycotic agents. However, the result from this study agrees with that of Adejumobi et al. (2008) and Osho and Adelani (2012) that A. leiocarpus is active against C. albicans.

For both methanolic and aqueous extracts, at concentrations of 0.03 and 0.015 mg/ml, generally there is no significant difference (p>0.05) between the activity of the plant extracts against the test.
organisms. However, for *T. africanum* against *A. fumigatus* and *A. leioicarpus* against *A. fumigatus* at 0.03 mg/ml, there is significant difference (p<0.05) in the activity of the methanolic extracts. Also for aqueous extracts, *T. africanum* against *C. albicans* and *D. benthmianus* against *A. fumigatus* at 0.03 and 0.015mg/ml respectively showed significant difference.

Conclusion

The regular use of the African chewing sticks may decrease the incidence of gingivitis and dental carriers by controlling plaque formation. Although the report of William (2003) demonstrated that the dental caries is an infection, and so extracts of some sticks have been shown to have antibacterial and antifungal properties to act against these infections in the oral cavity. From this study, it can be deduced that these chewing sticks have the potential of controlling infections caused by these fungi.

Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES

Antimicrobial effect of chalepensin against *Streptococcus mutans*

Ricardo Gomez-Flores¹*, Marcela Alejandra Gloria-Garza², Myriam Angélica de la Garza-Ramos², Ramiro Quintanilla-Licea³ and Patricia Tamez-Guerra¹

¹Departamento de Microbiología eInmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México.
²Departamento de Odontología, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Monterrey, NL. México.
³Departamento de Química, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, NL. México.

Received 8 June, 2016; Accepted 25 July, 2016

Dental diseases play an important role in public health. The use of conventional antibiotics for treatment can create microbial resistance; therefore, it is critical to search for alternatives to which there is no such an effect. In this regard, we have studied the *in vitro* effect of chalepensin, from the plant *Ruta chalepensis* L., against the dental caries etiological agent *Streptococcus mutans*. *R. chalepensis* is commonly used for treating rheumatism, hypertension, and as a skin antiseptic, anticonvulsant, deworming, and stimulant of menstrual discharge. Antimicrobial effect of chalepensin was measured by the methods of colony forming units (CFU) counts in solid medium culture and reduction of the tetrazolium salt MTT in liquid medium. Chalepensin was shown to cause significant (*p* < 0.05) 53 to 76% and 50 to 71% *S. mutans* growth inhibition at 7.8 to 500 µg/ml in liquid and solid media, respectively, with MICs of less than 7.8 µg/ml. Our results indicated that chalepensin possesses antimicrobial activity against *S. mutans*.

Key words: *Ruta chalepensis*, chalepensin, antibacterial activity, *Streptococcus mutans*.

INTRODUCTION

Dental caries and periodontal disease constitute an important health problem worldwide (Jin et al., 2016; Mattos et al., 1998), involving *Streptococcus mutans* as a major etiological pathogen in dental caries (Becker et al., 2002; Loesche, 1986). In 2013, the World Health Organization reported that billions of people were affected by dental caries; particularly, it is known that about half of Mexican population has dental diseases that have effects on systemic health (WHO, 2013). Furthermore, periodontal disease is commonly associated with tooth loss (Arweiler and Netuschil, 2016), and it is recognized that microorganisms of the plaque, gingival sulcus microbota, and their metabolic products are initiators of the disease (Park et al., 2015).

*Corresponding author. E-mail: rgomez60@hotmail.com Tel: (83) 29-41-10 x 6453. Fax: (83) 52-42-12.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
The urgent need for prevention and control of oral infectious diseases, prompts the development of new alternative treatments, to which resistance has not been developed (Chinedum et al., 2005). The search for plant extracts and active compounds has demonstrated their usefulness as a source of new agents against oral infections (Karygianni et al., 2015); in fact, more than 35% of drugs used in the clinics against infections derive from plants (Choi et al., 2003).

The aim of this study was to evaluate the in vitro effect of chalepensin from Ruta chalepensis against S. mutans.

MATERIALS AND METHODS

Reagents, culture media, and bacteria

Tetracycline solution was purchased from Life Technologies (Grand Island, NY), N-dimethylformamide (DMF), 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and sodium dodecyl sulfate (SDS) were obtained from Sigma-Aldrich (St. Louis, MO). Brain heart infusion broth and agar (BHI) were obtained from Difco Laboratories, Inc. (Detroit, MI). S. mutans bacteria were acquired from the American Type Culture Collection (Rockville, MD; ATCC700611).

Isolation and identification of chalepensin

R. chalepensis leaves were collected in Escobedo, Nuevo León, México, and identified with the voucher number 025579, at the Herbarium in Facultad de Ciencias Biológicas at Universidad Autónoma de Nuevo León, México. Leaves were dried at 37°C for 5 days, after which, they were ground.

Chalepensin was extracted and identified as previously reported (Quintanilla-Licea et al., 2014). R. chalepensis pulverized leaves (600 g) were extracted during 40 h, using methanol in a Soxhlet equipment. Next, the solvent was removed and the extract was dissolved in methanol, after which the solution was partitioned using n-hexane. This partition was chromatographed on silica gel and eluted with the consecutive gradients n-hexane–chloroform, chloroform–ethyl acetate, and methanol; 8 fractions were obtained, and fraction 2, containing a compound with an Rf of 0.41 was further fractioned using the gradients mentioned above (data not shown; Quintanilla-Licea et al., 2014). This process produced 5 fractions, of which fraction 2 contained a compound with that Rf, which was additionally fractioned with chloroform–ethyl acetate gradients, resulting in 4 main fractions; fraction 2 contained pure chalepensin (Figure 1), which was confirmed by mass spectroscopy and nuclear magnetic resonance (data not shown; Quintanilla-Licea et al., 2014).

Effect of chalepensin on S. mutans growth

Fifty microliters of a S. mutans suspension (1 x 10^3 bacteria/ml) in BHI broth (Remel, Lenexa, KS) were transferred to flat-bottomed 96-well plates (Corning Incorporated, Corning, NY) containing serial dilutions (1:2) of 50 μl of chalepensin, 1.5 μg/ml tetracycline, and BHI broth controls, and incubated for 6 h at 37°C. Next, MTT was added to all wells (0.5 mg/ml in saline solution, final concentration) and microplates were incubated for 4 additional hours. Next, 50 μl of extraction buffer were added to all wells, microplates incubated (Yamato IC600 incubator) for 16 h at 37°C, and optical densities read at 570 nm (microplate reader, Beckman Coulter, Inc., Fullerton, CA) (Gomez-Flores et al., 1995). Extraction buffer was prepared by dissolving 20% (v/v) SDS at 37°C in a solution of 50% each DMF and demineralized water, and the pH was adjusted to 4.7. For colony forming units (CFU) determination, 1:10,000 dilutions were made from treatment and control wells, as explained above, were seeded on BHI agar plates (Becton Dickinson, Mexico, D.F.) and incubated for 24 h at 37°C, after which CFU were counted (ULB-100, Scienceware, Pequannock, NJ) (Kansal et al., 1998).

Statistical analysis

The results were expressed as mean ± SE of three replicate determinations from three independent experiments. Statistical significance was assessed by the ANOVA, p < 0.05, and post-hoc Tukey, using SPSS 21.

RESULTS

Characterization of chalepensin

The fractionation of R. chalepensis methanolic extract by partition between methanol and n-hexane followed by chromatography of the hexane residue over a silica gel column, produced chalepensin (data not shown; Quintanilla-Licea et al., 2014), whose spectroscopic data were identical with those previously reported by others (Malikov and Saidkhodzhaev, 1998). In addition, the complete assignment of the 13C-NMR spectrum of this molecule as the hydrogen and carbon connectivities in 2 were deduced from 1H–1H Correlated Spectroscopy (COSY), nuclear overhauser enhancement spectroscopy (NOESY), heteronuclear single-quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) spectra, were reported by our research group (data not shown; Quintanilla-Licea et al., 2014).

Inhibition of Streptococcus mutans growth by chalepensin

Chalepensin induced significant (p < 0.05) 53 to 76% and 50 to 71% growth inhibition of S. mutans at 7.8 to 500 μg/ml, as measured by the MTT reduction and CFU methods, respectively, with MICs of less than 7.8 μg/ml (Figure 2). There was not statistical significance between concentrations, as determined by ANOVA, p <0.05, and post-hoc Tukey. Absorbs at 570 nm (0.58 ± 0.01) resulting from bacterial growth in BHI broth for chalepensin-untreated bacteria, was used as the control value. Tetracycline control caused 94, 100, 97, 98, 98, 94, 97, and 98% growth inhibition at concentrations of 0.045,
Figure 2. Antimicrobial effect of chalepensin from R. chalepensis on S. mutans growth. S. mutans culture suspensions were incubated with chalepensin, followed by measuring viability by the MTT reduction and CFU methods, as explained in the text. Data indicate the mean ± SE of 3 replicate determinations from 3 independent experiments. **p < 0.01, as compared with chalepensin-untreated control. Control absorbance value at 570 nm in liquid medium (BHI broth) for untreated cells was 0.58 ± 0.01, whereas control value for untreated cells in solid medium (BHI agar) was 69.4 ± 5.4 X 10^6 CFU/ml. Tetracyclin control caused 94% bacterial growth inhibition at 1.5 µg/ml.

DISCUSSION

Medicinal plants are commonly used, by consumption or directly applied to the injured area, to treat a number of maladies (Rojas et al., 1992). The isolation and evaluation of compounds with antibiotic activity from plants is critical, due to the acquired resistance of pathogens to conventional antibiotics (Chinedum, 2005). Plant-derived anti-infectious agents are usually accepted in a health program if their MICs are 100 to 1000 µg/ml (Drusano, 2004). In this regard, the results of our study, MIC of less than 7.8 µg/ml, demonstrated strong antibiotic activity of chalepensin against S. mutans.

Medicinal plants and antimicrobial phytochemicals are known to be useful in controlling dental disease-causing bacteria (Ramakrishnan et al., 2007). Plants such as Glycyrrhiza glabra, Allium sativum, Aloe vera, Physalis angulata, Annona senegalensis, Dryopteris crassirhizoma, Quercus infectoria, Englerophytum magalismontanum, Euclea natalensis, Solanum panduriforme, Rosmarinus officinalis Linn., Baeckea frutescens, and Parinari curatellifolia were demonstrated to have antibacterial activity against S. mutans (Ban et al., 2012; Fani and Kohanteb, 2012; Hwang et al., 2004; More et al., 2008). In addition, substances such as linoleic, linolenic, oleanolic, betulinic acids, betulin, and beta-sitosterol glucoside, among others, were reported to suppress adherence of S. mutans in-vitro (Wu, 2009).

Chalepensin (Figure 1), previously isolated and identified (Quintanilla-Licea et al., 2014), can be found particularly in plants of the Rutaceae family (Günaydın and Savci, 2005), with reported anti-fertility (Kong et al., 1989), antitumor (Wu et al., 2003), and antiplatelet aggregation (Lv et al., 2015) activities. In the present study, we showed for the first time evidence of the in vitro antimicrobial effect of chalepensin, isolated from R. chalepensis, against S. mutans, which broadens its spectrum of biological activity and provides the basis for further validation in pre-clinical studies.

Conclusions

Dental caries is the second most prevalent disease in humans, after the common cold. It is recognized that S. mutans overgrowth is the major cause of the disease, for
which, treatments are focused to eliminate this bacterium or controlling its pathogenicity. The basic treatment involves fluoride and antibiotics. However, the use of conventional antibiotics can promote bacterial resistance; it is then essential to investigate for novel antimicrobial agents to which bacteria are not resistant. The increasing research in medicinal plants as a natural source of antibiotics, has produced the discovery of several plant extracts with antimicrobial activity to \textit{S. mutans}. Extracts from \textit{R. chalepensis} were submitted to a fractionation, leading to structure elucidation of isolated compounds by spectroscopy and mass spectrometry. The methanolic extract rendered chalepensin, which caused significant \textit{S. mutans} growth inhibition (up to 76\% growth inhibition), with MICs of less than 7.8 \(\mu\)g/ml. To our knowledge, this is the first report on the antibacterial effect of chalepensin against \textit{S. mutans}. This compound may be a potential alternative for treating dental caries or be useful in the development of new antibacterial agents.

\section*{Conflict of Interests}

The authors have not declared any conflict of interest.

\section*{ACKNOWLEDGEMENTS}

This study was financed by Programa de Investigación Científica y Tecnológica-UNAL, México to RGF. We thank LIV-FCB-UNAL for supporting this study.

\section*{REFERENCES}

Antitumor activity of *Pachycereus marginatus* (DC.) Britton & Rose extracts against murine lymphoma L5178Y-R and skin melanoma B16F10 cells

Humberto Carlos Hernández-Martínez¹, Ricardo Gomez-Flores¹*, Patricia Tamez-Guerra¹, Ramiro Quintanilla-Licea², Mario Ángel Samaniego Escamilla², Enriqueta Monreal-Cuevas¹, Reyes Tamez-Guerra¹ and Cristina Rodriguez-Padilla¹

¹Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México.
²Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL. México.

Received 25 May, 2016; Accepted 22 July, 2016

Pachycereus marginatus (DC.) Britton & Rose is a species belonging to the family Cactaceae. In traditional medicine, it is recommended to treat diabetes and gastrointestinal infections; however, there are no studies related to its use in cancer treatment. The *in vitro* antitumor effect of *P. marginatus* hexane, chloroform, methanol, and methanol-aqueous partition stem extracts, against murine lymphoma L5178Y-R and skin melanoma B16F10 cells, was evaluated in liquid medium by the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The extracts resulted in up to 84, 85, 84, and 82% cytotoxicity (*p* < 0.05) to L5178Y-R cells, respectively, and up to 39, 51, 48, and 42% cytotoxicity (*p* < 0.05) to B16F10 cells, respectively. Vehicle controls were not cytotoxic for tumor cells, and along with the extracts they did not affect viability of resident murine thymus and spleen lymphocytes. Taken together, the present results showed that *P. marginatus* extracts possess antitumor potential against L5178Y-R lymphoma and B16F10 skin melanoma cells.

Key words: Cancer, cacti, *Pachycereus marginatus*, lymphoma, melanoma, medicinal plants.

INTRODUCTION

In the search for alternatives to treat diseases, researchers worldwide have taken the task of finding native plants with potential health benefit. Among them, numerous cacti species have been reported to possess...
antitumor properties (Shetty et al., 2012; Harlev et al., 2013; Lema-Rumińska and Kulus, 2014). Pachycereus marginatus (DC.) Britton & Rose (Caryophyllales: Cactaceae), also known as Stenocereus marginatus, Cereus marginata, Central Mexico organ pipe, organo, Jarritos, Chilayo, and Mexican fencepost cactus, belongs to the Pachycereeae tribe. It has columnar trunks that can reach 20 m high and is commonly used as fodder, living fences, fuel wood, and as an alternative medicine. The species is endemic to Mexico, where it grows wild in states that have a dry and hot climate such as Nuevo León, Guanajuato, Aguascalientes, Oaxaca, Puebla, San Luis Potosí, Zacatecas, Ciudad de México, Tamaulipas, Guerrero, Michoacán, Hidalgo, Jalisco, Morelos, Veracruz, Tlaxcala, and Querétaro (Hernández et al., 2004), and in Texas, New Mexico, Arizona, and Southern California (Paredes-Flores et al., 2007; Arias and Terrazas, 2009). P. marginatus is traditionally used to treat gastrointestinal infections (Hernández et al., 2003); its antimicrobial potential in plants, animals, and humans has been reported, as well as its activity to improve wound healing, and promote plant growth (Jordan-Hernández, 2012). However, the antitumor potential of P. marginatus has not yet been reported.

Cancer results from the interaction of internal (as genetic predisposition) and external factors that lead to cell degeneration, resulting in precancerous lesions and ultimately malignant tumors. If it is not promptly treated, cancer cells can spread to other organs (metastasis).

Cancer is one of the main causes of morbidity and mortality worldwide, with about 14 million new cases and 8.2 million deaths in 2012 and new cases are expected to increase 22 million in the next 20 years (Stewart and Wild, 2014). In men, most cancers affect prostate, lungs, and gastrointestinal tissues; in women, cancers in the breast, lung, cervix, and stomach are common (Stewart and Wild, 2014). In Mexico, according to the International Union Against Cancer, cancer is the third leading cause of death and estimated that each year 128,000 new cases are reported (Stewart and Wild, 2014).

The aim of the present study was to evaluate the in vitro cytotoxic activity of the hexane, chloroform, methanol, and aqueous methanol partition extracts of P. marginatus against murine lymphoma L5178Y-R and skin melanoma B16F10 cells.

MATERIALS AND METHODS

Reagents and culture media

Penicillin-streptomycin solution, L-glutamine, and RPMI 1640 and AIM-V media were obtained from Life Technologies (Grand Island, NY). Fetal bovine serum (FBS), concanavalin A (Con A), sodium dodecyl sulfate (SDS), N,N-dimethylformamide (DMF), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO). Vincristine sulfate was obtained from Laboratorios PISA (Mexico City, Mexico). The tumor cell lines L5178Y-R (mouse DBA/2 lymphoma R, clone CRL-1722) and B16F10 (mouse skin melanoma) were purchased from The American Type Culture Collection (Rockville, MD), and were maintained in culture flasks with RPMI 1640 medium, supplemented with 10% FBS, 1% L-glutamine, and 0.5% penicillin streptomycin solution (referred as complete RPMI 1640 medium) at 37°C, in a humidified atmosphere of 5% CO2 in air; cellular density was kept between 105 and 106 cells·mL−1. Extraction buffer was prepared by dissolving 20% (w:v) SDS at 37°C in a solution of 50% each DMF and demineralized water, and the pH was adjusted to 4.7.

Preparation of plant extracts

Pachycereus marginatus used in the present study was identified with voucher number 025588. Stems were rinsed with tap water to eliminate dust and other contaminating material, dried at 37°C for 36 h, and pulverized. Sixty grams of the powdered stems were sequentially extracted with 600 ml of hexane, chloroform, and methanol by Soxhlet system during 40 h each. The extracts were concentrated to dryness using a rotary evaporator Büchi (Brinkmann Instruments Inc., Switzerland) and stored at 6°C until use and dissolved in distilled water for biological activity testing. The methanol-aqueous portion of the extract was prepared by using 11 g of methanol extract and dissolving it in methanol, then in hexane, and shaking for 10 min. The resulting solution was separated with a funnel and washed with ethyl acetate. This solution was washed with water and then dried (referred as aqueous partition). Stock solutions were then prepared at 1 mg mL−1 in complete RPMI 1640 (for L5178Y-R cells), AIM-V medium (for lymphocyte cultures) or DMEM medium (for B16F10 cells), and sterilized by filtering through a 0.22-microns membrane (Milipore, Bedford, MA). P. marginatus hexane, chloroform, methanol, and methanol-aqueous partition stem extracts were tested at concentrations ranging from 0.03 to 500 μg mL−1.

L5178Y-R and B16F10 cells preparation and culture

In order to determine the direct in vitro effect of the extracts on tumor cell growth, L5178Y-R cell and B16F10 cultures were collected and the cellular suspensions obtained were washed three times in RPMI 1640 (for L5178Y-R cells) or DMEM medium (for B16F10 cells), and suspended and adjusted to 5 × 104 cells mL−1 in those culture media. One hundred microliters of the cell suspensions were then added to 96-well plates (Becton Dickinson, Cockeysville, MD), containing 100 μl triplicate cultures of complete RPMI 1640 or DMEM media (unstimulated controls), the extracts at various concentrations (extracts were dissolved in complete RPMI 1640 (for L5178Y-R cells) or DMEM medium (for B16F10 cells), extract-free vehicles (vehicles were similarly processed as with P. marginatus extracts, but without plant material), and vincristine as a positive control. After incubation for 44 h at 37°C with 5% CO2, MTT (0.5 mg mL−1, final concentration) was added, and cultures were additionally incubated for 4 h. Next, cell cultures were incubated for 16 h with extraction buffer (100 μl well−1) and optical densities, resulting from dissolved formazan crystals, were then read in a microplate reader (DTX 880 Multimode detector, Becton Dickinson, Austria) at 570 nm (Gomez-Flores et al., 2009). The percentage of cytotoxicity was calculated as follows:

\[
\text{% Cytotoxicity} = 100 - \frac{[\text{A570 in extract treated cells} \times \text{A570 in untreated cells}]}{\times 100}
\]
Table 1. Effect of *P. marginatus* extracts on L5178Y-R cells toxicity [%].

<table>
<thead>
<tr>
<th>Concentration [µg·ml⁻¹]</th>
<th>Hexane</th>
<th>Chloroform</th>
<th>Methanol</th>
<th>Methanol-aqueous partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>1</td>
<td>0</td>
<td>14.2±1.9</td>
<td>0</td>
</tr>
<tr>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>16.4±1.4</td>
<td>0</td>
</tr>
<tr>
<td>0.121</td>
<td>0</td>
<td>0</td>
<td>8.0±0.6</td>
<td>0</td>
</tr>
<tr>
<td>0.243</td>
<td>0</td>
<td>0</td>
<td>15.3±2.0</td>
<td>0</td>
</tr>
<tr>
<td>0.487</td>
<td>0</td>
<td>0</td>
<td>17.3±2.4</td>
<td>3.0±0.3</td>
</tr>
<tr>
<td>0.975</td>
<td>7.8±0.6</td>
<td>0</td>
<td>22.2±4.7</td>
<td>18.1±1.7</td>
</tr>
<tr>
<td>1.95</td>
<td>20.0±1.8*</td>
<td>31.7±1.5*</td>
<td>31.9±6.3*</td>
<td>22.1±3.4*</td>
</tr>
<tr>
<td>3.9</td>
<td>19.5±2.9*</td>
<td>81.3±6.5**</td>
<td>36.9±6.8*</td>
<td>65.3±9.4**</td>
</tr>
<tr>
<td>7.81</td>
<td>21.7±2.0**</td>
<td>83.8±5.6**</td>
<td>69.4±19**</td>
<td>80.2±2.6**</td>
</tr>
<tr>
<td>15.62</td>
<td>29.8±4.5**</td>
<td>84.4±4.7**</td>
<td>83.7±9.9**</td>
<td>82.1±5.2**</td>
</tr>
<tr>
<td>31.25</td>
<td>74.5±3.8**</td>
<td>84.9±4.4**</td>
<td>83.6±7.8**</td>
<td>82.0±4.9**</td>
</tr>
<tr>
<td>62.5</td>
<td>84.2±6.6**</td>
<td>84.9±4.3**</td>
<td>82.9±7.5**</td>
<td>80.0±5.7**</td>
</tr>
<tr>
<td>125</td>
<td>84.2±8.6**</td>
<td>84.4±3.3**</td>
<td>82.1±9.6**</td>
<td>77.7±6.3**</td>
</tr>
<tr>
<td>250</td>
<td>84.8±9.9**</td>
<td>84.6±2.9**</td>
<td>79.0±11**</td>
<td>71.5±4.8**</td>
</tr>
<tr>
<td>500</td>
<td>84.5±9.9**</td>
<td>84.1±4.3**</td>
<td>72.4±11**</td>
<td>59.4±4.4**</td>
</tr>
</tbody>
</table>

% Cytotoxicity, as compared with untreated control (culture medium). Optical density for untreated control was 0.83 ± 0.006. Data represent mean ± SE of three replicate determinations from three independent experiments. Vehicle controls for hexane, methanol, chloroform, and methanol-aqueous partition were not cytotoxic for L5178Y-R cells; vincristine caused about 75% cytotoxicity to L5178Y-R cells at concentrations ranging from 0.24 to 125 µg·ml⁻¹. *p < 0.05, **p < 0.01, compared with untreated control.

Animals

Six-week-old female BALB/c mice (22 to 28 g) were purchased from Harlan Sprague-Dawley Inc. (Indianapolis, IN, USA). They were kept in a pathogen- and stress-free environment at 24°C, under a light-dark cycle (light phase, 06:00 to 18:00 h), and given water and food ad libitum.

Cell preparation and culture

Thymus and spleen were removed immediately after mouse death, and a single cell-suspension was prepared by disrupting the organs in RPMI 1640 medium as previously reported (Gomez-Flores et al., 2009). The cell suspensions were washed three times in this medium, suspended, and adjusted to 1 x 10⁷ cells ml⁻¹ in complete RPMI 1640 medium.

T cell proliferation assay

T cell proliferation was determined by a colorimetric technique using MTT (Gomez-Flores et al., 2009). Thymus and spleen cell suspensions (100 µl of 1 x 10⁷ cells ml⁻¹) were added to flat-bottomed 96-well plates (Becton Dickinson) containing triplicate cultures (100 µl) of RPMI 1640 medium supplemented with 5% fetal bovine serum (unstimulated control), Con A (2.5 µg ml⁻¹), and plant extracts at various concentrations for 48 h at 37°C in 95% air-5% CO₂ atmosphere. After incubation for 4 h, MTT (0.5 mg/ml, final concentration) was added, and cultures were additionally incubated for 4 h. Cell cultures were then incubated for 16 h with extraction buffer (100 µl), and optical densities, resulting from dissolved formazan crystals, were then read in a microplate reader (Becton Dickinson) at 570 nm. The lymphocyte proliferation index (LPI) was calculated as follows:

\[\text{LPI} = \frac{A_{570}}{A_{570}} \]

Statistical analysis

The results were expressed as mean ± SE of three replicate determinations from three independent experiments. Statistical significance was assessed by the analysis of variance (ANOVA), \(p < 0.05 \), and pos-hoc Tukey, using statistical package for social sciences (SPSS) 21.

RESULTS

In vitro cytotoxic activity of *P. marginatus* extracts

The hexane, chloroform, and methanol extracts, respectively caused significant \((p < 0.05) \) 20 to 85%, 32 to 84%, and 32 to 72% cytotoxicity to L5178Y-R cells at concentrations ranging from 1.9 to 500 µg ml⁻¹, respectively, and the methanol-aqueous partition caused significant \((p < 0.01) \) 65 to 78% cytotoxicity at concentrations ranging from 3.9 to 125 µg ml⁻¹, respectively, and 72 and 59% cytotoxicity at 250 and 500 µg ml⁻¹, respectively, as compared with untreated control (Table 1). There was no statistical significance between extract treatment groups, as determined by ANOVA, \(p < \)
0.05, and post-hoc Tukey. With regards to B16F10 cells, the hexane, chloroform, methanol, and methanol-aqueous partition extracts, respectively caused significant (p < 0.01) 39% cytotoxicity at 100 µg ml⁻¹, 43 to 51% cytotoxicity at concentrations of 25 to 100 µg ml⁻¹, respectively, 44 to 48% cytotoxicity at concentrations of 25 to 100 µg ml⁻¹ respectively, and 40 to 42% cytotoxicity at concentrations of 25 to 100 µg ml⁻¹, respectively (Table 2), as compared with untreated control. The hexane extract treatment caused the lowest cytotoxicity, whereas the other extract treatments were not significantly different from each other (ANOVA, p < 0.05, and post-hoc Tukey). Vehicle controls for the extracts were not cytotoxic for L5178Y-R or B16F10 cells (data not shown). In addition, extracts were not cytotoxic for murine resident thymus and spleen cells (Table 3), except for the methanol-aqueous partition that caused significant (p < 0.05) 40% cytotoxicity to thymic cells at the concentration of 125 µg ml⁻¹ (Table 3).

DISCUSSION

The pharmaceutical study and application of useful compounds from medicinal plants is very promising, particularly as an alternative to conventional cancer therapy (Tsuda et al., 2004). There are many reports on compounds with anticancer properties (Plaeger, 2003), including taxol, vincristine, vinblastine, topotecan, irinotecan, and etoposide-teniposide, which are commonly used in cancer therapy (Lu et al., 2003). The Cactaceae family is reported to contain about 1,500 species, which are distributed worldwide (Harlev et al., 2013). Medicinal uses of cacti include antitumor (Loro et al., 1999; Sreekanth et al., 2007; Franco-Molina et al., 2003; Harlev et al., 2013), anti-inflammatory (Park et al., 1998; Loro et al., 1999), neuroprotective (Kim et al., 2006; Shetty et al., 2012), hepatoprotective (Nobili et al., 2008), and anti-diabetes (Hassan et al., 2011) activities.

An important goal in medicinal plant research is to

Table 2. Effect of *P. marginatus* extracts on B16F10 cells toxicity [%].

<table>
<thead>
<tr>
<th>Concentration [µg ml⁻¹]</th>
<th>Hexane/vehicle</th>
<th>Chloroform/vehicle</th>
<th>Methanol/vehicle</th>
<th>Methanol-aqueous partition/vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>11.3±0.8</td>
<td>8.5±0.6</td>
<td>0</td>
</tr>
<tr>
<td>3.1</td>
<td>0</td>
<td>7.3±0.7</td>
<td>12.0±0.7</td>
<td>0</td>
</tr>
<tr>
<td>6.2</td>
<td>0</td>
<td>3.9±0.4</td>
<td>7.0±0.5</td>
<td>0</td>
</tr>
<tr>
<td>12.5</td>
<td>0</td>
<td>1.3±0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>42.7±3.1**</td>
<td>0</td>
<td>39.6±3.9**</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>51.7±5.7**</td>
<td>44.4±5.2**</td>
<td>44.1±5.6**</td>
</tr>
<tr>
<td>100</td>
<td>39 ± 1.5**</td>
<td>50.7±4.9**</td>
<td>48.0±5.8**</td>
<td>41.9±5.9**</td>
</tr>
</tbody>
</table>

¹% Cytotoxicity, as compared with untreated control (culture medium). Optical density for untreated control was 0.29 ± 0.01. Data represent mean ± SE of three replicate determinations from three independent experiments. Vehicle controls for hexane, methanol, chloroform, and methanol-aqueous partition were not cytotoxic for B16F10 cells; vincristine caused about 75% cytotoxicity to B16F10 cells at concentrations ranging from 0.24 to 125 µg ml⁻¹. *p < 0.05, **p < 0.01, compared with untreated control.

Table 3. Effect of *P. marginatus* extracts on resident thymus/spleen cells proliferation [LPI].

<table>
<thead>
<tr>
<th>Concentration [µg·ml⁻¹]</th>
<th>Hexane</th>
<th>Chloroform</th>
<th>Methanol</th>
<th>Methanol-aqueous partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>0.93/ND</td>
<td>0.85/ND</td>
<td>0.97/ND</td>
<td>0.9/ND</td>
</tr>
<tr>
<td>7.81</td>
<td>0.92/1.08</td>
<td>0.8/1</td>
<td>0.94/0.95</td>
<td>0.8/0.98</td>
</tr>
<tr>
<td>15.62</td>
<td>0.90/1.07</td>
<td>0.8/1</td>
<td>0.91/0.96</td>
<td>0.7/1</td>
</tr>
<tr>
<td>31.25</td>
<td>0.96/1</td>
<td>0.8/1</td>
<td>0.9/0.96</td>
<td>0.9/1</td>
</tr>
<tr>
<td>62.5</td>
<td>0.94/1</td>
<td>0.8/1</td>
<td>0.9/0.95</td>
<td>0.7/1</td>
</tr>
<tr>
<td>125</td>
<td>0.89/0.5</td>
<td>0.81/0.84</td>
<td>0.92/0.98</td>
<td>0.6*0.82</td>
</tr>
</tbody>
</table>

¹LPI, as compared with untreated control (culture medium). Optical density for untreated control was 0.34 ± 0.002. Data represent mean ± SE of three replicate determinations from three independent experiments. Vehicle controls for hexane, methanol, chloroform, and methanol-aqueous partition were not cytotoxic for thymus and spleen cells (data not shown). *p < 0.05, compared with untreated control. ND. Not done.
avoid extensive and repetitive studies on known plants with limited anticancer potential, and focus on promising plants that have not been investigated; the present study was performed following these basic principles. We evaluated antitumor activity of *P. marginatus* crude extracts against murine lymphoma L5178Y-R and skin melanoma B16F10 cells, and demonstrated cytotoxicity with hexane, chloroform, methanol, and methanol-aqueous partition extracts. Cacti with antitumor potential include *Lophophora williamsii* (Lem. ex Salm-Dyck) Coul., also known as peyote, which was found to be cytotoxic to murine L5178Y-R and fibroblastoma L929, and human myeloid U937 and mammary gland MCF7 tumor cells (Franco-Molina et al., 2003); *Lophocereus schottii* (Engelm.) Britton & Rose has antitumor activity against murine lymphoma (Orozo-Barocio et al., 2013), and *Opuntia* spp. has been reported to have anti-tumor activity (Supino et al., 1996; Veronesi et al., 1999; De Palo et al., 2002; Zou et al., 2005).

The increasing resistance of mammalian tumor cells to chemotherapy, which causes adverse side effects, reduces its clinical efficacy. Thus, it is critical to discover and to develop novel anticancer agents from natural sources, such as plants, to overcome such resistance and side-effects. Cacti-based chemotherapy is a potential alternative to current cancer treatment. After applying *in vitro* bioreactor systems, valuable cacti metabolites could be produced for a large scale at limited costs and time (Lema-Rumínska and Kulus, 2014).

Conflict of Interests

The authors have not declared any conflict of interestS.

ACKNOWLEDGEMENTS

This work was supported by Programa de Investigación Científica y Tecnológica (PAICYT) of the Universidad Autónoma de Nuevo León (UANL), México to RGF. We like to thank Laboratorio de Inmunología y Virología from Facultad de Ciencias Biológicas at UANL for supporting the developing of this study.

REFERENCES

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences